1989

A Guide to the classification of soils of Louisiana

M C. Amacher

Follow this and additional works at: http://digitalcommons.lsu.edu/agexp

Recommended Citation

This Article is brought to you for free and open access by the LSU AgCenter at LSU Digital Commons. It has been accepted for inclusion in LSU Agricultural Experiment Station Reports by an authorized administrator of LSU Digital Commons. For more information, please contact gcoste1@lsu.edu.
A Guide to the Classification of Soils of Louisiana

M. C. AMACHER, W. J. DAY, B. A. SCHUMACHER, P. M. WALTHALL, and B. J. MILLER
Contents

Introduction ... 3
Soil Areas .. 4
 Coastal Plain .. 4
 Flatwoods .. 5
 Coastal Prairie .. 5
 Loess Hills .. 5
 Recent Alluvium .. 5
 Coastal Marsh ... 5
References ... 6

Tables
 Alphabetical Listing of the Soil Series of Louisiana and Their Taxonomic Classification 7
 The Soil Area, Landscape Setting, Parent Material, Drainage, Permeability, and Areal Extent of Soil Series in Louisiana ... 13
 Soil Series of Louisiana Arranged By Taxonomic Classification ... 22
 Soil Series of Louisiana Arranged By Soil Area .. 28

Preface

The idea for this guide to the soils of Louisiana originated with Dr. Bob Miller. Dr. Miller had prepared a brief guide to some of the major soils of Louisiana for his soil pedology course. The guide consisted of tables of the major soils in Louisiana arranged by soil area and taxonomic classification. Dr. Amacher thought that the guide should be expanded to include all the soils mapped in Louisiana and should be published in some form to reach a wider audience. Thus, the idea for the current guide was born. With the untimely death of Dr. Miller, it fell to the coauthors to complete the task. This guide is dedicated to Dr. Bob Miller, whose immense contributions to the study of Louisiana soils have made the job of those who follow so much easier.

Louisiana Agricultural Experiment Station, K. W. Tipton, Director
Louisiana State University Agricultural Center, H. Rouse Caffey, Chancellor

The Louisiana Agricultural Experiment Station follows a nondiscriminatory policy in programs and employment.
A Guide to the Classification of Soils of Louisiana

M. C. AMACHER,1 W. J. DAY,1 B. A. SCHUMACHER,2 P. M. WALTHALL,1 AND B. J. MILLER1

Introduction

This guide to the soils of Louisiana is intended to provide a list of the soil series that have been mapped in the state along with basic information about each series. The guide should prove useful to scientists and others interested in soils, since the information is compiled and summarized in a single source.

Table 1 is an alphabetical listing of the soil series that have been mapped in the past or are currently being mapped in Louisiana, along with the taxonomic classification and most common phase of each series (Soil Survey Staff, 1975). As areas are remapped, some of the series listed may be dropped from active use, and some of the more recently defined series may not be on the list.

Table 2 is also an alphabetical listing of the soil series and includes the general soil areas where the soils are normally found; the landscape settings of the soils; the parent materials that the soils are developed in; and information on the drainage, permeability, and areal extent of the soils. The information in this table was taken from the USDA Soil Conservation Service "blue sheet" soil descriptions. More detailed information about the soil series can be found on these sheets and in published soil surveys for the individual parishes where the soil series occurs. The general soil areas are described in the Soil Areas section below. The landscape setting refers to the relative position of the soils in the landscape. Drainage indicates the extent to which water freely drains through the soil profile, whereas permeability refers to the rate at which water moves through the soil profile. The areal extent refers to the relative size of the total land area in which a soil series is mapped within the United States. Thus, a soil could have a large areal extent over its total range but have only a small extent in Louisiana.

1Associate Professor, Research Associate, Assistant Professor, and Professor (deceased); Agronomy Department, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center.

2Former Post-Doctoral Research Associate, now Senior Scientist, Lockheed-EMSCO, Las Vegas, Nevada.
Table 3 is a listing of soil series arranged by taxonomic class. The table is divided into soil order, suborder, great group, subgroup, and series. Family information (texture, mineralogy, and temperature regime) is listed in Table 1.

Table 4 lists soil series arranged by general soil area. Some of the major soil areas are further divided into subareas, and the soil series within each subarea are listed. Some soil series are found in more than one area, but each series is listed under the area in which it is most commonly found.

Soil Areas

The soils of Louisiana are grouped into six major soil areas based on landscape setting and parent material. Some major soil areas are divided into subareas as well. The major soil areas used in this guide largely follow those of Lytle (1968) and Lytle and Sturgis (1962), although this is an updated version. Descriptions of the soil areas are given below.

Coastal Plain

The Coastal Plain soil area is found in the northcentral and western regions of the state and in the northeastern part of the Florida parishes. Coastal Plain soils are on uplands and developed primarily in Tertiary age sediments, although Pleistocene age terrace soils along the Red River are included in the Coastal Plain area. These soils are not on the active Red River floodplain and do not fit into the other soil areas. Coastal Plain soils are usually in forest or pasture, although some row crops are grown. Coastal Plain soils are divided into eight subareas based on permeability and parent material:

1—Upland soils with rapidly permeable subsoils developed in sandy sediments
2—Upland soils with moderately permeable subsoils developed in sandy and loamy sediments
3—Upland soils with slowly permeable subsoils developed in loamy sediments
4—Upland soils with slowly permeable subsoils developed in acid clays
5—Upland soils with slowly permeable subsoils developed in alkaline clays (marl or chalk)
6—Upland soils with slowly permeable subsoils developed in iron-rich clayey marine sediments high in siderite
7—Upland soils with slowly permeable subsoils developed in glauconitic sediments
8—Pleistocene age terrace soils with slowly permeable subsoils developed in clayey alluvium
Flatwoods

The Flatwoods soil area occurs on the Intermediate and Prairie Terraces. Flatwoods soils are typically on nearly level or depressional areas and are usually poorly drained and have slow permeability. Vegetation on Flatwoods soils is usually forest or pasture.

Coastal Prairie

The Coastal Prairie soil area is in the southwestern part of the state. Coastal Prairie soils have slowly permeable subsoils, and the native vegetation was tall-grass prairie species. Rice and other row crops are not grown on these soils.

Loess Hills

Soils developed in loess (aeloian deposits with predominantly silt-sized particles) are found in bands adjacent to the western side of the Mississippi River floodplain and in a band adjacent to the eastern side of the Mississippi River floodplain extending into the Florida parishes. Loessial soils have developed under three conditions: thick loess deposits, thin deposits of loess over sediments, and mixtures of loess and underlying sediments. Loess deposits have been identified predominantly on Pleistocene age terraces but are also recognized in other upland areas. Forest, pasture, and row crops are the predominant vegetation. Detailed information on loess and loess-derived soils can be found in a guidebook by Miller et al. (1986).

Recent Alluvium

Four major alluvial soil areas are recognized: Mississippi River; Red River; Ouachita River (old Arkansas River channels included); and local streams, rivers, and bayous. Within each major alluvial area, soils are grouped according to whether they are found on the natural levees and floodplains or in backswamp areas. A recent publication on Mississippi River alluvial soils contains detailed information on these soils (Schumacher et al., 1988). Local stream alluvial soils are grouped into Coastal Plain and Flatwoods stream alluvial soils, Loess Hill stream alluvial soils, waterway spoil bank soils, and backswamp soils along local bayous.

Coastal Marsh

Coastal Marsh soils are grouped into the following categories primarily based on landscape setting and salinity levels. These six categories are:

1—Beach and beach ridge soils
2—Saltwater marsh soils
3—Brackish marsh soils
4—Freshwater marsh soils
5—Drained marsh and swamp soils
6—Soils on waterway flats
The distinction between saltwater and brackish marsh soils is often blurred because of the dynamic nature of the Coastal Marsh area. Saltwater inundation of brackish and even freshwater marshes as a result of land subsidence, coastal erosion, saltwater intrusion caused by manmade waterways, wind driven tides, and hurricanes is common.

References

Lytle, S. A. 1968. The morphological characteristics and relief relationships of representative soils in Louisiana. Louisiana Agricultural Experiment Station Bulletin No. 631.

Lytle, S. A. and M. B. Sturgis. 1962. General soil areas and associated soil series groups of Louisiana. Agronomy Department, Louisiana Agricultural Experiment Station.

Table 1. Alphabetical listing of the soil series of Louisiana and their taxonomic classification

