2012

Total synthesis of a virotoxin and analogs for conformational studies

Benson Jumba Edagwa
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Recommended Citation
Edagwa, Benson Jumba, "Total synthesis of a virotoxin and analogs for conformational studies" (2012).
LSU Doctoral Dissertations. 804.
https://digitalcommons.lsu.edu/gradschool_dissertations/804

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
TOTAL SYNTHESIS OF A VIROTOXIN AND ANALOGS FOR CONFORMATIONAL STUDIES

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

The Department of Chemistry

By
Benson Jumba Edagwa
BSc, Moi University, Kenya, 2005

May 2012
ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Carol Taylor, for her invaluable guidance and support during my research studies. I would also like to thank my committee members Dr. William Crowe, Dr. Graca Vicente, Dr. Evgueni Nesterov and Dr. Frederick Enright for their advice and meaningful suggestions. Sincere thanks to Dr. Dale Treleaven and Dr. Thomas Weldeghiorghis for their help with NMR studies.

My appreciation goes to my wife Teresa Mutahi for her moral support. It is because of her understanding that I am able to complete my degree. My gratitude goes to my parents, brothers, sisters and the Kamau family. Without their encouragement and faith in me, I would not have made it this far.

I thank members of the Taylor research group, Doug, Ning, Chamini, Saroj, Chyree, Molly and Jarret for the discussions, friendship and encouragement. I also thank Stefan of Dr. Crowe group and Kevin of Dr. Macnaughtan group for their good friendship. My gratitude goes to the department of Chemistry, Louisiana State University for their financial support.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

LIST OF TABLES .. v

LIST OF FIGURES .. vi

LIST OF SCHEMES .. viii

LIST OF ABBREVIATIONS AND SYMBOLS .. xi

ABSTRACT ... xv

CHAPTER 1. BACKGROUND AND SIGNIFICANCE ... 1
 1.1 STRUCTURE AND OCCURRENCE OF AMANITA TOXINS ... 1
 1.2 BIOLOGICAL ACTIVITY AND POTENTIAL APPLICATIONS 3
 1.3 BIOSYNTHESIS ... 6
 1.4 PREVIOUS SYNTHETIC STUDIES AND ANALOGS ... 8
 1.4.1 Kahl and Coworkers ... 9
 1.4.2 Zanotti and Coworkers .. 11
 1.4.3 Ongoing Synthetic Studies ... 13
 1.4.3.1 Guy and Coworkers .. 13
 1.4.3.2 Schuresko and Lokey .. 15
 1.5 GOALS OF THE CURRENT WORK ... 15

CHAPTER 2. SYNTHESIS OF A DIHYDROXYLEUCINE-VALINE DIPEPTIDE 19
 2.1 PREVIOUS SYNTHESIS OF THE 4,5-DIHYDROXYLEUCINE RESIDUE 20
 2.2 THE SHARPLESS ASYMMETRIC DIHYDROXYLATION ... 20
 2.3 PREPARATION OF (2S)-4,5-DIHYDROXYLEUCINE RESIDUE 27
 2.4 THE DIHYDROXYLATION REACTION .. 30
 2.4.1 Stereochemical Analysis of the Dihydroxylation Reaction 38
 2.4.2 Summary ... 40
 2.5 EXPERIMENTAL SECTION ... 41
 2.5.1 General Methods .. 41
 2.5.2 Spectra .. 51

CHAPTER 3. THE PEPTIDE FRAGMENTS ... 76
 3.1 Overview ... 76
 3.2 2-METHYLSULFONYL-TRYPTOPHAN AND THE TETRAPEPTIDE FRAGMENT 77
 3.3 THE PROLINE BUILDING BLOCKS AND THE TRIPEPTIDE FRAGMENTS 82
 3.3.1 L-Proline Benzyl Ester Hydrochloride .. 83
 3.3.2 L-4-cis-Hydroxyproline Building Block .. 83
 3.3.3 L-3-trans-Hydroxyproline Building Block .. 85
 3.3.4 L-2,3-trans-3,4-trans-3,4-Dihydroxyproline .. 86
LIST OF TABLES

Table 1.1 Natural virotoxins isolated from Amanita species2
Table 1.2 Natural virotoxins isolated from Amanita suballiacea2
Table 1.3 The virotoxin analogs and their constituent amino acid residues9
Table 1.4 Cyclization yields and actin affinities of viroisin analogs relative to viroisin12
Table 2.1 Turning the mismatched into the matched case via protecting group tuning24
Table 2.2 Asymmetric dihydroxylation of 1,1-disubstituted allyl alcohol derivatives25
Table 2.3 Examples reagent-controlled dihydroxylations26
Table 2.4 Conditions for the aminolysis of lactone 103 with L-valine ethyl ester (104)33
Table 4.1 Effect of coupling reagent and base during peptide bond formation176
Table 4.2 Ehrlich and co-workers’ cyclization of all L-pentapeptide182
Table 5.1 The cis-to-trans isomerization across the prolyl-serine peptide bond235
Table 5.2 The cis-to-trans isomerization across the prolyl-serine peptide bond in CDCl₃237
Table 5.3 The energies and equilibrium constants of the optimized dipeptide geometries ...239
Table 5.4 The energies and equilibrium constants of the optimized geometries242
Table 5.5 ¹H NMR chemical shifts of allovirocidin analogs246
LIST OF FIGURES

Figure 1.1 Amanita mushrooms and prototypical members of the phallotoxins and virotoxins1
Figure 1.2 Fluorescent dyes that have been conjugated to phalloidin ...5
Figure 1.3 Conceptual representation of actin polymerization ..5
Figure 1.4 Ribosomal cyclic peptide synthesis in a fungus ..7
Figure 1.5 Glu\(^7\) phalloidin and a fluorescent conjugate ..15
Figure 2.1 The Sharpless dihydroxylation mnemonic ...21
Figure 2.2 Phthalazine and pyrimidine ligands ..22
Figure 2.3 \(^{18}F\) NMR spectra (CDCl\(_3\), 236 MHz) for Mosher amide 88 derived from enzymatically resolved dehydroleucine and racemic dehydroleucine ..29
Figure 2.4 Matched and mismatched double diastereoselectivity ..31
Figure 2.5 Interconversion of conformations of the \(\gamma\)-lactone 92 ..31
Figure 2.7 ORTEP diagram of compound 54a (2S,4S) ...37
Figure 2.8 Selected region of the \(^1\)H NMR spectrum of the \(\gamma\)-lactones obtained via different routes ..37
Figure 3.1 Byproducts arising from Fmoc cleavage ..81
Figure 3.2 The series of four tripeptide fragments ..82
Figure 3.3 Naturally occurring virotoxins ...86
Figure 3.4 Generation of molecular hydrogen from triethylsilane/Pd-C and methanol mixture92
Figure 4.1 Selected phosphorous and uronium based coupling reagent ..175
Figure 4.2 Examples of cyclic peptide drugs. Somatostatin (186) along with hexapeptide analogs (187–194), synthesized by Hirschmann and co-workers ...178
Figure 4.3 Examples of peptide cyclization approaches ..179
Figure 4.4 Schmidt and Langner sequence dependence cyclization ..185
Figure 4.5 TBS deprotection and purification protocol ..192
Figure 5.1 The CD spectra of viroidin (A), viroisin (B), and phalloidin (C) sulfone219
Figure 5.2 Viroisin (7) and dethiophalloidin (221) ..220
Figure 5.3 Stereo views of viroisin solution conformations showing side chain orientations222
Figure 5.4 ROE correlations determined from 2D ROESY spectra ..223
Figure 5.5 The trans and cis conformations of a \(D\)-serine-prolyl amide bond ...225
Figure 5.6 \(\beta\)-turn regions in viroisin and phalloidin ...226
Figure 5.7 Viroisin analogs ..227
Figure 5.8 Stereodrawing of the molecular model of (Ala3)-phalloidin ..228
Figure 5.9 Conformations of hyp4 residue ...229
Figure 5.10 Intramolecular hydrogen bonds (dotted lines) observed by X-ray analysis230
Figure 5.11 Phalloidin analogs analyzed by Falcigno and co-workers ...230
Figure 5.12 P- and M- helical configurations of a 2-indolylthioether ...231
Figure 5.13 A stereodrawing of analog 226 illustrating a U-type structure ..232
Figure 5.14 The cis and trans conformations of a D-serine-prolyl amide bond ..233
Figure 5.15 Conformations of hyp4 residue ...234
Figure 5.16 Pyrrolidine conformation in compound 171 ...236
Figure 5.17 Pyrrolidine conformation in compounds 173 and 174 ...236
Figure 5.18 Pyrrolidine conformation in compounds 47, 49 and 50 ...237
Figure 5.19 Optimized geometries of dipeptides 231 and 232 ...239
Figure 5.20 Optimized geometries of dipeptides 235 and 236 ...242
Figure 5.21 The NH-Hα cross peaks in the TOCSY spectrum of compound 43 in
90 % H$_2$O/10 % D$_2$O (pH 3.0) at 25 °C and 700 MHz ...245
Figure 5.22 The NH-Hα cross peaks in the TOCSY spectrum of compound 44 in
90 % H$_2$O/10 % D$_2$O (pH 3.0) at 25 °C and 700 MHz ...246
Figure 5.23 Circular dichroism spectra of hyp (45) and Pro (43) analogs in water (1.4 x 10$^{-4}$ M)248
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Simplified rendition of key degradation reactions</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Derivatization of phalloidin and attachment to a fluorophore</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Sequence of reactions that would convert a phallotoxin-type precursor into a virotoxin</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Partial synthesis of phalloidin from the natural product</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Formation of peptide bonds via a mixed anhydride method</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Synthesis of virotoxin analogs 20 and 21</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>Synthesis of virotoxin analogs 22 and 23</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Synthesis of viroisin analog 21</td>
<td>13</td>
</tr>
<tr>
<td>1.9</td>
<td>Guy and co-workers’ retrosynthetic analysis of Ala(^7) phalloidin</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>Retrosynthetic analysis of alloviroidin and analogs</td>
<td>17</td>
</tr>
<tr>
<td>1.11</td>
<td>The conformation of the prolyl peptide bond and cyclization</td>
<td>18</td>
</tr>
<tr>
<td>2.1</td>
<td>Retrosynthetic analysis of alloviroidin and analogs</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Wieland and Weiberg dihydroxyleucine synthesis</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Retrosynthetic analysis of dihydroxylation of an (S)-dehydroleucine derivative</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Matched and mismatched double diastereoselectivity</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Wade and co-workers’ dihydroxylation of 4,5-dehydroisoxazoles</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Morikawa and Sharpless dihydroxylation of a carbohydrate-derived olefin ester</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Diastereoselectivity in the asymmetric dihydroxylation of an L-proline derived 1,1-disubstituted alkene</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Preparation of the dehydroleucine residue</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Undesired lactone formation</td>
<td>28</td>
</tr>
<tr>
<td>2.10</td>
<td>Mosher amide formation</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>Dihydroxylation of the dehydroleucine residue</td>
<td>30</td>
</tr>
<tr>
<td>2.12</td>
<td>Diketopiperazine formation</td>
<td>32</td>
</tr>
<tr>
<td>2.13</td>
<td>Examples of γ-lactone opening by N-nucleophiles</td>
<td>32</td>
</tr>
<tr>
<td>2.14</td>
<td>Formation of the (\gamma,\gamma)-dimethyl-(\gamma)-valerolactone and reaction with the valine ethyl ester</td>
<td>34</td>
</tr>
<tr>
<td>2.15</td>
<td>Lactone ring opening by hydrolysis</td>
<td>34</td>
</tr>
<tr>
<td>2.16</td>
<td>Proposed racemization mechanism</td>
<td>35</td>
</tr>
<tr>
<td>2.17</td>
<td>Dihydroxylation of hindered esters</td>
<td>35</td>
</tr>
</tbody>
</table>
Dihydroxylation of the dehyl-Leu-Val dipeptide ... 36
Cleavage of peptides containing γ-hydroxyamino acids under mild acid conditions 38
Protection of the dipeptide diol ... 38
Dihydroxylation of the dehydroamino ester ... 39
Dihydroxylation of the dehyl-Leu-Val dipeptide .. 39
Retrosynthetic analysis of allovroidin and analogs ... 76
Retrosynthetic analysis of the tetrapeptide ... 77
Takase and co-workers synthesis of the 2-thiomethyl derivative of Cbz-L-Trp-OME 77
Dillard and co-workers’ synthesis of indole-3-acetamides 78
Preparation of the 2-methylsulfonyl-tryptophan .. 79
Preparation of the tetrapeptide fragment ... 79
Acid activation by HATU ... 80
Cleavage of the Fmoc group via β-elimination ... 81
Preparation of the proline building block .. 83
Preparation of the hydrochloride salt of 4-hyp building block 84
Preparation of the trifluoroacetate salt of 4-hyp building block 85
Preparation of the trifluoroacetate salt of 3-Hyp building block 85
Kahl and Wieland synthesis of two naturally occurring dihydroxyproline diastereomers ... 87
Synthesis of 2,3-trans-3,4-trans-3,4-dihydroxyproline residue 87
Silyl ether migration upon reductive opening of the lactone ring 88
Pyrrolidine ring formation ... 88
The synthesis of the Fmoc-D-Thr-D-Ser dipeptide ... 89
Preparation of the tripeptides ... 90
Hydrogenolysis of the benzyl ester ... 91
Retrosynthetic analysis of allovroidin and analogs ... 173
Racemization through oxazolone ... 174
The [3 + 4] fragment condensations .. 177
Crich and Sasaki’s head to tail cyclization of a pentapeptide 180
Anseth and co-workers’ side chain to tail cyclization on a solid phase 180
Smith and co-workers’ side chain to side chain cyclization on a solid phase 180
Scheme 4.7 Zhang and Tam’s head to side chain cyclization ...181
Scheme 4.8 EDC activation ..183
Scheme 4.9 Schmidt and Langner’s C-terminal epimerization of all L residues ..184
Scheme 4.10 Extended and circular conformations of the peptide ...185
Scheme 4.11 Jolliffe and co-workers’ synthesis utilizing pseudoprolines as turn inducers186
Scheme 4.12 van Maarseveen and co-workers’ site isolation mechanism using carbosilane dendrimeric carbodiimide ...187
Scheme 4.13 Abdel-Magid and co-workers hydrolysis of polypeptide esters ...188
Scheme 4.14 Wipf and Uto’s synthesis of trunkamide A ...189
Scheme 4.15 Cyclizations and global desilylation ...190
Scheme 4.16 Kaburagi and Kishi’s synthesis of halichondrin ...191
Scheme 5.1 Derivatization of alloviroidin with a fluorophore ..251
LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>AD-mix-α</td>
<td>1 kg contains: K₃Fe(CN)₆, 699.6 g; K₂CO₃, 293.9 g; and [(DHQ)₂-PHAL], 5.52 g; and K₂O₃(OH)₄, 1.04 g</td>
</tr>
<tr>
<td>AD-mix-β</td>
<td>Contents are as for AD-mix-α except the ligand: [(DHQD)₂-PHAL]</td>
</tr>
<tr>
<td>AOP</td>
<td>(7-azabenzotriazol-1-yl)oxytris(dimethyl amino)phosphonium hexafluorophosphate</td>
</tr>
<tr>
<td>Bg</td>
<td>N-benzhydrylglycolamide</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butyloxycarbonyl</td>
</tr>
<tr>
<td>BOP</td>
<td>benzotriazol-1-yloxytris(dimethylamino)-phosphonium hexafluorophosphate</td>
</tr>
<tr>
<td>'Bu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>Cbz</td>
<td>carbobenzyloxy</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>mCPBA</td>
<td>meta-chloroperoxybenzoic acid</td>
</tr>
<tr>
<td>DCC</td>
<td>dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>de</td>
<td>diastereomeric excess</td>
</tr>
<tr>
<td>Ddz</td>
<td>α,α-dimethyl-3,5-dimethoxybenzyloxycarbonyl</td>
</tr>
<tr>
<td>(DHQ)₂-PHAL</td>
<td>dihydroquinine-phthalazine</td>
</tr>
<tr>
<td>(DHQD)₂-PHAL</td>
<td>dihydroquinidine-phthalazine</td>
</tr>
<tr>
<td>DIEA</td>
<td>N,N-diisopropylethylamine</td>
</tr>
</tbody>
</table>
DMAP 4-dimethylaminopyridine
DMF dimethylformamide
DMSO dimethylsulfoxide
DPPA diphenylphosphoryl azide
EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
ee enantiomeric excess
ESI electrospray ionization
Fmoc 9-fluorenlymethoxycarbonyl
HAPyU O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyleneuronium hexafluorophosphate
HATU O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyleneuronium hexafluorophosphate
HBPyU O-(benzotriazol-1-yl)oxybis(pyrrolidino)uronium hexafluorophosphate
HBTU O-(benzotriazol-1-yl)-1,1,3,3-tetramethyleneuronium hexafluorophosphate
HMBC heteronuclear multiple bond coherence
HOAt 1-hydroxy-7-azabenzotriazole
HOBt 1-hydroxybenzotriazole
HPLC high performance liquid chromatography
HRMS high resolution mass spectrometry
HSQC heteronuclear single quantum correlation
hyLeu γ-hydroxy-L-leucine
dihyLeu 4,5-dihydroxyleucine
aHyp $allo$-hydroxyproline (cis-4-hydroxy-L-proline)
Lac internal γ-lactone
MA mixed anhydride
MEM β-methoxyethoxymethyl
Ms methanesulfonyl
MS mass spectrometry
MTPA α-methoxy-α-trifluoromethylphenylacetic acid
NHS N-hydroxysuccinimide
NMM N-methylmorpholine
NMR nuclear magnetic resonance
nOe nuclear Overhauser effect
PMA phosphomolybdic acid
ppm parts per million
PyAOP [(7-azabenzotriazol-1-yl)oxy]tri-(pyrrolidino)phosphonium hexafluorophosphate
PyBOP benzotriaozol-1-yloxytri(pyrrolidino)phosphonium hexafluorophosphate
PyBroP bromotri(pyrrolidino)phosphonium hexafluorophosphate
PyCloP chlorotri(pyrrolidino)phosphonium hexafluorophosphate
R_f retention factor
rt room temperature
s singlet
q quartet
TAEA tris(2-aminoethyl)amine
TATU O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate
TBAF tetra-n-butylammonium fluoride
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBAH</td>
<td>tetra-n-butylammonium hydroxide</td>
</tr>
<tr>
<td>TBDMS/TBS</td>
<td>t-butyldimethylsilyl</td>
</tr>
<tr>
<td>TBTU</td>
<td>O-benzotriazol-1-yl-1,1,3,3-tetramethyluronium tetrafluoroborate</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TFFH</td>
<td>tetramethylfluoroformamidinium hexafluorophosphate</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TOF</td>
<td>time of flight</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>

Standard 3 letter codes are utilized throughout the document for amino acids
ABSTRACT

This dissertation describes the first total synthesis of alloviroidin in trace amounts, along with that of three analogs containing L-proline (Pro), trans-3-hydroxyproline (3-Hyp) or cis-4-hydroxyproline (4-hyp) residue substituting for 2,3-trans-3,4-trans-dihydroxyproline in the natural product.

We report herein an efficient strategy that provides a dipeptide containing a (2S,4S)-4,5-dihydroxyleucine (dihyLeu) residue, including a diastereoselective dihydroxylation. Nα-Carbobenzyloxy-(2S)-4,5-dehydroleucine was coupled with valine ethyl ester to give a dipeptide that was subjected to a Sharpless asymmetric dihydroxylation to introduce the diol. The relative configuration at C4 was assigned as S by X-ray crystallography after derivatization as an α-amino-γ-lactone hydrochloride salt.

The preparation of the 2-(methylsulfonyl)tryptophan residue is described followed by incorporation into a tetrapeptide, Fmoc-Ala-[2-MeSO2]-Trp-diHyLeu(OTBS)-Val-OEt. An efficient synthesis of four tripeptide fragments is also described: Fmoc-D-Thr(OTBS)-D-Ser(OTBS)-Pro*-OBn, where Pro* represents Pro, 3-Hyp, 4-hyp and DHP. These tripeptides were assembled via a [2+1] coupling between Fmoc-D-Thr(O'Bu)-D-Ser(O'Bu)-OH and the appropriate proline benzyl ester. The acid labile side-chain protecting groups were swapped out for fluoride-labile silyl ethers.

Linear heptapeptides were prepared via [3+4] fragment condensations between the series of four tripeptide acids Fmoc-D-Thr(OTBS)-D-Ser(OTBS)-Pro*-OH and the tetrapeptide amine H-Ala-[2-MeSO2-Trp]-diHyLeu(OTBS)-Val-OEt. Deprotection of the N- and C-terminii, followed by cyclization and global side chain deprotection generated our target cyclopeptides. Removal of excess TBAF reagent and salts formed as byproducts during ethyl ester and silyl ether deprotections was achieved by treatment with DOWEX 50WX8-400 H⁺ resin and calcium carbonate. This procedure led to reasonable
yields of the three analogs but afforded only trace amounts of the natural product after HPLC purification.

We examined the conformational preferences of dipeptide fragments Ac-D-Ser-Pro*-NHMe (in both free and TBS protected side chains of D-Ser and Pro* residues) using computational studies. The computational analyses confirm that the ratio of trans:cis conformers varies with the degree, regio- and stereochemistry of proline hydroxylation. These equilibrium constant about the prolyl amide bond calculated for these dipeptides are in qualitative agreement with those determined by NMR for tripeptides Fmoc-D-Thr-D-Ser-Pro*-OBn (in both free and TBS protected side chains).
CHAPTER 1: BACKGROUND AND SIGNIFICANCE

1.1 STRUCTURE AND OCCURRENCE OF AMANITA TOXINS

The vio toxins are cyclic heptapeptides derived from species of mushrooms known as *Amanita virosa*\(^1\) and *Amanita suballacea*,\(^2\) also commonly referred to as the “destroying angels.” The name “destroying angel” refers to the fact that even though *Amanita* is pure, like an angel’s veil, and strikingly beautiful, it turns out to be deadly.\(^3\) These species share several toxic peptides with those isolated from *Amanita phalloides*, the “death cap.”

Vio toxins closely resemble phallotoxins morphologically and pathogenetically.\(^4,5\) The major structural difference is that the vio toxins are monocyclic in nature, while the phallotoxins are bicyclic. Furthermore, three of the seven amino acids of the vio toxins differ from the corresponding residues in phallotoxins (Fig. 1.1). These are the 2,3-trans-3,4-cis-3,4-dihydroxyproline vs. *cis*-4-(allo)hydroxyproline in position 4 (hyp), *D*-serine vs. *L*-cysteine in position 3, and finally, the thioether bridge between tryptophan and cysteine in the phallotoxins is replaced by a non-bridging 2’-(methylsulfonyl)tryptophan in the vio toxins. The variation in side chains, leading to the six different vio toxins, and their proportions, as isolated from *Amanita virosa*, are given in Table 1.1.\(^1\)

![Amanita phalloides “death cap”](image1)

![Phalloidin (I)](image2)

![Amanita virosa “destroying angel”](image3)

![Virotokxin](image4)

Figure 1.1. *Amanita* mushrooms and prototypical members of the phallotoxins and vio toxins.
Table 1.1: Natural virotoxins isolated from *Amanita* sp. R¹-R³ and X are as defined in Figure 1.1.

<table>
<thead>
<tr>
<th>Compound Number</th>
<th>Name</th>
<th>X</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>R<sup>3</sup></th>
<th>Percent of total*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Viroidin</td>
<td>SO<sub>2</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>OH</td>
<td>CH<sub>3</sub></td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Alloviroidin</td>
<td>SO<sub>2</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>OH</td>
<td>**</td>
</tr>
<tr>
<td>4</td>
<td>Desoxoviroidin</td>
<td>SO</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>OH</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Ala<sup>1</sup>-viroidin</td>
<td>SO<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>OH</td>
<td>} 10</td>
</tr>
<tr>
<td>6</td>
<td>Ala<sup>1</sup>-desoxoviroidin</td>
<td>SO</td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Viroisin</td>
<td>SO<sub>2</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>OH</td>
<td>OH</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>Desoxoviroisin</td>
<td>SO</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>OH</td>
<td>OH</td>
<td>19</td>
</tr>
</tbody>
</table>

* Of extract from *Amanita virosa*.¹
** Isolated from *Amanita suballiacea*.²

In the nomenclature of the virotoxins and phallotoxins, the suffix “-din” denotes a two-fold hydroxylated side chain of residue seven and “-sin”, a three-fold hydroxylated one.⁶ From Figure 1.1 and Table 1.1, it can be seen that the features common to both phallotoxins and virotoxins are the D-threonine in position two, L-alanine in position five, and L-leucine, with a varying degree of hydroxylation in position seven.

Although virotoxins were initially isolated from, and presumed unique to, *Amanita virosa*,¹ Little *et al.* demonstrated that these compounds exist in *Amanita suballiacea* too.² They found that, of the virotoxins (1.3 mg/g of dry weight tissue) in *Amanita suballiacea*, viroisin represented 75% of the total; alloviroidin and viroidin represented 15 and 9-10% respectively, while Ala¹-viroidin was detected in levels of less than 1% (Table 1.2).²

Table 1.2: Natural virotoxins isolated from *Amanita suballiacea*.² R¹-R³ and X are as defined in Fig. 1.1.

<table>
<thead>
<tr>
<th>Compound Number</th>
<th>Name</th>
<th>X</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>R<sup>3</sup></th>
<th>Percent of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Viroidin</td>
<td>SO<sub>2</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>OH</td>
<td>9-10</td>
</tr>
<tr>
<td>3</td>
<td>Alloviroidin</td>
<td>SO<sub>2</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>OH</td>
<td>CH<sub>3</sub></td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Ala<sup>1</sup>-viroidin</td>
<td>SO<sub>2</sub></td>
<td>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>OH</td>
<td><1</td>
</tr>
<tr>
<td>7</td>
<td>Viroisin</td>
<td>SO<sub>2</sub></td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>CH<sub>2</sub>OH</td>
<td>OH</td>
<td>75</td>
</tr>
</tbody>
</table>
It was established that alloviroidin and viroidin have identical molecular weights and affinity for actin. The only difference between alloviroidin and viroidin lies in the configuration at C4 in the 4,5-dihydroxyleucine residue. This was found to be 2S,4S in alloviroidin, in contrast to 2S,4R in viroidin and phalloidin.2

1.2 BIOLOGICAL ACTIVITY AND POTENTIAL APPLICATIONS

Mushrooms of the genus *Amanita* account for most of the fatal intoxications by mushrooms following ingestion. In his book on peptides of poisonous *Amanita* mushrooms, Theodor Wieland states that, “the actual number of victims due to poisonous *Amanita* mushrooms throughout history is unknown.” The term *fungus* is derived from the Latin word *funus* (= funeral). High concentrations of toxins are found in the carpophores (fruiting body). Biological studies have shown that one mature destroying angel or death cap can contain a fatal dose of 10-12 mg of toxin.1,7,8 According to Wieland,1 both phallotoxins and virotoxins cause the death of experimental white mice within two to five hours of administration. The toxins target the liver, causing it to swell due to hemorrhage.9 It is speculated that the mechanism of intoxication of these peptides involves binding to the liver cell actin.1 The physiological role of these peptides in mushrooms is not well understood, however, it is presumed that phallotoxins and virotoxins could be playing a role in cellular functions involving contractile apparatus.1

The phallotoxins bind and stabilize filamentous F-actin, lowering the critical concentration of actin monomers in solution. This is fascinating, since derived monocyclic compounds, such as desthiophalloidin do not show affinity for actin. Monocyclic derivatives of phallotoxins can be generated by either cleavage of a peptide bond or removal of the sulfur atom forming the thioether bridge (Scheme 1.1). According to Wieland,10 the peptide bond between γ-hydroxylated side chain 7 and the amino acid in position 1 was readily cleaved upon treatment with mild acid to generate
secophalloidin (10) that was found to be non-toxic. Also, hydrogenolysis with Raney nickel assisted in removal of the sulfur atom forming part of the thioether bridge and delivered monocyclic desthiophalloidin (9) that was also biologically inactive (Scheme 1.1).

Scheme 1.1. Simplified rendition of key degradation reactions.

Phalloidin is widely used to study actin dynamics *in vitro* and its fluorescent analogs\(^1\)\(^-\)\(^4\) have been used for microscopic visualization of the actin cytoskeleton. Structure-activity studies have shown that the \(\gamma,\delta\)-dihydroxyleucine residue is not essential for actin binding\(^5\), \(^6\) and therefore the hydroxyl side chain of this amino acid has been derivatized to generate fluorescent analogs of phalloidin.\(^1\)\(^,\)\(^3\), \(^7\)\(^-\)\(^9\) Wieland and co-workers oxidized phalloidin to ketophalloidin (11), and subsequently derivatized with 2,3-dimercaptopropylamine introducing an amino nucleophile that served as a link to a fluorescein (Scheme 1.2).\(^1\)\(^,\)\(^1\)\(^9\)

Scheme 1.2 Derivatization of phalloidin and attachment to a fluorophore.
Some of the examples of commercial dyes that have been used to synthesize fluorescent phallotoxin derivatives are shown below (Fig. 1.2).

Figure 1.2. Fluorescent dyes that have been conjugated to phallloidin.

Visualization of actin fibers in mammalian cells revealed that phallotoxins bind to filamentous actin forming a 1:1 complex with each protomer in the filament. However, the molecular mechanism of virotoxin interaction with actin was presumed to be different given the monocyclic nature of these natural products.

Actin is a dynamic network of filaments made up of a monomeric 43 kDa protein, known as G-actin that self assembles into polymeric F-actin (Fig. 1.3). Actin plays a major role in the process of cell division, migration and transmission of signals by tethering protein complexes to specific domains of the plasma membrane.

Figure 1.3. Conceptual representation of actin polymerization.

In 2003, Giganti and Friederich noted that structural and functional perturbations of the actin cytoskeleton in cancer cells correlate with higher proliferation rates and uncontrolled movement.
These authors pointed out that small molecules targeting the actin cytoskeleton are possible candidates for cancer chemotherapy. Also, compounds that act on actin may be used in designing anti-parasitic drugs since unicellular and multicellular parasites rely on the actin cytoskeleton for invasion and reproduction in the host.21 In addition to their potential as therapeutic compounds, inhibitors of cell motility are invaluable research probes for understanding the process of cell movement and its roles in the biology of the organism.22

1.3 BIOSYNTHESIS

A biosynthetic route to virotoxin from phallotoxin was proposed by Faulstich \textit{et al.} (Scheme 1.3).1 Methylation of the thioether bridge, followed by a β-elimination, hydration of the dehydroalanine, oxidation of the sulfur atom and hydroxylation of the hyp residue would generate viroidin.1 It is worth mentioning that the order of events toward the end of the pathway could vary.

Scheme 1.3. Sequence of reactions that would convert a phallotoxin-type precursor into a virotoxin.1

A recent genomic study by Hallen \textit{et al.} to identify genes involved in the biosynthesis of the amatoxins and phallotoxins demonstrated that these compounds, produced by \textit{Amanita bisporigera} –
another destroying angel – are the first known example of cyclic peptides to be produced by ribosomal peptide synthesis in a fungus.23 The genome of Amanita bisporigera was shotgun-sequenced to approximately two times the coverage of the genome by a combination of automated Sanger sequencing and pyrosequencing. The sequences were then compared to known bacterial and fungal nonribosomal peptide synthetases, in addition to searching the genome for DNA encoding amanitins’ amino acid sequence. It was established that the genome of Amanita bisporigera contains related sequences that are characterized by a conserved “toxin” region of seven to ten amino acids (Fig. 1.4). The presence of proline residues immediately upstream of the toxin region and as the last amino acid in the toxin region suggested the involvement of a proline peptidase in the initial post-translational processing of these proproteins.24 The toxins are therefore conceived to be synthesized as proproteins from which they are predicted to be cleaved by a prolyl oligopeptidase (Fig. 1.4). The report concludes that the fungi have evolved a unique mechanism of combinatorial biosynthesis that gives them the ability to biosynthesize cyclic peptides.

\begin{center}
\includegraphics[width=\textwidth]{figure1}\hspace{1cm}
\textbf{Figure 1.4.} Ribosomal cyclic peptide synthesis in a fungus.
\end{center}
1.4 PREVIOUS SYNTHETIC STUDIES AND ANALOGS

Earlier attempts at the generation of Amanita toxins involved partial synthesis from the natural product. The peptide bond between residues 1 and 7 was readily cleaved upon treatment with acids, accompanied by lactonization of the dihydroxyleucine residue (vide supra, Scheme 1.1). Hydrolysis of the lactone, followed by recyclization using the mixed anhydride method regenerated the natural product (Scheme 1.4).²⁵

Scheme 1.4. Partial synthesis of phalloidin from the natural product.

Typically, formation of peptide bonds via a mixed anhydride involves separate activation of the acid by adding isobutyl chloroformate to a solution of the peptide acid and N-methylmorpholine (Scheme 1.5).²⁶⁻²⁸ The amine nucleophile is then added in the second step to form the peptide bond.

Scheme 1.5. Formation of peptide bonds via a mixed anhydride method.
1.4.1 Kahl and Coworkers \(^{29}\)

In 1983, Kahl and co-workers reported the synthesis of four virotoxin-like, F-actin-binding heptapeptides with \(cis\)-4-hydroxy-\(L\)-proline substituting for dihydroxyproline. The dihydroxyleucine residue of the natural toxins was replaced with either \(L\)-leucine or hydroxyleucine, after being found not to be vital for biological activity.\(^1\) Two of these analogs, \(22\) and \(23\), were found to have an affinity for F-actin ca. five times lower than that of viroisin. None of the analogs was toxic up to 10 mg/kg body weight of the white mouse.

Table 1.3: The virotoxin analogs and their constituent amino acid residues.

<table>
<thead>
<tr>
<th>Residue Analog</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Ala</td>
<td>(D)-Thr</td>
<td>(D)-Ser</td>
<td>hyp</td>
<td>Ala</td>
<td>2-MeS-Trp</td>
<td>Leu</td>
</tr>
<tr>
<td>21</td>
<td>Ala</td>
<td>(D)-Thr</td>
<td>(D)-Ser</td>
<td>hyp</td>
<td>Ala</td>
<td>2-MeSO₂-Trp</td>
<td>Leu</td>
</tr>
<tr>
<td>22</td>
<td>Val</td>
<td>(D)-Thr</td>
<td>(D)-Ser</td>
<td>hyp</td>
<td>Ala</td>
<td>2-MeS-Trp</td>
<td>hyLeu</td>
</tr>
<tr>
<td>23</td>
<td>Val</td>
<td>(D)-Thr</td>
<td>(D)-Ser</td>
<td>hyp</td>
<td>Ala</td>
<td>2-MeSO₂-Trp</td>
<td>hyLeu</td>
</tr>
</tbody>
</table>

Synthesis of analogs \(20\) and \(21\) was conducted according to Scheme 1.6. The linear precursor, with \textit{allo}-hydroxyproline at the C-terminus, was chosen, since this residue would not racemize during peptide bond formation. Generation of the required linear heptapeptide \(24\) was achieved through stepwise C\(\rightarrow\)N elongation using DCC/HOBt as coupling reagents. The linear heptapeptides were then cyclized using the mixed anhydride method \(i.e.,\ 25\rightarrow26,\) Scheme 1.6). Cyclization was followed by modification of the Trp residue to give analogs \(20\) and \(21\) that differ in the oxidation state of sulfur.

Analogs 22 and 23 were prepared via fragment condensation, substituting Val for Ala at position 1 (Table 1.3). Their fragment condensation synthesis is summarized in Scheme 1.7. For the synthesis of these γ-hydroxyleucine containing analogs, ring closure between the hydroxyleucine as the C-terminal site and valine was said to be “inevitable to avoid cleavage of peptide bonds via lactonization under acidic conditions (vide supra)”29 Lower yields were obtained for the cyclization step, than in Scheme 1.6, since both valine and the hydroxyleucine residues are sterically demanding.
Scheme 1.7. Synthesis of virotoxin analogs 22 (9 % cyclization yield) and 23 (2.6 % cyclization yield). Reagents: a. TFA/CH₂Cl₂; b. Sephadex LH-20, 0.004M NH₃; c. 1. ‘BuOCOCl, DMF, THF, 2. NMM. Compound 23 was prepared in analogous fashion.

During the synthesis of analogs 20 and 21, the methylsulfonyl group was introduced onto the indole ring after cyclization of the tryptophan-containing heptapeptide, while for analogs 22 and 23, the 2-methyl-thio-L-Trp was incorporated at the level of the building block.

1.4.2 Zanotti and Coworkers

In 1999, Zanotti and coworkers concluded that the configuration of the amino acid preceding the prolyl residue is vital for the biological activity of virotoxins (vide supra). Four viroisin analogs (21, and 30-32), were synthesized by cyclizing the linear heptapeptides H-Ala-D-Thr-X-hyp-Ala-2-MeSO₂Trp-Leu-OH and these cyclic heptapeptides were subjected to conformational analysis by NMR as well as to an actin binding assay (Table 1.4).
Table 1.4: Cyclization yields and actin affinities of viroisin analogs relative to viroisin.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>X</th>
<th>Cyclization Yield (%)</th>
<th>Relative affinity for actin analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7 (viroisin)</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>D-Ser</td>
<td>19</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>D-Ala</td>
<td>32</td>
<td>0.076</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>L-Ser</td>
<td>13</td>
<td>0.005</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>L-Ala</td>
<td>16</td>
<td><0.001</td>
</tr>
</tbody>
</table>

In their study, L-valine was replaced by L-alanine for ease of coupling, while commercially available L-allo-hydroxyproline and leucine served as surrogates for dihydroxyproline and dihydroxyleucine respectively. Their best analog 21 loses half an order of magnitude binding affinity for actin relative to viroisin (Table 1.4, entry 2). Synthesis of 21, and 30-32 was performed in the solution phase, although with a different strategy to that of Kahl and coworkers. Of particular note, was that the 2-methylthio-substituent was introduced into the Trp building block prior to incorporation into the peptide. In addition, the heptapeptide was generated through condensation of tripeptide and tetrapeptide fragments. The tri- and tetrapeptide fragments were assembled using the mixed anhydride method with typical coupling yields of 46-100 %. A [3+4] fragment condensation between Ala/D-Thr residues was carried out using HBTU to generate linear heptapeptides with yields of 60-75 %. The cyclization was conducted using HBTU and the yields for compounds 21, and 30-32 are shown in Table 1.4. Details of the synthetic work are shown in Scheme 1.8.
Scheme 1.8. Synthesis of viroisin analog 21. Reagents: a. 0.4 mmol K$_2$CO$_3$, DMF; b. 10 eq. TFA, CH$_2$Cl$_2$; c. HBTU, DMF, DIEA; d = neat TFA. Compounds 30-32 were prepared in analogous fashion.