<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Phase</th>
<th>Taxonomic Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abita</td>
<td>sil(^2)</td>
<td>Glossaquic Paleudalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Acadia</td>
<td>sil</td>
<td>Aeric Ochraqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Acy</td>
<td>sil</td>
<td>Aeric Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Alaga</td>
<td>ls</td>
<td>Typic Quartzipsamment, siliceous, thermic, coated</td>
</tr>
<tr>
<td>Allemands</td>
<td>m</td>
<td>Terric Medisaprist, clayey, montmorillonitic, euic, thermic</td>
</tr>
<tr>
<td>Alligator</td>
<td>c</td>
<td>Vertic Haplaquef, very-fine, montmorillonitic, acid, thermic</td>
</tr>
<tr>
<td>Amagon</td>
<td>sil</td>
<td>Typic Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Anacoco</td>
<td>sil</td>
<td>Vertic Albauqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Andry</td>
<td>p</td>
<td>Typic Argiaquoll, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Angie</td>
<td>vfs1</td>
<td>Aquic Paleudult, clayey, mixed, thermic</td>
</tr>
<tr>
<td>Arat</td>
<td>m</td>
<td>Typic Hydroquent, fine-silty, siliceous, nonacid, thermic</td>
</tr>
<tr>
<td>Arkabutla</td>
<td>sil</td>
<td>Aeric Fluvaquent, fine-silty, mixed, acid, thermic</td>
</tr>
<tr>
<td>Armistead</td>
<td>c</td>
<td>Aquic Argiaquoll, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Attoyac</td>
<td>fsl</td>
<td>Typic Paleudalf, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Baldwin</td>
<td>sicl</td>
<td>Vertic Ochraqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Balize</td>
<td>sil</td>
<td>Typic Hydroquent, fine-silty, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Bancker</td>
<td>mc</td>
<td>Typic Hydroquent, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Barbary</td>
<td>m</td>
<td>Typic Hydroquent, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Barclay</td>
<td>vfs1</td>
<td>Aquic Dystrochrept, coarse-silty, mixed, thermic</td>
</tr>
<tr>
<td>Basile</td>
<td>sil</td>
<td>Typic Glossaququlf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Bassfield</td>
<td>sl</td>
<td>Typic Hapludult, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Bayoudan</td>
<td>c</td>
<td>Aquentic Chromudert, very-fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Beauregard</td>
<td>sil</td>
<td>Plinthaqueg Paleudult, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Bellpass</td>
<td>m</td>
<td>Terric Medisaprist, clayey, montmorillonitic, euic, thermic</td>
</tr>
<tr>
<td>Bellwood</td>
<td>c</td>
<td>Aquentic Chromudert, very-fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Benndale</td>
<td>fsl</td>
<td>Typic Paleudult, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Bernaldo</td>
<td>fsl</td>
<td>Glossic Paleudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Betis</td>
<td>lfs</td>
<td>Psammentic Paleudult, sandy, siliceous, thermic</td>
</tr>
<tr>
<td>Bibb</td>
<td>sl</td>
<td>Typic Fluvaquent, coarse-loamy, siliceous, acid, thermic</td>
</tr>
<tr>
<td>Bienville</td>
<td>lfs</td>
<td>Psammentic Paleudult, sandy, siliceous, thermic</td>
</tr>
<tr>
<td>Bonn</td>
<td>sil</td>
<td>Glossic Natraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Boswell</td>
<td>fsl</td>
<td>Vertic Paleudult, fine, mixed, thermic</td>
</tr>
<tr>
<td>Bowie</td>
<td>fsl</td>
<td>Plinthic Paleudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Boykin</td>
<td>lfs</td>
<td>Arenic Paleudult, loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Briley</td>
<td>lfs</td>
<td>Arenic Paleudult, loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Brimstone</td>
<td>sil</td>
<td>Glossic Natraqualf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Bruin</td>
<td>sil</td>
<td>Aquic Fluventic Eutrochrept, coarse-silty, mixed, thermic</td>
</tr>
<tr>
<td>Bude</td>
<td>sil</td>
<td>Glossic Frugiudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Bursley</td>
<td>sicl</td>
<td>Aeric Glossaquall, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Bussy</td>
<td>sil</td>
<td>Typic Frugiudalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Buxin</td>
<td>c</td>
<td>Vertic Hapludoll, fine, mixed, thermic</td>
</tr>
<tr>
<td>Caddo</td>
<td>sil</td>
<td>Typic Glossaquall, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Cadetville</td>
<td>vfs1</td>
<td>Albaquic Hapludalf, fine, mixed, thermic</td>
</tr>
<tr>
<td>Cahaba</td>
<td>sl</td>
<td>Typic Hapludult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Calhoun</td>
<td>sil</td>
<td>Typic Glossaquall, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Phase</td>
<td>Taxonomic Classification</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Calloway</td>
<td>sil</td>
<td>Glossaquic Fragiudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Carlin</td>
<td>p</td>
<td>Hydric Medihemist, euic, thermic</td>
</tr>
<tr>
<td>Cascilla</td>
<td>sil</td>
<td>Fluventic Dystrochrept, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Caspiana</td>
<td>sil</td>
<td>Typic Argiudoll, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Chastain</td>
<td>sic</td>
<td>Fluventic Haplauquet, fine, kaolinitic, acid, thermic</td>
</tr>
<tr>
<td>Cheniere</td>
<td>scl</td>
<td>Typic Udipsamment, carbonatic, thermic</td>
</tr>
<tr>
<td>Clovelly</td>
<td>m</td>
<td>Terric Medisaprist, clayey, montmorillonitic, euic, thermic</td>
</tr>
<tr>
<td>Cocodrie</td>
<td>vfs1</td>
<td>Aquic Udifluvent, coarse-silty, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Collins</td>
<td>sil</td>
<td>Aquic Udifluvent, coarse-silty, mixed, acid, thermic</td>
</tr>
<tr>
<td>Colyell</td>
<td>sil</td>
<td>Glossaquic Hapludalf, fine, mixed, thermic</td>
</tr>
<tr>
<td>Commerce</td>
<td>sil</td>
<td>Aeric Fluvaquent, fine-silty, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Convent</td>
<td>sil</td>
<td>Typic Paleudalf, fine- to loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Corrigan</td>
<td>fsl</td>
<td>Typic Paleudalf, fine- to loamy, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Coteau</td>
<td>sil</td>
<td>Glossaquic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Coushatta</td>
<td>sil</td>
<td>Fluventic Eutrochrept, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Creole</td>
<td>c</td>
<td>Typic Hydrauludalf, fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Crevasse</td>
<td>s</td>
<td>Typic Udipsamment, mixed, thermic</td>
</tr>
<tr>
<td>Crowley</td>
<td>sil</td>
<td>Typic Albaqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Darbonne</td>
<td>lfs</td>
<td>Typic Paleudalf, fine- to loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Darco</td>
<td>lfs</td>
<td>Grossarenic Paleudult, loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Darden</td>
<td>lfs</td>
<td>Typic Quartzipsamment, thermic, coated</td>
</tr>
<tr>
<td>Darley</td>
<td>sil</td>
<td>Typic Hapludult, clayey, kaolinitic, thermic</td>
</tr>
<tr>
<td>Debute</td>
<td>sil</td>
<td>Typic Hapludult, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Deerford</td>
<td>sil</td>
<td>Albic Glossic Natudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Dela</td>
<td>fsl</td>
<td>Aquic Udifluvent, coarse-loamy, siliceous, nonacid, thermic</td>
</tr>
<tr>
<td>Delcomb</td>
<td>mp</td>
<td>Terric Medisaprist, loamy, mixed, euic, thermic</td>
</tr>
<tr>
<td>Dexter</td>
<td>sil</td>
<td>Ultic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Doissman</td>
<td>sil</td>
<td>Ultic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Dubbs</td>
<td>sil</td>
<td>Typic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Dundee</td>
<td>l</td>
<td>Aeric Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Duralde</td>
<td>sil</td>
<td>Fragic Glossudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Eastwood</td>
<td>vfs1</td>
<td>Vertic Hapludalf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Egypt</td>
<td>sil</td>
<td>Aquic Glossudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Elyssian</td>
<td>fsl</td>
<td>Haplic Glossudalf, coarse- to loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Encrow</td>
<td>sil</td>
<td>Typic Glossaqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Essen</td>
<td>sil</td>
<td>Aeric Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Eustis</td>
<td>ls</td>
<td>Psammentic Paleudult, sandy, siliceous, thermic</td>
</tr>
<tr>
<td>Evangeline</td>
<td>sil</td>
<td>Glossic Paleudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Falaya</td>
<td>sil</td>
<td>Aeric Fluventic Haplauquet, coarse-silty, mixed, acid, thermic</td>
</tr>
<tr>
<td>Falkner</td>
<td>sil</td>
<td>Aquic Paleudalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Fausse</td>
<td>c</td>
<td>Typic Fluvaquent, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Felicity</td>
<td>ls</td>
<td>Aquic Udipsamment, mixed, thermic</td>
</tr>
<tr>
<td>Flo</td>
<td>ls</td>
<td>Psammentic Paleudalf, sandy, siliceous, thermic</td>
</tr>
<tr>
<td>Fluker</td>
<td>sil</td>
<td>Glossaquic Fragiudalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Foley</td>
<td>sil</td>
<td>Albic Glossic Natudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Phase</td>
<td>Taxonomic Classification</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Forbing</td>
<td>sil</td>
<td>Vertic Paleudalf, very-fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Forestdale</td>
<td>sicl</td>
<td>Typic Ochraqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Fountain</td>
<td>sil</td>
<td>Typic Glossaqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Fred</td>
<td>sil</td>
<td>Aquic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Frizzell</td>
<td>sil</td>
<td>Aquic Glossudalf, coarse-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Frost</td>
<td>sil</td>
<td>Typic Glossaqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Frozard</td>
<td>sil</td>
<td>Aeric Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Gallion</td>
<td>sil</td>
<td>Typic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Galvez</td>
<td>sil</td>
<td>Aeric Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Ged</td>
<td>c</td>
<td>Typic Ochraqualf, very-fine, mixed, thermic</td>
</tr>
<tr>
<td>Gentilly</td>
<td>m</td>
<td>Typic Hydraulquet, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Gigger</td>
<td>sil</td>
<td>Typic Fragiudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Gilbert</td>
<td>sil</td>
<td>Typic Glossaqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Glenmora</td>
<td>sil</td>
<td>Glossaquic Paleudalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Goldman</td>
<td>vfs1</td>
<td>Aquic Hapludalf, coarse-silty, mixed, thermic</td>
</tr>
<tr>
<td>Goodwill</td>
<td>sil</td>
<td>Ultic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Gore</td>
<td>sil</td>
<td>Vertic Hapludalf, fine, mixed, thermic</td>
</tr>
<tr>
<td>Grenada</td>
<td>sil</td>
<td>Glossic Fragiudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Groom</td>
<td>sil</td>
<td>Aerio Ochraqualf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Gueydan</td>
<td>m</td>
<td>Typic Fluvaquent, fine, montmorillonitic, nonacid, thermic, cracked</td>
</tr>
<tr>
<td>Guyton</td>
<td>sil</td>
<td>Typic Glossaqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Hackberry</td>
<td>lfs</td>
<td>Aeric Haplaquert, sandy, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Haggerty</td>
<td>lfs</td>
<td>Aeric Ochraquilt, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Hannahatchee</td>
<td>fsl</td>
<td>Dystric Fluventic Eutrochrept, fine-loamy, mixed, thermic</td>
</tr>
<tr>
<td>Harahan</td>
<td>c</td>
<td>Vertic Haplaquett, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Harleston</td>
<td>l</td>
<td>Aquic Paleudult, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Hebert</td>
<td>sil</td>
<td>Aeric Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Herty</td>
<td>vfs1</td>
<td>Vertic Albaqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Hollywood</td>
<td>cl</td>
<td>Typic Pelludert, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Iberia</td>
<td>sic</td>
<td>Vertic Haplaquoll, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Idee</td>
<td>sil</td>
<td>Aerio Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Ijam</td>
<td>c</td>
<td>Vertic Fluvaquent, fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Iuka</td>
<td>fsl</td>
<td>Aquic Udifluvent, coarse-loamy, siliceous, acid, thermic</td>
</tr>
<tr>
<td>Jeanerette</td>
<td>sil</td>
<td>Typic Argiaquoll, fine-silty, mixed, noncalcareous, thermic</td>
</tr>
<tr>
<td>Jena</td>
<td>sil</td>
<td>Fluventic Dystrochrept, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Judice</td>
<td>sicl</td>
<td>Vertic Haplaquoll, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Kaplan</td>
<td>sil</td>
<td>Typic Ochraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Keithville</td>
<td>vfs1</td>
<td>Glossaquic Paleudalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Kenner</td>
<td>m</td>
<td>Fluvuquent Medisaprist, euic, thermic</td>
</tr>
<tr>
<td>Kenney</td>
<td>lfs</td>
<td>Grossarenic Paleudalf, loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Killian</td>
<td>sil</td>
<td>Typic Glossaqualf, fine, mixed, thermic</td>
</tr>
<tr>
<td>Kinder</td>
<td>sil</td>
<td>Typic Glossaqualf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Kirvin</td>
<td>fsl</td>
<td>Typic Hapludult, clayey, mixed, thermic</td>
</tr>
<tr>
<td>Kisatchie</td>
<td>sil</td>
<td>Typic Hapludalf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Kolin</td>
<td>sil</td>
<td>Glossaquic Paleudalf, fine-silty, siliceous, thermic</td>
</tr>
</tbody>
</table>
Table 1. (continued)

<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Phase</th>
<th>Taxonomic Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kullilit</td>
<td>fsl</td>
<td>Aquic Paleudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Lafe</td>
<td>sil</td>
<td>Glossic Natrudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Lafitte</td>
<td>m</td>
<td>Typic Medisaprist, euic, thermic</td>
</tr>
<tr>
<td>Lakeland</td>
<td>s</td>
<td>Typic Quartzipsamment, coated, thermic</td>
</tr>
<tr>
<td>Larose</td>
<td>m</td>
<td>Typic Hydquent, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Larue</td>
<td>lfs</td>
<td>Arenic Paleudalf, loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Latanier</td>
<td>c</td>
<td>Vertic Hapludoll, clayey over loamy, mixed, thermic</td>
</tr>
<tr>
<td>Latonia</td>
<td>sl</td>
<td>Typic Hapludult, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Leaf</td>
<td>sil</td>
<td>Typic Albaquult, clayey, mixed, thermic</td>
</tr>
<tr>
<td>Lebeau</td>
<td>c</td>
<td>Aquentic Chromaudert, very-fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Leton</td>
<td>sil</td>
<td>Typic Glossaqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Lexington</td>
<td>sil</td>
<td>Typic Paleudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Libuse</td>
<td>sil</td>
<td>Typic Fragialdalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Liddieville</td>
<td>fsl</td>
<td>Ultic Hapludalf, fine-loamy, mixed, thermic</td>
</tr>
<tr>
<td>Litro</td>
<td>c</td>
<td>Vertic Haplaquett, fine, mixed, acid, thermic</td>
</tr>
<tr>
<td>Loreauville</td>
<td>sil</td>
<td>Udollic Ochrqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Loring</td>
<td>sil</td>
<td>Typic Fragialdalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Lotus</td>
<td>lfs</td>
<td>Aquic Quartzipsamment, thermic, coated</td>
</tr>
<tr>
<td>Lucedale</td>
<td>l</td>
<td>Rhodic Paleudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Mahan</td>
<td>fsl</td>
<td>Typic Hapludult, clayey, kaolinitic, thermic</td>
</tr>
<tr>
<td>Malbis</td>
<td>fsl</td>
<td>Plinthic Paleudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Mamou</td>
<td>sil</td>
<td>Aeric Albaqualf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Mantachie</td>
<td>l</td>
<td>Aeric Fluvuquent, fine-loamy, siliceous, acid, thermic</td>
</tr>
<tr>
<td>Mashulaville</td>
<td>l</td>
<td>Typic Fragaquult, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Maurepas</td>
<td>m</td>
<td>Typic Medisaprist, euic, thermic</td>
</tr>
<tr>
<td>Mayhew</td>
<td>sicl</td>
<td>Vertic Ochraqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>McKamie</td>
<td>vfsl</td>
<td>Vertic Hapludalf, fine, mixed, thermic</td>
</tr>
<tr>
<td>McLauren</td>
<td>ls</td>
<td>Typic Paleudalf, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Memphis</td>
<td>sil</td>
<td>Typic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Mermentau</td>
<td>c</td>
<td>Aeric Haplaquett, clayey over loamy, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Mer Rouge</td>
<td>sil</td>
<td>Typic Argiudoll, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Messer</td>
<td>sil</td>
<td>Haplic Glossudalf, coarse-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Metcalf</td>
<td>sil</td>
<td>Aquic Glossudalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Meth</td>
<td>fsl</td>
<td>Ultic Hapludalf, fine, mixed, thermic</td>
</tr>
<tr>
<td>Mhoon</td>
<td>sil</td>
<td>Typic Fluvuquent, fine-silty, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Midland</td>
<td>sicl</td>
<td>Typic Ochraqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Mollicy</td>
<td>l</td>
<td>Aquic Hapludult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Moreland</td>
<td>c</td>
<td>Vertic Hapludoll, fine, mixed, thermic</td>
</tr>
<tr>
<td>Morey</td>
<td>sil</td>
<td>Typic Argiaquoll, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Morse</td>
<td>c</td>
<td>Entic Chromaudert, fine, mixed, thermic</td>
</tr>
<tr>
<td>Mowata</td>
<td>sil</td>
<td>Typic Glossaqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Muskogee</td>
<td>sil</td>
<td>Aquic Paleudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Hyatt</td>
<td>sil</td>
<td>Typic Ochraqualf, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Nacogdoches</td>
<td>fsl</td>
<td>Rhodic Paleudalf, fine, kaolinitic, thermic</td>
</tr>
<tr>
<td>Natalbany</td>
<td>sil</td>
<td>Vertic Ochraqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Phase</td>
<td>Taxonomic Classification</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Natchitoches</td>
<td>1</td>
<td>Vertic Hapludalf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Necessity</td>
<td>sil</td>
<td>Glossaquic Fragiudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Newellton</td>
<td>c</td>
<td>Aericy Fluvaquent, clayey over loamy, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Norwood</td>
<td>sil</td>
<td>Typic Udifluvent, fine-silty, mixed, calcareous, thermic</td>
</tr>
<tr>
<td>Nugent</td>
<td>fsl</td>
<td>Typic Udifluvent, sandy, siliceous, thermic</td>
</tr>
<tr>
<td>Ochlockonee</td>
<td>sl</td>
<td>Typic Udifluvent, coarse-loamy, siliceous, acid, thermic</td>
</tr>
<tr>
<td>Oktibeha</td>
<td>c</td>
<td>Vertic Hapludalf, very-fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Olivier</td>
<td>sil</td>
<td>Aquic Fragiudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Olla</td>
<td>fsl</td>
<td>Typic Hapludult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Ora</td>
<td>sl</td>
<td>Typic Fragiudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Osier</td>
<td>ffs</td>
<td>Typic Psammaquent, siliceous, thermic</td>
</tr>
<tr>
<td>Ouachita</td>
<td>sil</td>
<td>Fluventic Dystrochrept, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Patoutville</td>
<td>sil</td>
<td>Vertic Hapludalf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Pelham</td>
<td>ls</td>
<td>Arenic Paleaquult, loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Perry</td>
<td>c</td>
<td>Vertic Haplaquept, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Peveto</td>
<td>fs</td>
<td>Typic Udifluvent, mixed, thermic</td>
</tr>
<tr>
<td>Pheba</td>
<td>sil</td>
<td>Glossaquic Fragiudult, coarse-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Portland</td>
<td>sic</td>
<td>Vertic Hapludult, fine, montmorillonitic, nonacid, hyperthermic</td>
</tr>
<tr>
<td>Prentiss</td>
<td>l</td>
<td>Glossic Fragiudult, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Providence</td>
<td>sil</td>
<td>Typic Fragiudalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Rayburn</td>
<td>fsl</td>
<td>Vertic Hapludalf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Rexor</td>
<td>l</td>
<td>Ultic Hapludult, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Rigolette</td>
<td>ffs</td>
<td>Typic Haplaquept, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Rilla</td>
<td>sil</td>
<td>Typic Hapludalf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Rita</td>
<td>m</td>
<td>Typic Hapludalf, fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Robinsonville</td>
<td>vfs</td>
<td>Typic Udifluvent, coarse-loamy, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Rosebeck</td>
<td>c</td>
<td>Vertic Hapludoll, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Rosalie</td>
<td>lfs</td>
<td>Arenic Paleudult, loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Rosebloom</td>
<td>sil</td>
<td>Typic Fluvaquent, fine-silty, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Roxana</td>
<td>vfs</td>
<td>Typic Udifluvent, coarse-silty, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Ruple</td>
<td>fsl</td>
<td>Typic Rhodudult, clayey, oxidic, thermic</td>
</tr>
<tr>
<td>Ruston</td>
<td>fsl</td>
<td>Typic Paleudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Sacul</td>
<td>fsl</td>
<td>Aquic Hapludult, clayey, mixed, thermic</td>
</tr>
<tr>
<td>Satsusa</td>
<td>sil</td>
<td>Glossaquic Hapludalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Saucier</td>
<td>fsl</td>
<td>Plinthauqic Paleudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Savannah</td>
<td>fsl</td>
<td>Typic Fragiudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Sawyer</td>
<td>sil</td>
<td>Aquic Paleudult, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Scatlake</td>
<td>p</td>
<td>Typic Hydraquent, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Severn</td>
<td>vfs</td>
<td>Typic Udifluvent, coarse-silty, mixed, calcareous, thermic</td>
</tr>
<tr>
<td>Sharkey</td>
<td>c</td>
<td>Vertic Haplaquept, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Shatta</td>
<td>sil</td>
<td>Typic Fragiudult, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Shubuta</td>
<td>fsl</td>
<td>Typic Paleudult, clayey, mixed, thermic</td>
</tr>
<tr>
<td>Smithdale</td>
<td>sl</td>
<td>Typic Paleudult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Phase</td>
<td>Taxonomic Classification</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Soilier</td>
<td>c</td>
<td>Aeric Haplaquept, clayey over fine-silty, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Sostien</td>
<td>s</td>
<td>Vertic Fluvaquent, fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Springfield</td>
<td>sil</td>
<td>Aeric Albaqualf, fine, mixed, thermic</td>
</tr>
<tr>
<td>Sterlington</td>
<td>vfs1</td>
<td>Typic Hapludalf, coarse-silty, mixed, thermic</td>
</tr>
<tr>
<td>Stough</td>
<td>fsl</td>
<td>Aquic Fragiudult, coarse-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Sumter</td>
<td>c</td>
<td>Rendolic Eutrochrept, fine-carbonatic, thermic</td>
</tr>
<tr>
<td>Susquehanna</td>
<td>fsl</td>
<td>Vertic Paleudult, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Sweatman</td>
<td>sil</td>
<td>Typic Hapludult, clayey, mixed, thermic</td>
</tr>
<tr>
<td>Tangi</td>
<td>sil</td>
<td>Typic Fragiudult, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Tenot</td>
<td>sil</td>
<td>Aeric Albaqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Tensas</td>
<td>sic</td>
<td>Chromudertic Ochraqualf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Tillou</td>
<td>sil</td>
<td>Aquic Glossudalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Timbalier</td>
<td>m</td>
<td>Typic Medisaprast, euic, thermic</td>
</tr>
<tr>
<td>Toula</td>
<td>sil</td>
<td>Typic Fragiudult, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Troup</td>
<td>fs</td>
<td>Grossarenic Paleudult, loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Tunica</td>
<td>c</td>
<td>Vertic Haplaquept, clayey over loamy, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Una</td>
<td>sic</td>
<td>Typic Haplaquept, fine, mixed, acid, thermic</td>
</tr>
<tr>
<td>Urbo</td>
<td>sic1</td>
<td>Aeric Haplaquept, fine, mixed, acid, thermic</td>
</tr>
<tr>
<td>Vacherie</td>
<td>sil</td>
<td>Aeric Fluvaquent, coarse-silty over clayey, mixed, nonacid, thermic</td>
</tr>
<tr>
<td>Vaiden</td>
<td>c</td>
<td>Aquic Entic Chromudert, very-fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Vauclose</td>
<td>ls</td>
<td>Typic Hapludult, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Verdun</td>
<td>sil</td>
<td>Glossic Natraqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Vick</td>
<td>sil</td>
<td>Glossaquic Hapludalf, fine-silty, siliceous, thermic</td>
</tr>
<tr>
<td>Vicksburg</td>
<td>sil</td>
<td>Typic Udifluvent, coarse-silty, mixed, acid, thermic</td>
</tr>
<tr>
<td>Vidrine</td>
<td>sil</td>
<td>Glossaquic Hapludalf, coarse-silty over clayey, mixed, thermic</td>
</tr>
<tr>
<td>Waller</td>
<td>l</td>
<td>Typic Glossaquaf, fine-loamy, siliceous, thermic</td>
</tr>
<tr>
<td>Watsonia</td>
<td>c</td>
<td>Paralithic Vertic Eutrochrept, clayey, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Waverly</td>
<td>sil</td>
<td>Typic Fluvaquent, coarse-silty, mixed, acid, thermic</td>
</tr>
<tr>
<td>Westwego</td>
<td>c</td>
<td>Thapto-Histic Fluvaquent, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Woodtell</td>
<td>fsl</td>
<td>Vertic Hapludulf, fine, montmorillonitic, thermic</td>
</tr>
<tr>
<td>Wrightsville</td>
<td>sil</td>
<td>Typic Glossaquaf, fine, mixed, thermic</td>
</tr>
<tr>
<td>Yorktown</td>
<td>c</td>
<td>Typic Fluvaquent, very-fine, montmorillonitic, nonacid, thermic</td>
</tr>
<tr>
<td>Zachary</td>
<td>sil</td>
<td>Aeric Albaqualf, fine-silty, mixed, thermic</td>
</tr>
<tr>
<td>Zeroria</td>
<td>c</td>
<td>Aeric Ochraqualf, fine-loamy, siliceous, thermic</td>
</tr>
</tbody>
</table>