1.4.3 Ongoing Synthetic Studies

1.4.3.1 Guy and Coworkers31

In 2005, Guy and co-workers used a solid-phase synthesis approach to prepare Ala7 phalloidin (Scheme 1.9).31 These authors were interested in developing a rapid and efficient approach to phallotoxins that would allow the synthesis of a diverse library of compounds. According to their retrosynthetic analysis (Scheme 1.9), the initial plan involved disconnecting ring A between the Trp6 amino group and Ala5 carboxyl group to reveal orthogonally protected intermediate 34. The second
disconnection between the Trp6 and Ala7 residues led to intermediate 35, which was disconnected further according to Scheme 1.9.

Scheme 1.9. Guy and co-workers’ retrosynthetic analysis of Ala7 phalloidin31

In their synthesis, the hydroxyl side chain of hyp4 was utilized as the point of attachment to the resin via the acid labile tetrahydropyranyl polystyrene linker (THPP). The amino acid building blocks with orthogonal protecting groups were prepared in solution, followed by a sequence of solid-phase peptide couplings involving two key macrocyclization reactions. The order of cyclizing the two rings was based on literature work on the solution-phase synthesis of phallotoxin.$^{12, 15, 32}$ The final cyclization step generated two compounds that were conceived to be atropisomers based on spectroscopic data, computational studies and circular dichroism analysis. One of the atropisomers, designated as “natural,” had positive Cotton effects similar to phalloidin, while the “non-natural” bicyclopeptide had negative Cotton effects. The yields for the “natural” and “non-natural” atropisomers were quantified as 1.3% and
3.2% respectively. These low yields were accounted for by the two challenging cyclization reactions, specifically the second cyclization step (ring A, Scheme 1.9) and losses during separation of the two atropisomers.

1.4.3.2 Schuresko and Lokey

A recent report by Schuresko and Lokey described an efficient solid-phase synthesis of Glu7-phalloidin (Fig. 1.5) with an overall yield of 50%.33 This report provides the highest yield reported to-date for the syntheses of phalloidin/viroidin analogs either in solution or the solid phase. The side chain of the glutamic acid in position 7 was used as a handle for linkage to the solid phase, and then later derivatized to generate a fluorescent, bioactive analog that stained F-actin in fixed cells at a concentration comparable to that of commercial phalloidin based probes.

![Figure 1.5. Glu7 phalloidin and a fluorescent conjugate.](image)

1.5 GOALS OF THE CURRENT WORK

The natural source of virotoxins is selected species of mushrooms that are considered uncultivatable due to slow growth and failure to produce carpophores in culture,6 and therefore, an efficient chemical synthesis of these compounds offers an alternative. Despite the production of many
phalloidin and viroidin analogs, and biological and structural studies, a total synthesis of a naturally occurring virotoxin has yet to be reported, due to inaccessibility of the 3,4-dihydroxyproline and 4,5-dihydroxy-L-leucine residues. Moreover, there are issues and uncertainties in handling these highly functionalized residues in peptide synthesis without protecting the hydroxyl groups.

Conjugated to fluorophores, phalloidin is widely used to study the dynamics of actin filaments. As seen in section 1.4.3, in the twenty-first century, efforts are ongoing to produce synthetic phallotoxins, in useful amounts, to make these experiments more affordable and accessible. A synthetic, fluorescent virotoxin would serve as a new probe for the visualization of actin. A solution phase synthesis would have the additional potential to provide analogs and other conjugates with desirable biological properties. Solution phase peptide synthesis permits the incorporation of the uncoded amino acids in a controlled manner.

In addition to the synthesis of a natural product, we sought to prepare three analogs, to specifically investigate the role of proline hydroxylation in the conformation and related biological activity of these compounds. At the outset, we selected viroidin (2) as our target but our stereoselective synthesis of the 4,5-dihydroxyleucine residue dictated that we synthesize the equally potent alloviroidin (see Chapter 2). To facilitate these studies, we prepared three tripeptide fragments with either a proline (Pro), trans-3-hydroxyproline (3-Hyp), cis-4-hydroxyproline (hyp) or 2,3-trans-3,4-trans-dihydroxyproline (DHP) residue (vide infra). All building blocks were commercially available, with the exception of the 2-methylsulfonyl-tryptophan, 2,3-trans-3,4-trans-dihydroxy-proline\(^{34}\) and dihydroxyleucine residues.\(^{35}\) The previous virotoxin analog syntheses did not incorporate the 2,3-trans-3,4-trans-dihydroxy-proline,\(^{34}\) valine and dihydroxyleucine residues.\(^{29, 30}\) These analogs that were more easily synthesized demonstrated that a replacement of the DHP residue for hyp, dihydroxyleucine for leucine and alanine for valine led to compounds that were five times less active (vide supra).\(^{29}\) We are therefore
in a unique position to produce the natural product and analogs via synthesis as presented in Scheme 1.10.

Scheme 1.10. Retrosynthetic analysis of alloviroidin and analogs.

Nuclear magnetic resonance studies will enable us to investigate the conformational preference of the prolyl peptide bond in linear peptides and how this influences the structure and ease of cyclization of the heptapeptides. X-ray studies by Zanotti and coworkers (*vide supra*) revealed that the cis-4-hydroxyproline adopts a C\(^\gamma\)-endo type conformation. Our work will predict conformations adopted by pyrrolidine rings of proline, 2,3-\(\text{trans}\)-3,4-\(\text{trans}\)-dihydroxy-proline, cis-4-hydroxyproline and \(\text{trans}\)-3-hydroxyproline residues when incorporated into linear and cyclic peptides, and the impact this would have on the conformation of the Ser\(^3\)-Pro*\(^\#\)-Ala\(^5\)-Trp\(^6\) peptide region and its propensity to facilitate cyclization. Similar work on factors influencing conformation in proline-containing peptides was conducted by Taylor *et al.*

Computational studies together with the experimental data will allow us to predict the low energy conformations of the cyclic peptides and thereby relate the contribution of each hydroxyl group to the bioactive conformation of the cyclic heptapeptide.
Scheme 1.11. The conformation of the prolyl peptide bond and cyclization.
Our retrosynthetic analysis of alloviroidin is presented in Scheme 2.1. Disconnections between the proline/alanine and valine/D-threonine residues leads to the tetrapeptide 46 and tripeptide fragments 47-50. In a forward direction, the first peptide bond to be formed will constitute a [3+4] fragment condensation at the position labeled ‘1,’ between carboxyl component derived from 47-50 and the amino component derived from 46, followed by a cyclization of the linear heptapeptide at the disconnection labeled ‘2’ (Scheme 2.1). Formation of linkage 1 is appealing, since the C-terminal proline is not susceptible to racemization during peptide bond formation. Furthermore, ease of cyclization (formation of linkage 2) is expected to be enhanced by the presence of a turn inducing proline residue, and the opposite configuration of the D-Thr/L-Val residues.

Scheme 2.1. Retrosynthetic analysis of alloviroidin and analogs.

Fragments 46 and 47 are of approximately equal complexity, each containing one synthetically valuable amino acid. We employed an orthogonal protecting group strategy, utilizing

\[X = Y = \text{OH} \]
\[X = Y = \text{H} \]
\[X = \text{OH}; Y = \text{H} \]
\[X = \text{H}; Y = \text{OH} \]

\[X = Y = \text{OTBS} \]
\[X = Y = \text{H} \]
\[X = \text{OTBS}; Y = \text{H} \]
\[X = \text{H}; Y = \text{OTBS} \]
fluoride-labile side chain protection (viz., tert-butyl-dimethylsilyl ethers), the base labile Fmoc group, and benzyl or ethyl esters for the protection of the amino and carboxy termini respectively.

2.1 PREVIOUS SYNTHESIS OF THE 4,5-DIHYDROXYLEUCINE RESIDUE

A single synthesis of the 4,5-dihydroxyleucine residue appeared in the literature in 1957. Wieland and Weiberg reported the preparation of a mixture of all four stereoisomers of this amino acid via bromination of compound 51 to give 52 (Scheme 2.2). Subsequent hydrolysis and decarboxylation delivered 53 that was reacted with acid in the presence of silver ions to give 54 as a mixture of stereoisomers. The two racemates (2S,4S; 2R,4R) and (2S,4R; 2R,4S) were separated by crystallization and then resolved into enantiomers, through crystallization of salts formed with ditoluoyl tartaric acid.

Scheme 2.2. Wieland and Weiberg dihydroxyleucine synthesis.

2.2 THE SHARPLESS ASYMMETRIC DIHYDROXYLATION

We hoped to prepare a single stereoisomer of this key amino acid via a diastereoselective dihydroxylation of an (S)-dehydroleucine derivative (Scheme 2.3).
The Sharpless asymmetric dihydroxylation reaction has emerged as one of the most efficient methods for forming optically active 1,2-diols from olefins in a predictable and controlled manner.40-47 The reaction proceeds via a \textit{syn} addition, whereby the hydroxyl groups are delivered to the same face of the double bond (Fig. 2.1). This dihydroxylation reaction is easy to perform since a premix of all reactants is commercially available in two antipodal forms: AD-mix-\(\alpha\) and AD-mix-\(\beta\).

The mnemonic proposed by Sharpless and co-workers to explain the outcome of the dihydroxylation (Fig. 2.1) has proven to be reliable at predicting the enantiofacial selectivity for a wide range of olefinic substrates.48 The olefin substrate is positioned to allow for an aromatic or sterically demanding aliphatic substituent (\(R_L\)) to occupy the southwest quadrant of the empirical mnemonic, whereas the northeast quadrant is occupied by aliphatic substituents of moderate size (\(R_M\)). The diastereofacial selectivity can be rationalized on the basis of the type of ligand used (Fig. 2.2), \textit{e.g.}, AD-mix-\(\beta\), with the chiral dihydroquinidine (DHQD) ligand, brings about dihydroxylation from the top face.
AD-mix-α, on the other hand contains the pseudoenantiomeric dihydroquinine (DHQ) derived ligand and dihydroxylates the olefin from the bottom face. Sharpless and co-workers49 have shown that the dihydroxylation of prochiral olefins proceeds with high levels of enantioselectivity. When chiral olefins are dihydroxylated, the situation is more complicated.

There have been cases reported of matched and mismatched double diastereoselectivity during the asymmetric dihydroxylation of chiral olefins.50-52 The concept of matched and mismatched pairs can be explained by first comparing the reaction in the absence of any chiral ligand. As illustrated in Scheme 2.4 (Entry 1), dihydroxylation of 59 under ligand free conditions generated 76\% of 60\textit{a} and 24\% of 60\textit{b}. This selectivity arises from the intrinsic bias of 59 \textit{i.e.} K\textsubscript{2}OsO\textsubscript{4} approaches the double bond of the substrate from the less hindered face furnishing 60\textit{a} as the major product.
Scheme 2.4. Matched and mismatched double diastereoselectivity.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction conditions</th>
<th>Ligand</th>
<th>Product ratio of 60a:60b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5BuOH/H2O (1:1),</td>
<td>No ligand</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>0.08 equiv. K2OsO4, 0.2H2O 3 equiv. K2CO3 3 equiv. K2Fe(CN)3</td>
<td>0.4 equiv. (DHQD)2PHAL</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>MeSO2NH2, 20 ºC</td>
<td>0.4 equiv. (DHQ)2PHAL</td>
<td>5</td>
</tr>
</tbody>
</table>

A matched pair is a reaction using a chiral ligand that leads to the same facial selectivity as the substrate’s intrinsic bias. For example, dihydroxylation of 59 in the presence of (DHQD)2PHAL (Scheme 2.4, Entry 2) enhances selectivity of 60a/60b from 76/24 to 98/2 (Entries 1 and 2 respectively). Therefore, the diastereofacial selectivity of 59 and (DHQD)2PHAL represents a matched pair. However, facial selectivity of the chiral ligand in a mismatched case is opposite to that of intrinsic bias of the substrate (Scheme 2.4, Entry 3). In this case, the diastereofacial selectivities of substrate 59 and the chiral ligand (DHQ)2PHAL are counteracting each other. Weak substrate intrinsic bias, as in Scheme 2.4, can be overridden by a chiral ligand, while moderate to strong substrate bias could result in poor selectivity. The outcome of the reaction is thereby influenced by the chirality of both the reagents and the substrates.

Reetz and co-workers have examined the dihydroxylation of chiral γ-amino α,β-unsaturated esters and shown that tuning of the amine protecting group can be used to transform the mismatched into a matched case (Table 2.1). A comparison between the N-Boc- and N,N-dibenzyl-protected substrates revealed different levels of stereoselectivity of the products formed.53
Table 2.1: Turning the mismatched into the matched case via protecting group tuning. AD-mix-α always favors 62-65a; AD-mix-β always favors 62-65b.

<table>
<thead>
<tr>
<th></th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>AD-mix</th>
<th>62-65a: b</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Boc</td>
<td>CH₃</td>
<td>CH₃CH₂</td>
<td>α</td>
<td>97:3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β</td>
<td>9:91</td>
</tr>
<tr>
<td>63</td>
<td>Boc</td>
<td>PhCH₂</td>
<td>CH₃</td>
<td>α</td>
<td>94:6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β</td>
<td>11:89</td>
</tr>
<tr>
<td>64</td>
<td>Bn₂</td>
<td>CH₃</td>
<td>CH₃CH₂</td>
<td>α</td>
<td>92:8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β</td>
<td>6:94</td>
</tr>
<tr>
<td>65</td>
<td>Bn₂</td>
<td>PhCH₂</td>
<td>CH₃</td>
<td>α</td>
<td>88:12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β</td>
<td>14:86</td>
</tr>
</tbody>
</table>

Facial selectivity of the dihydroxylation is affected by the substitution of the double bond. Unexpected results have been observed during the dihydroxylation of 1,1-disubstituted allylic alcohol derivatives and chiral 1,1-disubstituted olefins. Karl Hale and co-workers conducted studies on 1,1-disubstituted allylic alcohols and recorded the unexpected trend summarized in Table 2.2. From these results, it can be concluded that the Sharpless facial selectivity rule is unpredictable for allylic ethers and strongly affected by the protecting group.
Table 2.2: Asymmetric dihydroxylation of 1,1-disubstituted allyl alcohol derivatives.54

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R</th>
<th>AD-mix</th>
<th>% ee</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO=CH-</td>
<td>66</td>
<td>'BuPh\textsubscript{2}Si</td>
<td>β</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>Bn</td>
<td>β</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>Pv</td>
<td>β</td>
<td>11</td>
</tr>
<tr>
<td>RO=CH-</td>
<td>69</td>
<td>'BuPh\textsubscript{2}Si</td>
<td>α</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>'BuMe\textsubscript{2}Si</td>
<td>α</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>Pv</td>
<td>α</td>
<td>15</td>
</tr>
<tr>
<td>RO=CH-</td>
<td>72</td>
<td>Bn</td>
<td>α</td>
<td>45</td>
</tr>
</tbody>
</table>

During their investigation of 4,5-dehydroisoxazoles as intermediates for amino sugar synthesis, Wade and co-workers noted that optically active alkene substrates constitute a double asymmetric synthesis during dihydroxylation using chiral ligands.56 The authors were able to overcome the intrinsic bias of the substrate in their reactions by employing the standard phthalazine class of ligands (Scheme 2.5).

Scheme 2.5. Wade and co-workers’ dihydroxylation of 4,5-dehydroisoxazoles.56

<table>
<thead>
<tr>
<th>Reaction conditions</th>
<th>Ligand</th>
<th>Product ratio of 74a:74b</th>
</tr>
</thead>
<tbody>
<tr>
<td>tBuOH/H\textsubscript{2}O (1:1), MeSO\textsubscript{2}NH\textsubscript{2}, 20 °C</td>
<td>No ligand</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>0.4 equiv. (DHQD)\textsubscript{2}PHAL</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>0.4 equiv. (DHQ)\textsubscript{2}PHAL</td>
<td>11</td>
</tr>
</tbody>
</table>

Similarly, Morikawa and Sharpless assessed the extent of matching and mismatching in the asymmetric dihydroxylation of a carbohydrate-derived olefin ester using phthalazine and pyrimidine...
ligands.57 According to the findings recorded in Scheme 2.6, phthalazine ligands performed better for the matched reaction (Entry 1), while pyrimidine derivatives gave improved results in the mismatched case (Entry 4).

Scheme 2.6. Morikawa and Sharpless dihydroxylation of a carbohydrate-derived olefin ester.57

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand (mol %)</th>
<th>Product ratio of 76a:76b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(DHQD)$_2$PHAL (1)</td>
<td>39 1</td>
</tr>
<tr>
<td>2</td>
<td>(DHQ)$_2$PHAL (1)</td>
<td>1 1.3</td>
</tr>
<tr>
<td>3</td>
<td>(DHQD)$_2$PYR (5)</td>
<td>6.9 1</td>
</tr>
<tr>
<td>4</td>
<td>(DHQ)$_2$PYR (5)</td>
<td>1 4.1</td>
</tr>
</tbody>
</table>

Enantioselectivity studies by Sharpless and co-workers recommended phthalazine based ligands for the dihydroxylation of 1,1-disubstituted, 1,2-\textit{trans}-disubstituted and trisubstituted classes of olefins.40 The examples represent reagent-controlled dihydroxylations (Table 2.3).

Table 2.3. Examples reagent-controlled dihydroxylations.40

<table>
<thead>
<tr>
<th>Olefin</th>
<th>Product</th>
<th>(DHQD)$_2$-PHAL % ee</th>
<th>(DHQ)$_2$-PHAL % ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>78</td>
<td>94 (R)</td>
<td>93 (S)</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>99 (2S,3R)</td>
<td>96 (2R,3S)</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>98 (R)</td>
<td>95 (S)</td>
</tr>
</tbody>
</table>

Gardiner and co-workers demonstrated that the asymmetric dihydroxylation of an \textit{L}-proline-derived 1,1-disubstituted alkene proceeds with the same sense of diastereoselectivity using both phthalazine based ligands (Scheme 2.7).55 It was hypothesized that the orientation of the substrate in the
mnemonic device was altered by the sterically hindered pyrrolidine group and that a ligand switch in this case does not influence the facial selectivity but instead leads to a matching enhancement.

Scheme 2.7: Diastereoselectivity in the asymmetric dihydroxylation of an L-proline derived 1,1-disubstituted alkene.\(^{55}\)

<table>
<thead>
<tr>
<th>Chiral ligand</th>
<th>84a:84b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1.1:1</td>
</tr>
<tr>
<td>(DHQ)(_2)PHAL</td>
<td>1.9:1</td>
</tr>
<tr>
<td>(DHQD)(_2)PHAL</td>
<td>3.5:1</td>
</tr>
<tr>
<td>(DHQ)(_2)PYR</td>
<td>1.8:1</td>
</tr>
<tr>
<td>(DHQD)(_2)PYR</td>
<td>1:2.5</td>
</tr>
</tbody>
</table>

* Ratios determined by gas chromatography after diol derivatization.

With this background, we set about our synthesis of 4,5-dihydroxyleucine employing a Sharpless asymmetric dihydroxylation.

2.3 PREPARATION OF (2S)-4,5-DIHYDROLEUCINE RESIDUE

The preparation of our dehydroleucine began with condensation of the anion of ethyl acetamidomalonate (85) with methallyl chloride to give 51 (Scheme 2.8).\(^{58}\)

Hydrolysis of the esters, acidification and decarboxylation resulted in racemic N-acetyldehydroleucine (86). According to the work of Schmidt and Schmidt, who utilized (S)-dehydroleucine in their synthesis of eponemycin,\(^{59}\) we conducted an enzymatic resolution of this amino acid at room temperature, with strict control of pH between 7 and 8 for no more than 24 hours. We then acidified the reaction mixture and extracted the unreacted (R)-N-acetyl-dehydroleucine with ethyl acetate and an optical rotation measurement demonstrated this compound to be enantiopure (Scheme 2.9).
Scheme 2.8. Preparation of the dehydroleucine residue.

Schmidt and Schmidt made note that “the temperature should not exceed 40 °C” during concentration of the acidic, aqueous layer. We noticed that (S)-dehydroleucine was invariably contaminated with another, less polar compound that stained with ninhydrin. The amount of this byproduct was reduced, but not completely eliminated, by freezedrying instead of evaporation at < 40 °C on a rotary evaporator. We reacted the product mixture with thionyl chloride in methanol, followed by carbobenzyloxychloride, according to Scheme 2.9. Following this derivatization, we were able to separate two compounds and identify the undesired compound as a γ-lactone that was later used in model studies (vide infra). The lactone presumably arises via protonation of the double bond to form the tertiary carbocation and intramolecular attack by the carboxylate to form the lactone 89.

Scheme 2.9. Undesired lactone formation.
Neutralization of the reaction mixture, with Amberlite IRA-67 (HO\(^-\)) ion exchange resin, before freezedrying prevented this side reaction but was still not optimal. We were subsequently able to isolate (S)-dehydroleucine (87) in high optical purity according to the recommended protocol of Chenault et al.\(^{60}\) Specifically, the acidic layer, without neutralization, was applied directly to a column of Dowex-50 (H\(^+\)), the column was washed with water, followed by elution of the amino acid with aqueous ammonium hydroxide solution.

The free amino acid (–)-87 was converted to its methyl ester, followed by Mosher amide formation (Scheme 2.8).\(^{61}\) The stereochemical make-up of 88 was determined by \(^{19}\)F NMR analysis to be 98 % de in favor of the S-configuration at C\(_\alpha\) (Fig. 2.3). We also prepared and analyzed the Mosher amide of the racemic material (±)-88 in an analogous manner after deacetylation of (±)-86 with aqueous 2.5N NaOH solution (Scheme 2.10).

Scheme 2.10. Mosher amide formation.

Figure 2.3. \(^{19}\)F NMR spectra (CDCl\(_3\), 236 MHz) for Mosher amide 88 derived from enzymatically resolved dehydroleucine and racemic dehydroleucine.
2.4 THE DIHYDROXYLATION REACTION

The methyl ester of 87 was protected as its Cbz derivative 90 (Scheme 2.11). With useful quantities of enantiopure dehydroamino ester 90 in hand, we were in a position to investigate the dihydroxylation reaction. We hoped that the aromatic ring would be attracted to bind in the hydrophobic southwest binding pocket of the ligand during the asymmetric dihydroxylation (see Fig. 2.1). Given the examples presented in section 2.2, we were reluctant to predict which of the AD-mixes would give the desired diastereomer. We were uncertain what impact the existing Cα stereocenter would have on the stereochemical course of the reaction. In general, dihydroxylation of γ,δ-unsaturated esters results in the isolation of γ-lactones and we hoped that lactone 92a would be a useful building block for peptide synthesis.

Dihydroxylation of 90 with AD-mix-β, under the standard conditions of the Sharpless asymmetric dihydroxylation, gave 92 in a 1:1 diastereomeric ratio. However, treatment of alkene 90 with AD-mix-α yielded an inseparable mixture of diastereomers of 92 in a ratio of 6.5:1.0 (Scheme 2.11). Considerable effort was directed toward determining the configuration of Cγ in the major diastereomer. Also, attempts to separate and characterize the diastereomers were unsuccessful, although the configuration at Cγ was later determined to be 4R (vide infra).

Scheme 2.11. Dihydroxylation of the dehydroleucine residue.

Analysis of the proton NMR of the product mixture derived from the AD-mix-α reaction revealed a single signal for the two Hδ protons of the major diastereomer. Two distinct doublets were observed for the minor diastereomer. The single signal of the major diastereomer indicated that the two Hδ protons were equivalent and implied that the CbzNH and CH₂OH were on opposite faces of the
lactone ring, \textit{i.e.} diastereomer 92a (2S, 4R) as occurs in viroidin. If the NHCbz and CH$_2$OH substituents were on the same face of the lactone ring, hydrogen bonding between them could lead to restricted rotation about Cγ-Cδ bond giving rise to two distinct Hδ signals, as observed for the minor diastereomer. Wieland64 used the same reasoning to distinguish between diastereomers of the free aminolactone (Fig. 2.4).

![Figure 2.4](image1.png)

Figure 2.4. Hydrogen bonding in the lactone ring.

To prove this hypothesis, standard NMR experiments (NOESY and ROESY) were recorded at a variety of mixing times and temperatures to establish the relative stereochemistry of the substituents on the five-membered ring. Unfortunately, only weak signals were observed, implying that the interconversion of conformations of the γ-lactone occurs at rates faster than mixing times.

![Figure 2.5](image2.png)

Figure 2.5. Interconversion of conformations of the γ-lactone 92a.

Attempts to prepare crystalline derivatives from 92a, b by derivatizing the primary alcohol with 4-bromobenzoic acid or hydrogenolysis of the Cbz group in the presence of ditoluoyl tartaric acid were both unsuccessful. Deprotection of the Cbz group under standard hydrogenolysis conditions resulted in the isolation of crystalline diketopiperazine 93 (Scheme 2.12).65 Unfortunately, the structure of 93 could not be properly refined due to the poor quality of the crystals. However, the data hinted that Cα was of the S-configuration and Cγ of the R-configuration.
While trying to clarify this issue of stereochemistry, we simultaneously sought to investigate methods for formation of the dihyLeu-Val peptide bond, as occurs in the toxin, without prior opening of the lactone ring. There are scattered reports of the reaction of γ-lactones being opened by N-nucleophiles (examples are illustrated in Scheme 2.13): under neutral conditions, in the presence of bases, Lewis acid catalysis, catalysis by 2-hydroxy.pyridine, a modification of the Weinreb method, and catalysis by p-toluenesulfonic acid.

Scheme 2.13. Examples of γ-lactone opening by N-nucleophiles.

(a)

(b)

(c)
We decided to explore this strategy, to minimize the number of steps and protecting group manipulations associated with the dihydroxyleucine residue. Prior to investing our synthetically valuable lactone 92a, we screened a number of methods using (±)-valerolactone (103) and valine ethyl ester (104) and found that the conditions of Hansen et al. (Scheme 2.13, a)\(^70\) gave the best results for our substrates (Table 2.4, entry 2).

Table 2.4. Conditions for the aminolysis of lactone 103 with \(L\)-valine ethyl ester (104). All reactions were conducted at 80 °C.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction Conditions</th>
<th>Solvent</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-hydroxypyridine, (\text{iPr}_2\text{NEt})</td>
<td>DMF</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>(\text{Sn(OAc)}_2, \text{iPr}_2\text{NEt})</td>
<td>DMF</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>(\text{Sn(OAc)}_2, \text{iPr}_2\text{NEt})</td>
<td>(\text{ClCH}_2\text{CH}_2\text{Cl})</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>(\text{Cs}_2\text{CO}_3, \text{Et}_3\text{N})</td>
<td>Toluene</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>(\text{Cs}_2\text{CO}_3)</td>
<td>DMF</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>(\text{MeAlCl}_2, \text{iPr}_2\text{NEt})</td>
<td>(\text{ClCH}_2\text{CH}_2\text{Cl})</td>
<td>24</td>
</tr>
</tbody>
</table>

We also explored compound (-)-91 as a model system. Acid hydrolysis of the acetamide in compound (+)-86 (stockpiled from the enzymatic resolution, Schemes 2.8 and 2.9) resulted in lactonization yielding \(\alpha\)-amino-\(\gamma\)-\(\gamma\)-dimethyl-\(\gamma\)-valerolactone that was protected as its Cbz derivative (−)-91 (Scheme 2.14). Attempts to open (+)-91 using the optimized conditions from Table 3 were unsuccessful. Indeed, none of the examples cited in Scheme 2.13 involve a \(\gamma\)-lactone bearing a carbamate protected amine at \(\text{C}_\alpha\); substituents at \(\text{C}_\alpha\) were invariably small (e.g., H, Me, OMe, CN) and
there were no examples with γ-disubstitution. This suggested to us that lactone (+)-91 was stable77 to ring opening reactions due to steric hindrance at the Cα and Cγ positions.

Scheme 2.14. Formation of the γ,γ-dimethyl-γ-valerolactone and reaction with the valine ethyl ester.70

We decided to open the lactone ring in compound (+)-91 by hydrolysis to give 10778 (Scheme 2.15) and then couple to valine ethyl ester via a conventional peptide bond formation. Unfortunately, ring opening was likely to be accompanied by racemization.

Scheme 2.15. Lactone ring opening by hydrolysis.

Michl demonstrated that N-acyl α-amino-γ-lactones epimerize at Cα, even under weakly basic conditions.79 Further studies by Michl revealed a similar trend with N-alkoxycarbonyl derivatives of the lactones under basic conditions; however, γ-lactones with an unprotected amine at Cα resisted racemization. The mechanism proposed by Michl involves the formation of an oxazolone intermediate,
with a readily exchangeable Hα (Scheme 2.16). In light of these unfortunate results, we concluded that the \(\gamma \)-lactone generated via the dihydroxylation of \(\beta,\gamma \)-unsaturated ester 90 was unlikely to be a useful synthetic intermediate for peptide synthesis.

Scheme 2.16. Proposed racemization mechanism.\(^{79}\)

During dihydroxylation of \(\beta,\gamma \)-unsaturated esters, concomitant lactonization is prevented by sterically hindered esters (Scheme 2.17).\(^{80}\)

Scheme 2.17. Dihydroxylation of hindered esters.

We reasoned that an amide bond would also be resistant to spontaneous lactonization. We decided to change our approach by forming the dehyLeu-Val peptide bond prior to dihydroxylation (Scheme 2.18). The dipeptide olefin 111 was prepared and subjected to dihydroxylation reactions using both AD-mixes and OsO\(_4\) to probe the extent of substrate control. Dihydroxylation with AD-mix-\(\beta \) gave us a single
peptide 112a while AD-mix-α and OsO₄ formed mixtures of diastereomers that were not synthetically useful. While phthalazine ligands perform better for 1,1- and 1,2-trans-disubstituted class of olefins, it might have been worthwhile to investigate diastereoselectivities of PYR ligands.

Scheme 2.18. Dihydroxylation of the dehyLeu-Val dipeptide.

We were again unsuccessful at establishing the configuration of the dipeptide diol 112a by crystallization of derivatives (4-bromobenzoate) of the primary alcohol or following hydrogenolysis of the Cbz group in the presence of ditoluoyl tartaric acid. Treatment of 112a with TFA promoted lactonization and concomitant cleavage of the peptide bond forming valine ethyl ester 104 and lactone 92b as a single diastereomer (Scheme 2.18). Gratifyingly, hydrogenolysis of 92b in the presence of hydrochloric acid gave the hydrochloride salt of 54a, a compound that Wieland had previously described as crystalline.³⁹ The crystal structure of 54a revealed that the α–NH₃⁺ and γ–CH₂OH substituents were on the same face of the ring (Fig. 2.7). Thus the configuration of 54a is (2S,4S) as
occurs in alloviroidin (3). The proton NMR spectrum (Figure 2.8) indicated that 92b is the minor diastereomer obtained from the dihydroxylation of the dehydroleucine residue 90 (Scheme 2.11).

Figure 2.7. ORTEP diagram of compound 54a (2S,4S).

Figure 2.8. Selected region of the 1H NMR spectrum of the γ-lactones obtained via different routes.

A careful choice of the side chain diol protecting group was necessary since peptides containing γ-hydroxyamino acids are prone to cleavage under mild acid conditions to give the γ-lactone and amine (Scheme 2.19). Thus, tert-butyl ethers, typically used in combination with Fmoc peptide synthesis are inappropriate.
Scheme 2.19. Cleavage of peptides containing γ-hydroxyamino acids under mild acid conditions.

Protection of the diol as a silyl acetal delivered 113 (Scheme 2.20). Unfortunately, the di-tert-butylsilyl acetal protecting group was partially cleaved during purification by silica gel chromatography, regenerating the starting material, 112a. Corey and Hopkins had observed that the di-tert-butylsilylene derivatives of 1,3- and 1,4-diols are more stable than those of 1,2-diols. Given the problem associated with protecting both primary and tertiary alcohols as a silyl acetal, we decided to selectively protect the primary alcohol of 112a as the fluoride-labile TBS ether derivative 114 (Scheme 2.20) to improve solubility. Protecting the primary alcohol was possible since it is less hindered and therefore easily transformed into the corresponding TBS ether in high yields as compared to the tertiary alcohol. It should also be noted that primary TBS ethers are readily cleaved under mild conditions as opposed to hindered tertiary TBS ethers. We hoped that the hindered nature of the remaining free alcohol would make it unlikely to participate as a nucleophile in side reactions associated with the larger peptide synthesis.

Scheme 2.20. Protection of the dipeptide diol.

2.4.1 Stereochemical Analysis of the Dihydroxylation Reaction

In our synthesis of the dihydroxyleucine residue (vide supra), the dihydroxylation of the dehydroamino ester 90 using AD-mix-β gave a diastereomeric ratio of 1:1, whereas the AD-mix-α reagent resulted into an enhanced diastereomeric ratio of 6.5:1 (Scheme 2.21).
The poor diastereoselectivity observed using the AD-mix-β reagent represents a mismatched pair, *i.e.*, the chiral reagent (DHQD) was unable to overcome the intrinsic diastereofacial bias of the substrate. AD-mix-α-mediated dihydroxylation of \(\text{90} \) comprised a matched pair with the chiral reagent (DHQ), surmounting the intrinsic preference of the substrate, leading to the formation of the diol with fairly good diastereoselectivity.

Sharpless and co-workers have recommended the use of the aforementioned AD-mixes containing phthalazine based ligands for the dihydroxylation of 1,1-disubstituted olefins,\(^{49}\) however, it was noted that predicting the stereochemical outcome for these class of olefins using the empirical mnemonic was less reliable since the two substituents compete for the ligand’s hydrophobic, southwest quadrant, resulting in low enantioselectivities. The observed stereochemical outcome led us to speculate that the stereocenter in our dehydroleucine substrate has a significant influence on the ligand-substrate interaction and thus the stereochemical course of the reaction.

Upon changing our dihydroxylation substrate from dehydroleucine to the dehyLeu-Val dipeptide, the mismatched case turned into a matched pair (Scheme 2.22).

Scheme 2.21. Dihydroxylation of the dehydroamino ester.

\[
\begin{align*}
\text{CbzHN} - \text{H} & \quad \text{CbzHN} - \text{COOMe} \\
\overset{\text{AD-mix-β}}{\text{1BuOH, H₂O}} (55 \%) & \quad \overset{\text{AD-mix-α}}{\text{1BuOH, H₂O}} (59 \%)
\end{align*}
\]

Scheme 2.22. Dihydroxylation of the dehyLeu-Val dipeptide.

\[
\begin{align*}
\text{CbzHN} - \text{H} & \quad \text{CbzHN} - \text{N} & \quad \text{CbzHN} - \text{N} \\
\overset{\text{AD-mix-α}}{\text{1BuOH/H₂O}} (89 \%) & \quad \overset{\text{AD-mix-β}}{\text{1BuOH/H₂O}} (90 \%)
\end{align*}
\]

It was astonishing to note that the dihydroxylation of the dehyLeu-Val dipeptide \(\text{111} \) using AD-mix-β afforded a single diastereomer, while the reaction of the same substrate \(\text{111} \) with AD-mix-α led to a 1:1
diastereomeric ratio, in contrast to the observation made for the dehydroleucine residue. These outcomes demonstrated that the nature of the substituents on our 1,1-disubstituted olefin substrates had a great impact on the stereochemical course of the reaction. We also investigated the dihydroxylation of 111 using OsO₄ in the absence of the chiral ligands, and again observed an almost equal mixture of diastereomers slightly favoring the diastereomer obtained using the AD-mix-β reagent. This is in agreement with the observed diastereomeric ratios using the chiral reagents, with AD-mix-β giving enhanced diastereofacial selectivity, suggesting that both steric effects and the two chiral centers present in our dipeptide substrate have a significant role in governing the facial selectivity of the reaction. It should be noted that the dihydroxylation of the dehyLeu-Val dipeptide substrate under all the investigated conditions produced high chemical yields in comparison to the single residue, dehydroleucine substrate 90. A possible explanation for the low yield recorded during the dihydroxylation of the dehydroleucine 90 could be as a result of partial decomposition of the olefin substrate and losses during the aqueous work-up since the starting material was never recovered.

2.4.2 Summary

In summary, an efficient strategy that provides a dipeptide containing (2S,4S)-4,5-dihydroxyleucine residue via a diastereoselective dihydroxylation has been described. The dihydroxyleucine residue in its γ-lactone form was found not to be a useful building block for peptide synthesis, since it was unreactive toward amines. Also, hydrolytic opening of the γ-lactone posed the risk of epimerization at the Cα position. We incorporated dehydroleucine into a dipeptide and performed a Sharpless asymmetric dihydroxylation to introduce the diol. The (2S,4R) diastereomer could not be generated through the same protocol.
2.5 EXPERIMENTAL SECTION

2.5.1 General Methods: All reactions were performed under a dry nitrogen atmosphere unless otherwise noted. Reagents were obtained from commercial sources and used directly; exceptions are noted. Diisopropylethylamine and triethylamine were dried and distilled from CaH₂ and stored over KOH pellets. Ethanol and Methanol were distilled from Mg turnings and stored over 4 Å molecular sieves. Flash chromatography was performed using flash silica gel (32-63 μ) from Dynamic Adsorbents Inc. Reactions were followed by TLC on precoated silica plates (200 μm, F-254 from Dynamic Adsorbents Inc.). The compounds were visualized by UV fluorescence or by staining with phosphomolybic acid, ninhydrin or KMnO₄ stains. NMR spectra were recorded on Bruker DPX-250 or AV-400-liquid spectrometers. Proton NMR data is reported in ppm downfield from TMS as an internal standard. Disodium 3-trimethylsilyl-1-propane-sulfonate (DSS) was used to reference ¹H NMR spectra run in D₂O. High resolution mass spectra were recorded using either time-of-flight or electrospray ionization.

L-Dehydroleucine, (-)-87, was prepared according to previously published procedures.⁵⁸,⁵⁹,⁸³

Ethyl 2-Acetamido-2-ethoxycarbonyl-4-methyl-4-pentenoic acid (51). To a solution of diethylacetamido malonate (85) (10.00 g, 46.0 mmol, 1 equiv.) in EtOH (60 mL) at rt under N₂ was cautiously added Na (1.165 g, 50.64 mmol, 1.1 equiv.). The mixture was heated at reflux at which point followed the addition of 2-methyl-2-propenyl chloride (6 mL, 60 mmol, 1.3 equiv.) over 30 min. Heating at reflux was continued further for 2 h, concentrated, partitioned between EtOAc (60 mL) and H₂O (20 mL). The aqueous layer was extracted further with ethyl acetate (2 × 25 mL). The organic layers were combined, filtered through MgSO₄ and concentrated to a volume of 10 mL. Hexane (60 mL) was then added, with vigorous stirring, to give 51 as colorless crystals (9.384 g, 75 %); mp 88-88.5 °C,
Lit.58 92-93º, Lit.59 90-91 ºC. 1H NMR (250 MHz, CDCl\textsubscript{3}) \(\delta\) 1.27 (t, \(J = 7.1\) Hz, 6H), 1.66 (s, 3H), 2.03 (s, 3H), 3.10 (s, 2H), 4.25 (qd, \(J = 7.1, 1.1\) Hz, 4H), 4.69 (d, \(J = 0.9\) Hz, 1H), 4.86 (t, \(J = 1.78\) Hz, 1H), 6.81 (br. s, 1H); 13C NMR (62.5 MHz, CDCl\textsubscript{3}) \(\delta\) 13.9, 22.9, 23.2, 39.6, 62.4, 66.1, 115.9, 139.9, 167.9, 168.8.

- **(\pm)-2-Acetamido-4-methyl-4-pentenoic acid (\pm)-(86).** Aqueous NaOH (2M, 20 mL) was added to a solution of 51 (4.00 g, 15 mmol) in dioxane (20 mL) and the mixture heated at 50 ºC for 3 d. The solution was concentrated, acidified to pH 1 with 6M HCl and partitioned between EtOAc (40 mL) and H\textsubscript{2}O (30 mL). The aqueous layer was extracted further with EtOAc (3 x 30 mL). The organic layers were combined, dried over MgSO\textsubscript{4} and concentrated. The colorless residue was decarboxylated by heating at reflux in H\textsubscript{2}O (15 mL) at 100 ºC for 4 h. The solution was cooled and extracted with EtOAc (40 mL). The aqueous layer was extracted further with EtOAc (3 x 20 mL). The organic layers were combined, dried over MgSO\textsubscript{4} and concentrated to a volume of 10 mL. Hexane (~30 mL) was then added with vigorous stirring to give (±)-86 (1.409 g, 56 %) as colorless shiny crystals upon standing at rt.; mp 154-154.8 ºC, Lit.59 155-156 ºC. 1H NMR (250 MHz, CD\textsubscript{3}OD): \(\delta\) 1.75 (s, 3H), 1.96 (s, 3H), 2.37 (dd, \(J = 14.2, 9.9\) Hz, 1H), 2.57 (dd, \(J = 14.2, 4.9\) Hz, 1H), 4.57 (dd, \(J = 9.9, 4.9\) Hz, 1H), 4.77 (d, \(J = 0.62\) Hz, 1H), 4.82 (br, 1H); 13C NMR (62.5 MHz, CD\textsubscript{3}OD) \(\delta\) 20.9, 21.2, 39.8, 51.0, 113.1, 141.3, 172.2, 174.2.

- **(S)-\gamma,\delta-Dehydroleucine (-)-87 and (R)-2-Acetamido-4-methyl-4-pentenoic acid (+)-(86).** Compound (±)-86 (400 mg, 2.34 mmol) and phenol red (1 drop from a Pasteur pipette) were suspended in H\textsubscript{2}O (13 mL) at rt. Aqueous NH\textsubscript{4}OH solution (~ 2 mL) was added dropwise to attain a pH of 7 (monitored by UIP) at which point the compound went into solution. Acylase enzyme (6.9 mg, activity
720 μmol/mg protein from pork kidney (Sigma A8376) was added and the mixture stirred at rt for 24 h. The solution was acidified to pH 1 (monitored by UIP) with 6M HCl, concentrated to ~ 40 mL and extracted with EtOAc (3 × 15 mL). The organic layers were combined, filtered through MgSO₄ and concentrated to give (R)-2-acetamido-4-methyl-4-pentenoic acid (+)-86 as a colorless amorphous solid (184 mg, 46 %). [α]D²⁵ +12.7 ° (c 1.0, CH₃OH) [S-2-acetamido-4-methyl-4-pentenoic acid (-)-86, purchased from Bachem gave [α]D²⁵ -12.7 ° (c 1.0, CH₃OH)]. ¹H and ¹³C NMR spectra were as described above for the racemic material.

The aqueous layer was applied to a column (25 mm diameter, 30 mm high) of Dowex-50 (H⁺), rinsed with water (~ 250 mL), eluted with 1N aqueous NH₄OH solution and fractions monitored by TLC, staining with ninhydrin. Relevant fractions were concentrated on a freezedrier to deliver (-)-87 as a colorless amorphous powder (104 mg, 35 %). Rf 0.53 (3:3:3:1 nBuOH/EtOH/NH₃/H₂O); [α]D²⁵ -48.3 ° (c 1.0, H₂O), Lit.⁵⁹ [α]D²⁰ -30.9 ° (c 1.04, H₂O). ¹H NMR (400 MHz, D₂O): δ 1.77 (s, 3H), 2.50 (dd, J = 14.5, 9.5 Hz, 1H), 2.68 (dd, 14.5, 9.5 Hz, 1H), 3.85 (dd, J = 9.5, 4.5 Hz, 1H), 4.90 (s, 1H), 5.00 (t, J = 1.4 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 20.8, 39.1, 52.7, 115.5, 140.1, 174.6.

• (±)-γ,δ-Dehydroleucine (87): Compound (±)-86 (100 mg, 0.58 mmol) was suspended in aqueous NaOH (2.5 N) and refluxed for 4 h. The solution was neutralized to pH 7 (monitored by UIP) with 6 M HCl, applied to a column (25 mm diameter, 30 mm high) of Dowex-50 (H⁺), rinsed with water (~ 150 mL), eluted with 1N aqueous NH₄OH solution and fractions monitored by TLC, staining with ninhydrin. Relevant fractions were concentrated on a freezedrier to deliver (±)-87 as a colorless amorphous powder in quantitative yield. Rf 0.53 (3:3:3:1 nBuOH/EtOH/NH₃/H₂O). ¹H and ¹³C NMR spectra were as described above for compound (−)-87.
Lactone (+)-91: (+)-86 (500 mg, 2.9 mmol) was suspended in 2 M HCl (7.5 mL). The mixture was refluxed for 2 h and concentrated to dryness. The residue was dissolved in a mixture of CH$_2$Cl$_2$ (7 mL) and H$_2$O (3.5 mL) and cooled at 0 °C at which point NaHCO$_3$ (1.6 g, 19.3 mmol, 6.6 equiv.) and N-(benzyloxy carbonyloxy)succinimide (874 mg, 3.5 mmol, 1.2 equiv.) were added in that order. The reaction mixture was gradually warmed to rt overnight and partitioned between CH$_2$Cl$_2$/H$_2$O (30 mL each). The aqueous layer was back extracted with CH$_2$Cl$_2$ (2 × 30 mL). The organic extracts were combined, filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 1:1 Hex/EtOAc to give (+)-91 as a colorless solid (641 mg, 83 %). R_f 0.47 (1:1 Hexanes/EtOAc); [α]$_D^{24}$ +26.6° (c 1.0, CH$_3$OH), Lit.58 [α]$_D^{20}$ -33.1° (c 1.0, CH$_3$OH). 1H NMR (400 MHz, CDCl$_3$): δ 1.45 (d, $J = 28.7$ Hz, 6H), 1.99 (t, $J = 12.1$ Hz, 1H), 2.65 (t, $J = 10.5$ Hz, 1H), 4.60 (dd, $J = 16.2$, 9.6 Hz, 1H), 5.12 (s, 2H), 5.36 (s, 1H), 7.31-7.36 (m, 5 H); 13C NMR (100 MHz, CDCl$_3$) δ 26.9, 28.9, 42.3, 51.6, 67.3, 82.4, 128.1, 128.3, 128.5, 135.9, 156.0, 174.0

Mosher amide (-)-88a. Thionyl chloride (112 µL, 184 mg, 1.5 mmol, 2.0 equiv.) was added dropwise to a solution of dehydroleucine (-)-87 (100 mg, 0.77 mmol, 1.0 equiv.) in anhydrous methanol (3 mL) at -10 °C under N$_2$. The solution was warmed to rt and left to stir overnight. The mixture was concentrated to give dehydroleucine methyl ester hydrochloride as a colorless oil (136 mg, 98 %). N-Methyl morpholine (67 µL, 62 mg, 0.61 mmol, 1.1 equiv.) was added to a solution of dehydroleucine methyl ester hydrochloride (100 mg, 0.56 mmol, 1 equiv.) in THF (2 mL) at 0 °C under N$_2$. (S)-(−)-Methoxy(trifluoromethyl)phenyl acetic acid (MTPA) (143 mg, 0.61 mmol, 1.1 equiv.) and N,N'-dicyclohexyl carbodiimide (DCC) (138 mg, 0.67 mmol, 1.2 equiv.) were added. The mixture was stirred at 0 °C for 3 h and then at rt overnight. The resulting N,N'-dicyclohexyl urea was removed by filtration and the filtrate concentrated. The residue was dissolved in ethyl acetate (15 mL) and washed
successively with 10% citric acid (10 mL), 5% NaHCO$_3$ (10 mL) and brine (10 mL). The organic layer was filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography, eluting with 5:1 Hex/EtOAc to give 88a as an oil (123 mg, 62%). R_f 0.53 (2:1 Hexanes/EtOAc); $[\alpha]_D^{28} +16.5^\circ$ (c 0.85, CHCl$_3$).

1H NMR (400 MHz, CDCl$_3$): δ 1.67 (s, 3H), 2.39 (dq, $J = 8.8, 5.2$ Hz, 1H), 2.56 (dd, $J = 14.0, 5.1$ Hz, 1H), 3.51 (dd, $J = 3.3, 1.6$ Hz, 3H), 3.80 (s, 3H), 4.60 (d, $J = 0.8$ Hz, 1H), 4.70 (app. t, $J = 1.5$ Hz, 1H), 4.80 (dt, $J = 8.6, 4.4$ Hz, 1H), 7.35-7.58 (m, 5H); 19F NMR (236 MHz, CDCl$_3$) δ -69.34 (br, 3F), -69.49 (br, 3F); 13C NMR (100 MHz, CDCl$_3$) δ 21.6, 40.4, 50.1, 55.2, 83.7, 84.0, 114.8, 122.1, 125.0, 127.5, 128.4, 129.4, 132.7, 140.0, 166.2, 172.0. HRMS (+TOF) calcd for C$_{17}$H$_{21}$NO$_4$F$_3$ (M + H)$^+$: 391.2227; obsd: 391.2240.

Mosher amides 88a,b. Compound (±)-86 (100 mg, 0.58 mmol) was suspended in aqueous NaOH (2.5 N, 3 mL) and heated at reflux for 4 h. The solution was neutralized to pH 7 (monitored with UIP) by the addition of 6 M HCl. The solution was then loaded onto a column (25 mm diameter, 30 mm high) of Dowex-50 (H$^+$), rinsed with water (150 mL), eluted with 1 N aqueous NH$_4$OH. Fractions were monitored by TLC, staining with ninhydrin. Relevant fractions were freeze-dried to give (±)-87 as a colorless, amorphous powder in quantitative yield. A portion of this material (50 mg) was derivatized with MTPA, as described above, to give a 1:1 mixture of diastereomers (75 mg, 54%). 19F NMR (236 MHz, CDCl$_3$) δ -69.35, -69.49.

Cbz-dehydroleucine-OMe (90). Thionyl chloride (229 µL, 376 mg, 3.2 mmol, 2 equiv.) was gradually added to a suspension of the amino acid (-)-87 (204 mg, 1.6 mmol, 1 equiv.) in MeOH (4 mL) at -10 °C under N$_2$. The solution was gradually warmed to rt, stirred for 2 d, and concentrated. The residue was dissolved in a mixture of CH$_2$Cl$_2$ (3 mL) and H$_2$O (1.5 mL) and cooled to 0 °C at which
point NaHCO$_3$ (728 mg, 8.7 mmol, 6.6 equiv.) and N-(benzyloxy carbonyloxy)succinimide (393 mg, 1.6 mmol, 1.2 equiv.) were added sequentially. The reaction mixture was gradually warmed to rt overnight and diluted with CH$_2$Cl$_2$/H$_2$O (20 mL each). The aqueous layer was back extracted with EtOAc (2 × 15 mL). The organic extracts were combined, filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 2:1 Hex/EtOAc to give 90 as a colorless oil (266 mg, 73%). R_f 0.50 (3:1 Hexanes/EtOAc); [α]$_D^{27}$ +7.3º (c 1.2, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$): δ 1.73 (s, 3H), 2.38 (dd, $J = 14.0$, 8.4 Hz, 1H), 2.54 (dd, $J = 14.0$, 5.4 Hz, 1H), 3.73 (s, 3H), 4.49 (td, $J = 8.1$, 5.6 Hz, 1H), 4.75 (br, 1H), 4.84 (app. t, $J = 1.5$ Hz, 1H), 5.10 (s, 2H), 5.27 (d, $J = 7.8$ Hz, 1H), 7.27-7.38 (m, 5 H); 13C NMR (100 MHz, CDCl$_3$) δ 21.7, 40.6, 52.1, 52.2, 66.9, 114.6, 127.9, 128.0, 128.4, 136.2, 140.2, 155.7, 172.6. HRMS (+TOF) calcd for C$_{15}$H$_{20}$NO$_4$ (M + H)$^+$: 278.1386; obsd: 278.1387.

- **Lactones 92a,b.** AD-mix-α (1.833 g) was added to a mixture of tBuOH (6.5 mL) and H$_2$O (6.5 mL) at rt. The clear orange solution was cooled to 0 ºC and Cbz-dehydroleucine-OMe (90) (363 mg, 1.31 mmol) was added. The reaction mixture was stirred at 0 ºC for 24 h, quenched with Na$_2$SO$_3$ (1.964 g), stirred for an additional 1 h at rt, and extracted with CH$_2$Cl$_2$ (6 × 30 mL). The organic layers were combined, filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography, eluting with 95:5 CH$_2$Cl$_2$/MeOH, to give 92a,b (215 mg, 59%) as a mixture of diastereomers. R_f 0.55 (9:1 CH$_2$Cl$_2$/CH$_3$OH); 1H NMR (400 MHz, CDCl$_3$): δ 1.41 (s, 3H), 2.08 (t, $J = 11.7$ Hz, 1H), 2.35 (br, 1H), 2.77 (t, $J = 11.2$ Hz, 1H), 3.54 (d, $J = 12.0$ Hz, 1H), 3.70 (d, $J = 12.0$ Hz, 1H), 4.69 (dd, $J = 17.1$, 9.6 Hz, 1H), 5.10 (s, 2H), 5.49 (d, $J = 6.3$ Hz, 1H), 7.29-7.38 (m, 5 H); 13C NMR (100 MHz, CDCl$_3$) δ 23.4, 35.8, 38.0, 52.3, 67.2, 68.6, 84.9, 128.1, 128.2, 128.5, 136.0, 156.1, 174.9. HRMS (+TOF) calcd for C$_{15}$H$_{14}$N$_5$O (M + H)$^+$: 280.1179; obsd: 280.1183.
- **Amide 105.** Diisopropylethylamine (182 µL, 142 mg, 1.10 mmol, 1.1 equiv.), γ-valerolactone (103) (95 µL, 100 mg, 1.00 mmol, 1 equiv.) and Sn(OAc)$_2$ (47 mg, 0.20 mmol, 0.2 equiv.) were added sequentially to a solution of L-valine ethyl ester hydrochloride (104) (272 mg, 1.50 mmol, 1.5 equiv.) in DMF (3 mL) at 0 ºC under N$_2$. The mixture was warmed to 80 ºC and stirred for 44 h, concentrated, and the product isolated by flash chromatography eluting with 95:5 CH$_2$Cl$_2$/MeOH to give 105 as a 1:1 mixture of diastereomers (159 mg, 65%). R_f 0.37 (95:5 CH$_2$Cl$_2$/MeOH); 1H NMR (400 MHz, CDCl$_3$): δ 0.91 (dd, J = 6.9, 0.6 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H), 1.98 (d, J = 1.2 Hz, 1.5H), 1.21 (d, J = 1.2, Hz, 1.5H), 1.29 (t, J = 7.1 Hz, 3H), 1.66-1.75 (m, 1H), 1.80-1.89 (m, 1H), 2.12-2.20 (m, 1H), 2.37-2.48 (m, 1H), 2.42 (t, J = 6.8 Hz, 1H), 2.43 (t, J = 7.3 Hz, 1H), 3.27 (br, 1H), 3.81-3.87 (m, 1H), 4.14-4.26 (m, 2H), 4.53 (dd, J = 8.7, 5.0 Hz, 1H), 6.48 (br, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 14.1, 17.7, 18.8, 23.5, 31.1, 33.0, 34.2, 57.0, 61.2, 67.1 & 67.2, 172.1 & 172.2, 173.6. HRMS (+TOF) calcd for C$_{12}$H$_{24}$NO$_4$ (M + H)$^+$: 244.1554; obsd: 244.1549.

- **Cbz-dehydroleucine-OH (110).** Aqueous NaOH (2M, 10 mL) was added dropwise to a suspension of dehydroleucine (-)-87 (380 mg, 2.94 mmol, 1 equiv.) in THF (5 mL) at 0 ºC. Benzyl chloroformate (497 µL, 602 mg, 3.53 mmol, 1.2 equiv.) was added dropwise over 30 min, with vigorous stirring. The cloudy reaction mixture was left to stir overnight at rt and concentrated to remove THF. The residue was diluted with H$_2$O (20 mL), extracted with ether (2 × 10 mL), acidified with 6M HCl to pH 1 and extracted with EtOAc (3 × 25 mL). The organic layers were combined, washed with brine (25 mL) and concentrated to give 110 as a colorless oil (630 mg, 81%). R_f 0.35 (9:1 CH$_2$Cl$_2$/MeOH); [α]$_D$27 +4.4º (c 1.2, CH$_3$OH). 1H NMR (400 MHz, CD$_3$OD): δ 1.75 (s, 3H), 2.38 (dd, J = 14.1, 10.0 Hz, 1H), 2.56 (dd, J = 14.1, 4.7 Hz, 1H), 4.36 (dd, J = 10.0, 4.8 Hz, 1H), 4.78 (br, 1H), 4.81 (br, 1H), 4.95 (br, 1H), 5.07 (s, 2H), 7.26-7.35 (m, 5 H); 13C NMR (100 MHz, CD$_3$OD) δ 20.0, 38.9, 51.7, 65.5, 112.3, 126.7, 126.9,
Cbz-dehydroleucine-Val-OEt (111). Diisopropylethylamine (1.2 mL, 910 mg, 7.04 mmol, 2.0 equiv.) was added to a solution of Cbz-protected dehydroleucine (110) (618 mg, 2.3 mmol, 3.0 equiv.), valine ethyl ester hydrochloride (426 mg, 2.3 mmol, 1.0 equiv.) and BOP reagent (1.1 g, 2.6 mmol, 1.1 equiv.) in acetonitrile (15 mL). The mixture was stirred at 0 ºC for 1 h and then at rt overnight. The mixture was concentrated and the product isolated by flash chromatography eluting with 2:1 Hex/EtOAc, to give 111 as a colorless solid (851 mg, 93 %). Rf 0.53 (2:1 Hexanes/EtOAc); [α]D30 -2.4º (c 1.05, CHCl3). 1H NMR (400 MHz, CDCl3): δ 0.88 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.75 (s, 3H), 2.16 (app. pd, J = 6.9, 4.8 Hz, 1H), 2.39 (dd, J = 14.2, 8.8 Hz, 1H), 2.56 (dd, J = 14.2, 5.8 Hz, 1H), 4.14-4.24 (m, 2H), 4.31 (br, 1H), 4.50 (dd, J = 8.7, 4.8 Hz, 1H), 4.80 (br, 1H), 4.87 (t, J = 1.4 Hz, 1H), 5.11 (s, 2H), 5.26 (br, 1H), 6.63 (d, J = 7.8 Hz, 1H), 7.29-7.37 (m, 5 H); 13C NMR (100 MHz, CDCl3) δ 14.1, 17.7, 18.8, 21.9, 31.3, 40.4, 53.2, 57.2, 61.2, 67.1, 114.5, 127.9, 128.1, 128.5, 136.2, 140.8, 156.1, 171.3, 171.5. HRMS (+TOF) calcd for C21H31N2O5 (M + H)+: 391.2227; obsd: 391.2240.

Compound 112a. AD-mix-β (563 mg) was dissolved in 1BuOH (2 mL) and H2O (2 mL) at rt. The clear orange solution was cooled to 0 ºC and dipeptide olefin 111 (157 mg, 0.4 mmol) was added. The mixture was stirred for 48 h at 0 ºC, quenched with Na2SO3 (604 mg), stirred for 1 h at rt, diluted with H2O (10 mL) and extracted with EtOAc (6 × 15 mL). The organic layers were combined, dried over MgSO4 and concentrated. The crude product was purified by flash chromatography eluting with 20:1 EtOAc/MeOH, to give 112a as a colorless solid (154 mg, 90 %). Rf 0.32 (9:1 CH2Cl2/MeOH); [α]D29 -
25.8° (c 0.95, CH₃OH). ¹H NMR (400 MHz, CD₃OD): δ 0.93 (d, J = 2.3 Hz, 3H), 0.95 (d, J = 2.3 Hz, 3H), 1.19 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.77 (dd, J = 14.8, 8.7 Hz, 1H), 2.03 (dd, J = 14.6, 3.3 Hz, 1H), 2.15 (app. qd, J = 13.1, 6.5 Hz, 1H), 3.38 (dd, J = 15.9, 11.1 Hz, 2H), 4.10-4.21 (m, 2H), 4.30 (d, J = 5.5 Hz, 1H), 4.39 (dd, J = 8.4, 3.8 Hz, 1H), 5.09 (s, 2H), 7.25-7.36 (m, 5 H); ¹³C NMR (100 MHz, CD₃OD) δ 12.5, 16.3, 17.4, 22.3, 29.8, 39.0, 50.8, 57.2, 60.2, 65.7, 68.6, 71.1, 126.8, 127.0, 127.5, 136.2, 156.2, 170.9, 173.5. HRMS (+TOF) calcd for C₂₁H₃₃N₂O₇ (M + H)⁺: 425.2282; obsd: 425.2280.

- **Lactone 92b.** A mixture of trifluoroacetic acid (100 µL) and CH₂Cl₂ (2 mL) was added to compound 112a (43 mg, 0.10 mmol) at 0 °C under N₂. The mixture was gradually warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 95:5 CH₂Cl₂/MeOH to give 92b (23 mg, 82 %). Rᶠ 0.53 (9:1 CH₂Cl₂/CH₃OH); [α]D⁰ -5.7° (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 1.35 (s, 3H), 2.34 (d, J = 9.5 Hz, 1H), 2.54 (br, 1H), 3.44 (d, J = 8.0 Hz, 1H), 3.73 (d, J = 12.2 Hz, 1H), 4.70 (dd, J = 17.1, 8.8 Hz, 1H), 5.11 (dd, J = 18.5, 12.2 Hz, 2H), 5.79 (d, J = 7.3 Hz, 1H), 7.30-7.36 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 22.5, 29.7, 35.8, 51.1, 67.3, 67.4, 84.6, 128.1, 128.2, 128.5, 136.0, 156.1, 174.9. HRMS (+TOF) calcd for C₁₅H₁₄N₅O (M + H)⁺: 280.1179; obsd: 280.1183.

- **Hydrochloride salt of Lactone (25,45)-54a.** Concentrated HCl (48 µL) and 10 % Pd/C (22 mg, 0.206 mmol) were added to a solution of 92b (70 mg, 0.25 mmol) in EtOH (2.4 mL) at rt under N₂. The mixture was hydrogenated for 4h, then filtered through Celite, and concentrated to give the hydrochloride salt as a colorless solid. Recrystallization from ethanol/ether yielded colorless crystals (46 mg, 100 %); Rᶠ 0.46 (3:3:3:1 ⁹BuOH/EtOH/NH₃/H₂O); mp 210-213 °C, Lit.³⁹ 205-207 °C. [α]D²³ -7.4° (c 0.75, 6N HCl), Lit.³⁹ [α]D²⁰ -12° (c 2, 6N HCl). ¹H NMR (400 MHz, D₂O): δ 1.45 (s, 3H), 2.43
(dd, J = 13.0, 10.4 Hz, 1H), 2.60 (dd, J = 13.2, 9.6 Hz, 1H), 3.61 (d, J = 12.7 Hz, 1H), 3.77 (d, J = 12.7 Hz, 1H), 4.64 (t, J = 9.9 Hz, 1H); 1C NMR (100 MHz, D$_2$O) δ 20.9, 32.8, 49.4, 65.9, 87.5, 173.2. HRMS (+TOF) calcd for C$_6$H$_{12}$NO$_3$ (M - HCl)$^+$: 146.0811; obsd: 146.0813.

- **Hydrochloride salt of Lactone 54a,b.** Lactone 92a,b (32 mg) was treated, as for the diastereomer, to cleave the Cbz group to give the hydrochloride salt of aminolactone 54a,b (18 mg, 86 %) as a 6.5:1.0 mixture of diastereomers. mp 197-200 ºC, Lit.39 199-200 ºC. $[\alpha]_D^{23}$ -22º (c 0.45, 6N HCl), Lit.39 $[\alpha]_D^{20}$ -35.5º (c 2, 6N HCl). NMR spectra are reported for the major (2S,4R) diastereomer. 1H NMR (400 MHz, D$_2$O): δ 1.46 (s, 3H), 2.24 (dd, J = 13.4, 11.0 Hz, 1H), 2.88 (dd, J = 13.4, 9.8 Hz, 1H), 3.65 (d, J = 12.6 Hz, 1H), 3.71 (d, J = 12.7 Hz, 1H), 4.64 (t, J = 10.3 Hz, 1H); 1C NMR (100 MHz, D$_2$O) δ 22.1, 35.3, 50.0, 66.9, 87.9, 173.7.

- **Silyl ether protection 114.** Triethylamine (273 µL, 199 mg, 1.96 mmol, 2.4 equiv.), DMAP (20 mg, 0.16 mmol, 0.2 equiv.) and TBDMSOTf (206 µL, 238 mg, 0.90 mmol, 1.1 equiv.) were added to a solution of 112a (347 mg, 0.82 mmol, 1 equiv.) in CH$_2$Cl$_2$ (4 mL) at 0 ºC under N$_2$. The mixture was warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 2:1 Hex/EtOAc to give 114 (368 mg, 84 %). R_f 0.42 (2:1 Hex/EtOAc); 1H NMR (400 MHz, CDCl$_3$): δ 0.07 (d, J = 4.4 Hz, 6H), 0.88 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.93 (d, J = 6.8 Hz, 3H), 1.26 (t, J = 8.8 Hz, 3H), 1.29 (s, 3H), 1.76 (dd, J = 14.8, 4.2 Hz, 1H), 1.84 (br, 1H), 2.13 (d, J = 6.6 Hz, 1H), 2.14-2.23 (m, 1H), 3.29 (br, 1H), 3.43 (app.t, J = 10.6 Hz, 2H), 4.08-4.24 (m, 3H), 4.42 (br, 1H), 4.48 (q, J = 8.8 Hz, 1H), 5.12 (dd, J = 10.9, 6.1 Hz, 2H), 6.12 (d, J = 10.9, 5.4 Hz, 1H), 7.28-7.36 (m, 5 H); 1C NMR (100 MHz, CDCl$_3$) δ -5.5, 14.2, 17.5, 18.3, 19.0, 23.6, 25.8, 30.9, 41.1, 51.1, 57.3, 61.1, 66.8, 70.6, 72.2,
128.0, 128.1, 128.4, 136.3, 156.0, 171.8, 172.4. HRMS (+TOF) calcd for C_{27}H_{46}N_{2}O_{7}Si (M + H)^+: 538.3074; obsd: 538.3065.

2.5.2 Spectra

1H NMR spectrum of compound 51 ... 52
13C NMR spectrum of compound 51 .. 53
1H NMR spectrum of compound (±)-86 ... 54
13C NMR spectrum of compound (±)-86 ... 55
1H NMR spectrum of compound (-)-87 ... 56
13C NMR spectrum of compound (-)-87 ... 57
1H NMR spectrum of compound 88a .. 58
13C NMR spectrum of compound 88a .. 59
1H NMR spectrum of compound 110 .. 60
13C NMR spectrum of compound 110 .. 61
1H NMR spectrum of compound 90 .. 62
13C NMR spectrum of compound 90 .. 63
1H NMR spectrum of compound 105 .. 64
13C NMR spectrum of compound 105 .. 65
1H NMR spectrum of compound (+)-91 .. 66
13C NMR spectrum of compound (+)-91 ... 67
1H NMR spectrum of compound 111 .. 68
13C NMR spectrum of compound 111 .. 69
1H NMR spectrum of compound 112a .. 70
13C NMR spectrum of compound 112a .. 71
1H NMR spectrum of compound 92b .. 72
13C NMR spectrum of compound 92b .. 73
1H NMR spectrum of compound 114 .. 74
13C NMR spectrum of compound 114 .. 75
Compound 51 – 1H NMR in CDCl$_3$ at 250 MHz
Compound 51 – $\text{^{13}C NMR in CDCl}_3$ at 62.5 MHz
Compound (±)-86 $\text{^1}H$ NMR in CD$_3$OD at 250 MHz

Ac-NH$_\text{-}$COOH
Compound (±)-86 13C NMR in CD$_3$OD at 62.5 MHz

Ac-NH$_2$COOH
Compound (-)-87 – \(^1\)H NMR in D\(_2\)O at 400 MHz
Compound \((-87)\) - 13C NMR in D$_2$O at 100 MHz
Mosher amide 88a – 1H NMR in CDCl$_3$ at 400 MHz
Mosher Amide 88a – 13C NMR in CDCl$_3$ at 100 MHz
Compound 110 – 1H NMR in CD$_3$OD at 400 MHz
Compound 110 – 13C NMR in CD$_3$OD at 100 MHz
Compound 90 – \(^1 \)H NMR in CDCl\(_3\) at 400 MHz
Compound 90 – ^{13}C NMR in CDCl$_3$ at 100 MHz
Compound 105 – 1H NMR in CDCl$_3$ at 400 MHz

benson107a2 in CDCl3 (400 MHz)
Compound 105 – 13C NMR in CDCl$_3$ at 100 MHz
Compound (+)-91 – 1H NMR in CDCl$_3$ at 400 MHz
Compound (+)-91 - 13C NMR in CDCl$_3$ at 100 MHz
Dipeptide 111 – 1H NMR in CDCl$_3$ at 400 MHz
Dipeptide 111 – 13C NMR in CDCl$_3$ at 100 MHz
Compound 112a – 1H NMR in CD$_3$OD at 400 MHz
Dipeptide \textbf{112a} – 13C NMR in CD$_3$OD at 100 MHz
Compound 92b – 1H NMR in CDCl$_3$ at 400 MHz
Compound 92b – 13C NMR in CDCl$_3$ at 100 MHz
Compound 114 – 1H NMR in CDCl$_3$ at 400 MHz
Compound 114 – ^{13}C NMR in CDCl$_3$ at 100 MHz
CHAPTER 3: THE PEPTIDE FRAGMENTS

3.1 OVERVIEW

Revisiting our retrosynthetic analysis from (Scheme 3.1) Chapter 2, we recall that our approach to alloviroidin and the three analogs involves coupling of the tripeptide acids derived from 47-50 and the amino component derived from tetrapeptide 46. According to this strategy, the tetrapeptide fragment 46 is common to the natural product and the analogs. However, examination of the tripeptide fragments 47-50 reveals that the natural product and the three analogs are distinguished by the degree and regiochemistry of proline hydroxylation.

Scheme 3.1. Retrosynthetic analysis of alloviroidin and analogs.

Prerequisites to the synthesis of the tetrapeptide fragment 46 were the efficient preparation of the (2S,4R)-4,5-dihydroxyleucine35 (Chapter 2) and 2-methylsulfonyl-tryptophan (\textit{vide infra}) residues. We designed a strategy that incorporated each of these residues into a dipeptide, followed by a [2 + 2] fragment condensation to deliver the tetrapeptide (Scheme 3.2).
The next section describes the preparation of the 2-methylsulfonyl-tryptophan residue and formation of the Fmoc-Ala-[2-MeSO₂-Trp]-OH dipeptide fragment. We shall also describe the assembly of the tetrapeptide fragment.

3.2 2-METHYLSULFONYL-TRYPTOPHAN AND THE TETRAPEPTIDE FRAGMENT

During their total synthesis of amauromine, Takase et al. described the synthesis of the 2-thiomethyl derivative of Cbz-L-Trp-OMe in four steps with an overall yield of 17% (Scheme 3.3). The 2-thiomethyl functional group was introduced by heating compound 118 with phosphorus pentasulfide in pyridine at reflux to generate the corresponding 2-thione, which was then treated with methyl iodide to give the desired building block (Scheme 3.3).

Scheme 3.3. Takase and co-workers synthesis of the 2-thiomethyl derivative of Cbz-L-Trp-OMe.

In 1996, Dillard and coworkers described the synthesis and structure-activity relationships of indole-3-acetamides and derivatives as potential therapeutic inhibitors of human nonpancreatic secretory phospholipase A₂, an enzyme that is involved in the biosynthesis of eicosanoid products. In one of the
lead compounds, the methylsulfenyl group was introduced onto the indole ring according to Scheme 3.4.86

Scheme 3.4. Dillard and co-workers’ synthesis of indole-3-acetamides.

Our approach to 2-methylsulfonyl-tryptophan involved four steps from commercially available L-tryptophan tert-butyl ester 123 (Scheme 3.5) utilizing the same approach as Dillard. The amino group was protected as its Boc (tert-butoxycarbonyl) derivative to give compound 124,87 anticipating simultaneous acid cleavage of the two protecting groups at a later stage. We followed the above protocol of Dillard et al. to introduce the thiomethyl group; this involved in situ generation of methylsulfenyl chloride from sulfuryl chloride and dimethyl disulfide. Compound 125 was found to be unstable, hence all the data reported was collected on the same day it was prepared. The methylthioether group of 125 was oxidized to afford the corresponding sulfone 126 with two equivalents of m-chloroperbenzoic acid in dichloromethane.86 Analysis of the oxidation reaction by thin layer chromatography indicated the conversion of the starting material into a sulfoxide intermediate prior to sulfone formation. Mass spectrometry and NMR analysis provided evidence that the desired product had been formed. Specifically, an examination of the 1H NMR spectra of compounds 125 and 126 revealed a singlet at δ 2.34 (for 125) and 3.24 (for 126), integrating for three protons, of the thiomethyl and methanesulfonyl groups respectively. The observed shift, downfield, for the methanesulfonate derivative is influenced by the two electron withdrawing oxygen atoms introduced on sulfur.

Removal of the protecting groups was accomplished in good yield by treatment with TFA/CH₂Cl₂, in the presence of thioanisole as a carbocation scavenger, to give 127. This free Trp
derivative was then coupled with the preformed N-hydroxysuccinimide ester 128 (from commercially available Fmoc-Ala-OH via the traditional NHS/DCC protocol) to give dipeptide acid 115, which was routinely used in the next step without further purification. A portion of 115 was converted into the corresponding methyl ester 129 to allow for purification by column chromatography and characterization.

Scheme 3.5. Preparation of the 2-methylsulfonyl-tryptophan.

Having secured the two dipeptide fragments 115 (Scheme 3.5) and 116 (Chapter 2), we next turned to the preparation of the tetrapeptide fragment 46 according to Scheme 3.6.

Scheme 3.6. Preparation of the tetrapeptide fragment.
This effort began with the hydrogenolysis of the Cbz group from compound 114 to furnish the free dipeptide amine 116 that was coupled to dipeptide acid 115 (from Scheme 3.5) to generate tetrapeptide 46. This [2 + 2] coupling was effected by HATU88 in the presence of the weak base 2,4,6-collidine, chosen to limit the potential problem of racemization89 of the Trp residue. The HATU reagent is the most reactive guanidium peptide coupling reagent and has proven effective for difficult reactions. With this reagent, acid activation proceeds according to Scheme 3.7. The azabenzotriazole ester intermediate can facilitate coupling via intramolecular base catalysis, and is considered responsible for the high reactivity and chemical yields associated with HATU couplings.88

Scheme 3.7. Acid activation by HATU.88

The fluorenlymethoxycarbonyl (Fmoc) group is widely used for temporary amino protection in peptide synthesis.90 This protecting group is stable to acids but readily cleaved with mild bases via β-elimination of dibenzofulvene (Scheme 3.8).$^{91-95}$ For the removal of the Fmoc group from the N-terminus of 46 (Scheme 3.6), we explored the use of diethylamine (DEA), piperidine and *tris*(2-aminoethyl)amine (TAEA).
Scheme 3.8. Cleavage of the Fmoc group via β-elimination.

The major drawback associated with the Fmoc protecting group during solution phase synthesis is the removal of the byproduct arising from addition of the secondary amine to dibenzofulvene (Fig. 3.1). Removal of this byproduct requires either purification of the free amino peptide by column chromatography or aqueous workup, sometimes characterized by emulsions or large volumes of solvents during extraction. In the case of TAEA, the excess reagent and dibenzofulvene adduct are removed by extraction into a phosphate buffer solution of pH 5.5. The low boiling point of diethylamine makes it a reagent of choice since it can be used in excess and removed by evaporation upon completion of the deprotection. Although this does not remove the adduct, this is often found not to adversely affect the subsequent coupling reaction. Piperidine is also an effective base for Fmoc cleavage, however, this reagent cannot be completely eliminated on a rotavap and therefore the excess amine and the dibenzofulvene adduct (133) can be removed by column chromatography. Failure to remove excess reagents used for Fmoc cleavage could lead to side reactions during coupling since they could serve as competing nucleophiles. In some cases, effective peptide couplings could be conducted in the presence of the dibenzofulvene adduct. In our studies, TAEA generated the free amine 130, in excellent yields setting the stage for fragment condensation.

Figure 3.1. Byproducts arising from Fmoc cleavage.
3.3 THE PROLINE BUILDING BLOCKS AND THE TRIPEPTIDE FRAGMENTS

Proline plays an important role in protein folding by inducing a reversal in backbone conformation. Our initial goal, when we started this work, was to synthesize a virotoxin. But in the course of these studies, the concept of accessing three analogs containing proline, cis-4-hydroxyproline and trans-3-hydroxyproline evolved (vide infra). Prior to investing our synthetically valuable 2,3-trans-3,4-trans-3,4-dihydroxyproline residue, we sought to investigate an efficient way of incorporating this building block into peptides. We decided to utilize L-proline and cis-4-hydroxyproline residues as model systems but later realized that these compounds could also serve as the basis for understanding the effect of proline hydroxylation on the conformation of the cyclic peptides. For complete comparison, we decided to incorporate a trans-3-hydroxyproline residue in our peptides, as this would explain the influence of the trans hydroxyl group at Cβ of the dihydroxyproline residue. A noteworthy feature of the syntheses is the use of the same protecting group strategy utilized during the preparation of 2,3-trans-3,4-trans-3,4-dihydroxyproline residue to the proline building blocks incorporated into the virotoxin analogs.