1 Phase represents texture of surface horizon

2 s: sand, fsl: fine sand, ls: loamy sand, ifs: loamy fine sand, sl: sandy loam, fsl: fine sandy loam, vfs1: very fine sandy loam, l: loam, sil: silt loam, sicl: silty clay loam, sic: silty clay, c: clay; m: muck, mc: mucky clay, mp: mucky peat, p: peat
Table 2. The soil area, landscape setting, parent material, drainage, permeability, and areal extent of soil series in Louisiana

<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Soil Area</th>
<th>Landscape Setting</th>
<th>Parent Material</th>
<th>Drainage</th>
<th>Permeability</th>
<th>Areal Extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abita</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>silty sediments</td>
<td>poor</td>
<td>slow</td>
<td></td>
</tr>
<tr>
<td>Acadia</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Acy</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess & alluvium</td>
<td>poor</td>
<td>moderately slow</td>
<td>minor</td>
</tr>
<tr>
<td>Alaga</td>
<td>Coastal Plain</td>
<td>uplands & terraces</td>
<td>loamy sands & sands</td>
<td>excessive</td>
<td>rapid</td>
<td>large</td>
</tr>
<tr>
<td>Allemans</td>
<td>Coastal Marsh</td>
<td>freshwater marshes</td>
<td>decomposed OM over clay</td>
<td>very poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Alligator</td>
<td>Mississippi River Alluvial</td>
<td>terraces</td>
<td>clayey slack water sediments</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Amazon</td>
<td>Mississippi River Alluvial</td>
<td>terraces</td>
<td>silty & clayey alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Anacoco</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid clays & silty clays</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Andry</td>
<td>Coastal Marsh</td>
<td>brackish marshes</td>
<td>OM over prairie age loess</td>
<td>very poor</td>
<td>moderately slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Angie</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sandy & clayey sediments</td>
<td>moderately well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Arat</td>
<td>Coastal Marsh</td>
<td>swamps</td>
<td>loamy alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>very slow</td>
</tr>
<tr>
<td>Arkaibutla</td>
<td>Stream Alluvial (Flatwoods)</td>
<td>alluvial plains</td>
<td>clayey over loamy alluvium</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Armistead</td>
<td>Red River Alluvial</td>
<td>stream terraces</td>
<td>loamy & sandy sediments</td>
<td>well</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Attoyac</td>
<td>Coastal Plain</td>
<td>natural levees</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Baldwin</td>
<td>Mississippi River Alluvial</td>
<td>freshwater marshes</td>
<td>loamy alluvium</td>
<td>very poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Balize</td>
<td>Coastal Marsh</td>
<td>brackish marshes</td>
<td>OM over clayey sediments</td>
<td>very poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Bancker</td>
<td>Coastal Marsh</td>
<td>backswamps</td>
<td>clayey alluvium</td>
<td>very poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Barbary</td>
<td>Mississippi River Alluvial</td>
<td>stream terraces</td>
<td>silty & very fine sandy sediments</td>
<td>poor</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Barclay</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy alluvium</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Basile</td>
<td>Stream Alluvial (Flatwoods)</td>
<td>floodplains</td>
<td>clayey & sandy sediments</td>
<td>well</td>
<td>moderately rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Bassfield</td>
<td>Coastal Plain</td>
<td>stream terraces</td>
<td>clayey marine sediments</td>
<td>moderately well</td>
<td>very slow</td>
<td></td>
</tr>
<tr>
<td>Bayouddan</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy sediments</td>
<td>moderately well</td>
<td>slow</td>
<td></td>
</tr>
<tr>
<td>Beauregard</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>OM over clayey sediments</td>
<td>very poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Bellpass</td>
<td>Coastal Marsh</td>
<td>saltwater marshes</td>
<td>acid, clayey, Tertiary sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Bellwood</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sandy loam</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Benndale</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid, loamy sediments</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Bernaldo</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sandy sediments</td>
<td>excessive</td>
<td>rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Betis</td>
<td>Coastal Plain</td>
<td>interstream divides</td>
<td>loamy & sandy fluvial sediments</td>
<td>poor</td>
<td>moderately rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Bibb</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>sandy alluvium</td>
<td>excessive</td>
<td>moderately rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Bienville</td>
<td>Coastal Plain</td>
<td>stream terraces</td>
<td>thin loess or silty sediments</td>
<td>poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Bonn</td>
<td>Loess Hills</td>
<td>Pleistocene terr. & alluv. plains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. (continued)