According to our retrosynthetic analysis given in Scheme 3.1, a series of four tripeptide fragments (Fig. 3.2), incorporating different proline residues was synthesized prior to heptapeptide formation (vide infra).

![Figure 3.2. The series of four tripeptide fragments.](image-url)
3.3.1 L-Proline Benzyl Ester Hydrochloride

Although the hydrochloride salt of L-proline benzyl ester residue is inexpensive and commercially available, we sought to prepare proline residues that mimicked the protecting group strategy of 2,3-trans-3,4-trans-3,4-dihydroxyproline in order to provide experience of peptide couplings and associated manipulations involving this building block (*vide supra*). The preparation of L-proline benzyl ester hydrochloride residue is presented in Scheme 3.9. The nitrogen of commercially available proline (134) was protected with the 9-fluorenylmethyloxycarbonyl group (Fmoc) under standard conditions,\(^9^0\) followed by benzylation of the crude carboxylic acid to deliver 135 in good yield. We encountered challenges handling the prolyl amine after Fmoc cleavage using standard conditions. Deprotection of the Fmoc group was best achieved using diethylamine, followed by chromatography and formation of the hydrochloride salt 136. The salt formation eliminated a side reaction experienced in our initial attempts to utilize the free amine directly to form tripeptides. The side reaction involved dimerization of the proline benzyl ester, leading to poor yields of the desired tripeptide. Handling the proline residue as the hydrochloride salt greatly improved our overall coupling yield (*vide infra*).

Scheme 3.9. Preparation of the proline building block.

3.3.2 L-4-cis-Hydroxyproline Building Block

While L-cis-4-hydroxyproline is commercially available, this building block is expensive ($561.00/g, from Sigma). We therefore followed previously developed procedures for the generation of cis-4-hydroxyproline derivatives.\(^9^8\) After introducing the 9-fluorenylmethyloxycarbonyl and the benzyl ester protecting groups (Scheme 3.10) to the trans-4-hydroxyproline residue (138a), we conducted the
Mitsunobu reaction with \(p \)-nitrobenzoic acid to invert the stereochemistry at the hydroxyl-bearing center. The use of \(p \)-nitrobenzoic acid is well known to increase the efficiency of inversion in sterically hindered secondary alcohols,99, 100 and the development of a mild and selective method of cleaving the \(p \)-nitrobenzoate ester intermediates using sodium azide in methanol101 has increased the utility of \(p \)-nitrobenzoates in Mitsunobu reactions. However, in our hands, we recorded poor yields for this reaction under the same conditions as Gomez-Vidal and co-workers.101 The low yield of product from the Mitsunobu reaction of Fmoc protected substrate \textit{138b} (Scheme 3.10) was used in the subsequent steps as an alternative source of the 4-\textit{cis}-hydroxyproline building block. The hydroxyl group was protected as its MEM ether derivative, followed by Fmoc cleavage and hydrochloride salt formation as described above.

\textbf{Scheme 3.10.} Preparation of the hydrochloride salt of 4-hyp building block.

Switching from the Fmoc to the Boc protecting group and formation of the formate ester instead of the previously used \(p \)-nitrobenzoate ester, tremendously improved our yield for the Mitsunobu reaction as indicated in Scheme 3.11. A possible explanation for the poor yield with the Fmoc protected derivative could be due to instability of the protecting group under these conditions. This change in strategy was further justified by the ease of hydrolysis of the less hindered formate ester of the \(N \)-Boc derivative to give the inverted alcohol in high yields. Protection of the hydroxyl group as its MEM ether
derivative, followed by removal of the Boc protecting group under mild acidic conditions set the stage for tripeptide formation.

Scheme 3.11. Preparation of the trifluoroacetate salt of 4-hyp building block.

3.3.3 *L*-3-*trans*-Hydroxyproline Building Block

The preparation of this residue from commercially available 144 proceeded as outlined in Scheme 3.12. Protection of the two functionalities, as previously described for the cis-4-hydroxyproline building block (Scheme 3.11), generated 145. Having demonstrated that the MEM ether could be cleaved under the same conditions as the side chain protected tert-butyl ethers using the 4-*cis*-hydroxyproline residue (*vide supra*), we decided to handle the β-hydroxyl group of 3-*trans*-hydroxyproline in its unprotected form at the initial tripeptide coupling level. Trifluoroacetic acid mediated Boc-deprotection of 145 gave the corresponding trifluoroacetate salt 146 that was routinely used in the next step without further purification.

Scheme 3.12. Preparation of the trifluoroacetate salt of 3-Hyp building block.
3.3.4 \textit{L-2,3-trans-3,4-trans-3,4-Dihydroxyproline}$_{34}$

All naturally occurring virotoxins contain this amino acid (Fig. 3.3). One of the major obstacles to the synthesis of these natural products has been the availability of the 2,3-\textit{trans}-3,4-\textit{trans}-3,4-dihydroxyproline residue, which was not commercially available and considered inaccessible via synthesis. A report by Kahl and coworkers demonstrated that substituting \textit{cis}-4-hydroxyproline for the dihydroxyproline residue generates a synthetic analog that is five times less active (\textit{vide supra}).29

\begin{center}
\includegraphics[width=0.8\textwidth]{figure3.3.png}
\end{center}

\textbf{Figure 3.3.} Naturally occurring virotoxins.

A notable amount of synthetic work on dihydroxyprolines can be found in literature.$^{102-104}$ Most of these approaches are not capable of delivering the eight stereoisomers of 3,4-dihydroxyproline. In 1981, Kahl and Wieland synthesized two naturally occurring dihydroxyproline diastereomers \textit{150a} and \textit{150b}. Their aim was to correlate structural data of the synthetic and natural compounds. Epoxidation of \textit{N}-tosyl-3,4-dehydro-\textit{L}-proline methyl ester (\textit{147}) with trifluoroperacetic acid generated the 3,4-epoxy esters \textit{148a} and \textit{148b}, which were ring-opened and hydrolyzed without separation to give \textit{149a} and \textit{149b}. Removal of the tosyl protecting group with sodium in liquid ammonia afforded the free dihydroxyprolines \textit{150a} and \textit{150b} (Scheme 3.13).105 This strategy was laborious and not efficient at generating sufficient quantities of the dihydroxyproline building block required for a virotoxin synthesis.
Scheme 3.13. Kahl and Wieland synthesis of two naturally occurring dihydroxyproline diastereomers.105

Significant efforts in the Taylor laboratory developed an efficient way to produce orthogonally protected dihydroxyproline building blocks in gram quantities.34, 106, 107 We utilized this approach to produce more of the 2,3-\textit{trans}-3,4-\textit{trans}-3,4-dihydroxyproline residue as described below (Scheme 3.14).34

Scheme 3.14. Synthesis of 2,3-\textit{trans}-3,4-\textit{trans}-3,4-dihydroxyproline residue.ii

Commercially available \textit{L}-xylose (151) was oxidized to give a \(\gamma\)-lactone. Selective protection of the primary alcohol as its triphenylmethyl ether, followed by protection of the secondary alcohols as MEM108 ethers, using conditions optimized by Chantelle Jones, involved heating at reflux in chloroform

ii Procedures for the preparation of compound 155 followed the literature and are not reiterated in this dissertation.

87
with 5 equivalents of the alkylation reagent34 to give compound 152. Initial studies in our group utilized \textit{tert}-butyldimethylsilyl (TBS) ethers for protection of the secondary alcohols, however, silyl ether migration upon reductive opening of the lactone ring in 158 (Scheme 3.15) and partial cleavage of this protecting group under the acidic conditions used for triphenylmethyl ether cleavage adversely affected the chemical yield of the desired product.107

\textbf{Scheme 3.15.} Silyl ether migration upon reductive opening of the lactone ring.

\begin{center}
\textbf{Scheme 3.15.} Silyl ether migration upon reductive opening of the lactone ring.
\end{center}

Reductive opening of lactone 152 with lithium borohydride gave the open chain diol that was converted to \textit{bis}-mesylate 153 by adding a solution of the diol in pyridine to a precooled mixture of methanesulfonyl chloride and DMAP. Treatment with benzylamine displaced the primary mesylate, followed by an \textit{S}_\text{N}2 attack at the secondary mesylate to produce the pyrrolidine (Scheme 3.16).

\textbf{Scheme 3.16.} Pyrrolidine ring formation.

\begin{center}
\textbf{Scheme 3.16.} Pyrrolidine ring formation.
\end{center}

At this point, the replacement of the \textit{N}-benzyl group for Fmoc was necessary for stability and compatibility in the subsequent oxidation and peptide synthesis steps.106 Hydrogenolysis of the benzyl group from 162, followed by treatment of the crude secondary amine with fluorenlymethyl chloroformate in toluene using triethylamine as a base, gave 154 in good yields (Scheme 3.14). The trityl ether was then cleaved with formic acid followed by oxidation of the resulting alcohol to give the
3.3.5 Completion of the Tripeptide Fragments

With the four proline building blocks in-hand, our next goal was the synthesis of the Fmoc-\(D\)-Thr-\(D\)-Ser-OH dipeptide. The preparation of the dipeptide acid 165 proceeded from the \textit{tert}-butyl ether derivatives of the two \textit{D}-amino acids (Scheme 3.17) that were obtained from commercial sources. Formation of the activated \(N\)-hydroxysuccinimide ester of the threonine residue was accomplished using NHS and DCC. This intermediate was subsequently coupled with the amino acid 164 to provide the corresponding dipeptide acid 165 that was routinely used in the next step without further purification. For the purposes of characterization, we again converted a portion of the acid to the corresponding methyl ester using trimethylsilyldiazomethane.

\textbf{Scheme 3.17.} The synthesis of the Fmoc-\(D\)-Thr-\(D\)-Ser dipeptide.

Having generated the Fmoc-\(D\)-Thr-\(D\)-Ser-OH dipeptide (165), the stage was now set for the amalgamation with each of the four proline building blocks and a final elaboration to deliver the series of four tripeptides. The assembly of the tripeptides began with coupling the dipeptide acid 165 with the salts of proline (136), 3-\textit{trans}-hydroxyproline (146), 4-\textit{cis}-hydroxyproline (140/143), and 2,3-\textit{trans}-3,4-\textit{trans}-3,4-dihydroxyproline (157) building blocks using HATU/collidine to furnish the corresponding tripeptide fragments 167-170 (Scheme 3.18) in high yields. We relied on this remarkable coupling
reagent since earlier studies by Carpino and co-workers had demonstrated that acid activation by HATU in the presence of collidine as a base gave little or no epimerization even in difficult cases.89

\textbf{Scheme 3.18.} Preparation of the tripeptides.

At this point, an exchange of the acid labile tert-butyl and MEM ether protecting groups for silyl ethers was considered vital. Acid labile protecting groups are not compatible with the tendency of the γ-hydroxylated dihyLeu to lactonize under acidic conditions causing cleavage of the peptide bond (\textit{vide supra}, Scheme 2.18).81 Attempts to employ either neat trifluoroacetic acid, or this reagent in combination with CH$_2$Cl$_2$ or 2M HCl, to cleave both MEM and tert-butyl ethers in a one-pot process were plagued by incomplete deprotection of the MEM group, even after prolonged reaction times that resulted in partial cleavage of the benzyl ester. Gratifyingly, the use of titanium tetrachloride110 afforded a smooth deprotection of both protecting groups, within a short time, in high yields. We then protected the alcohols as the fluoride-labile silyl ethers using the highly reactive silylating reagent; t-butyldimethylsilyl trifluoromethanesulfonate and 2,6-lutidine in dichloromethane (Scheme 3.18). Analysis of the proline, 3-\textit{trans}-hydroxyproline, 4-\textit{cis}-hydroxyproline and 2,3-\textit{trans}-3,4-\textit{trans}-3,4-dihydroxyproline containing tripeptides by 1H and 13C NMR spectra revealed the existence of two
conformers. This could be explained in terms of the \(\text{cis} \rightarrow \text{trans}\) isomerization about the serine-prolyl peptide bond. The position of this equilibrium depends on the degree and stereochemistry of proline hydroxylation.\(^{36}\) This phenomenon is also associated with carbamate protecting groups that gives rise to the \(\text{cis}\) and \(\text{trans}\) rotamers in solution. The purity of the four tripeptides was found to be greater than 96% by HPLC analysis (see experimental section for the HPLC traces), an indication that our couplings and deprotections proceeded smoothly.

Having synthesized the tripeptide fragments, we next set about cleaving the benzyl ester in preparation for the \([3+4]\) fragment condensation to give heptapeptides. Attempts to employ standard catalytic hydrogenolysis conditions led to considerable cleavage of the Fmoc group and incomplete debenzylolation of the 2,3-\(\text{trans}\)-3,4-\(\text{trans}\)-3,4-dihydroxyproline containing tripeptide, presumably due to steric effects introduced by the additional \(O\)-TBS group at the \(C\beta\)-position of the pyrrolidine ring. A similar Fmoc cleavage in peptide synthesis had been reported earlier by Bodanszky and co-workers during hydrogenolysis of Fmoc protected amino acids.\(^{111}\) Bodanszky \textit{et al.} identified the side product as 9-methyl-fluorene and hypothesized that the quality of the palladium catalyst dictated the stability of the Fmoc group to hydrogenolysis, \textit{i.e.}, a partially poisoned catalyst could be active enough to reduce a benzyl group leaving the Fmoc group intact.\(^{111}\) Gratifyingly, cleavage of the benzyl esters by transfer hydrogenolysis with triethylsilane\(^{112}\) liberated the tripeptide acids in high yields without affecting the \(N\)-terminal Fmoc (Scheme 3.19).

Scheme 3.19. Hydrogenolysis of the benzyl ester.

\[\text{BnOOC} \xrightarrow{\text{Pd/C, Et}_3\text{SiH}} \xrightarrow{\text{MeOH}} \text{HOOC} \]

Addition of triethylsilane to the palladium/carbon catalyst generates molecular hydrogen \textit{in situ}, avoiding the use of an external source of hydrogen gas (Fig. 3.4) during the reduction process.\(^{113}\)
An extensive study by McMurray and Mandal has revealed that a wide range of substrates, including both acid- and base-sensitive substrates tolerated these conditions.112

\begin{center}
\begin{tikzpicture}
\node (Et3SiOMe) at (0,0) {Et_3SiOMe};
\node (Pd/C) at (2,0) {Pd/C};
\node (Et3SiH) at (4,0) {Et_3SiH};
\node (MeOH) at (0,-2) {MeOH};
\node (Et3SiPdH) at (2,-2) {Et_3SiPdH};
\node (Et3Si) at (3,-2) {$(\text{Et}_3\text{Si})_2 + \text{H}_2$};
\draw [->] (Et3SiOMe) -- (Pd/C);
\draw [->] (Pd/C) -- (Et3SiH);
\draw [->] (Et3SiH) -- (Et3SiPdH);
\draw [->] (Et3SiPdH) -- (MeOH);
\draw [->] (Et3SiOMe) .. controls (1,4) .. (Et3SiPdH);\end{tikzpicture}
\end{center}

\textbf{Figure 3.4.}113 Generation of molecular hydrogen from triethylsilane/Pd-C and methanol mixture.

\section*{3.3.6 Summary}

In this Chapter, we have described the preparation of the 2-methylsulfonyl-tryptophan residue 127 in four steps with an overall yield of 51\% starting from commercially available \textit{L}-tryptophan \textit{tert}-butyl ester. We then performed coupling to generate Fmoc-Ala-[2-SO\textsubscript{2}Me-Trp]-OH dipeptide 115, that was condensed with (2\textit{S},4\textit{S})-4,5-dihyLeu-Val-OEt from Chapter 2 to give the tetrapeptide fragment.

We have also described an efficient synthesis of the four tripeptide fragments required for the assembly of alloviroidin and analogs utilizing the same strategy by substituting the appropriate proline residue into each fragment. The coupling conditions permitted the synthesis of the tripeptides in acceptable yields. Also, the overall yield per tripeptide fragment compares favorably with couplings involving regular amino acids. Orthogonal protection of the final tripeptide fragments was accomplished with the base labile Fmoc group for temporary amino protection, the fluoride-labile silyl ether for permanent side chain protection, and the benzyl ester for temporary protection of the C-terminus.

92
3.4 EXPERIMENTAL SECTION

3.4.1 General Methods: As for Chapter 2 with the following additions and modifications: 2,4,6-collidine and 2,6-lutidine were dried and distilled from CaH₂ and stored over KOH pellets. The compounds were visualized by UV fluorescence or by staining with Ehrlich reagent, phosphomolybdic acid, ninhydrin or KMnO₄ stains.

- Boc-L-Trp-O'Bu (124). L-tryptophan tert-butyl ester hydrochloride (3.00 g, 10.1 mmol, 1.0 equiv.) was added gradually to a solution of triethylamine (15 mL, 10.92 g, 107.92 mmol, 10.7 equiv.) in methanol (120 mL) at rt under N₂. The mixture was stirred for a further 30 min after the addition was complete. Di-tert-butyl-dicarbonate (2.646 g, 12.1 mmol, 1.2 equiv.) was then added in a single portion, with vigorous stirring. The temperature was raised to 40 ºC for 1 h, and then cooled to rt for another 1 h. The reaction mixture was concentrated and partitioned between ethyl acetate (150 mL) and 2M HCl (75 mL, diluted to 190 mL with ice cold water). The aqueous layer was extracted further with ethyl acetate (4 × 50 mL). The organic extracts were combined, filtered through MgSO₄ and concentrated. The residue was purified by flash chromatography, eluting with 2:1 Hexanes/EtOAc to give 124 as a colorless solid (3.476 g, 95 %). Rf 0.45 (2:1 Hexanes/ EtOAc). [α]D²⁵ +16.5° (c 1.0, CHCl₃). ¹H NMR (250 MHz, CDCl₃) δ 1.37 (s, 9H), 1.41 (s, 9H), 3.24 (br, 2H), 4.54 (q, J = 13.2 Hz, 1H), 5.08 (d, J = 7.5 Hz, 1H), 6.99 (s, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 7.5 Hz, 1H), 8.26 (br, 1H), ¹³C NMR (62.5 MHz, CDCl₃) δ 27.9, 28.3, 54.7, 79.5, 81.7, 110.4, 111.0, 119.0, 119.3, 122.0, 122.7, 127.9, 136.0, 155.3, 171.4. HRMS (+TOF) calcd for C₂₀H₂₉N₂O₄ (M + H)⁺: 361.2121; obsd: 361.2116.
- **Boc-L-Trp(SMe)-O'Bu (125).** Sulfuryl chloride (368 µL, 612 mg, 4.5 mmol, 1 equiv.) was added dropwise to a solution of Me₂S₂ (443 µL, 470 mg, 5.0 mmol, 1.1 equiv.) in CH₂Cl₂ (10 mL) at -25 °C (ethylene glycol-dry ice) under N₂. The mixture was stirred for 30 min, then warmed to rt. This solution of methylsulfonyl chloride was then added gradually to a solution of 124 (3.27 g, 9.1 mmol, 2 equiv.) in CH₂Cl₂ (150 mL) under N₂ at rt. After stirring for 2.5 h, the solution was washed with 10% aq. Na₂CO₃ (150 mL), and brine (150 mL). The organic layer was filtered through MgSO₄ and concentrated. The residue was purified by flash chromatography eluting with 3:1 Hex/EtOAc to give 125 as light green foam (2.50 g, 68%). R_f 0.48 (3:1 Hexanes/EtOAc). [α]_D²⁵ +3.6º (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.32 (s, 9H), 1.38 (s, 9H), 2.34 (s, 3H), 3.26 (dq, J = 6.2, 7.8 Hz, 1H), 4.53 (q, J = 15.5 Hz, 1H), 5.19 (d, J = 8.2 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 8.38 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 27.8, 28.1, 28.2, 54.8, 79.4, 81.6, 81.5, 110.5, 119.2, 119.7, 122.8, 127.9, 128.0, 136.5, 155.1, 171.6. HRMS (+TOF) calcd for C₂₁H₃₁N₂O₄S (M + H)⁺: 407.1999; obsd: 407.2009.

- **Boc-L-Trp(SO₂Me)-O'Bu (126).** meta-Chloroperbenzoic acid (405 mg, 1.8 mmol, 2 equiv., 77 %) was added in one portion to a solution of the thioether 125 (367 mg, 0.9 mmol, 1 equiv.) in CH₂Cl₂ (100 mL) at 0 °C under N₂. The mixture was stirred further at this temperature for 1.5 h, and then washed with 10% aq. Na₂CO₃ (100 mL). The aqueous layer was extracted further with CH₂Cl₂ (3 × 50 mL). The organic extracts were combined, filtered through MgSO₄ and concentrated. The residue was purified by flash chromatography eluting with 1:1 Hex/EtOAc to give 126 (302 mg, 76%). R_f 0.59 (1:1 Hexanes/EtOAc). [α]_D²⁵ -10.6º (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.29 (s, 9H), 1.39 (s, 9H), 3.24 (s, 3H), 3.39 (t, J = 10.2 Hz, 1H), 3.54 (dd, J = 4.5, 4.6 Hz, 1H), 4.50 (t, J = 4.0 Hz, 1H), 5.44 (d, J
= 8.1 Hz, 1H), 7.19 (d, \(J = 1.04 \) Hz, 1H), 7.21 (t, \(J = 1.1 \) Hz, 1H), 7.23 (d, \(J = 1.0 \) Hz, 1H), 7.35 (d, \(J = 1.0 \) Hz, 1H), 7.37 (t, \(J = 1.1 \) Hz, 1H), 7.39 (d, \(J = 1.0 \) Hz, 1H), 7.43 (d, \(J = 8.3 \) Hz, 1H), 7.77 (d, \(J = 8.0 \) Hz, 1H), 9.25 (br, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 25.5, 26.6, 44.6, 55.2, 112.8, 115.3, 120.6, 121.3, 126.4, 126.5, 129.4, 136.3, 173.7. HRMS (+TOF) calcd for C\(_{21}\)H\(_{31}\)N\(_2\)O\(_6\)S (M + H): 439.1902; obsd: 439.1902.

<table>
<thead>
<tr>
<th>Position</th>
<th>(^1)H (ppm)</th>
<th>(J) (Hz)</th>
<th>(^{13})C (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C=O COO'Bu</td>
<td></td>
<td></td>
<td>171.2</td>
</tr>
<tr>
<td>C=O Boc</td>
<td></td>
<td></td>
<td>155.3</td>
</tr>
<tr>
<td>H (\alpha)</td>
<td>4.50</td>
<td>q (8.6, 4.6)</td>
<td>54.9</td>
</tr>
<tr>
<td>H (\beta)</td>
<td>3.39</td>
<td>dd (10.6, 2.8)</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>3.54</td>
<td>dd (13.2, 3.8)</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>7.41</td>
<td>d (8.3)</td>
<td>118.1</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td>129.4</td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td>112.3</td>
</tr>
<tr>
<td>C5</td>
<td>7.37</td>
<td>ddd (8.2, 7.0, 1.1)</td>
<td>121.4</td>
</tr>
<tr>
<td>C6</td>
<td>7.21</td>
<td>ddd (8.1, 7.0, 1.1)</td>
<td>126.5</td>
</tr>
<tr>
<td>C7</td>
<td>7.77</td>
<td>d (8.0)</td>
<td>121.2</td>
</tr>
<tr>
<td>C9</td>
<td></td>
<td></td>
<td>127.5</td>
</tr>
<tr>
<td>C8</td>
<td></td>
<td></td>
<td>135.9</td>
</tr>
<tr>
<td>SOOCH(_3)</td>
<td>3.24</td>
<td>s</td>
<td>45.7</td>
</tr>
<tr>
<td>C(CH(_3)) (_3) x 2</td>
<td></td>
<td></td>
<td>79.5, 82.0</td>
</tr>
<tr>
<td>C(CH(_3)) (_3) x 2</td>
<td></td>
<td></td>
<td>27.9, 28.1</td>
</tr>
</tbody>
</table>
H-L-Trp(SO₂Me)-OH (127). Trifluoroacetic acid (3 mL) was added gradually to a stirred solution of 126 (400 mg, 0.91 mmol, 1 equiv.) in CH₂Cl₂ (3 mL) at 0 °C under N₂. Thioanisole (107 μL, 113 mg, 0.91 mmol, 1 equiv.) was then added and the resultant solution stirred and gradually warmed to rt overnight. The mixture was concentrated and the residue dissolved in a minimum volume of H₂O (~ 3 mL), loaded onto a Dowex-50 (H⁺) column, rinsed with water (~ 250 mL), and the product eluted with 1N aqueous NH₄OH solution. The relevant fractions were combined and concentrated on a freezedrier to deliver 127 (249 mg, 76 %). Rf 0.31 (6:4:1 CHCl₃/CH₃OH/H₂O). [α]D 31° +12.3° (c 1.0, H₂O). ¹H NMR (400 MHz, D₂O) δ 3.36 (s, 3H), 3.53 (dd, J = 14.8, 8.2 Hz, 1H), 3.72 (dd, J = 14.9, 5.9 Hz, 1H), 4.08 (dd, J = 7.8, 6.2 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.57 (app. d, J = 8.4 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 27.1, 27.9, 28.1, 45.7, 54.9, 79.5, 81.9, 112.3, 118.1, 121.2, 121.4, 126.4, 127.4, 129.4, 135.9, 155.3, 171.2; HRMS (+TOF) calcd for C₁₂H₁₅N₂O₄S (M + H): 283.07470; obsd: 283.07495.

Fmoc-Ala-Trp(SO₂Me)-OH (115). N,N'-Dicyclohexyl carbodiimide (DCC) (235 mg, 1.14 mmol, 1.0 equiv.) and NHS (132 mg, 1.14 mmol, 1.0 equiv.) were added to a solution of Fmoc-L-Ala-OH (355 mg, 1.14 mmol, 1.0 equiv.) in CH₂Cl₂ (15 mL) at 0 ° under N₂. The reaction mixture was stirred and gradually warmed to rt for 4 h. The resulting N,N'-dicyclohexyl urea was removed by filtration and the filtrate concentrated, dissolved in a mixture of MeCN (4 mL) and H₂O (2 mL) and cooled to 0 °C. To this solution was added H-L-Trp-(SO₂Me)-OH (323 mg, 1.14 mmol, 1.0 equiv.), then diisopropylethylamine (377 μL, 295 mg, 2.28 mmol, 2.0 equiv.). The mixture was stirred and gradually warmed to rt overnight, and then partitioned between EtOAc (40 mL) and 2M HCl (40 mL). The aqueous layer was extracted further with ethyl acetate (3 × 30 mL). The organic extracts were combined,
washed with H₂O (40 mL), filtered through MgSO₄ and concentrated to give compound 115 (642 mg, 98 %), which was used directly in the next reaction. For the purposes of characterization, a sample was converted to corresponding methyl ester.

- **Fmoc-Ala-Trp(SO₂Me)-OMe (129).** Cesium carbonate (17 mg, 0.05 mmol, 0.5 equiv.) was added to a solution of Fmoc-Ala-Trp(SO₂Me)-OH (115) (60 mg, 0.10 mmol, 1.0 equiv.) in MeOH (2 mL). The mixture was stirred for 2 h and concentrated. The residue was suspended in DMF (2 mL) and cooled to 0 °C. Methyl iodide (8 μL, 18 mg, 0.13 mmol, 1.2 equiv.) was added and the reaction mixture was stirred and gradually warmed to rt overnight, diluted with EtOAc (15 mL) and washed successively with H₂O and brine (15 mL each). The organic layer was dried over MgSO₄, filtered and concentrated. The product was isolated by flash chromatography eluting with 1:1 Hex/EtOAc to give 129 (36 mg, 59 %).

 \[R_f \ 0.47 \ (4:1 \ \text{EtOAc}/\text{Hex}). \ \left[\alpha \right]_{D}^{27} -15.6^\circ \ (c \ 1.0, \ \text{CHCl}_3). \ \ ^1\text{H} \ \text{NMR} \ (400 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 1.32 \ (d, \ J = 6.7 \ Hz, \ 3H), 3.17 \ (s, \ 3H), 3.41 \ (dd, \ J = 10.0, 4.2 \ Hz, \ 1H), 3.58 \ (dd, \ J = 14.2, 4.3 \ Hz, \ 1H), 3.72 \ (s, \ 3H), 4.12-4.40 \ (m, \ 4H), 4.77-4.84 \ (m, \ J = 10.2 \ Hz, \ 1H), 5.44 \ (d, \ J = 7.5 \ Hz, \ 2H), 7.16-7.33 \ (m, \ 7H), 7.38 \ (t, \ J = 7.5 \ Hz, \ 2H), 7.58 \ (t, \ J = 7.1 \ Hz, \ 1H), 7.74 \ (d, \ J = 7.5 \ Hz, \ 2H), 9.27 \ (s, \ 1H); \ ^{13}\text{C} \ \text{NMR} \ (100 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 18.9, 26.3, 45.6, 47.1, 50.3, 52.6, 53.0, 67.0, 112.6, 116.7, 119.9, 120.6, 121.7, 125.2, 126.8, 127.0, 127.6, 129.9, 136.0, 141.2, 143.8, 144.0, 155.7, 171.6, 172.5. \ \text{HRMS} \ (+\text{TOF}) \ \text{calcd} \ \text{for} \ \text{C}_{31}\text{H}_{32}\text{N}_{3}\text{O}_{7} \ (M + H)^+: \ 590.1955; \ \text{obsd}: \ 590.1943.

- **Dipeptide amine 116.** To a solution of Cbz-deHyleu (δ-OTBS)-Val-OEt (114) (180 mg, 0.33 mmol) in EtOH (3 mL) was added 10 % Pd/C (29 mg). The reaction vessel was evacuated and then opened to
an atmosphere of hydrogen gas. The suspension was stirred at rt overnight, filtered through Celite™,
 washed with methanol and then concentrated to give 116 (134 mg, 99 %), that was used in the next step
 without further purification.

- **Tetrapeptide 46.** Collidine (52 μL, 48 mg, 0.40 mmol, 1.2 equiv.), and HATU (151 mg, 0.40 mmol,
 1.2 equiv.) were added to a solution of the dipeptide amine 116 (134 mg, 0.33 mmol, 1.0 equiv.) and
 acid 115 (229 mg, 0.40 mmol, 1.2 equiv.) in DMF (3 mL) at 0 ºC under N₂. The mixture was stirred and
 warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 4:1
 EtOAc/Hex to give 46 (291 mg, 91 %). R_f 0.40 (4:1 EtOAc/Hex). [α]_D25 -17.0° (c 1.0, CHCl₃). ¹H NMR
 (400 MHz, CDCl₃) δ 0.00 (s, 3H), 0.01 (s, 3H), 0.85 (s, 9H), 0.93 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.5
 Hz, 3H), 1.15 (s, 3H), 1.23 (d, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.70 (dd, J = 14.7, 4.7 Hz, 1H),
 1.76 (s, 3H), 1.90 (dd, J = 14.7, 6.2 Hz, 1H), 2.19 (app. sept. J = 6.5 Hz, 1H), 3.16 (s, 3H), 3.26 (d, J =
 9.7 Hz, 1H), 3.30 (d, J = 9.7 Hz, 1H), 3.39 (dd, J = 14.4, 10.4 Hz, 1H), 3.65 (dd, J = 14.4, 2.8 Hz, 1H),
 4.10-4.19 (m, 1H), 4.12 (q, J = 7.1 Hz, 2H), 4.21 (t, J = 6.8 Hz, 1H), 4.32-4.36 (m, 2H), 4.42 (dd, J =
 8.6, 5.4 Hz, 1H), 4.56-4.62 (m, 2H), 5.42 (d, J = 6.1 Hz, 1H), 7.20 (t, J = 6.5 Hz, 2H), 7.31 (t, J = 7.4
 Hz, 2H), 7.39 (dd, J = 15.1, 7.2 Hz, 3H), 7.63 (d, J = 7.3 Hz, 2H), 7.70-7.86 (m, 3H), 9.16 (s, 1H); ¹³C
 NMR (100 MHz, CDCl₃) δ -6.5, 13.2, 17.0, 17.2, 17.4, 18.0, 22.6, 24.7, 24.9, 29.7, 38.0, 44.6, 46.0,
 49.2, 50.2, 53.6, 56.8, 60.0, 66.3, 69.6, 71.3, 111.4, 119.0, 120.2, 120.8, 124.2, 126.0, 126.7, 128.7,
 135.0, 140.2, 142.9, 155.2, 169.2, 170.5, 171.2,172.4. HRMS (+TOF) calcd for C₄₉H₆₇N₅O₁₁SSi (M +
 H)^+: 962.4399; obsd: 962.4396.
<table>
<thead>
<tr>
<th>Residue 1 –Fmoc-Ala-</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala C=O</td>
<td>173.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala α</td>
<td>4.10-4.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala β</td>
<td>1.23</td>
<td>d (7.1)</td>
<td></td>
</tr>
<tr>
<td>Ala NH</td>
<td>5.42</td>
<td>d (6.1)</td>
<td></td>
</tr>
<tr>
<td>Fmoc C=O</td>
<td>156.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fmoc CH₂</td>
<td>4.32-4.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fmoc CH</td>
<td>4.21</td>
<td>t (6.8)</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH</td>
<td>7.63</td>
<td>d (7.3)</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH</td>
<td>7.76</td>
<td>d (7.5)</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH</td>
<td>7.31</td>
<td>t (7.4)</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH</td>
<td>7.36-7.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fmoc C 4°</td>
<td>141.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fmoc C 4°</td>
<td>141.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fmoc C 4°</td>
<td>143.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fmoc C 4°</td>
<td>143.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue 2 –(2 MeSO₂-Trp)-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp C=O</td>
<td>172.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp α</td>
<td>4.56-4.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp β</td>
<td>3.39</td>
<td>dd (14.4, 10.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.65</td>
<td>dd (14.4, 2.8)</td>
<td></td>
</tr>
<tr>
<td>Trp NH</td>
<td>7.72-7.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH1</td>
<td>9.16</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>121.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>129.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>7.36-7.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>7.36-7.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>7.21</td>
<td>t (6.7)</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>7.81</td>
<td>d (8.2)</td>
<td></td>
</tr>
</tbody>
</table>
- **Boc-4-Hyp-OBn (141a)**. Di-tert-butyl dicarbonate (3.329 g, 15.252 mmol, 2 equiv.) was added to a solution of trans-4-hydroxyproline (1 g, 7.626 mmol, 1 equiv.) and triethylamine (1.648, 1.2 mL, 16.286 mmol, 2.1 equiv.) in methanol (12 mL) at room temperature under N₂. The reaction mixture was stirred and heated at reflux for 1 h, cooled and concentrated. The residue was cooled to 0 °C at which point NaH₂PO₄ (100 mg) and 1 M HCl were added to adjust the pH to 2. The mixture was extracted with EtOAc (4 x 35 mL). The organic extracts were combined, filtered through MgSO₄ and concentrated. Cesium carbonate (1.243 g, 3.810 mmol, 0.5 equiv.) was added to the residue in dry methanol (15 mL). The solution was stirred at rt under N₂ for 2 h and concentrated. The residue was
dissolved in DMF (10 mL), treated with benzyl bromide (1.1 mL, 1.566 g, 9.150 mmol, 1.2 equiv.) and stirred at rt under N₂ for 16 h. The suspension was diluted with EtOAc (35 mL) and washed successively with H₂O and brine (35 mL each). The organic layer was dried over MgSO₄, filtered and concentrated. The product was isolated by flash chromatography, eluting with 1:1 Hex/EtOAc, then 2:1 EtOAc/Hex to give Boc-4-Hyp-OBn (141a) as a colorless foam (1.833 g, 75 % over two steps). \(R_f \) 0.42 (1:1 Hex/EtOAc). \([\alpha]_D^{25} \) -48.2° (c 1.0, CHCl₃). NMR spectra are recorded for the major conformer. \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 1.34 (s, 9H), 2.02-2.12 (m, 1H), 2.20-2.34 (m, 1H), 3.45 (d, \(J = 11.6 \) Hz, 1H), 4.40-4.54 (m, 2H), 5.14 (d, \(J = 12.2 \) Hz, 1H), 5.18 (d, \(J = 12.2 \) Hz, 1H), 7.30-7.40 (m, 5H); \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta \) 28.1, 38.2, 53.3, 57.6, 66.6, 69.0, 80.1, 127.9, 128.1, 128.4, 135.3, 154.0, 172.6. HRMS (+TOF) calcd for C₁₇H₂₄NO₅ (M + H)⁺: 322.1642; obsd: 322.1649.

- **Boc-4-hyp-OBn (141b).** A solution of Boc-4-Hyp-OBn (141a) (1.220 g, 3.796 mmol, 1 equiv.) and formic acid (293 μL, 351 mg, 2.01 equiv.) in dry THF (5 mL) was added dropwise to a mixture of diisopropyl azodicarboxylate (1.5 mL, 1.543 g, 7.630 mmol, 2.01 equiv.) and triphenylphosphine (2.000 g, 7.630 mmol, 2.01 equiv.) in dry THF (15 mL) under N₂ at 0 ºC. The reaction mixture was warmed to rt for 2 h, concentrated and the residue was partially purified by flash chromatography eluting with 2:1 Hex/EtOAc to generate the corresponding formate ester that was directly hydrolyzed. Aqueous NaOH (1 N, 3.4 mL) was added dropwise to a solution of the formate ester in MeOH (15 mL) at 0 ºC. The reaction mixture was stirred for 30 min, acidified with 10 % aqueous KHSO₄ (30 mL), concentrated to remove methanol and extracted with EtOAc (3 x 40 mL). The organic extracts were combined, washed successively with H₂O (2 x 30 mL) and brine (30 mL), dried over MgSO₄, concentrated and purified by flash chromatography, eluting with 1:1 Hex/EtOAc to give Boc-4-hyp-OBn (141b) as a colorless solid (860 mg, 70 % over two steps). \(R_f \) 0.42 (1:1 Hex/EtOAc). \([\alpha]_D^{25} \) -10.3°
NMR spectra are recorded for the major conformer. 1H NMR (400 MHz, CDCl$_3$) δ 1.33 (s, 9H), 2.02-2.13 (m, 1H), 2.23-2.37 (m, 1H), 3.26 (d, $J = 9.4$ Hz, 1H), 3.49-3.68 (m, 1H), 4.29-4.44 (m, 2H), 5.12 (d, $J = 12.3$ Hz, 1H), 5.29 (d, $J = 12.3$ Hz, 1H), 7.31-7.39 (m, 5H); 13C NMR (100 MHz, CDCl$_3$) δ 28.3, 38.0, 55.6, 58.0, 67.6, 70.4, 80.5, 128.3, 128.4, 128.8, 135.3, 153.9, 174.8. HRMS (+TOF) calcd for C$_{17}$H$_{24}$NO$_5$ (M + H)$^+$: 322.1643; obsd: 322.1649.

- **Boc-4-hyp-(OMEM)-OBn (142).** MEMCl (719 µL, 785 mg, 6.30 mmol, 2.5 equiv.) was added dropwise to a solution of Boc-4-hyp-OBn (141b) (810 mg, 2.52 mmol, 1.0 equiv.) and diisopropylethylamine (1.1 mL, 814 mg, 6.30 mmol, 2.5 equiv.) in chloroform (10 mL) at rt under N$_2$. The mixture was then heated at reflux for 16 h, cooled, diluted with chloroform (50 mL), washed successively with 10 % aqueous citric acid, saturated aqueous NaHCO$_3$ and brine (50 mL each). The organic layer was dried over MgSO$_4$, concentrated and purified by flash chromatography, eluting with 2:1 EtOAc/Hex to give 142 as a colorless oil (862 mg, 84 %). R_f 0.35 (2:1 EtOAc/Hex), $[\alpha]_D^{25}$ -38.3º (c 1.0, CHCl$_3$). NMR spectra are recorded for the major conformer. 1H NMR (400 MHz, CDCl$_3$) δ 1.36 (s, 9H), 2.18-2.43 (m, 2H), 3.37 (s, 3H), 3.46-3.74 (m, 6H), 4.25-4.31 (m, 1H), 4.35 (dd, $J = 3.7$, 9.0 Hz, 1H), 4.57-4.62 (m, 1H), 5.05 (d, $J = 12.4$ Hz, 1H), 5.27 (d, $J = 12.4$ Hz, 1H), 7.29-7.39 (m, 5H); 13C NMR (100 MHz, CDCl$_3$) δ 28.3, 35.8, 51.9, 57.6, 66.8, 71.8, 73.9, 80.2, 94.1, 128.2, 128.3, 128.5, 135.9, 153.9, 171.9. HRMS (+TOF) calcd for C$_{21}$H$_{31}$NNaO$_7$ (M + Na)$^+$: 432.1993; obsd: 432.1996.

- **CF$_3$COOH.4-hyp-(OMEM)-OBn (143).** Trifluoroacetic acid (2 mL) was added dropwise to a stirred solution of Boc-4-hyp-(OMEM)-OBn (142) (300 mg, 0.73 mmol) in CH$_2$Cl$_2$ (10 mL) at -25 ºC
(ethylene glycol-dry ice) under N₂ for 2 h. The reaction was quenched with aqueous saturated NaHCO₃ (~ 3 mL), diluted with H₂O (20 mL) and extracted with CH₂Cl₂ (4 × 25 mL). The organic extracts were combined, dried over MgSO₄ and concentrated to give the trifluoroacetate salt of 4-hyp-(OMEM)-OBn (143) that was used in the next step without further purification.

- **Boc-3-Hyp-OBn (145).** Di-tert-butyl dicarbonate (666 mg, 3.05 mmol, 2 equiv.) was added to a solution of trans-3-hydroxyproline (200 mg, 1.53 mmol, 1 equiv.) and triethylamine (300 μL, 218 mg, 2.15 mmol, 1.4 equiv.) in methanol (3 mL) at room temperature under N₂. The reaction mixture was stirred and heated at reflux for 1 h, cooled and concentrated. The residue was cooled to 0 °C at which point NaH₂PO₄ (20 mg) and 1 M HCl (~1 mL) were added to adjust the pH to 2. The mixture was extracted with EtOAc (4 x 20 mL). The organic extracts extracts were combined, filtered through MgSO₄ and concentrated to give Boc-3-Hyp-OH that was used in the next step without further purification.

Cesium carbonate (248 mg, 0.76 mmol, 0.5 equiv.) was added to a suspension of Boc-3-Hyp-OH (352 mg, 1.52 mmol, 1.0 equiv.) in dry methanol (4 mL). The solution was stirred at rt under N₂ for 2 h and concentrated. The residue was dissolved in DMF (3 mL), treated with benzyl bromide (312 mg, 219 μL, 1.83 mmol, 1.2 equiv.) and stirred at rt under N₂ for 16 h. The suspension was diluted with EtOAc (30 mL) and washed successively with H₂O and brine (30 mL each). The organic layer was dried over MgSO₄, filtered and concentrated. The product was isolated by flash chromatography eluting with 1:1 Hex/EtOAc to give Boc-3-Hyp-OBn (145) as a mixture of two conformers (366 mg, 75 %). Rₕ 0.38 (1:1 Hex/ EtOAc). [α]D²⁵ -23.6° (c 1.0, CHCl₃). NMR spectra are reported for the major conformer. ¹H NMR (400 MHz, CDCl₃) δ 1.32 (s, 9H), 1.86-1.94 (m, 1H), 2.20-2.12 (m, 1H), 2.73 (d, J = 4.4 Hz, 1H), 3.58-
3.68 (m, 2H), 4.22 (app. b, 1H), 4.38-4.46 (m, 1H), 5.13 (d, $J = 12.2$ Hz, 1H), 5.19 (d, $J = 12.2$ Hz, 1H), 7.30-7.38 (m, 5H); 13C NMR (100 MHz, CDCl$_3$) δ 28.2, 32.2, 44.4, 67.0, 68.0, 74.0, 80.3, 128.1, 128.5, 128.7, 135.5, 154.2, 170.9. HRMS (+TOF) calcd for C$_{17}$H$_{24}$NO$_5$ (M + H)$^+$: 322.1640; obsd: 322.1649.

- **Fmoc-DHP-(OMEM)$_2$-OBn (156).** Cesium carbonate (97 mg, 0.30 mmol, 0.50 equiv.) was added to a suspension of Fmoc-DHP(OMEM)$_2$-OH (155) (326 mg, 0.598 mmol, 1 equiv.) residue in dry methanol (4 mL). The solution was stirred at rt under N$_2$ for 2 h and concentrated. The residue was dissolved in DMF (3 mL), treated with benzyl bromide (86 μL, 123 mg, 0.718 mmol, 1.2 equiv.) and stirred at rt under N$_2$ for 17 h. The suspension was diluted with EtOAc (50 mL) and washed successively with H$_2$O and brine (50 mL each). The organic layer was dried over MgSO$_4$, filtered and concentrated. The product was isolated by flash chromatography, eluting with 2:1 Hex/EtOAc, then 2:1 EtOAc/Hex to give Fmoc-DHP(OMEM)$_2$-OBn (156) as a colorless foam (305 mg, 80 %). R_f 0.50 (2:1 EtOAc/Hex). $[\alpha]_D^{25}$ -19.2° (c 0.9, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 3.37 (s, 6H), 3.47-3.86 (m, 10H), 4.13-4.62 (m, 10H), 5.16 (d, $J = 12.3$ Hz, 1H), 5.25 (d, $J = 12.3$ Hz, 1H), 7.26-7.44 (m, 2H), 7.54 (d, $J = 7.4$ Hz, 2H), 7.61 (t, $J = 7.4$ Hz, 2H), 7.77 (t, $J = 8.6$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 47.3, 51.0, 59.2, 64.5, 67.2, 67.4, 67.7, 71.8, 78.6, 81.5, 83.0, 94.5, 94.8, 120.1, 125.3, 127.2, 127.9, 128.4, 128.5, 128.6, 135.9, 141.5, 144.0, 144.3, 155.3, 169.0. HRMS (+TOF) calcd for C$_{35}$H$_{41}$NNaO$_{10}$ (M + Na)$^+$: 658.2623; obsd: 658.2614.

- **HCl-DHP-(OMEM)$_2$-OBn (157).** Diethylamine (1.6 mL) was added to a solution of Fmoc-DHP-(OMEM)$_2$-OBn (156) (135 mg, 0.21 mmol) in CH$_2$Cl$_2$ (8 mL) and the mixture stirred at rt under N$_2$ for 30 min. The mixture was concentrated, and the product isolated by flash chromatography eluting with
2:1 EtOAc/Hex, then 9:1 CH₂Cl₂/MeOH. The relevant fractions were combined, treated with methanolic HCl (0.21 mmol) solution (prepared by dropwise addition of acetyl chloride (15 μL, 17 mg, 0.21 mmol) to MeOH (1 mL) at 0 °C under N₂) and concentrated to give HCl·DHP·(OMEM)₂·OBn (157) that was used in the next step without further purification.

- **Fmoc-D-Thr-(O' Bu)-D-Ser(O' Bu)-OH (165).** N,N'-Dicyclohexyl carbodiimide (DCC) (311 mg, 1.51 mmol, 1.0 equiv.) and NHS (174 mg, 1.51 mmol, 1.0 equiv.) were added to a solution of Fmoc-D-Thr-(O' Bu)-OH (600 mg, 1.51 mmol, 1.0 equiv.) in CH₂Cl₂ (15 mL) at 0 °C under N₂. The reaction mixture was stirred and gradually warmed to rt for 4 h. The resulting N,N'-dicyclohexyl urea was removed by filtration and the filtrate concentrated, dissolved in a mixture of MeCN (4 mL) and H₂O (2 mL) and cooled to 0 °C. To this solution was added H-D-Ser(O' Bu)-OH (243 mg, 1.51 mmol, 1.0 equiv.), then diisopropylethylamine (249 μL, 195 mg, 1.51 mmol, 1.0 equiv.). The mixture was stirred and gradually warmed to rt overnight, then partitioned between EtOAc (40 mL) and 2M HCl (40 mL). The aqueous layer was extracted further with ethyl acetate (3 × 35 mL). The organic extracts were combined, washed with H₂O (40 mL), filtered through MgSO₄ and concentrated to give compound 165 (684 mg, 84 %), which was used directly in the next reaction. For the purposes of characterization, a sample was converted to corresponding methyl ester.

- **Fmoc-D-Thr-(O' Bu)-D-Ser(O' Bu)-OMe (166).** Trimethylsilyldiazomethane (359 mg, 0.5 mL, 1.04 mmol, 4.8 equiv., 2.0 M solution in hexanes) was added gradually to a solution of Fmoc-D-Thr-(O' Bu)-D-Ser(O' Bu)-OH (165) (136 mg, 0.22 mmol, 1.0 equiv.) in a mixture of MeCN (2.7 mL) and MeOH (0.3 mL) at 0 °C under N₂. The reaction mixture was stirred and gradually warmed to rt over 1 h, and then concentrated. The product was isolated by flash chromatography eluting with 3:1 Hex/EtOAc to
afford 166 (85 mg, 61%). R_f 0.26 (3:1 Hex/EtOAc). [α]$_D^{25}$ -23.3º (c 0.75, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 1.14 (s, 9H), 1.17 (d, J = 6.4 Hz, 3H), 1.32 (s, 9H), 3.56 (dd, J = 9.1, 3.1 Hz, 1H), 3.75 (s, 3H), 3.86 (dd, J = 9.1, 3.1 Hz, 1H), 4.12-4.28 (m, 3H), 4.38 (d, J = 7.3 Hz, 2H), 4.67-4.74 (dt, J = 8.4, 3.1 Hz, 1H), 6.04 (d, J = 5.2 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 7.6 Hz, 2H), 7.96 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) 16.3, 27.3, 28.2, 47.2, 52.1, 53.2, 58.5, 61.9, 66.8, 66.9, 73.4, 75.3, 119.9, 125.1, 127.0, 127.6, 141.3, 143.8, 143.9, 156.0, 169.5, 170.5. HRMS (+TOF) calcd for C$_{31}$H$_{43}$N$_2$O$_7$ (M + H)$^+$: 555.3065; obsd: 555.3074.

Fmoc-D- Thr-(O'Bu)-D-Ser(O'Bu)-Pro-OBn (168). The dipeptide acid 165 (680 mg, 1.26 mmol, 1.2 equiv.) and HCl.Pro-OBn (136) (253 mg, 1.05 mmol, 1.0 equiv.) were dissolved in CH$_2$Cl$_2$ (3 mL), and the solution cooled to 0 ºC. Collidine (332 μL, 305 mg, 2.52 mmol, 2.4 equiv.) and HATU (478 mg, 1.26 mmol, 1.2 equiv.) were added sequentially to the reaction mixture. The resultant solution was stirred at 0 ºC for 1 h and then at rt overnight. The mixture was concentrated and the product isolated by flash chromatography eluting with 1:1 Hex/EtOAc, to give 168 (671 mg, 88 %). R_f 0.37 (1:1 Hex/EtOAc). [α]$_D^{25}$ -36.6º (c 1.0, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$, signals are reported for the major rotamer only) δ 1.03 (d, J = 6.3 Hz, 3H), 1.14 (s, 9H), 1.27 (s, 9H), 1.80-2.10 (m, 3H), 2.12-2.25 (m, 1H), 3.45 (t, J = 8.6 Hz, 1H), 3.62 (dd, J = 8.4, 5.3 Hz, 2H), 3.71-3.79 (m, 1H), 3.88-3.98 (m, 1H), 4.06-4.26 (m, 3H), 4.38 (dd, J = 7.2, 2.2 Hz, 1H), 4.52 (dd, J = 8.3, 4.3 Hz, 1H), 4.91 (dq, J = 7.6, 5.3 Hz, 1H), 5.05 (d, J = 12.4 Hz, 1H), 5.16 (d, J = 12.4 Hz, 1H), 5.95 (d, J = 5.8 Hz, 2H), 7.26-7.43 (m, 9H), 7.61 (d, J = 7.1 Hz, 2H), 7.76 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 17.1, 24.7, 27.3, 28.2, 29.3, 47.2, 51.4, 58.8, 59.1, 63.0, 66.5, 66.6, 67.0, 73.5, 75.1, 119.9, 125.2, 127.0, 127.7, 127.9, 128.1, 128.5, 128.7, 135.8, 141.3, 141.4, 143.7, 144.0, 156.0, 169.1, 169.3, 171.6. HRMS (+TOF) calcd for C$_{42}$H$_{54}$N$_3$O$_8$ (M + H)$^+$: 728.3905; obsd: 728.3909.
Fmoc-D-Thr-(O'Bu)-D-Ser(O'Bu)-trans-3-Hyp-OBn (169). The dipeptide acid 165 (504 mg, 0.93 mmol, 1.2 equiv.) and CF₃COOH.3Hyp-OBn (146) (172 mg, 0.78 mmol, 1.0 equiv.) were dissolved in CH₂Cl₂ (3 mL), and the solution cooled to 0 °C. Collidine (247 μL, 226 mg, 1.87 mmol, 2.4 equiv.) and HATU (354 mg, 0.93 mmol, 1.2 equiv.) were added sequentially to the reaction mixture. The resultant solution was stirred at 0 °C for 1 h and then at rt overnight. The mixture was concentrated and the product isolated by flash chromatography eluting with 2:1 EtOAc/Hex, to give 169 (538 mg, 93%). Rf 0.51 (2:1 EtOAc/Hex). [α]D²⁵ -23.8° (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 1.03 (d, J = 6.3 Hz, 3H), 1.15 (s, 9H), 1.27 (s, 9H), 1.91-2.03 (m, 1H), 2.10-2.20 (m, 1H), 3.48 (t, J = 8.5 Hz, 1H), 3.53-3.67 (m, 4H), 3.87 (app. t, J = 9.2 Hz, 1H), 4.02-4.62 (m, 6H), 4.94 (app. dd, J = 8.0, 13.3 Hz, 1H), 5.07 (d, J = 12.4 Hz, 1H), 5.17-5.20 (m, 1H), 5.96 (d, J = 5.8 Hz, 1H), 7.25-7.43 (m, 9H), 7.61 (app. d, J = 7.2 Hz, 2H), 7.76 (app. d, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 17.3, 27.5, 28.4, 33.0, 45.3, 47.4, 51.6, 59.0, 60.6, 63.0, 66.9, 67.1, 68.2, 73.5, 75.3, 120.2, 125.4, 127.3, 127.9, 128.2, 128.5, 128.8, 141.4, 143.9, 156.3, 169.4, 169.7, 170.1. HRMS (+TOF) calcd for C₄₂H₅₃N₃NaO₉(M + Na)⁺: 766.3680; obsd: 766.3688.

Fmoc-D-Thr-(O'Bu)-D-Ser(O'Bu)-cis-4-hyp(OMEM)-OBn (170). The dipeptide acid 165 (375 mg, 0.69 mmol, 1.2 equiv.) and HCl.hyp(OMEM)-OBn (140) (200 mg, 0.58 mmol, 1.0 equiv.) were dissolved in CH₂Cl₂ (4 mL), and the solution cooled to 0 °C. Collidine (183 μL, 168 mg, 1.39 mmol, 2.4 equiv.) and HATU (264 mg, 0.69 mmol, 1.2 equiv.) were added sequentially to the reaction mixture. The resultant solution was stirred at 0 °C for 1 h and then at rt overnight. The mixture was concentrated and the product isolated by flash chromatography eluting with 2:1 EtOAc/Hex, to give 170 (163 mg, 87%). Rf 0.40 (2:1 EtOAc/Hex). [α]D²⁵ -33.9° (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.00 (d, J = 6.3 Hz, 3H), 1.13 (s, 9H), 1.27 (s, 9H), 2.10-2.45 (m, 2H), 3.30-3.66 (m, 11H), 3.71 (dd, J = 11.0, 3.2
H₂, 1H), 4.05-4.45 (m, 5H), 4.54 (d, J = 7.2 Hz, 1H), 4.60 (d, J = 7.0 Hz, 1H), 4.67 (dd, J = 8.6, 4.5 Hz, 1H), 4.90 (dt, J = 8.4, 4.2 Hz, 1H), 5.06 (d, J = 12.4 Hz, 1H), 5.16 (d, J = 12.4 Hz, 1H), 5.93 (d, J = 5.8 Hz, 1H), 7.24-7.44 (m, 9H), 7.61 (app.t, J = 7.4 Hz, 2H), 7.76 (d, J = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 17.0, 27.3, 28.2, 35.2, 47.2, 52.6, 57.2, 58.5, 59.0, 63.2, 66.6, 67.0, 67.1, 71.6, 72.4, 73.5, 74.6, 75.1, 94.2, 119.9, 125.2, 127.0, 127.7, 128.0, 128.4, 128.6, 135.9, 141.3, 156.0, 169.0, 169.6, 170.7.

HRMS (+TOF) calcd for C₄₆H₆₂N₃O₁₁(M + H)⁺: 832.4378; obsd: 832.4378.

- Fmoc-D-Thr-(O'Bu)-D-Ser(O'Bu)-DHP(OMEM)₂-OBn (167). The dipeptide acid 165 (138 mg, 0.26 mmol, 1.2 equiv.) and HCl.DHP(OMEM)₂-OBn (157) (96 mg, 0.21 mmol, 1.0 equiv.) were dissolved in CH₂Cl₂ (3 mL), and the solution cooled to 0 °C. Collidine (68 μL, 62 mg, 0.51 mmol, 2.4 equiv.) and HATU (97 mg, 0.26 mmol, 1.2 equiv.) were added sequentially to the reaction mixture. The resultant solution was stirred at 0 °C for 1 h and then at rt overnight. The mixture was concentrated and the product isolated by flash chromatography eluting with 2:1 EtOAc/Hex, to give 167 (183 mg, 92 %). Rf 0.44 (2:1 EtOAc/Hex). [α]D²⁵ -22.7° (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.98 (d, J = 7.3 Hz, 3H), 1.13 (s, 9H), 1.27 (s, 9H), 3.37 (s, 6H), 3.42-3.83 (m, 11H), 4.03-4.22 (m, 2H), 4.24 (t, J = 7.0 Hz, 1H), 4.31 (dd, J = 11.0, 5.4 Hz, 1H), 4.34-4.43 (m, 4H), 4.50 (d, J = 7.2 Hz, 1H), 4.73-4.84 (m, 4H), 4.92 (ddd, J = 8.1, 7.6, 4.7 Hz, 1H), 5.05 (d, J = 12.4 Hz, 1H), 5.17 (d, J = 12.4 Hz, 1H), 5.92 (d, J = 5.8 Hz, 1H), 7.26-7.44 (m, 9H), 7.61 (app.t, J = 7.2 Hz, 2H), 7.76 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13C NMR (100 MHz, CDCl₃) δ 17.2, 27.4, 28.4, 47.4, 51.3, 59.2, 63.9, 67.0, 67.2, 67.6, 71.8, 73.8, 75.4, 78.7, 80.9, 94.7, 120.2, 125.4, 127.3, 127.9, 128.3, 128.6, 128.7, 136.0, 141.5, 143.9, 156.2, 168.5, 169.3, 170.3. MALDI-TOF (+TOF) calcd for C₄₆H₆₂N₃O₁₁(M + Na)⁺: 958.467; obsd: 958.526.
• **Fmoc-D-Thr-D-Ser-Pro-OBn (172).** Titanium tetrachloride (1.0 M solution in CH$_2$Cl$_2$, 1.8 mL, 1.8 mmol, 6.0 equiv.) and thioanisole (35 μL, 37 mg, 0.30 mmol, 1.0 equiv.) were added sequentially to a solution of 168 (217 mg, 0.30 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (5 mL) at 0 °C under N$_2$. The reaction mixture was stirred and gradually warmed to rt over 30 min, then quenched with saturated NH$_4$Cl solution (~ 4 mL) and extracted with EtOAc (3 × 20 mL). The organic extracts were combined, filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 2:1 EtOAc/Hex, then 9:1 CH$_2$Cl$_2$/MeOH to give the product as a colorless foam (143 mg, 80 %). R_f 0.39 (9:1 CH$_2$Cl$_2$/CH$_3$OH). $[\alpha]_D^{25}$ -20.0º (c 1.0, CH$_3$OH). 1H NMR (400 MHz, CD$_3$OD) δ 1.16 (d, $J = 6.2$ Hz, 3H, Thr CH$_3$), 1.82-2.08 (m, 3H, Pro 2Hβ, Hγ), 2.14-2.32 (m, 1H, Pro Hγ), 3.63-3.87 (m, 4H, Ser 2Hβ, Pro 2Hδ), 4.09-4.17 (m, 1H, Thr Hα), 4.23 (t, $J = 6.8$ Hz, 1H, Fmoc CH), 4.38 (d, $J = 6.8$ Hz, 2H, Fmoc CH$_2$), 4.47 (dd, $J = 8.7$, 3.8 Hz, 1H, Thr Hβ), 4.82-4.92 (m, 2H, Pro Hα, Ser Hα), 5.02 (d, $J = 12.4$ Hz, 1H, COOCH$_2$Ph), 5.06 (d, $J = 12.4$ Hz, 1H, COOCH$_2$Ph), 7.25-7.34 (m, 7H), 7.38 (t, $J = 7.5$ Hz, 2H), 7.67 (dd, $J = 12.8$, 7.4 Hz, 2H), 7.78 (d, $J = 7.6$ Hz, 2H); 13C NMR (100 MHz, CD$_3$OD) δ 18.1, 23.6, 28.1, 46.4, 52.2, 58.7, 60.0, 60.5, 60.8, 65.8, 66.2, 66.5, 118.9, 124.2, 126.2, 126.8, 127.0, 127.4, 127.7, 135.3, 140.6, 143.1, 156.7, 168.8, 170.8, 171.3. HRMS (+TOF) calcd for C$_{34}$H$_{38}$N$_3$O$_8$ (M + H)$^+$: 616.2653; obsd: 616.2664.

• **Fmoc-D-Thr-D-Ser-trans-3-Hyp-OBn (173).** Titanium tetrachloride (1.0 M solution in CH$_2$Cl$_2$, 3.8 mL, 3.87 mmol, 6.0 equiv.) was added gradually to a solution of 169 (480 mg, 0.65 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (10 mL) at 0 °C under N$_2$. The reaction mixture was stirred and gradually warmed to rt over 1 h, quenched with saturated NH$_4$Cl solution (~ 6 mL), diluted with H$_2$O (20 mL) and extracted with EtOAc (3 × 50 mL). The organic extracts were combined, filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 9:1 CH$_2$Cl$_2$/MeOH to give the product as a
colorless foam (344 mg, 85%). R_f 0.37 (9:1 CH$_2$Cl$_2$/CH$_3$OH). $[\alpha]_{D}^{25} +11.2^\circ$ (c 1.0, CH$_3$OH). 1H NMR (400 MHz, CD$_3$OD) δ 1.17 (d, $J = 6.1$ Hz, 3H, Thr CH$_3$), 1.90-2.04 (m, 1H, 3-Hyp H\text{\gamma}), 2.08-2.18 (m, 1H, 3-Hyp H\text{\gamma}), 3.75 (dd, $J = 11.3$, 5.3 Hz, 1H, Ser H\text{\beta}), 3.82 (dd, $J = 11.3$, 5.0 Hz, 1H, Ser H\text{\beta}), 3.82-3.92 (m, 1H, 3-Hyp H\text{\delta}), 3.92-4.10 (m, 1H, 3-Hyp H\text{\delta}), 4.11-4.20 (m, 1H, Thr H\text{\alpha}), 4.26 (t, $J = 6.8$ Hz, 1H, Fmoc CH$_2$), 4.94 (app. pentet, $J = 11.7$, 5.6, Hz, 1H, Ser H\text{\alpha}), 5.06 (d, $J = 12.5$ Hz, 1H, COOCH$_2$Ph), 5.10 (d, $J = 12.5$ Hz, 1H, COOCH$_2$Ph), 5.24 (d, $J = 3.2$ Hz, 1H, NH Thr), 7.28-7.43 (m, 10H, NH Ser, 4 \times Fmoc CH, 5 \times COOCH$_2$Ph), 7.70 (dd, $J = 11.5$, 7.4 Hz, 2H, Fmoc CH), 7.81 (d, $J = 7.4$ Hz, 2H, Fmoc CH); 13C NMR (100 MHz, CDCl$_3$) δ 18.0, 31.8, 44.4, 52.2, 59.9, 66.0, 66.5, 76.4, 72.0, 118.9, 124.2, 126.2, 127.1, 127.5, 135.1, 140.6, 143.1, 156.6, 169.1, 169.2, 170.9. HRMS (+TOF) calcd for C$_{34}$H$_{38}$N$_3$O$_9$ (M)$^+$: 632.2603; obsd: 632.2594.

- **Fmoc-D-Thr-D-Ser-cis-4-hyp-OBn (174).** Titanium tetrachloride (1.0 M solution in CH$_2$Cl$_2$, 3.6 mL, 3.76 mmol, 9.0 equiv.) was added gradually to a solution of 170 (348 mg, 0.42 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (18 mL) at 0 ºC under N$_2$. The reaction mixture was stirred and gradually warmed to rt over 1 h, quenched with saturated NH$_4$Cl solution (~ 5 mL), diluted with H$_2$O (15 mL) and extracted with EtOAc (3 \times 30 mL). The organic extracts were combined, filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 9:1 CH$_2$Cl$_2$/MeOH to give the product as a colorless foam (223 mg, 84 %). R_f 0.29 (9:1 CH$_2$Cl$_2$/CH$_3$OH). $[\alpha]_{D}^{25} +20.6^\circ$ (c 1.0, CH$_3$OH). 1H NMR (400 MHz, CD$_3$OD) δ 1.16 (d, $J = 6.3$ Hz, 3H, Thr CH$_3$), 2.06 (dt, $J = 13.3$, 3.5 Hz, 1H, hyp H\text{\beta}), 2.38 (ddd, $J = 13.5$, 9.0, 4.7 Hz, 1H, hyp H\text{\beta}), 3.66-3.81 (m, 3H, Ser 2 H\text{\beta}, hyp H\text{\delta}), 3.93 (dd, $J = 10.9$, 5.1 Hz, 1H, hyp H\text{\delta}), 4.07-4.17 (m, 1H, Thr H\text{\alpha}), 4.23 (t, $J = 6.8$ Hz, 1H, Fmoc CH), 4.33-4.45 (m, 4H, Fmoc CH$_2$, Thr H\text{\beta}, hyp H\text{\gamma}), 4.54 (dt, $J = 7.6$, 3.9 Hz, 1H, Ser H\text{\alpha}), 4.59 (dd, $J = 9.2$, 3.8 Hz, 1H, hyp
Fmoc-\textit{D}-Thr-\textit{D}-Ser-DHP-OBn (171). Titanium tetrachloride (1.0 M solution in CH₂Cl₂, 1.3 mL, 1.28 mmol, 9.0 equiv.) was added gradually to a solution of 167 (133 mg, 0.14 mmol, 1.0 equiv.) in CH₂Cl₂ (6 mL) at 0 °C under N₂. The reaction mixture was stirred and gradually warmed to rt over 1 h, quenched with saturated NH₄Cl solution (~ 3 mL), diluted with H₂O (15 mL) and extracted with EtOAc (3 × 30 mL). The organic extracts were combined, filtered through MgSO₄ and concentrated. The residue was purified by flash chromatography eluting with 9:1 CH₂Cl₂/MeOH to give the product as a colorless foam (93 mg, 98 %). \(R_f \) 0.24 (9:1 CH₂Cl₂/CH₃OH). [\(\alpha \)]D²⁵ +0.8° (c 1.0, CH₃OH). \(^1H \) NMR (400 MHz, CD₃OD, signals are reported for the major conformer only) 1.15 (d, \(J = 6.2 \) Hz, 3H, Thr CH₃), 3.62 (dd, \(J = 7.2, 3.0 \) Hz, 1H, DHP Hδ), 3.71 (d, \(J = 5.8 \) Hz, Ser Hβ), 3.76 (d, \(J = 5.9 \) Hz, Ser Hβ), 4.02 (dd, \(J = 10.9, 5.0 \) Hz, 1H, DHP Hγ), 4.04-4.26 (m, 4H, Thr Hα, Thr Hβ, Fmoc CH), 4.06 (ap. d, \(J = 4.4 \) Hz, 1H, DHP Hα), 4.31-4.49 (m, DHP Hδ, Fmoc CH₂), 4.58 (dd, \(J = 7.8, 4.4 \) Hz, 1H, DHP Hβ), 4.90 (ap. t, \(J = 6.3 \) Hz, 1H, Ser Hα), 5.04 (s, 2H, COOCH₂Ph), 7.22-7.42 (m, 7H), 7.64 (d, \(J = 7.4 \) Hz, 2H), 7.77 (d, \(J = 7.4 \) Hz, 2H); \(\delta ^{13}C \) NMR (100 MHz, CD₃OD) \(\delta \) 18.1, 51.9, 60.0, 65.2, 66.0, 66.2, 66.6, 71.9, 74.0, 77.3, 78.8, 118.9, 124.2, 126.2, 126.8, 127.1, 127.3, 127.5, 135.2, 140.6, 143.1, 156.7, 168.4, 169.5, 170.2, 171.0. HRMS (+TOF) calcd for C₄₆H₆₂N₃O₁₁(M + H)⁺: 832.4378; obsd: 832.4378.
- **Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-Pro-OBn (48).** 2.6-Lutidine (104 μL, 96 mg, 0.89 mmol, 9.2 equiv.), followed by TBDMSOTf (102 μL, 118 mg, 0.45 mmol, 4.6 equiv.) were added to a solution of the tripeptide (60 mg, 0.10 mmol, 1 equiv.) in CH2Cl2 (2 mL) at 0 °C under N2. The mixture was stirred and warmed to rt overnight, diluted with CH2Cl2 (15 mL), washed with brine (15 mL). The brine layer was extracted further with CH2Cl2 (3 × 10 mL). The organic extracts were combined, filtered through MgSO4 and concentrated. The residue was purified by flash chromatography eluting with 2:1 Hex/EtOAc to give 48 (67 mg, 82 %). Rf 0.38 (2:1 Hex/EtOAc). [α]D25 -32.5º (c 1.0, CHCl3).

1H NMR (400 MHz, CDCl3) δ 0.01 (s, 6H, Si-CH3 × 2), 0.03 (s, 6H, Si-CH3 × 2), 0.85 (s, 9H, SiC(CH3)3), 0.94 (s, 9H, SiC(CH3)3), 1.05 (d, J = 6.2 Hz, 3H, Thr CH3), 1.85-2.25 (m, 4H, Pro 2Hβ, 2Hγ), 3.67 (t, J = 9.1 Hz, 1H, Ser Hβ), 3.76-3.88 (m, 3H, Ser Hβ, Pro 2Hδ), 4.17 (dd, J = 6.7, 2.8 Hz, 1H, Thr Hα), 4.24 (t, J = 7.1 Hz, 1H, Fmoc CH), 4.34 (dd, J = 6.4, 3.1 Hz, 1H, Thr Hβ), 4.35-4.44 (m, 2H, Fmoc CH2), 4.52 (dd, J = 8.3, 3.6 Hz, 1H, Pro Hα), 4.97 (qd, 9.1, 6.8 Hz, 1H, Ser Hα), 5.09 (s, 2H, COOCH2Ph), 5.76 (d, J = 6.8 Hz, 1H, Thr NH), 7.27-7.43 (m, 9H), 7.61 (t, J = 6.7 Hz, 2H), 7.76 (d, J = 7.5 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ -5.6, -5.1, -4.7, 17.9, 18.1, 18.2, 24.5, 25.7, 25.8, 29.3, 47.1, 47.2, 52.1, 59.0, 59.4, 64.2, 66.6, 67.0, 68.2, 119.9, 125.2, 127.1, 127.7, 128.0, 128.1, 128.5, 135.8, 141.3, 143.7, 144.0, 156.2, 169.2, 171.4. HRMS (+TOF) calcd for C46H66N3O8Si2 (M + H)+: 844.4383; obsd: 844.4385.

<table>
<thead>
<tr>
<th>Position</th>
<th>1H (ppm)</th>
<th>Multiplicity (J, Hz)</th>
<th>13C (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(CH3)2 × 2</td>
<td>0.01, 0.03</td>
<td>s</td>
<td>-5.6, -5.1, -4.7</td>
</tr>
<tr>
<td>SiC(CH3)3 × 2</td>
<td>0.85, 0.94</td>
<td>s</td>
<td>17.9, 18.2, 25.7, 25.8</td>
</tr>
</tbody>
</table>

NMR Assignment

- Thr α (1H) 4.17 dd (6.7, 2.8) 59.4
- Thr β (1H) 4.34 dd (6.4, 3.1) 68.2
<table>
<thead>
<tr>
<th>Residue</th>
<th>Atom</th>
<th>δ (ppm)</th>
<th>J (Hz)</th>
<th>δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr γ (3H)</td>
<td>1.05</td>
<td>d (6.2)</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>Thr NH</td>
<td>5.76</td>
<td>d (6.8)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fmoc C=O</td>
<td>-</td>
<td>-</td>
<td>156.2</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH₂</td>
<td>4.35-4.44</td>
<td>m</td>
<td>67.0</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH</td>
<td>4.24</td>
<td>t (7.1)</td>
<td>47.1</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH (4H)</td>
<td>7.27-7.43</td>
<td>m</td>
<td>119.9, 125.1, 125.2, 127.1</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH (2H)</td>
<td>7.61</td>
<td>t (6.7)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fmoc CH (2H)</td>
<td>7.76</td>
<td>d (7.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fmoc C 4°</td>
<td>-</td>
<td>-</td>
<td>141.2, 141.3, 143.7, 144.0</td>
<td></td>
</tr>
<tr>
<td>Residue 2 – Ser-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser C=O</td>
<td>-</td>
<td>-</td>
<td>169.2</td>
<td></td>
</tr>
<tr>
<td>Ser α (1H)</td>
<td>4.97</td>
<td>qd (9.1, 6.8)</td>
<td>52.1</td>
<td></td>
</tr>
<tr>
<td>Ser β (2H)</td>
<td>3.67</td>
<td>m</td>
<td>64.2</td>
<td></td>
</tr>
<tr>
<td>Ser NH (1H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue 3 – Pro-Obn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro C=O</td>
<td>-</td>
<td>-</td>
<td>171.4</td>
<td></td>
</tr>
<tr>
<td>Pro α (1H)</td>
<td>4.52</td>
<td>dd (8.3, 3.6)</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td>Pro β (2H)</td>
<td>1.85-2.25</td>
<td>m</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>Pro γ (2H)</td>
<td>1.85-2.25</td>
<td>m</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>Pro δ (2H)</td>
<td>3.76-3.88</td>
<td>m</td>
<td>47.2</td>
<td></td>
</tr>
<tr>
<td>Bn CH₂</td>
<td>5.09</td>
<td>s</td>
<td>66.6</td>
<td></td>
</tr>
<tr>
<td>Bn C 4°</td>
<td>-</td>
<td>-</td>
<td>135.8</td>
<td></td>
</tr>
<tr>
<td>Bn CH (5)</td>
<td>7.27-7.43</td>
<td>m</td>
<td>127.7, 128.0, 128.1, 128.5</td>
<td></td>
</tr>
</tbody>
</table>

- **Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-trans-3-Hyp(OTBS)-OBn (49)**. To a solution of the tripeptide (173 mg, 0.27 mmol, 1 equiv.) in CH₂Cl₂ (3 mL) at 0 ºC under N₂, were added 2,6-lutidine (439 μL, 405 mg, 3.78 mmol, 13.8 equiv.), then TBDMSOTf (434 μL, 500 mg, 1.89 mmol, 6.9 equiv.). The mixture was stirred and warmed to rt overnight, diluted with CH₂Cl₂ (20 mL), washed with brine (20 mL), and then extracted with CH₂Cl₂ (3 × 15 mL). The organic extracts were combined, filtered through MgSO₄ and concentrated. The residue was purified by flash chromatography eluting with 2:1 Hex/EtOAc to give 49 (242 mg, 91 %). Rf 0.42 (2:1 Hex/EtOAc). [α]D²⁵ -17.4º (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.02 (s, 6H), 0.03 (s, 6H), 0.12 (s, 3H), 0.14 (s, 3H), 0.84 (s, 9H), 0.86 (s, 9H),
0.93 (s, 9H), 1.05 (d, \(J = 6.3 \) Hz, 3H, Thr CH\(_3\)), 1.82-1.92 (m, 1H, 3-Hyp H\(\gamma \)), 2.06-2.18 (m, 1H, 3-Hyp H\(\gamma \)), 3.74 (app. t, \(J = 8.8 \) Hz, 1H, Ser H\(\beta \)), 3.81 (dd, \(J = 9.4, 5.2 \) Hz, 1H, Ser H\(\beta \)), 3.84-3.98 (m, 2H, 3-Hyp H\(\delta \)), 4.18 (dd, \(J = 6.4, 2.9 \) Hz, 1H, Thr H\(\alpha \)), 4.24 (t, \(J = 7.2 \) Hz, 1H, Fmoc CH), 4.26-4.39 (m, 2H, Thr H\(\beta \), 3-Hyp H\(\alpha \)), 4.28-4.36 (m, 2H, 3-Hyp H\(\beta \) and Thr H\(\beta \)), 4.39 (d, \(J = 7.0 \) Hz, 2H, Fmoc CH\(_2\)), 4.97 (td, \(J = 8.0, 5.3 \) Hz, 1H, Ser H\(\alpha \)), 5.06 (d, \(J = 12.3 \) Hz, 1H, COOCH\(_2\)Ph), 5.13 (d, \(J = 12.3 \) Hz, 1H, COOCH\(_2\)Ph), 5.80 (d, \(J = 6.6 \) Hz, 1H, NH Thr), 7.27-7.46 (m, 10H, NH Ser, 4 × Fmoc CH, 5 × COOCH\(_2\)Ph), 7.61 (t, \(J = 6.1 \) Hz, 2H, Fmoc CH), 7.75 (d, \(J = 7.5 \) Hz, 2H, Fmoc CH); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) -5.6, -5.4, -5.1, -5.0, -4.9, -4.7, 17.9, 18.2, 25.7, 25.8, 25.9, 34.0, 45.6, 52.2, 59.3, 64.4, 66.6, 67.0, 68.2, 70.4, 119.9, 125.1, 127.1, 127.7, 127.8, 128.0, 128.3, 128.4, 128.6, 135.8, 141.3, 143.7, 144.0, 169.1, 169.3, 170.4. HRMS (+TOF) calcd for C\(_{52}\)H\(_{79}\)N\(_3\)O\(_9\)Si\(_3\)(M): 974.5196; obsd: 974.5187.