<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Soil Area</th>
<th>Landscape Setting</th>
<th>Parent Material</th>
<th>Drainage</th>
<th>Permeability</th>
<th>Areal Extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boswell</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid clays</td>
<td>moderately well</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Bowie</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sandy loams & clays</td>
<td>moderately well</td>
<td>moderately slow</td>
<td>large</td>
</tr>
<tr>
<td>Boykin</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sandy & loamy sediments</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Briley</td>
<td>Coastal Plain</td>
<td>interstream divides</td>
<td>loamy & sandy sediments</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Bristow</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>loamy alluvium</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Bruin</td>
<td>Mississippi River Alluvial</td>
<td>alluvial plains</td>
<td>alkaline loamy alluvium</td>
<td>moderately well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Bude</td>
<td>Loess Hills</td>
<td>uplands & stream terraces</td>
<td>thin loess over loam</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Burnsley</td>
<td>Stream Alluvial (Loess H.)</td>
<td>Pleistocene terraces</td>
<td>thin loess & terrace deposits</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Bussy</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess over loamy sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Buxin</td>
<td>Red River Alluvial</td>
<td>floodplains</td>
<td>clayey alluvium</td>
<td>very slow</td>
<td>rapid (drained)</td>
<td>large</td>
</tr>
<tr>
<td>Caddo</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>loamy sediments</td>
<td>very poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Cadville</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>clay & silty clay</td>
<td>very poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Cahaba</td>
<td>Coastal Plain</td>
<td>stream terraces</td>
<td>loamy & sandy fluvial sediments</td>
<td>poorly</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Calhoun</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess</td>
<td>poorly</td>
<td>slow</td>
<td>large</td>
</tr>
<tr>
<td>Calloway</td>
<td>Loess Hills</td>
<td>uplands & stream terraces</td>
<td>OM over sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Carlin</td>
<td>Coastal Marsh</td>
<td>freshwater marshes</td>
<td>silty alluvium</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Cassilla</td>
<td>Stream Alluvial (Loess H.)</td>
<td>old natural levees on floodplains</td>
<td>calcareous alluvium</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Cispian</td>
<td>Red River Alluvial</td>
<td>floodplains</td>
<td>clayey sediments</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Chastain</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>shells & sand</td>
<td>excessive</td>
<td>rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Cheniere</td>
<td>Coastal Marsh</td>
<td>beach ridges</td>
<td>OM over clayey sediments</td>
<td>very poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Clovelly</td>
<td>Coastal Marsh</td>
<td>brackish marshes</td>
<td>dredged loamy sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Cocodrie</td>
<td>Stream Alluvial</td>
<td>waterway spoil banks</td>
<td>alluvium</td>
<td>moderately well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Collins</td>
<td>Stream Alluvial (Loess H.)</td>
<td>floodplains</td>
<td>thin loess over terrace deposits</td>
<td>slow</td>
<td>well</td>
<td>moderate</td>
</tr>
<tr>
<td>Colyell</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>alluvium</td>
<td>moderately slow</td>
<td>large</td>
<td>large</td>
</tr>
<tr>
<td>Commerce</td>
<td>Mississippi River Alluvial</td>
<td>alluvial plains</td>
<td>alluvium</td>
<td>poor</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Convent</td>
<td>Mississippi River Alluvial</td>
<td>floodplains</td>
<td>acid clays & silty clays</td>
<td>very slow</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Corrigan</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loess</td>
<td>moderately slow</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Coteau</td>
<td>Loess Hills</td>
<td>stream divides</td>
<td>calcareous, loamy alluvium</td>
<td>poor</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Coushatta</td>
<td>Red River Alluvial</td>
<td>natural levees</td>
<td>clayey alluvium</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Creole</td>
<td>Coastal Marsh</td>
<td>brackish marshes</td>
<td>sandy alluvial sediments</td>
<td>very poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Crevasse</td>
<td>Mississippi River Alluvial</td>
<td>floodplains</td>
<td>OM over clayey sediments</td>
<td>excessive</td>
<td>rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Soil Area</td>
<td>Landscape Setting</td>
<td>Parent Material</td>
<td>Drainage</td>
<td>Permeability</td>
<td>Areal Extent</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Crowley</td>
<td>Coastal Prairie</td>
<td>Pleistocene terraces</td>
<td>alluvial sediments</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Darbonne</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sideritic marine sediments</td>
<td>well</td>
<td>slow</td>
<td>large</td>
</tr>
<tr>
<td>Darco</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sandy sediments</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Darden</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sideritic, clayey marine sed.</td>
<td>well</td>
<td>slow</td>
<td>large</td>
</tr>
<tr>
<td>Darley</td>
<td>Coastal Plain</td>
<td>Pleistocene terraces</td>
<td>thin loess over loamy sediments</td>
<td>well</td>
<td>moderately well</td>
<td>moderate</td>
</tr>
<tr>
<td>Debutte</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Deerford</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loamy & sandy alluvium</td>
<td>moderately well</td>
<td>moderately rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Dela</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>OM over silty sediments</td>
<td>very poor</td>
<td>rapid (drained)</td>
<td>minor</td>
</tr>
<tr>
<td>Delcomb</td>
<td>Coastal Marsh</td>
<td>brackish marshes</td>
<td>loam alluvium</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Dexter</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>silty alluvium</td>
<td>well</td>
<td>moderately slow</td>
<td>minor</td>
</tr>
<tr>
<td>Dosman</td>
<td>Loess Hills</td>
<td>dissected hills</td>
<td>loamy alluvium</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Dubbs</td>
<td>Mississippi River Alluvial</td>
<td>natural levees or low terraces</td>
<td>loess</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Dundee</td>
<td>Mississippi River Alluvial</td>
<td>natural levees or low terraces</td>
<td>loamy & shaly sediments</td>
<td>moderately well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Duralde</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>mixed loess & terrace sediments</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Eastwood</td>
<td>Coastal Plain</td>
<td>interstream divides</td>
<td>loamy sediments</td>
<td>moderately well</td>
<td>moderately slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Egypt</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>mixed loess over clayey deposits</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Elysian</td>
<td>Flatwoods</td>
<td>mounds on terraces</td>
<td>loess</td>
<td>slow</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Encrow</td>
<td>Flatwoods</td>
<td>broad level areas & depressions</td>
<td>sandy sediments</td>
<td>excessive</td>
<td>rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Essen</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>ridge tops & drainage divides</td>
<td>moderately well</td>
<td>moderately well</td>
<td>minor</td>
</tr>
<tr>
<td>Eustis</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loess</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Evangeline</td>
<td>Loess Hills</td>
<td>floodplains</td>
<td>silty alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Falaya</td>
<td>Stream Alluvial (Loess H.)</td>
<td>stream terraces</td>
<td>silty alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Falkner</td>
<td>Stream Alluvial (Loess H.)</td>
<td>backswamps</td>
<td>clayey alluvium</td>
<td>very poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Fausse</td>
<td>Mississippi River Alluvial</td>
<td>coastal beaches</td>
<td>sandy sediments</td>
<td>poor</td>
<td>very rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Felicity</td>
<td>Coastal Marsh</td>
<td>interstream divides</td>
<td>loess over loamy sediments</td>
<td>excessive</td>
<td>rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Flo</td>
<td>Coastal Plain</td>
<td>stream terraces</td>
<td>loess</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Fluker</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Foley</td>
<td>Loess Hills</td>
<td>disected Pleistocene terraces</td>
<td>clayey & silty sediments</td>
<td>poorly well</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Forbing</td>
<td>Coastal Plain</td>
<td>natural levees or low terraces</td>
<td>loess</td>
<td>poorly well</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Forestdale</td>
<td>Mississippi River Alluvial</td>
<td>Pleistocene terraces</td>
<td>loess</td>
<td>poorly well</td>
<td>moderately slow</td>
<td>minor</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Soil Area</td>
<td>Landscape Setting</td>
<td>Parent Material</td>
<td>Drainage</td>
<td>Permeability</td>
<td>Areal Extent</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Fred</td>
<td>Loess Hills</td>
<td>uplands or Pleistocene terraces</td>
<td>loess</td>
<td>moderately well</td>
<td>moderately slow</td>
<td>minor</td>
</tr>
<tr>
<td>Frizzell</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>silty alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Frost</td>
<td>Loess Hills</td>
<td>uplands or Pleistocene terraces</td>
<td>loess</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Frozard</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>silty alluvium</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Gallion</td>
<td>Red River Alluvial</td>
<td>natural levees</td>
<td>loess</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Galvez</td>
<td>Mississippi River Alluvial</td>
<td>natural levees or low terraces</td>
<td>silty alluvium</td>
<td>poor</td>
<td>moderately slow</td>
<td>minor</td>
</tr>
<tr>
<td>Gentilly</td>
<td>Coastal Marsh</td>
<td>freshwater marshes</td>
<td>clayey alluvium over sub. terr.</td>
<td>very poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Gigger</td>
<td>Loess Hills</td>
<td>brackish marshes</td>
<td>clayey alluvium</td>
<td>very poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Gilbert</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>thin loess over terrace sediments</td>
<td>moderately well</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Glennmore</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>mixed loess & terrace sediments</td>
<td>poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Goldmam</td>
<td>Mississippi River Alluvial</td>
<td>Pleistocene terraces</td>
<td>mixed alluvium</td>
<td>moderately well</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Goodwill</td>
<td>Mississippi River Alluvial</td>
<td>Pleistocene terraces</td>
<td>loamy alluvium sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Gore</td>
<td>Coastal Plain</td>
<td>Pleistocene terraces</td>
<td>clayey alluvium</td>
<td>well</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Grenada</td>
<td>Loess Hills</td>
<td>uplands & stream terraces</td>
<td>loess</td>
<td>moderately well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Groom</td>
<td>Stream Alluvial (Flatwoods)</td>
<td>Pleistocene terraces</td>
<td>silty & loamy sediments</td>
<td>poor</td>
<td>moderately slow</td>
<td>minor</td>
</tr>
<tr>
<td>Guyan</td>
<td>Coastal Marsh</td>
<td>freshwater marshes</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Guyton</td>
<td>Stream Alluvial (C. Plain)</td>
<td>Pleistocene terraces</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Hackberry</td>
<td>Coastal Marsh</td>
<td>floodplains on Pleistocene terr.</td>
<td>loamy & sandy beach deposits</td>
<td>poor</td>
<td>moderate rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Haggerty</td>
<td>Stream Alluvial (C. Plain)</td>
<td>Pleistocene terraces</td>
<td>sandy & loamy fluvial sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Hannahatchee</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>loamy alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Harahan</td>
<td>Mississippi River Alluvial</td>
<td>natural levees</td>
<td>clayey alluvium</td>
<td>moderately well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Harleston</td>
<td>Coastal Plain</td>
<td>uplands or Pleistocene terr.</td>
<td>loamy sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Hebert</td>
<td>Ouachita River Alluvial</td>
<td>natural levees</td>
<td>loamy alluvium</td>
<td>moderate</td>
<td>moderately slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Herty</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid clays & silty clays</td>
<td>moderately well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Hollywood</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>clayey colluvial sediments</td>
<td>very poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Iberia</td>
<td>Mississippi River Alluvial</td>
<td>natural levees</td>
<td>clayey clayey alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Isee</td>
<td>Mississippi River Alluvial</td>
<td>natural levees</td>
<td>loamy alluvium sediments</td>
<td>moderately well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Ijam</td>
<td>Coastal Marsh</td>
<td>flats along waterways</td>
<td>dredged alkaline, clayey sed.</td>
<td>poor</td>
<td>moderately slow</td>
<td>minor</td>
</tr>
<tr>
<td>Iuka</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>sandy or loamy alluvium</td>
<td>moderately well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Jeanerette</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess</td>
<td>poor</td>
<td>moderately slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Soil Area</td>
<td>Landscape Setting</td>
<td>Parent Material</td>
<td>Drainage</td>
<td>Permeability</td>
<td>Areal Extent</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Jena</td>
<td>Stream Alluvial (C. Plain)</td>
<td>natural levees</td>
<td>acid, loamy alluvium</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Judice</td>
<td>Coastal Prairie</td>
<td>Pleistocene terraces</td>
<td>clayey sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Kaplan</td>
<td>Coastal Prairie</td>
<td>Pleistocene terraces</td>
<td>sediments</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Kaufman</td>
<td>Stream Alluvial (C. Plain)</td>
<td>Blackland Prairie floodplains</td>
<td>alkaline clayey sediments</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Keithville</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy & clayey sediments</td>
<td>moderately well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Kenner</td>
<td>Coastal Marsh</td>
<td>freshwater marshes</td>
<td>OM stratified with clayey alluv.</td>
<td>very poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Kenney</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Killian</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>acid, stratified sandstone</td>
<td>well</td>
<td>moderately slow</td>
<td>large</td>
</tr>
<tr>
<td>Kinder</td>
<td>Coastal Prairie</td>
<td>Pleistocene terraces</td>
<td>acid clay & silty clay</td>
<td>well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Kirvin</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>silty over clayey sediments</td>
<td>moderately well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Kisatchie</td>
<td>Coastal Plain</td>
<td>stream terraces</td>
<td>loamy stratified sediments</td>
<td>moderately well</td>
<td>moderately slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Kolin</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Kullit</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>OM over clayey sediments</td>
<td>very poor</td>
<td>rapid (drained)</td>
<td>moderate</td>
</tr>
<tr>
<td>Lafe</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>marine or fluvial sand deposits</td>
<td>excessive</td>
<td>very rapid</td>
<td>large</td>
</tr>
<tr>
<td>Lafitte</td>
<td>Coastal Marsh</td>
<td>saltwater marshes</td>
<td>clayey sediments</td>
<td>very poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Lakeland</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sandy & loamy sediments</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Larose</td>
<td>Coastal Marsh</td>
<td>freshwater marshes</td>
<td>clayey over loamy alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Larue</td>
<td>Coastal Plain</td>
<td>uplands & stream terraces</td>
<td>sandy & loamy sediments</td>
<td>well</td>
<td>moderate rapid</td>
<td>minor</td>
</tr>
<tr>
<td>Latanier</td>
<td>Red River Alluvial</td>
<td>alluvial plains</td>
<td>marine & stream clayey sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Latvia</td>
<td>Flatwoods</td>
<td>uplands & terraces</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Leaf</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loess over loamy sediments</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Lebeau</td>
<td>Red River Alluvial</td>
<td>backswamps</td>
<td>loess over sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Leaton</td>
<td>Coastal Prairie</td>
<td></td>
<td>loamy sediments</td>
<td>well</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Lexington</td>
<td>Loess Hills</td>
<td>uplands or terraces</td>
<td>acid, clayey alluvial sediments</td>
<td>poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Libuse</td>
<td>Loess Hills</td>
<td>uplands or terraces</td>
<td>loamy sediments</td>
<td>poor</td>
<td>moderately slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Liddieville</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Litro</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>sandy deposits</td>
<td>excessive</td>
<td>rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Loreauville</td>
<td>Mississippi River Alluvial</td>
<td>natural levees</td>
<td>marine or stream loamy sediments</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Loring</td>
<td>Loess Hills</td>
<td>uplands & terraces</td>
<td>sandy deposits</td>
<td>excessive</td>
<td>rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Lotus</td>
<td>Stream Alluvial (C. Plain)</td>
<td>upland alluvial plains</td>
<td>loess</td>
<td>moderately well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Lucedale</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>marine or stream loamy sediments</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Soil Area</td>
<td>Landscape Setting</td>
<td>Parent Material</td>
<td>Drainage</td>
<td>Permeability</td>
<td>Areal Extent</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Mahan</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy & clayey marine sediments</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Malbis</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy & sandy clays</td>
<td>moderately well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Mamou</td>
<td>Coastal Plain</td>
<td>natural levees</td>
<td>loamy & sandy deltaic alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Mantachie</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>loamy alluvium</td>
<td>poor</td>
<td>slow</td>
<td>large</td>
</tr>
<tr>
<td>Mashulaville</td>
<td>Flatwoods</td>
<td>uplands & terraces</td>
<td>marine or fluvial deposits</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Maurepas</td>
<td>Coastal Marsh</td>
<td>swamps</td>
<td>loamy plant remains</td>
<td>very poor</td>
<td>rapid (drained)</td>
<td>moderate</td>
</tr>
<tr>
<td>Mayhew</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid, clayey sediments over shale</td>
<td>poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>McMinnie</td>
<td>Coastal Plain</td>
<td>Pleistocene terraces</td>
<td>clayey alluvium</td>
<td>well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>McLaurin</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy marine or stream deposits</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Memphis</td>
<td>Loess Hill</td>
<td>uplands & terraces</td>
<td>loess</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Mermetante</td>
<td>Coastal Marsh</td>
<td>low ridges in brackish marshes</td>
<td>clayey over loamy alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Mer Rouge</td>
<td>Ouachita River Alluvial</td>
<td>floodplains</td>
<td>calcareous, silty alluvium</td>
<td>moderately well</td>
<td>moderately slow</td>
<td>minor</td>
</tr>
<tr>
<td>Messer</td>
<td>Flatwoods</td>
<td>Pleistocene mounds & ridges</td>
<td>silty alluvium</td>
<td>moderately well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Metcalf</td>
<td>Flatwoods</td>
<td>interstream divides</td>
<td>loamy & clayey sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Meth</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>clayey & loamy deltaic deposits</td>
<td>moderately slow</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Mhoon</td>
<td>Mississippi River Alluvial</td>
<td>floodplains</td>
<td>alkaline alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Midland</td>
<td>Coastal Prairie</td>
<td>Pleistocene terraces</td>
<td>clayey sediments</td>
<td>very slow</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Mollicy</td>
<td>Flatwoods</td>
<td>Pleistocene terraces</td>
<td>loamy alluvial sediments</td>
<td>slow</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Moreland</td>
<td>Red River Alluvial</td>
<td>backswamps</td>
<td>clayey sediments</td>
<td>very slow</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Morey</td>
<td>Coastal Prairie</td>
<td>Pleistocene terraces</td>
<td>deltaic alluvium</td>
<td>slow</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Morse</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>calcareous, clayey alluv. sed.</td>
<td>very slow</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Moscata</td>
<td>Coastal Prairie</td>
<td>depressional areas</td>
<td>silty & clayey alluvium</td>
<td>very slow</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Muskogee</td>
<td>Flatwoods</td>
<td>stream & marine terraces</td>
<td>silty over clayey sediments</td>
<td>slow</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Wyatt</td>
<td>Flatwoods</td>
<td>upland flats & stream terraces</td>
<td>marine or fluvial sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Nacogdoches</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>glauconitic sediments</td>
<td>well</td>
<td>moderate</td>
<td></td>
</tr>
<tr>
<td>Natchitoches</td>
<td>Stream Alluvial (Flatwoods)</td>
<td>floodplains</td>
<td>loamy & clayey deposits</td>
<td>very slow</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Necessity</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>glauconitic sediments</td>
<td>slow</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Newellton</td>
<td>Mississippi River Alluvial</td>
<td>alluvial plains</td>
<td>loamy sediments</td>
<td>slow</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Norwood</td>
<td>Red River Alluvial</td>
<td>floodplains</td>
<td>alkaline alluvium</td>
<td>poor</td>
<td>slow</td>
<td>large</td>
</tr>
<tr>
<td>Nugent</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>stratified, calc., loamy alluvium</td>
<td>well</td>
<td>moderately rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Soil Area</td>
<td>Landscape Setting</td>
<td>Parent Material</td>
<td>Drainage</td>
<td>Permeability</td>
<td>Areal Extent</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ocklockonee</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>sandy or loamy alluvium</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Oktibbeha</td>
<td>Coastal Plain</td>
<td>Blackland Prairies</td>
<td>acid clay over marl or chalk</td>
<td>moderately well</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Olivier</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess</td>
<td>poor</td>
<td>moderately slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Oliss</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy deposits</td>
<td>well</td>
<td>moderate</td>
<td>minor</td>
</tr>
<tr>
<td>Osier</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>marine & fluvial deposits</td>
<td>moderately well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Ouachita</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>sandy alluvium</td>
<td>poor</td>
<td>rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Oula</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid, clayey marine sediments</td>
<td>well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Patoutville</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Pelham</td>
<td>Coastal Plain</td>
<td>flats & depressions</td>
<td>sandy sediments</td>
<td>poor</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Perry</td>
<td>Ouachita River Alluvial</td>
<td>backswamps</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Peveto</td>
<td>Coastal Marsh</td>
<td>beach ridges</td>
<td>sand & shell</td>
<td>well</td>
<td>very rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Pheba</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>marine or fluvial sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Placedo</td>
<td>Coastal Marsh</td>
<td>saltwater marshes</td>
<td>clayey alluvium</td>
<td>very poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Portland</td>
<td>Ouachita River Alluvial</td>
<td>backswamps</td>
<td>clayey & silty alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Prentiss</td>
<td>Flatwoods</td>
<td>marine & fluvial terraces</td>
<td>stratified marine or fluv. depos.</td>
<td>moderately well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Providence</td>
<td>Loess Hills</td>
<td>uplands</td>
<td>loess & sediments</td>
<td>moderately well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Rayburn</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid clay & silty clay</td>
<td>moderately well</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Rexor</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>Pleistocene over Tertiary sed.</td>
<td>poor</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Rigollette</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>silty alluvium</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Rilla</td>
<td>Ouachita River Alluvial</td>
<td>natural levees</td>
<td>OM over clayey sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Rita</td>
<td>Coastal Marsh</td>
<td>drained freshwater marshes</td>
<td>loamy or sandy alluvium</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Robinsonville</td>
<td>Mississippi River Alluvial</td>
<td>floodplains</td>
<td>clayey or loamy alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Roebuck</td>
<td>Red River Alluvial</td>
<td>floodplains</td>
<td>silty alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Rosalie</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>stratified loamy alluvium</td>
<td>moderately well</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Rosebloom</td>
<td>Stream Alluvial (Flatwoods)</td>
<td>floodplains</td>
<td>sideritic, clayey marine sed.</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Roxana</td>
<td>Red River Alluvial</td>
<td>natural levees</td>
<td>sandy loam & sandy clay loam</td>
<td>well</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>Ruple</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid, strat. loamy & clayey dep.</td>
<td>well</td>
<td>slow</td>
<td>large</td>
</tr>
<tr>
<td>Ruston</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>mixed loess & loamy stream dep.</td>
<td>well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Soil Series</td>
<td>Soil Area</td>
<td>Landscape Setting</td>
<td>Parent Material</td>
<td>Drainage</td>
<td>Permeability</td>
<td>Areal Extent</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Saucier</td>
<td>Flatwoods</td>
<td>uplands</td>
<td>loamy & clayey marine deposits</td>
<td>well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Savannah</td>
<td>Coastal Plain</td>
<td>uplands & marine & fluvial terr.</td>
<td>marine & fluvial deposits</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Sawyer</td>
<td>Coastal Plain</td>
<td>uplands & terraces</td>
<td>stratified loamy & clayey sed.</td>
<td>moderately well</td>
<td>slow</td>
<td>large</td>
</tr>
<tr>
<td>Seawick</td>
<td>Coastal Marsh</td>
<td>saltwater marshes</td>
<td>clayey & organic sediments</td>
<td>very poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Severn</td>
<td>Red River Alluvial</td>
<td>floodplains</td>
<td>calcareous loamy & sandy alluvium</td>
<td>well</td>
<td>moderately rapid</td>
<td>moderate</td>
</tr>
<tr>
<td>Sharkey</td>
<td>Mississippi River Alluvial</td>
<td>natural levees & backswamps</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Shutta</td>
<td>Coastal Plain</td>
<td>Pleistocene terraces</td>
<td>silty sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Shubuta</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>clayey marine or stream deposits</td>
<td>well</td>
<td>moderately slow</td>
<td>large</td>
</tr>
<tr>
<td>Smithdale</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy marine or stream deposits</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Solitie</td>
<td>Red River Alluvial</td>
<td>Pleistocene low terraces</td>
<td>clayey over silty alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Systen</td>
<td>Stream Alluvial</td>
<td>waterway soil banks</td>
<td>dredged clayey sediments</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Springfield</td>
<td>Flatwoods</td>
<td>uplands & Pleistocene terraces</td>
<td>silty sediments</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Sterlington</td>
<td>Ouachita River Alluvial</td>
<td>natural levees</td>
<td>silty alluvium</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Stough</td>
<td>Flatwoods</td>
<td>uplands & marine & fluvial terr.</td>
<td>marine or fluvial deposits</td>
<td>poor</td>
<td>moderately slow</td>
<td>large</td>
</tr>
<tr>
<td>Sumter</td>
<td>Coastal Plain</td>
<td>Blackland Prairies</td>
<td>marly clays & chalk</td>
<td>well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Susquehanna</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>silty clay & clay deposits</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Sweatman</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>salty clays & loamy sediments</td>
<td>well</td>
<td>moderately slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Tangi</td>
<td>Loess Hills</td>
<td>uplands</td>
<td>loess over loamy sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Tenot</td>
<td>Loess Hills</td>
<td>stream divides</td>
<td>loess</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Tenass</td>
<td>Mississippi River Alluvial</td>
<td>low natural levees</td>
<td>stratified alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Tillou</td>
<td>Loess Hills</td>
<td>upland terraces</td>
<td>loess over sediments</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Timbalier</td>
<td>Coastal Marsh</td>
<td>saltwater marshes</td>
<td>decomposed organic material</td>
<td>very poor</td>
<td>rapid (drained)</td>
<td>minor</td>
</tr>
<tr>
<td>Toulac</td>
<td>Loess Hills</td>
<td>interstream divides</td>
<td>loess over loamy sediments</td>
<td>moderately well</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Troup</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>sands & sandy clay loams</td>
<td>well</td>
<td>moderate</td>
<td>large</td>
</tr>
<tr>
<td>Tunica</td>
<td>Mississippi River Alluvial</td>
<td>floodplains</td>
<td>clayey over loamy alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Una</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>acid, clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Urbo</td>
<td>Stream Alluvial (C. Plain)</td>
<td>floodplains</td>
<td>clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Vacherie</td>
<td>Mississippi River Alluvial</td>
<td>floodplains</td>
<td>silty over clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Vaiden</td>
<td>Coastal Plain</td>
<td>uplands & stream terraces</td>
<td>acid clays over chalk or marl</td>
<td>poor</td>
<td>very slow</td>
<td>large</td>
</tr>
</tbody>
</table>
Table 2. (continued)