<table>
<thead>
<tr>
<th>Position</th>
<th>(^1)H (ppm)</th>
<th>Multiplicity (J, Hz)</th>
<th>(^{13})C (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(CH(_3))(_2) x 3</td>
<td>0.02, 0.03, 0.12, 0.14</td>
<td>s</td>
<td>-5.6, -5.4, -5.1, -5.0, -4.9, -4.7</td>
</tr>
<tr>
<td>SiC(CH(_3))(_3) x 3</td>
<td>0.84, 0.86, 0.93</td>
<td>s</td>
<td>17.9, 18.1, 25.7, 25.8, 25.9</td>
</tr>
</tbody>
</table>

Residue 1 –Fmoc-Thr-

<p>| Thr C=O | | 170.4 |
| Thr (\alpha) (1H) | 4.18 | dd (6.4, 2.9) | 59.3 |
| Thr (\beta) (1H) | 4.28-4.36 | m | 68.2 |
| Thr (\gamma) (3H) | 1.05 | d (6.3) | 18.3 |
| Thr NH | 5.80 | d (6.6) | |
| Fmoc C=O | - | - | 156.2 |
| Fmoc CH(_2) | 4.39 | d (7.0) | 67.0 |
| Fmoc CH | 4.24 | t (7.2) | 47.1 |
| Fmoc CH (x 4) | 7.28-7.47 | m | 119.9, 125.2, 127.1 |
| Fmoc CH (x 2) | 7.61 | t (6.2) | 127.7, 128.0, 128.2 |
| Fmoc CH (x 2) | 7.75 | d (7.6) | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fmoc C 4°(x 4)</td>
<td>-</td>
<td>-</td>
<td>141.3, 143.7, 144.0</td>
</tr>
<tr>
<td>Residue 2 –Ser-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser C=O</td>
<td>-</td>
<td>-</td>
<td>169.1</td>
</tr>
<tr>
<td>Ser α (1H)</td>
<td>4.97</td>
<td>td (8.0, 5.3)</td>
<td>52.3</td>
</tr>
<tr>
<td>Ser β (2H)</td>
<td>3.74</td>
<td>app. t (8.8)</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td>3.81</td>
<td>dd (9.4, 5.2)</td>
<td></td>
</tr>
<tr>
<td>Ser NH (1H)</td>
<td>7.27-7.46</td>
<td>m</td>
<td>-</td>
</tr>
<tr>
<td>Residue 3 –Pro-OBn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro C=O</td>
<td>-</td>
<td>-</td>
<td>169.3</td>
</tr>
<tr>
<td>Pro α (1H)</td>
<td>4.26-4.39</td>
<td>m</td>
<td>45.6</td>
</tr>
<tr>
<td>Pro β (1H)</td>
<td>4.28-4.36</td>
<td>m</td>
<td>74.2</td>
</tr>
<tr>
<td>Pro γ (2H)</td>
<td>1.82-1.92</td>
<td>m</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>2.06-2.18</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Pro δ (2H)</td>
<td>3.84-3.98</td>
<td>m</td>
<td>68.4</td>
</tr>
<tr>
<td></td>
<td>4.30-4.34</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Bn CH2</td>
<td>5.06</td>
<td>d (12.3)</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>5.13</td>
<td>d (12.3)</td>
<td></td>
</tr>
<tr>
<td>Bn C 4°</td>
<td>-</td>
<td>-</td>
<td>135.6</td>
</tr>
<tr>
<td>Bn CH (5)</td>
<td>7.27-7.46</td>
<td>m</td>
<td>127.7, 128.0, 128.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>128.5</td>
</tr>
</tbody>
</table>

- **Fmoc-**D-Thr-(OTBS)-**D-Ser(OTBS)-cis-4-hyp(OTBS)-OBn (50).** To a solution of the tripeptide (300 mg, 0.48 mmol, 1 equiv.) in CH₂Cl₂ (5 mL) at 0 °C under N₂, were added 2,6-lutidine (761 μL, 702 mg, 6.56 mmol, 13.8 equiv.), then TBDMSOTf (753 μL, 867 mg, 3.28 mmol, 6.9 equiv.). The mixture was stirred and warmed to rt overnight, diluted with CH₂Cl₂ (30 mL), washed with brine (30 mL), and then extracted with CH₂Cl₂ (3 × 25 mL). The organic extracts were combined, filtered through MgSO₄ and concentrated. The residue was purified by flash chromatography eluting with 2:1 Hex/EtOAc to give 50 (460 mg, 99 %). Rᵣ 0.40 (3:1 Hex/EtOAc). [α]₂⁵ -17.4° (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.01-0.14 (Singlets, Si-CH₃ × 6, 18H), 0.84-0.94 (Singlets, SiC(CH₃)₃ × 3, 27H), 1.01 (d, J = 6.2 Hz, 3H, Thr CH₃), 2.11 (dt, J = 12.9, 4.8 Hz, 1H, hyp Hβ), 2.28 (ddd, J = 12.9, 8.3, 5.0 Hz, 1H, hyp Hβ), 3.60 (dd, J = 7.2, 4.1 Hz, 1H, hyp Hδ), 3.63 (app.t, J = 9.2 Hz, 1H, Ser Hβ), 3.82 (dd, J = 9.2, 5.3 Hz, 1H, Ser Hβ), 4.11 (dd, J = 10.2, 5.7 Hz, 1H, hyp Hδ), 4.16 (dd, J = 7.0, 2.9 Hz, 1H, Thr
Hα, 4.24 (t, J = 7.0 Hz, 1H, Fmoc CH), 4.33 (dd, J = 6.4, 2.9 Hz, 1H, Thr Hβ), 4.34-4.43 (m, 3H, Fmoc CH₂, hyp Hγ), 4.62 (dd, J = 8.6, 5.0 Hz, 1H, hyp Hα), 4.96 (ddd, J = 9.4, 8.0, 5.3 Hz, 1H, Ser Hα), 5.05 (d, J = 12.2 Hz, 1H, COOCH₂Ph), 5.10 (d, J = 12.2 Hz, 1H, COOCH₂Ph), 5.70 (d, J = 7.0 Hz, 1H, NH Thr), 7.27-7.43 (m, 10H, NH Ser, 4 × Fmoc CH, 5 × COOCH₂Ph), 7.61 (t, J = 7.0 Hz, 2H, Fmoc CH), 7.75 (d, J = 7.4 Hz, 2H, Fmoc CH); ¹³C NMR (100 MHz, CDCl₃) δ -5.6, -5.4, -5.1, -5.0, -4.9, -4.7, 17.9, 18.2, 25.6, 25.7, 25.8, 38.2, 47.1, 51.8, 55.0, 57.5, 59.4, 64.4, 66.6, 67.0, 68.2, 70.4, 119.9, 125.1, 127.0, 127.7, 127.8, 128.0, 128.3, 128.4, 128.6, 135.8, 141.3, 143.7, 144.0, 156.2, 169.1, 169.3, 170.4. HRMS (+TOF) calcd for C₅₂H₇₉N₃O₉Si₃ (M + H)⁺: 974.5196; obsd: 974.5191.

NMR Assignment

<table>
<thead>
<tr>
<th>Position</th>
<th>¹H (ppm)</th>
<th>Multiplicity (J, Hz)</th>
<th>¹³C (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si(CH₃)₂ x 3</td>
<td>0.00, 0.02, 0.03, 0.05</td>
<td>s</td>
<td>-5.6, -5.4, -5.1, -5.0, -4.9, -4.7</td>
</tr>
<tr>
<td>Si(CH₃)₃ x 3</td>
<td>0.85, 0.93</td>
<td>s</td>
<td>17.9, 25.6, 25.7, 25.8</td>
</tr>
<tr>
<td>Residue 1 - Fmoc-Thr-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr C=O</td>
<td></td>
<td></td>
<td>169.1</td>
</tr>
<tr>
<td>Thr α (1H)</td>
<td>4.16</td>
<td>dd (7.0, 2.9)</td>
<td>59.4</td>
</tr>
<tr>
<td>Thr β (1H)</td>
<td>4.33</td>
<td>dd (6.4, 2.9)</td>
<td>66.2</td>
</tr>
<tr>
<td>Thr γ (3H)</td>
<td>1.01</td>
<td>d (6.2)</td>
<td>18.2</td>
</tr>
<tr>
<td>Thr NH</td>
<td>5.70</td>
<td>d (7.0)</td>
<td></td>
</tr>
<tr>
<td>Fmoc C=O</td>
<td>-</td>
<td>-</td>
<td>156.2</td>
</tr>
<tr>
<td>Fmoc CH₂</td>
<td>4.34-4.43</td>
<td>m</td>
<td>67.0</td>
</tr>
<tr>
<td>Fmoc CH</td>
<td>4.24</td>
<td>t (7.0)</td>
<td>47.1</td>
</tr>
<tr>
<td>Fmoc CH (x 4)</td>
<td>7.27-7.43</td>
<td>m</td>
<td>119.9, 125.1, 127.0</td>
</tr>
<tr>
<td>Fmoc CH (x 2)</td>
<td>7.61</td>
<td>t (7.0)</td>
<td>127.7, 127.8</td>
</tr>
<tr>
<td>Fmoc CH (x 2)</td>
<td>7.75</td>
<td>d (7.4)</td>
<td></td>
</tr>
<tr>
<td>Fmoc C 4° (x 4)</td>
<td>-</td>
<td>-</td>
<td>141.3, 143.7, 144.0</td>
</tr>
<tr>
<td>Residue 2 - Ser-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser C=O</td>
<td>-</td>
<td>-</td>
<td>169.3</td>
</tr>
<tr>
<td>Ser α (1H)</td>
<td>4.96</td>
<td>ddd (9.4, 8.0, 5.3)</td>
<td>51.8</td>
</tr>
<tr>
<td>Residue 3 –Pro-OBn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser β (2H)</td>
<td>3.54-3.68 m dd (9.0, 5.3) 64.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser NH (1H)</td>
<td>7.27-7.43 m -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro α (1H)</td>
<td>4.62 dd (8.6, 5.0) 57.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro β (2H)</td>
<td>2.11 dt (12.9, 4.8) ddd (12.9, 8.3, 5.0) 38.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro γ (1H)</td>
<td>4.34-4.43 m 55.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro δ (2H)</td>
<td>3.82 dd (9.0, 5.3) dd (10.2, 5.7) 70.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bn CH</td>
<td>5.05 d (12.2) d (12.2) 66.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bn C 4°</td>
<td>- - 135.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bn CH (5)</td>
<td>7.27-7.43 m 127.7, 127.8, 128.0, 128.3, 128.4, 128.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-DHP(OTBS)₂-OBn (47).** To a solution of the tripeptide (76 mg, 0.12 mmol, 1 equiv.) in CH₂Cl₂ (3 mL) at 0 °C under N₂, was added 2,6-lutidine (251 μL, 231 mg, 2.16 mmol, 18.4 equiv.), followed by TBDMSOTf (248 μL, 285 mg, 1.08 mmol, 9.2 equiv.). The mixture was stirred and warmed to rt overnight, diluted with CH₂Cl₂ (25 mL), washed with brine (25 mL). The brine was further extracted with CH₂Cl₂ (3 x 20 mL). The organic extracts were combined, filtered through MgSO₄ and concentrated. The residue was purified by flash chromatography eluting with 3:1 Hex/EtOAc to give 47 (95 mg, 74 %). \(R_f \) 0.50 (3:1 Hex/EtOAc). \([\alpha]_D^{25} +6.1^\circ (c 0.90, \text{CHCl}_3)\).

\[^1\text{H} \text{NMR} \ (400 \text{ MHz, CDCl}_3)\ (M = \text{major rotamer}, \ m = \text{minor rotamer}) \delta \ -0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.09, 0.13, 0.16, 0.19, 0.20 \text{ (singlets, 24H, Si(CH}_3\text{)}_2\times4, M, m), 0.83, 0.84, 0.85, 0.87, 0.88, 0.93, 0.95, 0.98 \text{ (singlets, 36H, SiC(CH}_3\text{)}_2\times4, M, m), 1.05 \text{ (d, } J = 6.3 \text{ Hz, 3H, Thr CH}_3\gamma), 3.51 \& 3.74 \text{ (d, } J = 12.6 \text{ Hz, 1H, DHP H}_6, m), 3.72 \ & 3.84 \text{ (d, } J = 10.6 \text{ Hz, 1H, DHP H}_6, M), 3.79 \text{ (d, } J = 6.7 \text{ Hz, 1H, Ser H}_β, M), 4.00 \text{ (dd, } J = 7.7, 3.8 \text{ Hz, 1H, DHP H}_γ, m), 4.04 \text{ (d, } J = 4.3 \text{ Hz, 1H, Ser H}_β, m), 4.10-4.18 \text{ (m, 1H, DHP H}_α, M), 4.17-4.22 \text{ (m, 1H, Thr H}_α, M, m), 4.25 \text{ (t, } J = 7.5 \text{ Hz, 1H, Fmoc CH), 4.31 \text{ (s, 1H, DHP} \text{)}\).
Hβ, M), 4.33 (app. dd, J = 7.3, 4.1 Hz, 1H, Thr Hβ, M), 4.36-4.50 (m, 1H, Ser Hα, m), 4.38 (d, J = 6.8 Hz, 2H, Fmoc CH₂), 4.49 (app. s, 1H, DHP Hγ, M), 4.58 (app. s, DHP Hβ, m), 4.97 (app. q, J = 7.4 Hz, 1H, Ser Hα, M), 5.09 (s, 1H, COOCH₂Ph, M), 5.10 (d, J = 12.7 Hz, 1H, COOCH₂Ph, M), 5.17 (s, 1H, COOCH₂Ph, m), 5.24 (d, J = 12.7 Hz, 1H, COOCH₂Ph, m), 5.78 (d, J = 6.6 Hz, 1H, NH Thr, M), 5.88 (d, J = 5.3 Hz, 1H, NH Thr, m), 7.26-7.40 (m, 7H, 2 × Fmoc CH, 5 × COOCH₂Ph), 7.40 (t, J = 7.5 Hz, 2H, Fmoc CH), 7.49 (d, J = 8.1 Hz, IH, NH Ser, M), 7.52 (d, J = 8.5 Hz, IH, NH Ser, m), 7.60 (d, J = 6.5 Hz, 1H, Fmoc CH), 7.63 (d, J = 6.5 Hz, 1H, Fmoc CH), 7.77 (d, J = 7.5 Hz, 2H, Fmoc CH); ¹³C NMR (100 MHz, CDCl₃) (major/minor rotamer) δ -5.3, -5.2, -5.1, -4.8, -4.7, -4.6, -4.5, 17.1, 18.0, 18.1, 18.2, 18.3, 18.5, 25.7, 25.8 25.9, 26.0, 26.1, 47.4, 52.4, 53.8, 54.0, 54.1, 58.5, 59.5, 63.0, 64.2, 66.5, 66.8, 67.2, 68.2, 68.5, 74.9, 76.8, 80.3, 81.2, 120.1, 125.4, 127.2, 127.3, 127.9, 128.0, 128.1, 128.5, 128.6, 128.8, 135.5, 136.0, 141.5, 143.9, 144.3, 156.4, 169.2, 169.6, 170.2. HRMS (+TOF) calcd for C₅₇H₉₄N₅O₁₀Si₄ (M + H)⁺: 1104.6011; obsd: 1104.6010.

NMR Assignment

<table>
<thead>
<tr>
<th>Position</th>
<th>¹H (ppm)</th>
<th>Multiplicity (J, Hz)</th>
<th>¹³C (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M = major</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m = minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si(CH₃)₂ x 4</td>
<td>-0.01, 0.03, 0.04,</td>
<td>s</td>
<td>-5.3, -5.2, -5.1,</td>
</tr>
<tr>
<td></td>
<td>0.05, 0.07, 0.09,</td>
<td></td>
<td>-4.8, -4.7, -4.6,</td>
</tr>
<tr>
<td></td>
<td>0.13, 0.20, 0.02,</td>
<td></td>
<td>-4.5</td>
</tr>
<tr>
<td></td>
<td>0.07, 0.16, 0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC(CH₃)₃ x 4</td>
<td>0.83, 0.84, 0.85,</td>
<td>s</td>
<td>18.0, 18.1, 18.2,</td>
</tr>
<tr>
<td></td>
<td>0.87, 0.88, 0.93,</td>
<td></td>
<td>18.3, 18.5</td>
</tr>
<tr>
<td></td>
<td>0.95, 0.98</td>
<td></td>
<td>25.7, 25.8, 25.9,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.0, 26.1</td>
</tr>
<tr>
<td>Residue 1 –Fmoc-Thr-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Thr C=O</td>
<td>-</td>
<td>-</td>
<td>169.2</td>
</tr>
<tr>
<td>Thr α</td>
<td>4.17-4.22 (M, m)</td>
<td>m</td>
<td>59.5 M, 58.5 m</td>
</tr>
<tr>
<td>Thr β</td>
<td>4.33</td>
<td>app. dd (7.3, 4.1)</td>
<td>68.5 M, 68.2 m</td>
</tr>
<tr>
<td>Thr γ</td>
<td>1.05</td>
<td>d (6.3)</td>
<td>17.1</td>
</tr>
<tr>
<td>Thr NH</td>
<td>5.78 M</td>
<td>d (6.6)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5.88 m</td>
<td>d (5.3)</td>
<td>-</td>
</tr>
<tr>
<td>Fmoc C=O</td>
<td>-</td>
<td>-</td>
<td>156.4</td>
</tr>
<tr>
<td>Fmoc CH₂</td>
<td>4.38</td>
<td>d (6.8)</td>
<td>67.2</td>
</tr>
<tr>
<td>Fmoc CH</td>
<td>4.25</td>
<td>t (7.5)</td>
<td>47.4</td>
</tr>
<tr>
<td>Fmoc CH 2H</td>
<td>7.26-7.40</td>
<td>m</td>
<td>120.1, 125.4, 127.2, 127.3, 127.9, 128.0, 128.1</td>
</tr>
<tr>
<td>Fmoc CH 2H</td>
<td>7.40</td>
<td>t (7.5)</td>
<td>120.1, 125.4, 127.2, 127.3, 127.9, 128.0, 128.1</td>
</tr>
<tr>
<td>Fmoc CH 1H</td>
<td>7.60</td>
<td>d (6.5)</td>
<td>63.0 m</td>
</tr>
<tr>
<td>Fmoc CH 1H</td>
<td>7.63</td>
<td>d (6.5)</td>
<td>63.0 m</td>
</tr>
<tr>
<td>Fmoc CH 2H</td>
<td>7.77</td>
<td>d (7.5)</td>
<td>63.0 m</td>
</tr>
<tr>
<td>Fmoc C 4°(x 4)</td>
<td>-</td>
<td>-</td>
<td>141.5, 143.9, 144.3</td>
</tr>
<tr>
<td>Residue 2 -Ser-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser C=O</td>
<td>-</td>
<td>-</td>
<td>169.6</td>
</tr>
<tr>
<td>Ser α</td>
<td>4.97 M</td>
<td>app. q (7.4)</td>
<td>52.4 M</td>
</tr>
<tr>
<td></td>
<td>4.36-4.50 m</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Ser β</td>
<td>3.79 M</td>
<td>d (6.7)</td>
<td>64.2 M</td>
</tr>
<tr>
<td></td>
<td>4.04 m</td>
<td>d (4.3)</td>
<td>63.0 m</td>
</tr>
<tr>
<td>Ser NH</td>
<td>7.49 M</td>
<td>d (8.1)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7.52 m</td>
<td>d (8.5)</td>
<td>-</td>
</tr>
<tr>
<td>Residue 3 -DHP-OBn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHP C=O</td>
<td>-</td>
<td>-</td>
<td>170.2</td>
</tr>
<tr>
<td>DHP α</td>
<td>4.10-4.18 M</td>
<td>m</td>
<td>54.0</td>
</tr>
<tr>
<td>DHP β</td>
<td>4.31 M</td>
<td>s</td>
<td>80.3</td>
</tr>
<tr>
<td></td>
<td>4.58 m</td>
<td>s</td>
<td>81.2</td>
</tr>
<tr>
<td>DHP γ</td>
<td>4.49 M</td>
<td>app. s</td>
<td>76.8</td>
</tr>
<tr>
<td></td>
<td>4.00 m</td>
<td>dd (7.7, 3.8)</td>
<td>74.9</td>
</tr>
<tr>
<td>DHP δ</td>
<td>3.72 M, 3.84 M</td>
<td>d (10.6)</td>
<td>54.1 M</td>
</tr>
<tr>
<td></td>
<td>3.51 m, 3.74 m</td>
<td>d (12.6)</td>
<td>54.1 M</td>
</tr>
<tr>
<td>Bn CH₂</td>
<td>5.09 M</td>
<td>s</td>
<td>66.8</td>
</tr>
<tr>
<td></td>
<td>5.10 M</td>
<td>d (12.7)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5.17 m</td>
<td>s</td>
<td>66.5</td>
</tr>
<tr>
<td></td>
<td>5.24 m</td>
<td>d (12.7)</td>
<td>-</td>
</tr>
<tr>
<td>Bn C 4°</td>
<td>-</td>
<td>-</td>
<td>135.5, 136.0</td>
</tr>
<tr>
<td>Bn CH (5)</td>
<td>7.26-7.37</td>
<td>m</td>
<td>128.1, 128.5, 128.6, 128.8</td>
</tr>
</tbody>
</table>
3.4.2 Spectra and HPLC Chromatograms

<table>
<thead>
<tr>
<th>Spectrum Type</th>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR</td>
<td>124</td>
<td>122</td>
</tr>
<tr>
<td>13C NMR</td>
<td>124</td>
<td>123</td>
</tr>
<tr>
<td>1H NMR</td>
<td>125</td>
<td>124</td>
</tr>
<tr>
<td>13C NMR</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>1H NMR</td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td>13C NMR</td>
<td>126</td>
<td>127</td>
</tr>
<tr>
<td>1H NMR</td>
<td>127</td>
<td>128</td>
</tr>
<tr>
<td>13C NMR</td>
<td>127</td>
<td>129</td>
</tr>
<tr>
<td>1H NMR</td>
<td>129</td>
<td>130</td>
</tr>
<tr>
<td>13C NMR</td>
<td>129</td>
<td>131</td>
</tr>
<tr>
<td>1H NMR</td>
<td>131</td>
<td>132</td>
</tr>
<tr>
<td>13C NMR</td>
<td>131</td>
<td>133</td>
</tr>
<tr>
<td>1H NMR</td>
<td>46</td>
<td>134</td>
</tr>
<tr>
<td>13C NMR</td>
<td>46</td>
<td>135</td>
</tr>
<tr>
<td>1H NMR</td>
<td>141a</td>
<td>136</td>
</tr>
<tr>
<td>13C NMR</td>
<td>141a</td>
<td>137</td>
</tr>
<tr>
<td>1H NMR</td>
<td>142</td>
<td>138</td>
</tr>
<tr>
<td>13C NMR</td>
<td>142</td>
<td>139</td>
</tr>
<tr>
<td>1H NMR</td>
<td>145</td>
<td>140</td>
</tr>
<tr>
<td>13C NMR</td>
<td>145</td>
<td>141</td>
</tr>
<tr>
<td>1H NMR</td>
<td>156</td>
<td>142</td>
</tr>
<tr>
<td>13C NMR</td>
<td>156</td>
<td>143</td>
</tr>
<tr>
<td>1H NMR</td>
<td>166</td>
<td>144</td>
</tr>
<tr>
<td>13C NMR</td>
<td>166</td>
<td>145</td>
</tr>
<tr>
<td>1H NMR</td>
<td>168</td>
<td>146</td>
</tr>
<tr>
<td>13C NMR</td>
<td>168</td>
<td>147</td>
</tr>
<tr>
<td>1H NMR</td>
<td>169</td>
<td>148</td>
</tr>
<tr>
<td>13C NMR</td>
<td>169</td>
<td>149</td>
</tr>
<tr>
<td>1H NMR</td>
<td>170</td>
<td>150</td>
</tr>
</tbody>
</table>

HPLC chromatogram of compound 46

<table>
<thead>
<tr>
<th>Spectrum Type</th>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR</td>
<td>141a</td>
<td>135</td>
</tr>
<tr>
<td>13C NMR</td>
<td>141a</td>
<td>136</td>
</tr>
<tr>
<td>1H NMR</td>
<td>142</td>
<td>137</td>
</tr>
<tr>
<td>13C NMR</td>
<td>142</td>
<td>138</td>
</tr>
<tr>
<td>1H NMR</td>
<td>145</td>
<td>139</td>
</tr>
<tr>
<td>13C NMR</td>
<td>145</td>
<td>140</td>
</tr>
<tr>
<td>1H NMR</td>
<td>156</td>
<td>141</td>
</tr>
<tr>
<td>13C NMR</td>
<td>156</td>
<td>142</td>
</tr>
<tr>
<td>1H NMR</td>
<td>166</td>
<td>143</td>
</tr>
<tr>
<td>13C NMR</td>
<td>166</td>
<td>144</td>
</tr>
<tr>
<td>1H NMR</td>
<td>168</td>
<td>145</td>
</tr>
<tr>
<td>13C NMR</td>
<td>168</td>
<td>146</td>
</tr>
<tr>
<td>1H NMR</td>
<td>169</td>
<td>147</td>
</tr>
<tr>
<td>13C NMR</td>
<td>169</td>
<td>148</td>
</tr>
<tr>
<td>1H NMR</td>
<td>170</td>
<td>149</td>
</tr>
</tbody>
</table>
Boc-L-Trp-O'Bu (124) – 1H NMR in CDCl$_3$ at 250 MHz
Boc-\textit{L}-Trp-O'\textit{Bu} (124) – 13C NMR in CDCl$_3$ at 62.5 MHz
Boc-L-Trp(SMe)-O'Bu (125) – 1H NMR in CDCl$_3$ at 400 MHz
Boc-\textit{L}-Trp(SMe)-OtBu (125)—13C NMR in CDCl\textsubscript{3} at 100 MHz
Boc-L-Trp(SO₂Me)-O'Bu (126) – ¹H NMR in CDCl₃ at 400 MHz
Boc-\textit{L}-Trp(SO$_2$Me)-O'\textit{Bu} (126) – 13C NMR in CDCl$_3$ at 100 MHz
H-L-Trp(SO₂Me)-OH (127) 1H NMR in D\textsubscript{2}O at 400 MHz
H-L-Trp(SO₂Me)-OH (127) -¹³C NMR in D₂O at 100 MHz
benson396f in CDCl₃ (400 MHz)
Fmoc-Ala-Trp(SO$_2$Me)-OMe (129). 13C NMR in CDCl$_3$ at 100 MHz
Tetrapeptide 46–¹H NMR in CDCl₃ at 400 MHz
Tetrapeptide 46–13C NMR in CDCl$_3$ at 100 MHz
Tetrapeptide (46)– HPLC chromatogram at 254 nm, 75% EtOAc in Hexanes, 10 mm Econosil, 3 mL min\(^{-1}\) (96% pure)
Boc-4-Hyp-OBn (141a) – 1H NMR in CDCl$_3$ at 400 MHz
Boc-4-Hyp-OBn (141a) – 13C NMR in CDCl$_3$ at 100 MHz
Boc-4-hyp-(OMEM)-OBn (142) – 1H NMR in CDCl$_3$ at 400 MHz
Boc-4-hyp-(OMEM)-OBn (142) – 13C NMR in CDCl$_3$ at 100 MHz
Boc-3-Hyp-OBn (145) – 1H NMR in CDCl$_3$ at 400 MHz
Boc-3-Hyp-OBn (145) – 13C NMR in CDCl$_3$ at 100 MHz
Fmoc-DHP-(OMEM)$_2$-OBn (156) – 1H NMR in CDCl$_3$ at 400 MHz
Fmoc-DHP-(OMEM)_2-OBn (156) – 13C NMR in CDCl$_3$ at 100 MHz
Fmoc-D-Thr-(O'Bu)-D-Ser-(O'Bu)-OMe (166) – 1H NMR in CDCl$_3$ at 400 MHz
Fmoc-D-Thr-(O'Bu)-D-Ser(O'Bu)-OMe (166) – 13C NMR in CDCl$_3$ at 100 MHz
Fmoc-D-Thr-(O'Bu)-D-Ser(O'Bu)-Pro-OBn (168) – 1H NMR in CDCl$_3$ at 400 MHz
Fmoc-\textit{D}-Thr-(O^t\text{Bu})-\textit{D}-Ser(O^t\text{Bu})-Pro-OBn (168) – 13C NMR in CDCl$_3$ at 100 MHz

benson3112b in CDCl$_3$
(100 MHz)
Fmoc-D-Thr-(O'Bu)-D-Ser(O'Bu)-trans-3-Hyp-OBn (169) – 1H NMR in CDCl\textsubscript{3} at 400 MHz
Fmoc-\textit{D}-Thr-(O'Bu)-\textit{D}-Ser(O'Bu)-\textit{trans}-3-Hyp-OBn (169) – 13C NMR in CDCl$_3$ at 100 MHz
Fmoc-\textit{D}-Thr-(\textit{O}^\textit{Bu})-\textit{D}-Ser(\textit{O}^\textit{Bu})-\textit{cis}-4-hyp(\textit{OMEM})-OBn (170)-1H NMR in CDCl$_3$ at 400 MHz
Fmoc-\(D\)-Thr-(O'Bu)-\(D\)-Ser(O'Bu)-\(cis\)-4-hyp(OMEM)-OBn (170).\(^{13}\)C NMR in CDCl\(_3\) at 100 MHz
Fmoc-D-Thr-(O'Bu)-D-Ser(O'Bu)-DHP(OMEM)_2-OBn (167) 1H NMR in CDCl\textsubscript{3} at 400 MHz
Fmoc-D-Thr-(O'Bu)-D-Ser(O'Bu)-DHP(OMEM)_2-OBn (167) - ^13^C NMR in CDCl\textsubscript{3} at 100 MHz
Fmoc-D-Thr-D-Ser-Pro-OBn (172) – 1H NMR in CD$_3$OD at 400 MHz
Fmoc-\textit{D}-Thr-\textit{D}-Ser-Pro-OBn (172) – 13C NMR in CD$_3$OD at 100 MHz
Fmoc-\textit{D}-Thr-\textit{D}-Ser-\textit{trans}-3-Hyp-OBn (173) – 13C NMR in CD$_3$OD at 400 MHz
Fmoc-\textit{D}-Thr-\textit{D}-Ser-\textit{trans}-3-Hyp-OBn (173) – 13C NMR in CD$_3$OD at 100 MHz
Fmoc-D-Thr-D-Ser-cis-4-hyp-OBn (174) – ¹H NMR in CD₃OD at 400 MHz
Fmoc-D-Thr-D-Ser-cis-4-hyp-OBn (174) – 13C NMR in CD$_3$OD at 100 MHz
Fmoc-D-Thr-D-Ser-DHP-OBn (171) \(^1\)H NMR in CD\(_3\)OD at 400 MHz
Fmoc-D-Thr-D-Ser-DHP-OBn (171)-13C NMR in CD$_3$OD at 100 MHz
Fmoc-\(D\)-Thr-(OTBS)-\(D\)-Ser(OTBS)-Pro-OBn (48) – \(^1\)H NMR in CDCl\(_3\) at 400 MHz
Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-Pro-OBn (48) – 13C NMR in CDCl$_3$ at 100 MHz
Fmoc-\textit{D}-Thr-(OTBS)-\textit{D}-Ser(OTBS)-\textit{Pro}-\textit{OBn} (48) – HPLC chromatogram at 254 nm, 30% EtOAc in Hexanes, 10 mm Econosil, 3 mL min\(^{-1}\) (98% pure)
Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-trans-3-Hyp(OTBS)-OBn (49) – 1H NMR in CDCl$_3$ at 400 MHz
Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-trans-3-Hyp(OTBS)-OBn (49) – 13C NMR in CDCl$_3$ at 100 MHz
Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-3-hyp(OTBS)-OBn (49) – HPLC chromatogram at 254 nm, 20% EtOAc in Hexanes, 10 mm Econosil, 3 mL min\(^{-1}\) (97% pure).
Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-cis-4-hyp(OTBS)-OBn (50) - 1H NMR in CDCl$_3$ at 400 MHz
Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-cis-4-hyp(OTBS)-OBn (50) - 13C NMR in CDCl$_3$ at 100 MHz
Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-4-hyp(OTBS)-OBn (50) – HPLC chromatogram at 254 nm, 20% EtOAc in Hexanes, 10 mm Econosil, 3 mL min⁻¹ (97% pure).
Fmoc-\textit{D}-Thr-(OTBS)-\textit{D}-Ser(OTBS)-DHP(OTBS)\textsubscript{2}-OBn (47) – 1H NMR in CDCl\textsubscript{3} at 400 MHz
Fmoc-\textit{D}-Thr-(OTBS)-\textit{D}-Ser(OTBS)-DHP(OTBS)_2-OBn (47) - 13C NMR in CDCl$_3$ at 100 MHz
Fmoc-\(D\)-Thr-(OTBS)-\(D\)-Ser(OTBS)-DHP(OTBS)\(_2\)-OBn (47) – HPLC chromatogram at 254 nm, 14% EtOAc in Hexanes, 10 mm Econosil, 3 mL min\(^{-1}\) (100 % pure).
4.1 THE LINEAR HEPTAPEPTIDES

4.1.1 Overview

According to the retrosynthetic analysis presented in Chapter 2 (reiterated as Scheme 4.1), assembly of the linear heptapeptides involves \([3 + 4]\) fragment condensations. In general, the synthesis of such oligopeptides could be achieved either through stepwise assembly or fragment condensation approaches. In a stepwise approach, the linear precursor is synthesized from one end to the other by adding one amino acid residue at a time to the growing sequence. Fragment condensation involves synthesizing the peptide fragments separately, followed by coupling them in a convergent fashion.

Scheme 4.1. Retrosynthetic analysis of allovroidin and analogs.
4.1.2 The Risk of Epimerization in Fragment Condensation

Having prepared our fragments, we were now ready to assemble the cyclization precursors through segment coupling. In general, segment couplings involving hindered peptides are prone to epimerization via oxazolone formation following acid activation (Scheme 4.2) \textit{i.e.}, when $R_2 = \text{alkyl or peptidyl}$, base promoted enolization of the oxazolone intermediate occurs generating the undesired diastereomer. However, when $R_2 = \text{alkoxy (viz-a-viz, carbamate protected amino acid)}$, then chances of oxazolone formation are low, and if generated, no epimerization occurs since the oxazolone intermediate is chirally stable and undergoes rapid aminolysis to give the desired product.

\textbf{Scheme 4.2.} Racemization through oxazolone.114

![Scheme 4.2. Racemization through oxazolone.](image)

In addition to epimerization, the low coupling rates115 experienced in the coupling of hindered peptide fragments have often led to premature cleavage of base sensitive protecting groups such as Fmoc.116 However, our approach involves activation of non-epimerizable carboxyl components, bearing proline residues at their C-terminus. Furthermore, the emergence of new coupling reagents
(Figure 4.1), racemization suppressants and improved reaction conditions has had a great impact in the coupling of difficult segments.114, 117

Examples of phosphorous based coupling reagents

Examples of uranium/guanidinium-based coupling reagents

Figure 4.1. Selected phosphorous and uronium based coupling reagents

Studies by Carpino and co-workers have demonstrated the effect of various coupling reagents and base on the optical integrity of amino acid residues during peptide bond formation. The model peptide, Cbz-Phe-Val-Pro-NH\textsubscript{2}, utilized by Carpino and co-workers involves coupling between sterically demanding residues thus rendering the Val residue susceptible to epimerization. According to Table 4.1, it can be seen that a combination of an appropriate coupling reagent, base and racemization
suppressant not only improves the yield but also minimizes the undesired racemization. In their investigation, a comparison between HOAt and HOBt as additives during carbodiimide-mediated couplings indicated that HOAt was better than HOBt at minimizing racemization when the reaction was conducted in DMF. For onium-based reagents, epimerization levels were noted to increase in the order of HAPyU < HATU < HBTU < BOP. The best result was obtained when collidine was used as a base.

Table 4.1. Effect of coupling reagent and base during peptide bond formation.118
4.1.3 Execution of the Condensations

We conducted the [3 + 4] fragment condensations between the tetrapeptide amine and the series of four tripeptide acids, using Carpino’s HATU/collidine conditions, affording the corresponding linear heptapeptides in excellent yields (Scheme 4.3). Initial attempts at fragment condensation using PyBroP\(^{119}\) generated the linear heptapeptides in poor yields.

Scheme 4.3. The [3 + 4] fragment condensations.

It should be noted that the four linear heptapeptides were purified by flash column chromatography and analyzed by HPLC. The HPLC chromatograms indicated that the purity of each linear heptapeptide was greater than 90% (see experimental section for the HPLC traces). High resolution mass spectrometry confirmed the identity of each species. The \(^1\)H NMR spectra of the linear heptapeptides were complicated by overlapping of signals, due to interconversion between the numerous conformations that are common to extended peptides in solution and therefore no individual assignments were made at this level.
4.2 THE CYCLIZATIONS

4.2.1 The Importance of Cyclic Peptides

Peptide cyclization is of great importance since it restricts the number of conformations in solution and thereby often enhances receptor binding affinities.\cite{120,122} Also, the absence of ionizable C- and N-termini facilitates the crossing of lipid membranes resulting in better bioavailability necessary for therapeutic applications.\cite{123,124} Furthermore, cyclic peptides have significant therapeutic potential due to their resistance to proteolytic degradation.\cite{125}

Figure 4.2. Examples of cyclic peptide drugs. Somatostatin126 (186) along with hexapeptide analogs (187-194), synthesized by Hirschmann and co-workers.124
4.2.2 Types of Peptide Cyclization

During the synthesis of cyclic peptides, the most challenging step is the cyclization reaction. Although numerous methods for peptide cyclizations have been developed, the intramolecular peptide bond formation remains a greater challenge than the preparation of the linear precursors. Among the various ways described for solution phase synthesis of cyclic peptides include the head to tail and side-chain to side-chain cyclizations (Fig. 4.3). The latter approach may involve formation of disulfide (Cys) or amide bonds (Lys in combination with Asp or Glu) between residue side-chains. The success of the two approaches is dependent on the availability of orthogonally protected linear precursors. Other ways of peptide cyclization are head to side chain and side chain to tail. Some specific examples are given in Schemes 4.4-4.7 for illustration. In general, the choice of a cyclization approach is defined by the target molecule. For instance, during the synthesis of alloviroidin and analogs, we utilized a head to tail cyclization approach as directed by the structure of the cyclopeptides.

Figure 4.3. Examples of peptide cyclization approaches.
Scheme 4.4. Crich and Sasaki’s head to tail cyclization of a pentapeptide\(^{134}\)

![Scheme 4.4. Crich and Sasaki’s head to tail cyclization of a pentapeptide.](image)

Scheme 4.5. Anseth and co-workers’ side chain to tail cyclization on a solid phase\(^{135}\)

![Scheme 4.5. Anseth and co-workers’ side chain to tail cyclization on a solid phase.](image)

Scheme 4.6. Smith and co-workers’ side chain to side chain cyclization on a solid phase\(^{136}\)

![Scheme 4.6. Smith and co-workers’ side chain to side chain cyclization on a solid phase.](image)
Scheme 4.7. Zhang and Tam’s head to side chain cyclization.137

4.2.3 Suppressing Epimerization of the C-Terminal Residue

Since peptide cyclizations are intramolecular reactions, a high dilution of 10^{-3} M or greater is required to suppress the formation of byproducts arising from dimerization and polymerization. Unfortunately, such dilute conditions also imply low concentration of reagents, resulting in sluggish reactions, with competitive peptide decomposition and epimerization compromising the yield and quality of the cyclomonomer.138, 139 During the cyclization of all L-penta- and hexapeptides using 1-hydroxy-7-azabenzotriazole-derived uronium and phosphonium reagents, Ehrlich and co-workers demonstrated that epimerization and cyclodimer formation could be minimized under highly dilute conditions. As demonstrated in Table 4.2, cyclodimer formation was reduced to 2 % when the concentration of 204 was 0.1 mM (Entry 3).133
Table 4.2: Ehrlich and co-workers’ cyclization of all L-pentapeptide.133

Traditionally, the extent of epimerization has been minimized by using azide or DPPA-mediated couplings;140 however, these methods of activation are extremely slow.138, 141, 142 Carbodiimides used in combination with additives such as HOBt, HOAt, and N-hydroxysuccinimide (NHS) that form activated esters have also been utilized to effect peptide cyclizations. These reagents intercept and prevent the formation of an N-acylurea by reacting with the O-acylurea as shown in Scheme 4.8. Carbodiimides have the disadvantage of generating urea precipitates that often slow down peptide couplings.
Scheme 4.8. EDC activation.

Several examples of peptide cyclizations have been reported using EDC/HOBt reagents, as compared to other carbodiimides. The urea formed from an EDC mediated coupling is removed by aqueous extraction. In contrast, the dicyclohexylurea generated during N,N’-dicyclohexylcarbodiimide (DCC) mediated coupling reaction is difficult to remove using the standard aqueous work-up. Other reagents like TBTU and BOP are known to give improved yields for peptide cyclization, but their use is limited due to unacceptable levels of epimerization. The relatively new 1-hydroxy-7-azabenzotriazole HOAt-based reagents have attracted considerable attention as serious alternatives to HOBt-based reagents and the traditional azide methods, which are too slow to be employed in conjunction with N-methyl peptides. The former improve cyclization rates relative to azide couplings in some cases but proceed with high levels of racemization.
4.2.4 Conformational Control to Facilitate Cyclization

Other key factors that dictate the success of a cyclization reaction are the linear precursor sequence and the choice of coupling reagent. This is illustrated by the attempts of Schmidt and Langner to synthesize the all L-isomer of tyrosinase inhibitor cyclo-[Pro-Val-Pro-Tyr].150 According to Scheme 4.9, the carboxy terminus was activated as a pentafluorophenyl ester. Hydrogenolysis of the N-terminal Cbz group was expected to result in spontaneous cyclization. Unfortunately, epimerization of Tyr Cα generated the L, L, L, D tetrapeptide that cyclized more readily than its all L-counterpart, resulting in the isolation of 207 in 31 % yield.

Scheme 4.9. Schmidt and Langner’s C-terminal epimerization of all L residues.150

Schmidt and Langner also demonstrated sequence dependence during cyclization after investigating ring closures at the various possible sites of the pentapeptide cyclo-[Pro-Ala-Ala-Phe-Leu]. According to Fig. 4.4, Schmidt and Langner were able to prepare the cyclopentapeptide in 21% yield after performing ring closure between alanine and phenylalanine residues. Cylization at other possible sites gave rise to mixtures of monomers and dimers or no isolable product. It has also been shown that a linear sequence with D and L amino acids in alternate positions favors cyclization.133, 151-153
The size of the ring to be closed also influences the ease with which an open chain precursor cyclizes. The cyclization of peptides with five residues is often difficult since dimerization occurs easily.154, 155 However, the cyclization of peptides containing seven to nine amino acids is considered much less residue-dependent and favored by the flexibility of the ring systems.127 Small to medium-sized rings have difficulty accommodating the Z geometry necessary for cyclization.156 Furthermore, the ease of cyclization is often enhanced by turn-inducing residues such as glycine, proline or D-amino acids.157-159 In order for a cyclization to occur, the activated linear peptide should adopt a circular conformation to bring the N- and C-termini in close proximity (Scheme 4.10).

Scheme 4.10. Extended and circular conformations of the peptide.

A planar transoid conformation of the peptide bond induces a rigid and extended conformation in the linear precursor making it difficult for cyclomonomer formation.132 Cyclizations involving all D or L peptides is challenging since these precursors prefer to adopt extended
conformations to minimize allylic strain. Various strategies such as modification of the peptide bond or the use of external templates to influence conformational preorganization have been developed to overcome this problem. Ring closure kinetic studies by Daidone and Smith revealed that cyclization of longer peptides is enhanced by intramolecular hydrogen bonding and by the formation of β-sheet structures which bring the two termini close enough to cyclize. Rigid, extended conformations of shorter peptides were attributed to lack of intramolecular hydrogen bonds making cyclization of these peptides almost impossible.

Reverse turns in protein secondary structures have inspired chemists to develop ways of inducing turns in linear peptides to facilitate cyclic peptide synthesis. This can be achieved by introduction of cis peptide bonds in the middle of the linear precursor to mimic β-turns. The presence of N-methylated amino acids in peptides have the same turn inducing effect on the peptide backbone to that of proline.

The use of pseudoprolines derived from serine and threonine as turn-inducers during synthesis of cyclic peptides has been documented by several groups. When incorporated into peptides, pseudoprolines introduce cisoid conformations generating type-VI β-turn structures that favor cyclization.

Scheme 4.11. Jolliffe and co-workers’ synthesis utilizing pseudoprolines as turn inducers.
Studies have revealed that positioning the turn-inducing residue midway along the cyclization precursor could give better results than when it is at the terminal, although it is not possible to capitalize on this phenomenon for all peptide sequences.129, 132

If possible, the cyclization site should not occur between sterically hindered amino acids such as N-methylated, α, α-disubstituted or β-branched residues. If the opportunity exists, cyclization should be engineered to occur between D- and L-residues since this facilitates the reaction.117 Brady and co-workers concluded in their study on the practical synthesis of cyclic peptides that the orientation of the N-terminal side chain along with the orientation of the amino group greatly influence the success of the cyclization.171

Another strategy for directing peptide cyclization involves the use of external templates as reaction cavities to accommodate and cyclize one linear peptide molecule at a time (Scheme 4.12).172 This isolates the peptide from the bulk solution, thereby minimizing chances of polymerization.

\textbf{Scheme 4.12.} van Maarseveen and co-workers’ site isolation mechanism using carbosilane dendrimeric carbodiimide.172
4.2.5 Cyclizations and Deprotections

With the linear heptapeptide fragments in-hand, a prerequisite to the final cyclization is the liberation of the acid and amine functionality of the terminal residues. The Fmoc group in each linear precursor was cleaved by treatment with tris(2-aminoethyl)amine (TAEA) according to Scheme 4.15.96 The presence of the side chain TBS ethers and the carboxyl ethyl ester enabled the purification of the heptapeptide amines by flash chromatography after a careful aqueous workup involving extraction from phosphate buffer (pH 5.5). We then hydrolyzed the ethyl ester with tetrabutylammonium hydroxide (TBAH) and subjected the deprotected heptapeptide amino acids to a phosphate buffer workup again before attempting cyclizations.173 Our early attempts to hydrolyze the ethyl ester using potassium trimethylsilylolate174 at low temperatures were plagued by silyl ether cleavage and incomplete ethyl ester removal. Extensive studies by Abdel-Magid and co-workers found the use of tetrabutylammonium hydroxide suitable for hydrolysis of polypeptide esters with minimum racemization risks as compared to alkali metal hydroxides (Scheme 4.13).173

\textbf{Scheme 4.13.} Abdel-Magid and co-workers hydrolysis of polypeptide esters.

\begin{center}
\includegraphics[scale=0.5]{Scheme_4.13.png}
\end{center}

The progress of the hydrolysis reaction involving the proline analog was initially followed by HPLC analysis. Our choice of these conditions was guided by the final stages of Uto and Wipf's trunkamide A synthesis, in which a single TBS-protected serine residue was employed (Scheme 4.14).
We then conducted our cyclizations under the HATU/DIEA-mediated coupling conditions. In each case, a solution of the linear precursor and the base were slowly added to a mixture of the coupling reagent and the base over a period of two hours via a syringe pump, to ensure high dilution. Indeed, slower addition afforded much cleaner reactions than when the addition was performed rapidly. We also compared DMF and dichloromethane as solvents for the cyclizations using a single syringe pump. Dichloromethane gave superior chemical yield, and also shortened the cyclization time from 48 h to 24 h. A similar solvent influence on cyclization was observed during the synthesis of aureobasidin A by Kurome and co-workers. This phenomenon has been explained in terms of the solvation effect of the linear precursor whereby peptide interaction with the solvent through hydrogen bonding leads to either a circular or extended conformation.

It should be noted that cyclization of the 3-Hyp linear heptapeptide was more difficult compared to the other three and therefore the best yield was obtained upon conducting the reaction under high dilution using a dual syringe pump. With the dual syringe pump, the coupling reagent and the linear heptapeptide were independently added slowly to a solution of the base over a period of 2 h.
This parallel addition ensured that the concentration of the peptide remained constant and that the coupling reagent was active during peptide bond formation.

We concluded our syntheses by performing a global desilylation with tetrabutylammonium fluoride (TBAF), buffered with ammonium fluoride, affording the desired cycloheptapeptides with the recorded yields after reversed phase HPLC purification.

Scheme 4.15. Cyclizations and global desilylation.

The major problem encountered following the TBAF-mediated cleavage of the silyl ethers was the removal of the excess reagent and materials derived from TBAF that often require tedious aqueous workups to be eliminated. Neither an aqueous workup, nor reversed phase HPLC purification, were effective at removal of tetrabutylammonium ion salts from the silyl ether cleavage reaction and the “hangover” from ethyl ester hydrolysis with TBAH. The other challenge was posed by the polarity of our cyclic compounds since we would lose considerable amounts of the desired compounds during an aqueous workup, compromising our yields.
We were able to overcome this problem in the analogs by applying a workup procedure developed by Kishi and Kaburagi178 who removed tetrabutylammonium salts at the conclusion of their synthesis of halichondrin. Their protocol involves the simultaneous addition of a commercially available sulfonic acid resin and calcium carbonate, followed by filtration (Fig. 4.5).178 The resin/tetrabutylammonium salts, calcium fluoride and calcium carbonate are insoluble in THF and therefore can be removed by filtration, whereas water and TBSF are removed by evaporation leaving behind the desired alcohol (R-OH). However, the application of this protocol to the DHP containing cyclopeptide led to considerable loss of the product since we only recovered trace amounts of the natural product. We presume that the natural product could be either sticking to the resin or undergoing decomposition. Attempts to substitute CsF for tetrabutylammonium fluoride to deprotect the silyl ethers met with failure, \textit{i.e.,} the reaction was sluggish and only generated decomposed products. Our hope was that this reagent would effect the deprotection without purification issues encountered with the $^\text{t} \text{Bu}_4\text{N}^+$ cation.

\textbf{Scheme 4.16.} Kaburagi and Kishi’s synthesis of halichondrin.178
Figure 4.5. TBS deprotection and purification protocol.178

A crude 1H NMR analysis of our deprotected cycloheptapeptides, after applying Kishi’s workup procedure, revealed less contamination by the TBAF derived materials, allowing for further purification by reversed phase HPLC.

From our results, we observed a significant variation in the cyclization yields for the four linear heptapeptides (Scheme 4.15). Cyclization involving the hyp-containing precursor gives the best yield. In contrast, the DHP heptapeptide provided the lowest yield. This trend suggests that the regio-, stereochemistry and degree of proline hydroxylation influence the backbone conformation which has a direct influence on cyclization. It appears that the \textit{cis-trans} prolyl peptide bond isomerization favors \textit{trans} for the DHP heptapeptide with hyp favoring the circular \textit{cis} conformation required for cyclization. Also, the presence of hydroxyl groups on the pyrrolidine ring influence the structure of proline residues which is directly linked to the relative stability of the \textit{cis-trans} ratios across the prolyl peptide bond.
4.2.6 Summary/Conclusions

In summary, the first total synthesis of alloviroidin (3) in trace amounts, along with that of three analogs with L-proline, trans-3-hydroxyproline or cis-4-hydroxyproline residue substituting for 2,3-trans-3,4-trans-dihydroxyproline in the natural product have been achieved via solution-phase head-to-tail cyclization. The linear heptapeptides were prepared via [3+4] fragment condensations between the series of four tripeptide acids 171-174 and the tetrapeptide amine 130. Fragment condensations involving the tripeptide acids containing either cis-4-hydroxyproline or 2,3-trans-3,4-trans-dihydroxyproline residues were not as high yielding as for the proline or trans-3-hydroxyproline containing tripeptides due to the sterically hindered nature of the activated carboxyl termini residues.

We generated our target cyclopeptides by initiating the cyclizations using HATU. A dual syringe pump was used for slower addition of the linear precursors and the coupling reagent during the cyclization step. Cyclizations to produce the analogs containing L-proline or hyp residues proceeded in higher yields as compared to the 3-Hyp analog and the natural product. This trend is presumed to be influenced by the backbone conformation in the linear heptapeptide precursors with 3-Hyp analog having the least favorable conformation vis-à-vis.

Although the tert-butyldimethylsilyl group is one of the most utilized protecting group for alcohols, its application in peptide chemistry remains uncommon. In most cases, side chains of residues such as serine and threonine have been protected as tert-butyl ethers, especially in solid-phase peptide synthesis where the acid labile linker and side-chain protecting groups are cleaved in a single step. The successful utilization of TBS ethers in our synthesis demonstrates their application to peptide sequences with acid sensitive residues. The buffered conditions used for their global deprotection were compatible with the γ-hydroxylated dihydroxyleucine residue that would easily lactonize under standard acidic deprotection conditions.
4.3 EXPERIMENTAL SECTION

4.3.1 General Methods: As for Chapters 2 and 3 with the following additions and modifications:

NMR spectra were recorded on a Bruker AV-400-liquid or a Varian Inova-500 or a Varian system 700 spectrometer. Disodium 3-trimethylsilyl-1-propane-sulfonate (DSS) was used to reference 1H NMR spectra run in 90% H$_2$O/10% D$_2$O.

Preparation of the phosphate buffer solution (pH 5.5, 50 mM): Monosodium phosphate (0.66 g) and disodium phosphate (0.06 g) were added to 100 mL of deionized water.

- **Pro heptapeptide 180.** Diisopropylethylamine (8 mg, 11 μL, 0.06 mmol, 1.2 equiv.) and HATU (21 mg, 0.05 mmol, 1.0 equiv.) were added to a solution of the tetrapeptide amine (40 mg, 0.05 mmol, 1.0 equiv.) and tripeptide acid (38 mg, 0.05 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (2 mL) at 0 ºC under N$_2$. The mixture was stirred and warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 4:1 EtOAc/Hex to give 180 (69 mg, 87 %). R_f 0.45 (4:1 EtOAc/Hex); $[\alpha]_{D}^{25}$ -33.7º (c 1.0, CHCl$_3$). HRMS (+TOF) calcd for C$_{73}$H$_{115}$N$_8$O$_{16}$Si$_3$ (M + H)$^+$: 1475.7454; obsd: 1475.7467. The purity of the heptapeptide was checked by HPLC on an Econosil silica column (10 mm diameter, 250 mm long) and a flow rate of 3 mL min$^{-1}$. The isocratic method used was 75% EtOAc in Hexanes. The heptapeptide was detected by UV absorption at 218 and 254 nm, R_T 21 min.

- **3-Hyp heptapeptide 181.** Diisopropylethylamine (13 mg, 17 μL, 0.10 mmol, 1.2 equiv.) and HATU (32 mg, 0.09 mmol, 1.0 equiv.) were added to a solution of the tetrapeptide amine (63 mg, 0.09 mmol, 1.0 equiv.) and tripeptide acid (75 mg, 0.09 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (3 mL) at 0 ºC under N$_2$. The mixture was stirred and warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 2:1 EtOAc/Hex to give 181 (99 mg, 73 %). R_f 0.40 (2:1 EtOAc/Hex);

- **4-hyp-heptapeptide 182.** Diisopropylethylamine (16 mg, 20 μL, 0.12 mmol, 1.2 equiv.) and HATU (46 mg, 0.12 mmol, 1.0 equiv.) were added to a solution of the tetrapeptide amine (90 mg, 0.12 mmol, 1.0 equiv.) and tripeptide acid (108 mg, 0.12 mmol, 1.0 equiv.) in CH₂Cl₂ (4 mL) at 0 ºC under N₂. The mixture was stirred and warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 2:1 EtOAc/Hex to give 182 (125 mg, 64 %). R_f 0.40 (2:1 EtOAc/Hex); [α]D^25 -12.3° (c 1.0, CHCl₃). HRMS (+TOF) calcd for C₇₀H₁₂₀N₈O₁₇SSi₄ (M + H)^+: 1605.8268; obsd: 1605.8259. The purity of the heptapeptide was checked by HPLC on an Econosil silica column (10 mm diameter, 250 mm long) and a flow rate of 3 mL min⁻¹. The isocratic method used was 66% EtOAc in Hexanes. The heptapeptide was detected by UV absorption at 218 and 254 nm, R_T 15 min.

- **DHP heptapeptide 179.** Diisopropylethylamine (8 mg, 10 μL, 0.06 mmol, 1.5 equiv.) and HATU (16 mg, 0.04 mmol, 1.0 equiv.) were added to a solution of the tetrapeptide amine (30 mg, 0.04 mmol, 1.0 equiv.) and tripeptide acid (42 mg, 0.04 mmol, 1.0 equiv.) in CH₂Cl₂ (2 mL) at 0 ºC under N₂. The mixture was stirred and warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 1:1 EtOAc/Hex, then 2:1 EtOAc/Hex to give 179 (46 mg, 65 %). R_f 0.37 (1:1 EtOAc/Hex); [α]D^25 -18.5° (c 0.85, CHCl₃). HRMS (+TOF) calcd for C₇₃H₁₁₅N₈O₁₆SSi₃ (M + H)^+: 1735.9042; obsd: 1735.9079. The purity of the heptapeptide was checked by HPLC on an Econosil silica column (10 mm diameter, 250 mm long) and a flow rate of 3 mL min⁻¹. The isocratic method used was 50% EtOAc in Hexanes. The heptapeptide was detected by UV absorption at 218 and 254 nm, R_T 14 min.
• cyclo[-D-Thr-D-Ser-Pro-Ala-Trp(SO$_2$Me)-dihyLeu-Val] (43). Tris-(2-aminoethyl)amine (48 mg, 49 μL, 0.329 mmol, 16.2 equiv.) was added to a solution of 180 (30 mg, 0.020 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (2 mL) at rt under N$_2$. The mixture was stirred for 30 min, diluted with EtOAc (15 mL) and washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc (4 × 15 mL). The organic extracts were combined, washed with brine (10 mL), filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 4:1 EtOAc/Hex, then 9:1 CH$_2$Cl$_2$/CH$_3$OH to give the amine (25 mg, 100 %) as a colorless foam.

This amine (25 mg, 0.020 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (1 mL) and H$_2$O (0.5 mL) and treated with tetrabutylammonium hydroxide (72 μL, 40 % wt in H$_2$O, 71 mg, 0.111 mmol, 5.5 equiv.) at 0 ºC. The reaction mixture was stirred for 14 h, then diluted with CHCl$_3$ (40 mL) and washed with a phosphate buffer solution (pH 5.5, 15 mL). The aqueous layer was extracted further with EtOAc (4 × 15 mL). The organic extracts were combined, concentrated and used in the cyclization reaction without further purification (recovered 35 mg, theoretical yield 24 mg).

Diisopropylethylamine (5 μL, 3.8 mg, 0.029 mmol, 1.5 equiv.) was added to a solution of the crude linear amino acid heptapeptide (max., 0.020 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (8 mL). This solution was added over 2 h via a syringe pump to a stirring mixture of HATU (37 mg, 0.098 mmol, 5.0 equiv.) and DIEA (5 μL, 3.8 mg, 0.029 mmol, 1.5 equiv.) in CH$_2$Cl$_2$ (12 mL) at 0 ºC under N$_2$. The mixture was stirred for 1 h at 0 ºC, warmed to rt, and stirred for 2 d. This mixture was concentrated. The residue was diluted with EtOAc (30 mL), washed successively with 10 % citric acid, sat’d NaHCO$_3$ and brine (15 mL each). The aqueous layers were extracted further with EtOAc (3 × 15 mL). The organic extracts were combined, filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 15:1 CHCl$_3$/CH$_3$OH to give the cyclopeptide (15 mg, 65 %) as a colorless solid.
The TBS protected cyclopeptide (15 mg, 0.012 mmol, 1.0 equiv.) was dissolved in THF (1 mL) and cooled to 0 °C. This solution was treated with NH$_4$F (4.6 mg, 0.124 mmol, 10 equiv.) and TBAF (62 μL, 1M solution in THF, 0.062 mmol, 5.0 equiv.). The mixture was stirred at 0 °C for 16 h, diluted with MeOH (3 mL), followed by the addition of CaCO$_3$ (66 mg) and DOWEX 50WX8-400 H$^+$ resin (200 mg). Stirring at this temperature was continued for 1 h and the mixture filtered through a pad of Celite$^{\text{TM}}$, rinsing thoroughly with methanol (30 mL). The filtrate was concentrated and the residue purified using RP-HPLC, eluting with MeCN and H$_2$O. The gradient method used was as follows (% acetonitrile in H$_2$O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min. The cyclopeptide was detected by UV absorption at 218 and 254 nm. The relevant fractions were combined and lyophilized to give 43 as a colorless solid (4 mg, 40 %). MALDI-TOF (+TOF) calcd for C$_{38}$H$_{56}$N$_8$O$_{13}$S(M + Na)$^+$: 887.359; obsd: 887.397.

- **cyclo-[D-Thr-D-Ser-3-Hyp-Ala-Trp(SO$_2$Me)-dihyLeu-Val]** (44). Tris-(2-aminoethyl)amine (28 mg, 29 μL, 0.192 mmol, 16.2 equiv.) was added to a solution of 181 (19 mg, 0.012 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (2 mL) at rt under N$_2$. The mixture was stirred for 30 min, diluted with EtOAc (15 mL) and washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc (4 × 15 mL). The organic extracts were combined, washed with brine (10 mL), filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 4:1 EtOAc/Hex, then 9:1 CH$_2$Cl$_2$/CH$_3$OH to give the amine (15 mg, 94%) as a colorless foam.

The amine (14 mg, 0.010 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (1 mL) and H$_2$O (0.5 mL) and treated with tetrabutylammonium hydroxide (36 μL, 40 % wt in H$_2$O, 36 mg, 0.056 mmol, 5.5 equiv.) at 0 °C. The reaction mixture was stirred for 14 h, then diluted with CHCl$_3$ (30 mL) and washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc
The organic extracts were combined, concentrated and used in the cyclization reaction without further purification (recovered 22 mg, theoretical yield 13 mg).

A solution of the linear amino acid heptapeptide (13 mg, 0.010 mmol, 1.0 equiv.) in DMF (3 mL) and transferred into a syringe. A solution of HATU (14 mg, 0.038 mmol, 4.0 equiv.) in DMF (3 mL) was transferred into a second syringe. These two solutions were added over 2 h via a dual syringe pump to a stirring mixture of HATU (4 mg, 0.010 mmol, 1.0 equiv.) and DIEA (5 μL, 3.7 mg, 0.029 mmol, 3.0 equiv.) in DMF (3 mL) at 0 °C under N₂. The mixture was stirred for 1 h at 0 °C, warmed to rt, and stirred for 3 d. This mixture was diluted with EtOAc (25 mL), washed with 10 % citric acid (12 mL). The aqueous layer was extracted further with EtOAc (3 × 10 mL). The organic extracts were combined, washed with sat’d NaHCO₃ and brine (12 mL each), filtered through MgSO₄ and concentrated. The residue was semipurified by flash chromatography eluting with 2:1 EtOAc/Hex, then 9:1 CH₂Cl₂/CH₃OH to give the cycloheptapeptide (12 mg, contaminated with tetrabutylammonium salts) as a colorless solid.

The TBS protected cyclopeptide (12 mg, 0.009 mmol, 1.0 equiv.) was dissolved in THF (1 mL) and cooled to 0 °C. This solution was treated with NH₄F (4 mg, 0.125 mmol, 14 equiv.) and TBAF (63 μL, 1M solution in THF, 0.063 mmol, 7.0 equiv.). The mixture was stirred at 0 °C for 16 h, diluted with MeOH (3 mL), followed by the addition of CaCO₃ (66 mg) and DOWEX 50WX8-400 H⁺ resin (200 mg). Stirring at this temperature was continued for 1 h and the mixture filtered through a pad of Celite™, rinsing thoroughly with methanol (30 mL). The filtrate was concentrated and the residue purified using RP-HPLC, eluting with MeCN and H₂O. The gradient method used was as follows (% acetonitrile in H₂O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min. The cyclopeptide was detected by UV absorption at 218 and 254 nm. The relevant fractions were
combined and lyophilized to give 44 as a colorless solid (1.6 mg, 20 %). MALDI-TOF (+TOF) calcd for C_{38}H_{56}N_{8}O_{14}S(M + Na)^+: 903.353; obsd: 903.389.

- **cyclo[-D-Thr-D-Ser-4-hyp-Ala-Trp(SO\textsubscript{2}Me)-dihyLeu-Val]** (45). *Tris*(2-aminoethyl)amine (22 mg, 23 μL, 0.151 mmol, 16.2 equiv.) was added to a solution of 182 (15 mg, 0.009 mmol, 1.0 equiv.) in CH\textsubscript{2}Cl\textsubscript{2} (2 mL) at rt under N\textsubscript{2}. The mixture was stirred for 30 min, diluted with EtOAc (15 mL) and washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc (4 × 10 mL). The organic extracts were combined, washed with brine (10 mL), filtered through MgSO\textsubscript{4} and concentrated. The residue was purified by flash chromatography eluting with 4:1 EtOAc/Hex, then 9:1 CH\textsubscript{2}Cl\textsubscript{2}/CH\textsubscript{3}OH to give the amine (12 mg, 100 %) as a colorless foam.

The amine (12 mg, 0.009 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (1 mL) and H\textsubscript{2}O (0.5 mL) and treated with tetrabutylammonium hydroxide (31 μL, 40 % wt in H\textsubscript{2}O, 31 mg, 0.048 mmol, 5.5 equiv.) at 0 °C. The reaction mixture was stirred for 14 h, then diluted with CHCl\textsubscript{3} (40 mL) and washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc (3 × 10 mL). The organic extracts were combined, concentrated and used in the cyclization reaction without further purification (recovered 20 mg, theoretical yield 11 mg).

Diisopropylethylamine (2.2 μL, 1.5 mg, 0.024 mmol, 1.5 equiv.) was added to a solution of the crude linear amino acid heptapeptide (11 mg, 0.008 mmol, 1.0 equiv.) in CH\textsubscript{2}Cl\textsubscript{2} (4 mL). This solution was added over 2 h via a syringe pump to a stirring mixture of HATU (15 mg, 0.041 mmol, 5.0 equiv.) and DIEA (2.2 μL, 1.5 mg, 0.024 mmol, 1.5 equiv.) in CH\textsubscript{2}Cl\textsubscript{2} (4 mL) at 0 °C under N\textsubscript{2}. The mixture was stirred for 1 h at 0 °C, warmed to rt, and stirred for 2 d. This mixture was concentrated, diluted with EtOAc (20 mL) and washed with 10 % citric acid. The aqueous layer was extracted further with EtOAc (3 × 10 mL). The organic extracts were combined, washed with sat’d NaHCO\textsubscript{3} and brine (10 mL each),
filtered through MgSO$_4$ and concentrated. The residue was purified by flash chromatography eluting with 15:1 CHCl$_3$/CH$_3$OH to give the cyclopeptide (15 mg, the theoretical yield is 10 mg, contaminated with tetrabutylammonium salts) as a colorless solid.

The TBS protected cyclopeptide (10 mg, 0.007 mmol, 1.0 equiv.) was dissolved in THF (1 mL) and cooled to 0 ºC. This solution was treated with NH$_4$F (3.9 mg, 0.105 mmol, 14 equiv.) and TBAF (52 µL, 1M solution in THF, 0.053 mmol, 7.0 equiv.). The mixture was stirred at 0 ºC for 16 h, diluted with MeOH (3 mL), followed by the addition of CaCO$_3$ (66 mg) and DOWEX 50WX8-400 H$^+$ resin(200 mg). Stirring at this temperature was continued for 1 h and the mixture filtered through a pad of Celite$^\text{TM}$, rinsing thoroughly with methanol (30 mL). The filtrate was concentrated and the residue purified using RP-HPLC, eluting with MeCN and H$_2$O. The gradient method used was as follows (% acetonitrile in H$_2$O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min.

The cyclopeptide was detected by UV absorption at 218 and 254 nm. The relevant fractions were combined and lyophilized to give 44 as a colorless solid (2.2 mg, 31%). MALDI-TOF (+TOF) calcd for C$_{38}$H$_{56}$N$_8$O$_{14}$S(M + Na)$^+$: 903.353; obsd: 903.400.

- **cyclo[-D-Thr-D-Ser-DHP-Ala-Trp(SO$_2$Me)-dihyLeu-Val]** (3). Tris-(2-aminoethyl)amine (21 µL, 20 mg, 0.140 mmol, 16.2 equiv.) was added to a solution of 179 (15 mg, 0.009 mmol, 1.0 equiv.) in CH$_2$Cl$_2$ (2 mL) at rt under N$_2$. The mixture was stirred for 30 min, diluted with EtOAc (15 mL) and washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc (4 × 10 mL). The mixture was stirred for 30 min, diluted with EtOAc (15 mL), washed with brine and a phosphate buffer solution (pH 5.5) (10 mL each). The aqueous layers were extracted further with EtOAc (4 × 10 mL). The organic extracts were combined, filtered through MgSO$_4$ and
concentrated. The residue was purified by flash chromatography eluting with 2:1 EtOAc/Hex, then 9:1 CH₂Cl₂/CH₃OH to give the amine (11 mg, 84%) as a colorless foam.

The above amine (11 mg, 0.0073 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (1 mL) and H₂O (0.5 mL) and treated with tetrabutylammonium hydroxide (25 μL, 0.040 mmol, 5.5 equiv. 40% wt in H₂O) at 0 ºC. The reaction mixture was stirred for 14 h, then diluted with CHCl₃ (25 mL) and washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc (4 × 10 mL). The organic extracts were combined, concentrated and used in the cyclization reaction without further purification (theoretical yield is 10 mg, recovered 20 mg contaminated with tetrabutylammonium salts).

A solution of the linear amino acid heptapeptide (10 mg, 0.0067 mmol, 1.0 equiv.) in DMF (2.3 mL) and transferred into a syringe. A solution of HATU (10 mg, 0.0263 mmol, 3.9 equiv.) in DMF (2.3 mL) was transferred into a second syringe. These two solutions were added over 2 h via a dual syringe pump to a stirring mixture of HATU (3 mg, 0.0079 mmol, 1.1 equiv.) and DIEA (3.3 μL, 2.6 mg, 0.0202 mmol, 3.0 equiv.) in DMF (2.3 mL) at 0 ºC under N₂. The mixture was stirred and warmed to rt over 3 d and diluted with EtOAc (30 mL), washed successively with 10% citric acid, satd NaHCO₃ and brine (15 mL each). The aqueous layers were extracted further with EtOAc (3 × 15 mL). The organic extracts were combined, filtered through MgSO₄ and concentrated. The residue was semipurified by flash chromatography eluting with 2:1 EtOAc/Hex, then 9:1 CH₂Cl₂/CH₃OH to give the cycloheptapeptide (5 mg, 55%, contaminated with tetrabutylammonium salts) as a colorless solid. Rf 0.33 (9:1 CH₂Cl₂/CH₃OH).

The TBS protected cyclopeptide (4 mg, 0.0027 mmol, 1.0 equiv.) was dissolved in THF (1 mL) and cooled to 0 ºC. This solution was treated with NH₄F (3.4 mg, 0.1020 mmol, 38 equiv.) and TBAF (51 μL, 0.051 mmol, 19 equiv. 1M solution in THF). The mixture was stirred at 0 ºC for 16 h, diluted with
THF (3 mL), followed by the addition of CaCO₃ (138 mg) and H⁺ DOWEX 50WX8-400 (414 mg). Stirring at this temperature was continued for 1 h and the mixture filtered through a pad of Celite™, rinsing thoroughly with methanol (8 mL). The filtrate was concentrated and the residue purified using RP-HPLC, eluting with MeCN and H₂O. Purification of the final cyclopeptides utilized RP-HPLC on an Econosil C-18 column (10 mm diameter, 250 mm long) and a flow rate of 3 mL min⁻¹. The gradient method used was as follows (% acetonitrile in H₂O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min. The cyclopeptide was detected by UV absorption at 218 and 254 nm. The relevant fractions were combined and lyophilized to give trace amounts of 3 as a colorless solid. MALDI-TOF (+TOF) calcd for C₃₈H₅₆N₈O₁₅S(M + Na)⁺: 919.348; obsd: 919.399.

4.3.2 Spectra and HPLC Chromatograms

HPLC chromatogram of compound 180 ... 203
HPLC chromatogram of compound 181 ... 205
HPLC chromatogram of compound 182 ... 207
HPLC chromatogram of compound 179 ... 209
HPLC chromatogram of compound 179 ... 210
HPLC chromatogram of compound 43 ... 213
HPLC chromatogram of compound 44 ... 215
HPLC chromatogram of compound 45 ... 217

Monitoring the hydrolysis of ethyl ester using tetrabutylammonium hydroxide ...

HPLC chromatogram of compound 3 ... 218
Pro heptapeptide (180)-1H NMR in CDCl$_3$ at 400 MHz
Proheptapeptide (180)- HPLC chromatogram at 254 nm, 75% EtOAc in Hexanes, 10 mm Econosil silica column, 3 mL min\(^{-1}\) (99 % pure).
3-Hyp heptapeptide (181)- 1H NMR in CDCl$_3$ at 400 MHz
3-Hyp heptapeptide (181)- HPLC chromatogram at 254 nm, 66% EtOAc in Hexanes, 10 mm Econosil silica column, 3 mL min$^{-1}$ (94 % pure).
hyp-heptapeptide (182)-1H NMR in CDCl$_3$ at 400 MHz
hyp heptapeptide (182)- HPLC chromatogram at 254 nm, 66% EtOAc in Hexanes, 10 mm Econosil silica column, 3 mL min⁻¹ (93 % pure).
DHP heptapeptide (179) - 1H NMR in CDCl$_3$ at 400 MHz
DHP heptapeptide (179) – HPLC chromatogram at 254 nm, 50 % EtOAc in Hexanes, 10 mm Econosil silica column, 3 mL min⁻¹ (90 % pure).
Monitoring the Hydrolysis of Ethyl Ester using Tetrabutylammonium hydroxide

HPLC chromatogram of starting material at 218 nm, MeCN/H₂O, 4.6 mm Econosil C-18 column, 0.6 mL min⁻¹

![HPLC Chromatogram of Starting Material](image)

HPLC chromatogram of the reaction mixture after 6 h at 218 nm, MeCN/H₂O, 4.6 mm Econosil C-18 column, 0.6 mL min⁻¹

![HPLC Chromatogram of Reaction Mixture](image)
HPLC chromatogram of the reaction mixture after 9 h at 218 nm, MeCN/H$_2$O, 4.6 mm Econosil C-18 column, 0.6 mL min$^{-1}$
Proline Analog in 90% H2O/10% D2O (700 MHz, pH = 3.0, watergate suppression)
HPLC chromatogram of proline analog (43) at 254 nm, (% acetonitrile in H₂O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min, 4.6 mm Econosil C-18 column, 1 mL min⁻¹.
3-Hyp analog (44) - 1H NMR in 90% H$_2$O/10% D$_2$O at 700 MHz (pH 3.0)
HPLC chromatogram of 3-Hyp analog (44) at 254 nm, (% acetonitrile in H₂O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min, 4.6 mm Econosil C-18 column, 1 mL min⁻¹.
4-hyp analog (45) - 1H NMR in 90% H$_2$O/10% D$_2$O at 700 MHz (pH 3.0)
HPLC chromatogram of 4-hyp analog (45) at 254 nm, (% acetonitrile in H₂O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min, 4.6 mm Econosil C-18 column, 1 mL min⁻¹

HPLC chromatogram of alloviroidin (3) at 254 nm, (% acetonitrile in H₂O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min, 4.6 mm Econosil C-18 column, 1 mL min⁻¹
5.1 **NMR, CD AND X-RAY STUDIES.**

Circular dichroism1 and NMR studies, as well as actin binding assays, have been used to study the conformation of phallotoxin and virotoxin analogs.179, 180 The Trp\textsubscript{6} indole in phallloidin and virotoxins constitutes the chromophoric system responsible for the Cotton effects in the 250-320 nm range. Faulstich and coworkers1 observed that the circular dichroism spectrum of phallloidin had two positive maxima at 217 and 235 nm. In contrast, the CD spectrum of viroisin has negative minima at 217 and 235 nm, an indication that the conformation of the indolyl thioether and sulfonyl angles is opposite (Fig. 5.1).