<table>
<thead>
<tr>
<th>Soil Series</th>
<th>Soil Area</th>
<th>Landscape Setting</th>
<th>Parent Material</th>
<th>Drainage</th>
<th>Permeability</th>
<th>Areal Extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaucoules</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>loamy sediments</td>
<td>well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Verdun</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>loess</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Vick</td>
<td>Loess Hills</td>
<td>Pleistocene terraces</td>
<td>thin loess over sediments</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Vicksburg</td>
<td>Stream Alluvial (Loess H.)</td>
<td>floodplains</td>
<td>silty alluvium</td>
<td>well</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Vidrine</td>
<td>Coastal Prairie</td>
<td>Pleistocene mounds</td>
<td>silty & clayey alluvium</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Waller</td>
<td>Flatwoods</td>
<td>depressional areas</td>
<td>loamy sediments</td>
<td>poor</td>
<td>slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Watsonia</td>
<td>Coastal Plain</td>
<td>Blackland Prairies</td>
<td>clay deposits over chalk or marl</td>
<td>well</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Waverly</td>
<td>Stream Alluvial (Loess H.)</td>
<td>floodplains</td>
<td>silty alluvium</td>
<td>poor</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Westwego</td>
<td>Coastal Marsh</td>
<td>drained swamps</td>
<td>OM & clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Woodville</td>
<td>Coastal Plain</td>
<td>uplands</td>
<td>acid, strat. loamy & clayey dep.</td>
<td>moderately well</td>
<td>very slow</td>
<td>large</td>
</tr>
<tr>
<td>Wrightsville</td>
<td>Flatwoods</td>
<td>depressions on old stream terr.</td>
<td>silty & clayey alluvium</td>
<td>poor</td>
<td>very slow</td>
<td>moderate</td>
</tr>
<tr>
<td>Yorktown</td>
<td>Stream Alluvial</td>
<td>backs swamps</td>
<td>clayey alluvium</td>
<td>very poor</td>
<td>very slow</td>
<td>minor</td>
</tr>
<tr>
<td>Zachary</td>
<td>Stream Alluvial (Loess H.)</td>
<td>floodplains</td>
<td>silty alluvium</td>
<td>poor</td>
<td>slow</td>
<td>minor</td>
</tr>
<tr>
<td>Zenobia</td>
<td>Stream Alluvial (C. Plain)</td>
<td>low stream terraces</td>
<td>clayey over loamy alluvium</td>
<td>poor</td>
<td>slow</td>
<td></td>
</tr>
</tbody>
</table>

1 OM: organic material
Table 3. Soil series of Louisiana arranged by taxonomic classification

<table>
<thead>
<tr>
<th>Suborder</th>
<th>Great Group</th>
<th>Subgroup</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquents</td>
<td>Fluvaquents</td>
<td>Aeric</td>
<td>Arkabutla, Commerce, Convent, Mantachie, Newellton, Vacherie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thapto-Histic</td>
<td>Westwego</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Bibb, Fausse, Gueydan, Mhoon, Placedo, Rita, Rosebloom, Waverly, Yorktown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertic</td>
<td>Ijam, Sostien</td>
</tr>
<tr>
<td></td>
<td>Hydraquents</td>
<td>Typic</td>
<td>Arat, Balize, Bancker, Barbary, Creole, Gentilly, Larose, Scatlake</td>
</tr>
<tr>
<td></td>
<td>Psammaquents</td>
<td>Typic</td>
<td>Osier</td>
</tr>
<tr>
<td></td>
<td>Fluvents</td>
<td>Udifluvents</td>
<td>Aquic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typic</td>
</tr>
<tr>
<td></td>
<td>Psamments</td>
<td>Quartzipsamments</td>
<td>Typic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Udipsamments</td>
<td>Aquic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typic</td>
</tr>
<tr>
<td>Suborder</td>
<td>Great Group</td>
<td>Subgroup</td>
<td>Series</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Aqualfs</td>
<td>Albaqualfs</td>
<td>Aeric</td>
<td>Mamou, Springfield, Tenot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Corrigan, Crowley, Zachary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertic</td>
<td>Anacoco, Herty</td>
</tr>
<tr>
<td>Glossaqualfs</td>
<td>Aeric</td>
<td></td>
<td>Bursley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Basile, Caddo, Calhoun, Encrow, Fountain, Frost, Gilbert, Guyton, Kinder, Killian, Leton, Mowata, Waller, Wrightsville</td>
</tr>
<tr>
<td>Natraqualfs</td>
<td>Albic Glossic</td>
<td></td>
<td>Deerford, Foley</td>
</tr>
<tr>
<td></td>
<td>Glossic</td>
<td></td>
<td>Bonn, Brimstone, Verdun</td>
</tr>
<tr>
<td>Ochraqualfs</td>
<td>Aeric</td>
<td></td>
<td>Acadia, Acy, Dundee, Essen, Frozard, Galvez, Groom, Hebert, Idee, Patoutville, Zenoria</td>
</tr>
<tr>
<td></td>
<td>Chromudertic</td>
<td></td>
<td>Tensas</td>
</tr>
<tr>
<td></td>
<td>Typic</td>
<td></td>
<td>Amagon, Forestdale, Ged, Kaplan, Midland, Rigolette</td>
</tr>
<tr>
<td></td>
<td>Udollic</td>
<td></td>
<td>Loreauville</td>
</tr>
<tr>
<td></td>
<td>Vertic</td>
<td></td>
<td>Baldwin, Mayhew, Natalbany</td>
</tr>
</tbody>
</table>
Table 3. (continued)

Order: Alfisols (continued)

<table>
<thead>
<tr>
<th>Suborder</th>
<th>Great Group</th>
<th>Subgroup</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udalfs</td>
<td>Fragiudalfs</td>
<td>Aquic</td>
<td>Egypt, Frizzell, Metcalf, Olivier, Tillou</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fragic</td>
<td>Duralde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haplic</td>
<td>Elysian, Messer</td>
</tr>
<tr>
<td>Hapludalfs</td>
<td></td>
<td>Albaquic</td>
<td>Cadeville</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aquic</td>
<td>Fred, Goldman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glossaquic</td>
<td>Colyell, Coteau, Satsuma, Vick, Vidrine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Dubbs, Gallion, Kisatchie, Memphis, Olla, Rilla, Sterlington</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultic</td>
<td>Dexter, Dossman, Goodwill, Liddieville, Meth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertic</td>
<td>Eastwood, Gore, McKamie, Natchitoches, Oktibbeha, Oula, Rayburn, Woodtell</td>
</tr>
<tr>
<td>Natrudalfs</td>
<td></td>
<td>Glossic</td>
<td>Lafe</td>
</tr>
<tr>
<td>Paleudalfs</td>
<td></td>
<td>Aquic</td>
<td>Falkner, Muskogee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arenic</td>
<td>Larue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glossaquic</td>
<td>Abita, Glenmora, Keithville, Kolin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glossic</td>
<td>Evangeline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grossarenic</td>
<td>Kenney</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psammentic</td>
<td>Bienville, Flo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhodic</td>
<td>Nacogdoches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Attoyac, Darbonne, Lexington,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertic</td>
<td>Boswell, Forbing, Susquehanna</td>
</tr>
</tbody>
</table>
Table 3. (continued)

<table>
<thead>
<tr>
<th>Suborder</th>
<th>Great Group</th>
<th>Subgroup</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquults</td>
<td>Albaquults</td>
<td>Typic</td>
<td>Leaf</td>
</tr>
<tr>
<td></td>
<td>Fragiaquults</td>
<td>Typic</td>
<td>Mashulaville</td>
</tr>
<tr>
<td></td>
<td>Ochraquults</td>
<td>Aeric</td>
<td>Haggerty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Myatt</td>
</tr>
<tr>
<td></td>
<td>Palequults</td>
<td>Arenic</td>
<td>Pelham</td>
</tr>
<tr>
<td>Udults</td>
<td>Fragiudults</td>
<td>Glossaquic</td>
<td>Pheba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glossic</td>
<td>Prentiss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Debute, Ora, Savannah, Shatta, Tangi, Toula</td>
</tr>
<tr>
<td></td>
<td>Hapludults</td>
<td>Aquic</td>
<td>Mollicy, Sacul, Stough</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Cahaba, Darley, Kirvin, Latonia, Mahan, Sweatman, Vaucluse</td>
</tr>
<tr>
<td></td>
<td>Rhodudults</td>
<td>Typic</td>
<td>Rexor</td>
</tr>
<tr>
<td></td>
<td>Paleudults</td>
<td>Aquic</td>
<td>Ruple</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arenic</td>
<td>Angie, Harleston, Kullit, Sawyer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glossic</td>
<td>Boykin, Briley, Rosalie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grossarenic</td>
<td>Bernaldo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plinthaquic</td>
<td>Darco, Troup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plinthic</td>
<td>Beauregard, Saucier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psammentic</td>
<td>Bowie, Malbis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhodic</td>
<td>Betis, Eustis</td>
</tr>
<tr>
<td></td>
<td>Typic</td>
<td></td>
<td>Lucedale</td>
</tr>
<tr>
<td></td>
<td>Typic</td>
<td></td>
<td>Benndale, McLaurin, Ruston, Shubuta, Smithdale</td>
</tr>
</tbody>
</table>

Order: Ultisols

25
Table 3. (continued)

Order: Inceptisols

<table>
<thead>
<tr>
<th>Suborder</th>
<th>Great Group</th>
<th>Subgroup</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquepts</td>
<td>Haplaquepts</td>
<td>Aeric</td>
<td>Hackberry, Mermentau, Solier, Urbo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aeric</td>
<td>Falaya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluventic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluventic</td>
<td>Chastain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Una</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertic</td>
<td>Alligator, Harahan, Litro, Perry, Portland, Sharkey, Tunica</td>
</tr>
<tr>
<td>Ochrepts</td>
<td>Dystrochrepts</td>
<td>Aquic</td>
<td>Barclay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluventic</td>
<td>Cascilla, Jena, Ouachita</td>
</tr>
<tr>
<td>Eutrochrepts</td>
<td>Aquic</td>
<td>Fluventic</td>
<td>Bruin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluventic</td>
<td>Dystric, Hannahatchee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluventic</td>
<td>Coushatta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paralithic</td>
<td>Watsonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rendollic</td>
<td>Sumter</td>
</tr>
</tbody>
</table>
Table 3. (continued)

Order: Histosols

<table>
<thead>
<tr>
<th>Suborder</th>
<th>Great Group</th>
<th>Subgroup</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemists</td>
<td>Medihemists</td>
<td>Hydric</td>
<td>Carlin</td>
</tr>
<tr>
<td>Saprist</td>
<td>Medisaprist</td>
<td>Fluvaquentic</td>
<td>Kenner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terric</td>
<td>Allemands, Bellpass, Clovelly, Delcomb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Lafitte, Maurepas, Timbalier</td>
</tr>
</tbody>
</table>

Order: Mollisols

<table>
<thead>
<tr>
<th>Suborder</th>
<th>Great Group</th>
<th>Subgroup</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquolls</td>
<td>Argiaquolls</td>
<td>Typic</td>
<td>Andry, Jeanerette, Morey</td>
</tr>
<tr>
<td>Haplaquolls</td>
<td></td>
<td>Vertic</td>
<td>Iberia, Judice</td>
</tr>
<tr>
<td>Udoll</td>
<td>Argiudolls</td>
<td>Aquic</td>
<td>Armistead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Caspiana, Mer Rouge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertic</td>
<td>Buxin, Latanier, Moreland, Roebuck</td>
</tr>
</tbody>
</table>

Order: Vertisols

<table>
<thead>
<tr>
<th>Suborder</th>
<th>Great Group</th>
<th>Subgroup</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uderts</td>
<td>Chromuderts</td>
<td>Aquentic</td>
<td>Bayoudan, Bellwood, Lebeau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aquic Entic</td>
<td>Vaiden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entic</td>
<td>Morse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typic</td>
<td>Hollywood</td>
</tr>
</tbody>
</table>
Table 4. Soil series of Louisiana arranged by soil area

I. Coastal Plain Soils

A. Upland soils with rapidly permeable subsoils developed from sandy sediments

<table>
<thead>
<tr>
<th>Alaga</th>
<th>Bienville</th>
<th>Flo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betis</td>
<td>Rustis</td>
<td>Lakeland</td>
</tr>
</tbody>
</table>

B. Upland soils with moderately permeable subsoils developed from sandy and loamy sediments

<table>
<thead>
<tr>
<th>Attoyac</th>
<th>Darco</th>
<th>Ora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barclay</td>
<td>Harleston</td>
<td>Pelham</td>
</tr>
<tr>
<td>Bassfield</td>
<td>Larue</td>
<td>Pheba</td>
</tr>
<tr>
<td>Benndale</td>
<td>Lucedale</td>
<td>Rigolette</td>
</tr>
<tr>
<td>Bernaldo</td>
<td>Mahan</td>
<td>Ruston</td>
</tr>
<tr>
<td>Boykin</td>
<td>Malbis</td>
<td>Savannah</td>
</tr>
<tr>
<td>Briley</td>
<td>McLaurin</td>
<td>Smithdale</td>
</tr>
<tr>
<td>Cahaba</td>
<td>Olla</td>
<td>Troup</td>
</tr>
</tbody>
</table>

C. Upland soils with slowly permeable subsoils developed from loamy sediments

<table>
<thead>
<tr>
<th>Angie</th>
<th>Kirvin</th>
<th>Shubuta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowie</td>
<td>Kullit</td>
<td>Vaucluse</td>
</tr>
</tbody>
</table>

D. Upland soils with slowly permeable subsoils developed from acid clays

<table>
<thead>
<tr>
<th>Anacoco</th>
<th>Herty</th>
<th>Rayburn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayoudan</td>
<td>Keithville</td>
<td>Sacul</td>
</tr>
<tr>
<td>Bellwood</td>
<td>Kisatchie</td>
<td>Sawyer</td>
</tr>
<tr>
<td>Boswell</td>
<td>Leaf</td>
<td>Susquehanna</td>
</tr>
<tr>
<td>Cadeville</td>
<td>Mayhew</td>
<td>Sweatman</td>
</tr>
<tr>
<td>Corrigan</td>
<td>Meth</td>
<td>Woodtell</td>
</tr>
<tr>
<td>Eastwood</td>
<td>Oula</td>
<td></td>
</tr>
</tbody>
</table>

E. Upland soils with slowly permeable subsoils developed from alkaline clays (marl or chalk)

<table>
<thead>
<tr>
<th>Hollywood</th>
<th>Oktibbeha</th>
<th>Vaiden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morse</td>
<td>Sumter</td>
<td>Watsonia</td>
</tr>
</tbody>
</table>

F. Upland soils with slowly permeable subsoils developed from iron-rich clayey marine sediments high in siderite

| Darbonne | Darley | Ruple |

G. Upland soils with slowly permeable subsoils developed from glauconitic sediments

| Nacogdoches | Natchitoches |

H. Pleistocene terrace soils with slowly permeable subsoils developed from clayey alluvium

<table>
<thead>
<tr>
<th>Forbing</th>
<th>Kolin</th>
<th>Shatta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gore</td>
<td>McKamie</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. (continued)

II. Flatwoods Soils

<table>
<thead>
<tr>
<th>Abita</th>
<th>Killian</th>
<th>Myatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acadia</td>
<td>Lafe</td>
<td>Prentiss</td>
</tr>
<tr>
<td>Beauregard</td>
<td>Matchulaville</td>
<td>Satsuma</td>
</tr>
<tr>
<td>Brimstone</td>
<td>Messer</td>
<td>Saucier</td>
</tr>
<tr>
<td>Caddo</td>
<td>Metcalf</td>
<td>Springfield</td>
</tr>
<tr>
<td>Elysian</td>
<td>Mollicy</td>
<td>Stough</td>
</tr>
<tr>
<td>Encrow</td>
<td>Muskogee</td>
<td>Waller</td>
</tr>
<tr>
<td>Glenmora</td>
<td></td>
<td>Wrightsville</td>
</tr>
</tbody>
</table>

III. Coastal Prairie Soils

<table>
<thead>
<tr>
<th>Crowley</th>
<th>Leton</th>
<th>Mowata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judice</td>
<td>Mamou</td>
<td>Vidrine</td>
</tr>
<tr>
<td>Kaplan</td>
<td>Midland</td>
<td></td>
</tr>
<tr>
<td>Kinder</td>
<td>Morey</td>
<td></td>
</tr>
</tbody>
</table>

IV. Loess Hill Soils

<table>
<thead>
<tr>
<th>Acy</th>
<th>Essen</th>
<th>Libuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonn</td>
<td>Evangeline</td>
<td>Liddieville</td>
</tr>
<tr>
<td>Bude</td>
<td>Foley</td>
<td>Loring</td>
</tr>
<tr>
<td>Bussy</td>
<td>Fountain</td>
<td>Memphis</td>
</tr>
<tr>
<td>Cahoun</td>
<td>Fred</td>
<td>Necessity</td>
</tr>
<tr>
<td>Calloway</td>
<td>Frizzell</td>
<td>Olivier</td>
</tr>
<tr>
<td>Colyell</td>
<td>Frost</td>
<td>Patoutville</td>
</tr>
<tr>
<td>Coteau</td>
<td>Frozard</td>
<td>Providence</td>
</tr>
<tr>
<td>Debute</td>
<td>Gigger</td>
<td>Tangi</td>
</tr>
<tr>
<td>Deerford</td>
<td>Gilbert</td>
<td>Tenot</td>
</tr>
<tr>
<td>Dexter</td>
<td>Grenada</td>
<td>Tillou</td>
</tr>
<tr>
<td>Dossman</td>
<td>Jeanerette</td>
<td>Toula</td>
</tr>
<tr>
<td>Duraide</td>
<td>Lexington</td>
<td>Verdun</td>
</tr>
<tr>
<td>Egypt</td>
<td></td>
<td>Vick</td>
</tr>
</tbody>
</table>

V. Alluvial Soils

A. Mississippi River Alluvial Soils

1. Natural Levee and Floodplain Soils

<table>
<thead>
<tr>
<th>Alligator</th>
<th>Dundee</th>
<th>Loreauville</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon</td>
<td>Forestdale</td>
<td>Mhoon</td>
</tr>
<tr>
<td>Baldwin</td>
<td>Galvez</td>
<td>Newellton</td>
</tr>
<tr>
<td>Bruin</td>
<td>Goldman</td>
<td>Robinsonville</td>
</tr>
<tr>
<td>Commerce</td>
<td>Goodwill</td>
<td>Sharkey</td>
</tr>
<tr>
<td>Convent</td>
<td>Harahan</td>
<td>Tensas</td>
</tr>
<tr>
<td>Crevasse</td>
<td>Iberia</td>
<td>Tunica</td>
</tr>
<tr>
<td>Dubbs</td>
<td>Idee</td>
<td>Vacherie</td>
</tr>
</tbody>
</table>

2. Backswamp Soils

<table>
<thead>
<tr>
<th>Barbary</th>
<th>Fausse</th>
</tr>
</thead>
</table>
Table 4. (continued)

V. Alluvial Soils (continued)

B. Red River Alluvial Soils

1. Natural Levee and Floodplain Soils

<table>
<thead>
<tr>
<th></th>
<th>Gallion</th>
<th>Latanier</th>
<th>Norwood</th>
<th>Roebuck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armistead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buxin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coushatta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Backswamp Soils

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebeau</td>
<td>Moreland</td>
<td></td>
</tr>
</tbody>
</table>

C. Ouachita River Alluvial Soils

1. Natural Levee and Floodplain Soils

<table>
<thead>
<tr>
<th></th>
<th>Rilla</th>
<th>Sterlington</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hebert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mer Rouge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Backswamp Soils

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Perry</td>
<td></td>
<td>Portland</td>
</tr>
</tbody>
</table>

D. Stream Alluvial Soils

1. Coastal Plain and Flatwoods Stream Alluvial Soils

<table>
<thead>
<tr>
<th></th>
<th>Hannahatchee</th>
<th>Ocklockonee</th>
<th>Osier</th>
<th>Ouachita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkabutla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basile</td>
<td>Iuka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bibb</td>
<td>Jena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chastain</td>
<td>Litro</td>
<td></td>
<td></td>
<td>Rosebloom</td>
</tr>
<tr>
<td>Dela</td>
<td>Lotus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groom</td>
<td>Mantachie</td>
<td></td>
<td></td>
<td>Urbo</td>
</tr>
<tr>
<td>Guyton</td>
<td>Natalbany</td>
<td></td>
<td></td>
<td>Zenoria</td>
</tr>
<tr>
<td>Haggerty</td>
<td>Nugent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Loess Hill Stream Alluvial Soils

<table>
<thead>
<tr>
<th></th>
<th>Falaya</th>
<th>Waverly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bursley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascilla</td>
<td>Falkner</td>
<td>Zachary</td>
</tr>
<tr>
<td>Collins</td>
<td>Vicksburg</td>
<td></td>
</tr>
</tbody>
</table>

3. Waterway Spoil Bank Soils

<table>
<thead>
<tr>
<th></th>
<th>Sostien</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocodrie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Backswamp Soils

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yorktown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. (continued)

VI. Coastal Marsh Soils

A. Beach and Beach Ridge Soils

<table>
<thead>
<tr>
<th>Cheniere</th>
<th>Hackberry</th>
<th>Peveto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felicity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Saltwater Marsh Soils

<table>
<thead>
<tr>
<th>Bellpass</th>
<th>Placedo</th>
<th>Timbalier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lafitte</td>
<td>Scatlake</td>
<td></td>
</tr>
</tbody>
</table>

C. Brackish Marsh Soils

<table>
<thead>
<tr>
<th>Andry</th>
<th>Creole</th>
<th>Mermentau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bancker</td>
<td>Delcomb</td>
<td></td>
</tr>
<tr>
<td>Clovelly</td>
<td>Gentilly</td>
<td></td>
</tr>
</tbody>
</table>

D. Freshwater Marsh Soils

<table>
<thead>
<tr>
<th>Allemands</th>
<th>Carlin</th>
<th>Kenner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arat</td>
<td>Ged</td>
<td>Larose</td>
</tr>
<tr>
<td>Balize</td>
<td>Gueydan</td>
<td>Maurepas</td>
</tr>
</tbody>
</table>

E. Drained Marshes and Swamps

<table>
<thead>
<tr>
<th>Rita</th>
<th>Westwego</th>
<th></th>
</tr>
</thead>
</table>

F. Waterway Flats

<table>
<thead>
<tr>
<th>Ijam</th>
<th></th>
<th></th>
</tr>
</thead>
</table>