Figure 5.1. The CD spectra of viroidin (A), viroisin (B), and phalloidin.1 Reprinted with permission from the American Chemical Society.
It has also been revealed that the conformation of monocyclic viroisin (Fig. 6) is similar to that of bicyclic phalloidin.30, 179 Through NMR studies, Kobayashi et al. demonstrated that both phallotoxins and virotoxins exist as a single conformer that is important for biological activity. Dethiophalloidin (Fig. 5.2) has several interconverting conformers, lacking almost all biological activity.179

![Figure 5.2. Viroisin (7)](image)

![Dethiophalloidin (221)](image)

In general, geometric information can be derived from 1H NMR spectra on the basis of the relationship between dihedral angles and vicinal coupling constants.181 Specifically, the coupling constant \(3J_{\text{HN}a}\) between NH and H\(\alpha\) is dependent on the torsion angle \(\Phi\) and therefore gives information about the backbone conformation, while the H\(\alpha\) and H\(\beta\) coupling constants describe the conformation of the side chain.182-186 Structures proposed for phalloidin and virotoxins were based on NMR data including \(3J_{\text{HN}a}\) coupling constants, the temperature dependence of the NH proton signals, and rotating Overhauser effects (ROEs). Proton resonances were assigned on the basis of TOCSY and DQF-COSY spectra, and then HMQC and HMBC experiments were used to assign the aliphatic and aromatic carbon resonances. Interproton distances and the backbone dihedral angles were derived from the ROESY and coupling constant data respectively. Studies on the temperature dependence of amide proton chemical shifts provide information about hydrogen bonding. In general, temperature dependence of the NH resonance from a residue of a peptide is closely related to the rate of exchange (NH proton) with solvent
molecules. Specifically, a temperature gradient exceeding 4.0 ppb/K indicates an external NH orientation wherein the NH is exposed to solvent, and when the value is in the range of < 2 ppb/K, then either an intramolecular hydrogen bond is present or the NH may be buried within the peptide molecule (for peptides greater than 1 kDa).

5.1.2 Bhaskaran and Yu.

In 1994, Bhaskaran and Yu analyzed the conformation of viroisin (7) (Fig. 5.2) using two dimensional NMR and restrained molecular dynamics simulations. The values of the temperature gradients computed for the amide proton signals of viroisin were: 1.80 (Leu7), 2.21 (Val1), 2.27 (Ala5), 4.14 (D-Ser3), 4.80 (D-Thr2), and 6.56 (Trp6) ppb/K. This indicated that the amide protons of Val1, Ala5 and Leu7 residues participated in intramolecular hydrogen bonding. According to structures generated through computational studies, a hydrogen bond exists between either the Leu7 or Val1 amide proton and the C=O group of Pro4. However, the dihedral angle values of the turn-forming residues did not match those observed for regular β turns, even though the hydrogen bond occurs between the C=O and NH of residues at ith and $(i+3)$th positions. These observations left no doubt that the closed loop of the structure obeys no typical structural pattern.

Probable conformations of viroisin in solution were derived from distance geometry and restrained molecular dynamics based on a set of distance constraints obtained from experimental data. The root-mean-square deviation values (0.065 nm for backbone atoms and 0.135 nm for all atoms) confirmed that viroisin has a highly ordered conformation in solution. Six structures generated from distance geometry and root mean square deviation methods revealed that the backbone of the molecule is folded into a dumbbell forming a convex surface at the central portion. This orients the Ala5 methyl group and the hydroxyl groups of the Pro4 residue to the convex side of the molecule, causing the Trp6
residue to protrude. The side chains of the Val\(^1\) and Leu\(^7\) residues orient in the same direction, forming a hydrophobic domain for actin binding (Fig. 5.3). The hydroxyl group of Ser\(^3\) was oriented in a way that allowed a circular arrangement of other functional groups for binding to actin. These computational results are in agreement with the observed cross peaks between Ala\(^5\) methyl and Leu\(^7\) H\(\beta\) protons in the NOESY spectrum.

![Stereo views of viroisin solution conformations showing side chain orientations](image)

Figure 5.3. Stereo views of viroisin solution conformations showing side chain orientations. Reprinted with permission from John Wiley and Sons.

5.1.3 Kobayashi and coworkers\(^{179}\)

In 1995, Kobayashi and coworkers studied the conformation of phalloidin and viroisin in solution using NMR and molecular modeling. The acyclic phalloidin derivatives, dethiophalloidin and secophalloidin (Fig. 5.4) were also studied, for comparison. In the ROESY spectra of both secophalloidin and dethiophalloidin, several sets of proton resonances exhibited positive cross peaks that were not due to scalar magnetization transfer, suggesting that major and minor conformers were
interconverting slowly on the NMR time scale. The spin systems of the minor conformers were assigned as 10% for secophalloidin and 40% for dethiophalloidin when these experiments were performed at 30 °C. In contrast, both phalloidin and viroisin existed as single conformers in solution.

The β-methyl resonances of Ala⁵/Ala¹ in phalloidin and Ala⁵/Val¹ in viroisin were temperature dependent, an observation not made for dethiophalloidin and secophalloidin. Kobayashi and co-workers attributed this temperature dependence of the toxic peptides’ proton resonances of the methyl groups to the fluctuation of the Trp⁶ indole group at a rate faster than the NMR time scale, rather than by an overall change in their conformation. Inter-proton distances confirmed that the motion of the Trp⁶ indole was rather negligible between 25 - 30 °C. It was therefore hypothesized that the shielding effect of the ring current would be sensitive to the distance between the Trp⁶ indole and Ala⁵ β-methyl

Figure 5.4. ROE correlations determined from 2D ROESY spectra.¹⁷⁹
protons. The major difference between the proton resonances of the toxic and non toxic peptides was observed in the aliphatic region, i.e., the Ala5 β-methyl proton resonances from phalloidin and viroisin exhibited a distinct up-field shift influenced by the ring current effect of the Trp-indole group. In contrast, the aliphatic proton resonances of secophalloidin and dethiophalloidin were relatively down-field. Secophalloidin displayed a 0.22 ppm up-field shift in the γ-methyl resonance of Thr2, implying that the indole group has a different orientation to that of phalloidin.

The temperature-dependence of chemical shifts for the NH resonances of the Cys3 (-1.77 ppb/°C) and Trp6 (-0.37 ppb/°C) residues in phalloidin; Trp6 (-2.20 ppb/°C) in viroisin and Ala5 (-1.22 ppb/°C) in the major conformer of dethiophalloidin and Trp6 (-1.40 ppb/°C) in its minor conformer were not affected from 25 °C to 60 °C since they participate in intramolecular hydrogen bonding. The deuterium exchange rates of NH were also used to generate information related to hydrogen bonding. From the deuterium exchange kinetics experiment, the NH resonances of Cys3 and Trp6 in phalloidin were the only ones that were found to participate in hydrogen bonding. These findings indicated that phalloidin had the most rigid conformation, stabilized by a hydrogen bond involving Trp6 NH. Based on these results, viroisin’s conformation was therefore believed to be slightly flexible, while the non-toxic peptides exhibited highly flexible conformations. Also, differences in chemical shifts of phalloidin and those of the major and minor conformers of dethiophalloidin were greater than 0.5 ppm for the α proton resonances of residues 3 and 6 and for the NH resonances of residues 2 and 6, implying that lack of the thioether bridge induces a large conformational change in the dethiophalloidin molecule. However, the difference in the chemical shifts of the major and minor conformers of dethiophalloidin was found to be small for the α proton resonances but relatively large for the NH resonances, supporting the argument that the two conformers were interconverting among different hydrogen bonding patterns. There was also a cross peak in the ROESY spectrum between Cys3/Ser3 Hα and both Pro4 Hδ, for both phalloidin
and viroisin, supporting the *trans* conformation of the peptide bonds between Cys3/Ser3 and Pro4 residues. The distinct cross peak between Ser3 Hα and Pro4 Hα in the ROESY spectrum of the minor conformer of dethiophalloidin confirmed that the Ser3/Pro4 peptide bond had a *cis* conformation.

![trans conformation](image1) ![cis conformation](image2)

Figure 5.5. The *trans* and *cis* conformations of a D-serine-prolyl amide bond.

The dihedral angles of the lowest energy conformers for phalloidin and viroisin, as estimated using the protein health tool equipped in the QUANTA program were in agreement with the parameters determined by NMR. Phalloidin’s final structure was found to possess a type–II-β-turn-like structure formed by the residues Cys3-Pro4-Ala5-Trp6, stabilized by a $(i, i+3)$ hydrogen bond between the Cys3 C=O and Trp6 NH. This was further supported by a ROE cross peak between Pro4 CaH and Ala5 NH. Viroisin, on the other hand, adopts a conformation containing a distorted type–II-β-turn in the D-Ser3-Pro4-Ala5-Trp6 region, with a weak hydrogen bond between the D-Ser3 C=O and the Trp6 NH (Fig. 5.6).

In general, β-turns,188 also known as β-twist,189 have a hydrogen bond between the main chain C=O of the first residue i and NH of the fourth amino acid $(i+3)$. The difference between β-turns of type I and II is based on the backbone conformations of the residues at $(i+1)$ and $(i+2)$, represented by dihedral angles $(\Phi_{i+1}, \psi_{i+1}$ and $\Phi_{i+2}, \psi_{i+2})$ respectively. The occurrence of L-proline at position $i+2$ leads to special β-turns due to higher preference of *cis* peptide bonds formed between proline and other residues.190
Molecular modeling studies confirmed further that the Trp6 indole group in phalloidin’s lowest-energy conformer is located above the β-methyl group of Ala5, being tightly fixed due to the rigidity of the bicyclic molecule. It was deduced that, since viroisin lacks a thioether bridge, the bulky methylsulfonyl group attached to the Trp6 indole residue is held into a hollow formed by the Val1-D-Thr2-D-Ser3 segment, where the D-configuration of the Ser residue plays a major role in preventing interaction with its side chain.

5.1.4 Zanotti and coworkers30

In 1999, Zanotti and coworkers demonstrated that the D-configuration of Ser played an important role in maintaining the phalloidin-like conformation of virotoxins. A viroidin analog with a D-serine in position 3, along with three other analogs, in which the D-serine residue was replaced by either a D-alanine, L-serine or L-alanine (Fig. 5.7), were synthesized and compared by NMR as well as in actin affinity assay. Other modifications to the natural product were the substitution of the dihydroxyproline and dihydroxyleucine residues with cis-4-hydroxy-L-proline (hyp4) and Leu7 respectively.
The NMR spectra of the analogs with \(L \)-configured amino acids at position-3 gave rise to 2-3 sets of signals, representing interconverting conformers. The analogs containing \(L \)-serine and \(L \)-alanine consisted of conformers in a ratio of 10:1 and 6:4:3, respectively. These conformers exhibited significant chemical shift differences of the backbone proton signals as compared to the \(D \)-serine containing analog. Those cyclic peptides containing \(D \)-configured amino acids at position-3 gave rise to a single set of signals.

Zanotti and coworkers demonstrated that changing the configuration of residue 3 from \(D \) to \(L \) caused a change in the backbone conformation of the molecule, resulting in low biological activity. It was speculated that the slow conformational transitions could be accounted for by the \(cis/trans \)-interconversions at the prolyl amide bond. This hypothesis was not proven since the ROE cross peaks in the region of \(\text{CaH-CaH} \) for the biologically inactive analogs could not be assigned due to overlapping and weak intensities of the signals.

The affinity for actin was based on the capacity of the analogs to displace demethylphalloidin from its binding site on filamentous actin. Omission of the dihydroxyeucine residue and the extra hydroxyl group on the dihydroxyproline residue resulted in the loss of activity by a factor five. A further reduction in the affinity for actin, by a factor of three, was observed for analogs lacking a \(\beta \)-
hydroxyl group in residue 3. Changing the configuration of D-serine to L-serine or substituting L-alanine for D-alanine sharply reduced the affinity for actin by a factor of 40 or >200 respectively.

5.1.5 Zanotti and coworkers

In 2001, Zanotti and coworkers investigated the solid state and solution conformation of a synthetic phallotoxin analog using X-ray diffraction, two-dimensional NMR and molecular dynamics calculations. The circular dichroism spectrum of the analog resembled that of phalloidin, with positive Cotton effects around 240 and 300 nm. The molecular model derived from the solid-state analysis indicated that all the peptide bonds were in the trans-conformation, with dihedral angles ranging from 168-180°. The macrocyclic heptapeptide was described as “bent” at the bridging points with the planes of the two rings forming dihedral angles of about 90.0(5)°. The indole ring was found to lie approximately in the plane of ring 1, containing the cis-4-hydroxyproline (hyp)-Ala residues, resulting into an overall distorted “T” shape of the molecule.

Figure 5.8. Stereodrawing of the molecular model of (Ala)-phalloidin. Reprinted with permission from John Wiley and Sons.

The backbone conformation in the solid state was stabilized by a 4→1 hydrogen bond involving the Trp NH and the Cys CO, consistent with a type I β-turn, a 5→1 hydrogen bond between Ala NH and Cys
CO, representing an α-turn of type Ia, a 3→1 hydrogen bond between Ala\(^1\) NH and Trp\(^6\) CO, consistent with an equatorial γ-turn, a 3→1 hydrogen bond between D-Thr\(^3\) NH and Ala\(^7\) CO, described by an axial γ-turn, and an intramolecular hydrogen bond involving the Ala\(^5\) NH and hyp\(^4\)-O\(^\gamma\) residues (Figure 5.10). The α-turn and the two consecutive γ-turns observed in the solid-state were not present in solution due to high flexibility of ring 2. Relatively low temperature coefficient values for Cys\(^3\) NH and Trp\(^6\) NH residues further supported the involvement of these protons in hydrogen bonding. The \(\chi_{1,1}^{1}\) and \(\chi_{1,2}^{1}\) values (60º and -60º) of the D-Thr\(^2\) side chain were in agreement with the \(g^-\) and \(g^+\) conformations respectively. Torsion angles as obtained from X-ray analysis revealed that the hyp\(^4\) residue adopts an endo-type conformation, characterized by positive values for \(\chi_1\) and \(\chi_3\) and negative values for \(\chi_2\) and \(\chi_4\).

![Figure 5.9. Conformations of hyp\(^4\) residue.](image)

The observed \(\chi_1\), \(\chi_2^{1}\) and \(\chi_2^{2}\) values of Trp\(^6\) indole were slightly different from those commonly found in proteins and small molecules, a deviation that was accounted for by the bridging effect, forcing the Cys\(^3\) side chain into uncommon conformational \(\chi_1\) angle of 28.6º.

The backbone dihedral angles from the molecular dynamics calculations were in agreement with the experimental \(\Phi\) values of the Bystrovs' Karplus-type equation.\(^{191}\) Molecular dynamic studies in vacuo and water environments revealed a type I β-turn formed by Cys\(^3\)-hyp\(^4\)-Ala\(^5\)-Trp\(^6\) and stabilized by a hydrogen bond between the Cys\(^3\) C=O and Trp\(^6\) NH residues. This region of the molecule was found to be very rigid during the molecular dynamics simulation. In contrast, the remaining part of the molecule (Ala\(^7\) to D-Thr\(^2\)) was more flexible. The orientation of the Trp\(^6\) indole ring in the thioether
bridge was found to be pointing towards the hyp⁴-Ala⁵ segment, in both solid state and solution structures.

Figure 5.10. Intramolecular hydrogen bonds (dotted lines) observed by X-ray analysis.³²

5.1.6 Falcigno and Coworkers¹⁵

Falcigno and coworkers performed comparative conformational studies on synthetic derivatives of phalloidin, (Figure 5.11) in solution, using circular dichroism and restrained molecular dynamics based on NMR spectroscopy.

<table>
<thead>
<tr>
<th>Analog</th>
<th>Residue 7</th>
<th>Residue 2</th>
<th>Residue 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
<td>Ser (Bol)</td>
<td>D-Abu</td>
<td>L-Cys</td>
</tr>
<tr>
<td>223</td>
<td>Ala</td>
<td>D-Abu</td>
<td>L-Cys</td>
</tr>
<tr>
<td>224</td>
<td>Abu</td>
<td>D-Abu</td>
<td>L-Cys</td>
</tr>
<tr>
<td>225</td>
<td>Leu</td>
<td>D-Abu</td>
<td>L-Cys</td>
</tr>
<tr>
<td>33</td>
<td>Ala</td>
<td>D-Thr</td>
<td>L-Cys</td>
</tr>
<tr>
<td>226a</td>
<td>Ala</td>
<td>L-Thr</td>
<td>L-Cys</td>
</tr>
<tr>
<td>226b</td>
<td>Ala</td>
<td>L-Thr</td>
<td>L-Cys</td>
</tr>
<tr>
<td>227</td>
<td>Leu</td>
<td>D-Thr</td>
<td>L-Cys</td>
</tr>
<tr>
<td>228</td>
<td>Ala</td>
<td>D-Thr</td>
<td>D-Cys</td>
</tr>
<tr>
<td>229</td>
<td>Ser</td>
<td>D-Abu</td>
<td>L-Cys</td>
</tr>
<tr>
<td>230</td>
<td>Ser (caprylyl-ester)</td>
<td>D-Abu</td>
<td>L-Cys</td>
</tr>
</tbody>
</table>

226a and 226b are atropisomers

Figure 5.11. Phalloidin analogs analyzed by Falcigno and co-workers.¹⁵

The synthetic analogs were designed to explore the importance of the chirality of D-Thr² and L-Cys³ residues, and the role of dihyLeu⁷ and Thr² side chains. Affinity for actin was measured on the basis of
the ability of the analog to displace \[^{3}\text{H}]\text{demethylphalloidin}\) from its bound complex with F-actin. Analogs that had a significant difference in their affinities for actin with respect to phalloidin were selected for further conformational analysis in solution. From the circular dichroism spectra, a positive Cotton effect indicates that the value of the indolyl thioether angle is positive (\(P\) helical), while a negative Cotton effect describes \(M\) helical.

Figure 5.12. \(P\)- and \(M\)- helical configurations of a 2-indolylthioether\(^6\)

Comparison of the circular dichroism spectra of the analogs revealed that both 228 and 226b had positive Cotton effects, with 228 having two more maxima at around 292 and 300 nm. In contrast, analog 226a was the mirror image of phalloidin with negative minima at around 250, 292 and 300 nm. Temperature dependence of the amide proton signals was obtained from one dimensional spectra recorded between 298 and 310 K. Small temperature coefficient values were recorded for Ala\(^1\) NH and D-Thr\(^2\) NH of analog 228, Ala\(^5\) NH of analog 226a, Trp\(^6\) NH, Ala\(^1\) NH, and Ala\(^5\) NH of analog 226b, indicating the participation of these amide protons in intramolecular hydrogen bonding.

Energy minimization and restrained molecular dynamics simulations were performed based on inter-proton distances computed from cross-relaxation rate values evaluated from the ROESY spectra. Data from restrained molecular dynamics simulation indicates that bicyclic analogs show atropisomerism according to whether the thioether bridge is up (U) or down (D) when the peptide chain is followed in a clockwise manner. The calculated conformational parameters of analogs 228 and 226b were in good agreement with the NMR data, with both thioether bridges having a U-type structure. On the other hand, only a D-type model for analog 226a matched the experimental data. The dihedral angles
of analog 228 were consistent with a backbone structure containing a type I β-turn formed by residues Trp\(^6\)-Ala\(^7\)-Ala\(^1\)-D-Thr\(^2\) and stabilized by a hydrogen bond between Trp\(^6\) CO and D-Thr\(^2\) NH. Also, this model had all the peptide bonds other than the Cys\(^3\)-hyp\(^4\) bond in a \textit{trans} conformation. The Ala\(^5\) methyl group of analog 228 was located in the anisotropy region of Trp\(^6\), an observation supported by the high field shift of the Ala\(^5\) methyl resonance.

The dihedral angles of analog 226a were consistent with a type VI\(a\) β-turn in the Thr\(^2\)-Cys\(^3\)-hyp\(^4\)-Ala\(^5\) region, stabilized by a hydrogen bond between Thr\(^2\) CO and Ala\(^5\) NH residues. This model had all peptide bonds other than Cys\(^3\)-hyp\(^4\) in a \textit{trans} conformation. The Trp\(^6\) indole was oriented towards the hyp\(^4\) and Ala\(^5\) residues. Analog 226b, on the other hand, had all peptide bonds in a \textit{trans} conformation, with a type I β-turn formed by the residues Cys\(^3\)-hyp\(^4\)-Ala\(^5\)-Trp\(^6\) and stabilized by a hydrogen bond between Cys\(^3\) CO and Trp\(^6\) NH. Again, the Trp\(^6\) indole ring was oriented towards hyp\(^4\)-Ala\(^5\) residues.

Figure 5.13. A stereodrawing of analog 226 illustrating a U-type structure. Intramolecular hydrogen bondings are shown by dotted lines.\(^{15}\) Reprinted with permission from John Wiley and Sons.
These studies demonstrated that neither the hydroxyl nor the carboxyl functional groups at the side chain of residue 2 had an impact on toxicity. The \(D\text{-Thr}^2 \) containing analogs were found to be more biologically active than their \(D\text{-Abu}^2 \) counterparts, supporting the requirement of a \(D \)-configured residue 2 with at least two carbon atoms for actin binding. Inversion of the configuration of residue 3 led to significant structural backbone changes characterized by the loss of activity.

5.2 CONFORMATION OF THE PROLINE CONTAINING TRIPEPTIDES

5.2.1 Overview

The conformation adopted by peptides depends on the sequence of amino acid residues along the chain. Prolyl residues, constrained by their pyrrolidine rings, have been known to influence the conformation of peptides and proteins.\(^{192}\) In general, most peptide bonds prefer to be in a \textit{trans} orientation, however, the presence of either a proline or other secondary amino acid residue increases the population of the \textit{cis} conformer (Fig. 5.14).

![Conformation of a D-serine-prolyl amide bond](image)

\textit{Figure 5.14.} The \textit{cis} and \textit{trans} conformations of a \(D\text{-serine-prolyl} \) amide bond.

The \textit{cis} to \textit{trans} isomerization about the prolyl peptide bond plays an important role in protein folding and receptor binding. In solution, the pyrrolidine ring of the proline residue can either adopt the \(C\gamma\text{-endo} \) or \(C\gamma\text{-exo} \) or both interconverting ring pucker conformations (Figure 5.15). The ring pucker preference
influences the peptide main chain torsion angles and thereby the cis-trans isomerization of the amide bond.

![Conformations of hyp^4 residue.](image)

Figure 5.15. Conformations of hyp^4 residue.

To investigate the conformational preference of the prolyl peptide bond in our linear peptides and how this influences the structure and ease of cyclization of the heptapeptides and the impact this would have on the conformation of the Ser^3-Pro*-Ala^5-Trp^6 (where Pro* represents Pro, 3-Hyp, 4-hyp and DHP) peptide region, we determined the trans-cis ratios of the tripeptides with either unprotected side chains or with alcohols protected as TBS ethers. We reasoned that the TBS protected tripeptides (prepared in Chapter 3) would provide an insight into the conformation of the D-Ser^3-Pro* peptide bond in the cyclization precursors, while the fragments bearing free alcohols would help in the prediction of the conformation of the same region in alloviroidin and the analogs. We assigned the ^1H and ^13C NMR resonances for the TBS protected compounds on the basis of COSY, HSQC, HMBC, and DEPT-135 experiments. The trans to cis ratios were determined by integration of well resolved signals in the ^1H NMR spectra of each isomer, followed by averaging of the integrals for each conformation (Tables 5.1 and 5.2. The cis and trans conformations have been assigned before based on the chemical shifts of δ-carbons of the proline residues according to the findings of Lubell and co-workers who observed that the signal of the δ-carbon for the cis isomer is downfield of the trans isomer. Our attempts to assign the two conformers using one dimensional GOESY experiments at different temperatures were unsuccessful due to rapid interconversion between the conformers.
From Table 5.1, it can be seen that the trans:cis ratio for the prolyl peptide bonds vary with the degree, regio- and stereochemistry of proline hydroxylation.

Table 5.1. The cis-to-trans isomerization a cross the prolyl-serine peptide bond in CD$_3$OD (0.01M) at 25 °C and 400 MHz (m = multiplet).

<table>
<thead>
<tr>
<th>Compound</th>
<th>trans:cis ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>8.7:1</td>
</tr>
<tr>
<td>172</td>
<td>4.4:1</td>
</tr>
<tr>
<td>173</td>
<td>1.8:1</td>
</tr>
<tr>
<td>174</td>
<td>2.1:1</td>
</tr>
</tbody>
</table>

We established the conformation of the prolyl ring puckers of the major isomers by comparing the observed $^3J_{\alpha\beta1}$ and $^3J_{\alpha\beta2}$ coupling constants with literature values.$^{195-201}$ According to Cai and coworkers, both coupling constants for the Cγ-exo conformer range between 7-11 Hz, giving rise to an apparent triplet, while in a derivative with a Cγ-endo pyrrolidine, Hα appears as a dd with coupling constants in the 6-10 Hz and 2-3 Hz ranges.202 Tripeptide 171, incorporating 2,3-trans-3,4-trans-3,4-dihydroxyproline has a stronger preference for the trans conformation and the pyrrolidine ring adopts the Cγ-endo conformation on the basis of $^3J_{\alpha\beta}$ values of 7.8 and 4.4 Hz. The pyrrolidine ring in this conformation is stabilized by gauche interaction and hyperconjugation (Fig. 5.16). Raines and coworkers observed a similar trans conformation in N-acetyl-trans-4-hydroxyproline which has the Cγ-exo pyrrolidine conformation.195 Also, previous work in our group demonstrated that the trans conformation is favored in dipeptides containing 2,3-trans-3,4-cis-3,4-dihydroxyproline residue with the pyrrolidine ring preferring the Cγ-exo conformation.36
Figure 5.16. Pyrrolidine conformation in compound 171.

In the case of tripeptide 172, the equilibrium lies in favor of the trans isomer suggesting preference for the exo ring pucker conformation by the proline residue. However, this could not be established due to overlapping signals in the 1H NMR spectrum.

The prolyl peptide bond in tripeptides 173 and 174 display increased cis character relative to compounds 171 and 172. The pyrrolidine ring of compound 174 was assigned as C_γ-endo pucker on the basis of $^3J_{\alpha\beta}$ values of 9.2 and 3.8 Hz. Inductive effects of the proline hydroxyl group in compounds 173 and 174 could be responsible for the increased cis ratio relative to that of 172. The use of CD$_3$OD as a solvent interacts with the tripeptide’s polar functional groups via intermolecular hydrogen bonding and thereby influencing the cis-to-trans isomerization across the prolyl-serine peptide bond.

Figure 5.17. Pyrrolidine conformation in compounds 173 and 174.

Interestingly, protecting the alcohols in the tripeptides as silyl ethers led to a drastic change in the cis-to-trans isomerization across the prolyl peptide bond for compounds 47-49. According to Table 5.2, the observed increased levels of the cis isomer upon introduction of the bulky silyl groups can be explained
in terms of steric interactions. The pyrrolidine rings adopt conformations that minimize steric interactions between the bulky groups. The prolyl puckers of compounds 48 and 50 were assigned as Cγ-endo pucker on the basis of 3Jαβ values of 8.3, 3.6 Hz and 8.6, 5.0 Hz respectively.

![Cγ-endo puckers](image1.png)

![Cγ-endo puckers](image2.png)

Figure 5.18. Pyrrolidine conformation in compounds 47, 49 and 50.

Increased levels of the cis isomer in the linear peptides facilitates cyclization and this explains the high chemical yield recorded during cyclization of the hyp containing heptapeptide.

Table 5.2. The cis-to-trans isomerization across the prolyl peptide bond (between D-Ser and Pro*) in CDCl₃ (0.01M) at 25 °C and 400 MHz. (ND = not determined, only a trace amount).

<table>
<thead>
<tr>
<th>Compound</th>
<th>cis:trans ratio</th>
<th>3Jαβ values (Hz)</th>
<th>Cyclization yield (% over four steps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>1:1.7</td>
<td>m</td>
<td>ND</td>
</tr>
<tr>
<td>48</td>
<td>1:5.5</td>
<td>8.3, 3.6</td>
<td>26</td>
</tr>
<tr>
<td>49</td>
<td>1:8.5</td>
<td>m</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>1:3</td>
<td>8.6, 5.0</td>
<td>31</td>
</tr>
</tbody>
</table>

47 X = Y = OTBS
48 X = Y = H
49 X = OTBS; Y = H
50 X = H; Y = OTBS
5.2.2 Computational Studies

In order to corroborate the trans/cis isomer ratios determined from NMR studies, we conducted computational studies of two conformations each of four acetylated dipeptides (Tables 5.3 and 5.4). Also, we hoped to find agreement on which of the two conformers is more stable and therefore the major conformer. We reasoned that these dipeptides would serve as a model for the Ser-Pro* (where Pro* is either DHP, Pro, 3-Hyp, or hyp) peptide bonds present in the tripeptides. We assumed that only the amide bond between the Ser and Pro* would exhibit conformational isomers. These dipeptides, by virtue of being smaller, possess less degree of freedom in comparison to the tripeptide fragments.

The ab initio and density functional calculations were performed using the Gaussian 09 package. Geometry optimizations for the trans and cis conformers of the dipeptides were carried out at the AM1, HF/3-21G and B3LYP/6-31g* levels. Frequency analyses were performed at the B3LYP/6-31g* level to verify the nature of the stationary points obtained and to calculate the zero point vibrational energies that were used to calculate Gibbs free energies in the gas phase at 298 K. The energies of the two conformers per dipeptide are as shown in Table 5.3. According to Table 5.3, the predicted energies of the two conformers are in qualitative agreement with the experimental findings for the tripeptides (Table 5.1) with the exception of the DHP containing dipeptide, i.e., the trans conformers are of lower energy and therefore favored over the cis. However, the calculated trans/cis ratios are poorly predicted by the B3LYP/6-31g* level. The discrepancy between experimental and calculated trans/cis ratios could be due to the difference in hydrogen bonding pattern involving either an amide or ester at the C-terminal of the Pro* residue in dipeptides and tripeptides respectively. This could also be due to the limitation of the method and basis set. The ratios could be improved by addition of diffuse and polarization functions to the basis set, i.e., B3LYP/6-31+g*. The computed ratios should also be investigated in CH$_3$OH as this would incorporate the influence of hydrogen bonding.
Table 5.3. The energies and equilibrium constants ($K_{\text{trans/cis}}$) of the optimized dipeptide geometries.

<table>
<thead>
<tr>
<th>Compound</th>
<th>trans (kcal/mol)</th>
<th>cis (kcal/mol)</th>
<th>(kcal/mol)</th>
<th>K (at 298K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
<td>-656297.39</td>
<td>-656301.50</td>
<td>4.11</td>
<td>1.04×10^3</td>
</tr>
<tr>
<td>232</td>
<td>-561912.94</td>
<td>-561910.45</td>
<td>2.48</td>
<td>6.71×10</td>
</tr>
<tr>
<td>233</td>
<td>-609103.49</td>
<td>-609101.16</td>
<td>2.33</td>
<td>5.14×10</td>
</tr>
<tr>
<td>234</td>
<td>-609105.46</td>
<td>-609095.68</td>
<td>9.77</td>
<td>1.51×10^7</td>
</tr>
</tbody>
</table>

$\text{DHP dipeptide trans conformer}$ $\text{DHP dipeptide cis conformer}$

Figure 5.19 A. Optimized geometries of dipeptide 231.
Figure 5.19 A continued. Optimized geometries of dipeptide 232.

Figure 5.19 B. Optimized geometries of dipeptide 233.
From Figure 5.19, the lowest energy conformations at B3LYP/6-31g* level are stabilized by varying degrees of hydrogen bonding. In the gas phase, the cis conformation in the DHP dipeptide is stabilized by three hydrogen bonds between DHP OH\(^\beta\) and Ser OH, DHP CO and DHP OH\(^\gamma\), acetyl CO and acetyl amide NH. The trans conformer of the DHP dipeptide is stabilized by one hydrogen bond involving DHP CO and Ser OH. The trans conformer in the proline dipeptide is stabilized by a hydrogen bond between Pro CO and Ser OH. The 3-Hyp trans dipeptide conformer is stabilized by a hydrogen bond between 3-Hyp CO and Ser OH. However, a different hydrogen bonding pattern involving 3-Hyp OH and Ser OH is observed in the cis conformer. The trans conformer in the hyp dipeptide is stabilized by hydrogen bonding between hyp CO and Ser OH.

The calculated energies of the TBS protected dipeptides at the B3LYP/6-31g* level in the gas phase are as shown in Table 5.4. Even though the predicted energies of the two conformers are not in quantitative agreement with experimental findings, both theoretical and experimental results show
increased *cis* character but not in the same order. The increased *cis* character in both cases could be ascribed to the silyl ether protecting groups that break the hydrogen bonding pattern.

Table 5.4. The energies and equilibrium constants ($K_{trans/cis}$) of the optimized geometries.

<table>
<thead>
<tr>
<th>Compound</th>
<th>trans (kcal/mol)</th>
<th>cis (kcal/mol)</th>
<th>(kcal/mol)</th>
<th>K (at 298K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>-1647365.07</td>
<td>-1647345.88</td>
<td>19.19</td>
<td>1.22×10^{14}</td>
</tr>
<tr>
<td>236</td>
<td>-892270.86</td>
<td>-892267.42</td>
<td>3.43</td>
<td>3.34×10^{2}</td>
</tr>
<tr>
<td>237</td>
<td>-1269814.35</td>
<td>-1269811.64</td>
<td>2.70</td>
<td>9.65×10</td>
</tr>
<tr>
<td>238</td>
<td>-1269817.0</td>
<td>-1269813.98</td>
<td>3.01</td>
<td>1.65×10^{2}</td>
</tr>
</tbody>
</table>

The representative conformations of the TBS protected dipeptides optimized in the gas phase are presented in Figure 5.20.

Figure 5.20 A. Optimized geometries of dipeptide 235.
Figure 5.20 A continued. Optimized geometries of dipeptide 236.

<table>
<thead>
<tr>
<th>TBS Pro dipeptide trans conformer</th>
<th>TBS Pro dipeptide cis conformer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.20 B. Optimized geometries of dipeptide 237.

<table>
<thead>
<tr>
<th>TBS 3Hyp dipeptide trans conformer</th>
<th>TBS 3Hyp dipeptide cis conformer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2.3 NMR Assignments and CD of Alloviroidin Analogs

To assign the spectra of the cycloheptapeptides, we conducted NMR studies in 90% 1H$_2$O/10% 2H$_2$O, with 2H$_2$O used for locking the sample. To further minimize the exchange of amide protons with the NMR solvent, we adjusted the pH of the medium to 3.0 according to Kobayashi and coworkers. The proton resonances for compounds 43-45 presented in Table 5.5 were obtained from DQF-COSY and TOCSY spectra. The characteristically downfield chemical shift value of Ser3 Hα facilitated the assignment of Ser3 Hβ. While the Ala5 Hα was easily identified due to direct coupling to its methyl group. The Thr2 methyl group was assigned based on coupling to its downfield Hβ. Similarly, the Val1 and Trp6(SO$_2$Me) methyl groups were distinguished by the characteristic downfield chemical shift of Trp6(SO$_2$Me) methyl group that is not coupled to other protons.

Amide protons were assigned based on coupling to Hα. The chemical shifts of the amide protons in the hyp analog and those of Trp6(SO$_2$Me) and HyLeu residues in the 3-Hyp analog were not observed in the spectra at 700 MHz spectrometer. We believe that this is due to the high rate of

Figure 5.20 B continued. Optimized geometries of dipeptide 238.
deuterium exchange at high field. The proton signal of the Trp6 indole was observed further downfield in the 1H NMR spectrum. The crosspeaks of the Trp6 ring were easily assigned in the TOCSY spectrum. The β methyl resonances of Ala5 in alloviroidin analogs exhibit a distinct downfield shift in comparison to those of toxic peptides reported in literature by Kobayashi and co-workers.179 This implies that the Trp6 indole has a different orientation in the synthetic analogs and is not in close proximity with the Ala5 β methyl protons. Figures 5.21 and 5.22 represent the Hα-NH cross peak regions in the TOCSY spectra of compounds 43 and 44 recorded at 25 °C.

Figure 5.21. The Hα-NH cross peaks in the TOCSY spectrum of compound 43 (proline-containing analog) in 90% H$_2$O/10% D$_2$O (pH 3.0) at 25 °C and 700 MHz.
Figure 5.22. The NH-Hα cross peaks in the TOCSY spectrum of compound 44 (3-Hyp-containing analog) in 90% H$_2$O/10% D$_2$O (pH 3.0) at 25 °C and 700 MHz (the unassigned cross peaks belong to the minor conformers).

Table 5.5. 1H NMR chemical shifts of alloviroidin analogs (NH signals for compound 45 were not observed).

<table>
<thead>
<tr>
<th>Cyclic Peptide</th>
<th>Residue</th>
<th>Chemical Shift (ppm) of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NH</td>
</tr>
<tr>
<td>Proline Analog (43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>7.91</td>
</tr>
<tr>
<td></td>
<td>D-Thr</td>
<td>8.50</td>
</tr>
<tr>
<td></td>
<td>D-Ser</td>
<td>8.37</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>8.01</td>
</tr>
<tr>
<td></td>
<td>Trp (SO$_2$Me)</td>
<td>7.59</td>
</tr>
<tr>
<td></td>
<td>HyLeu</td>
<td>8.53</td>
</tr>
</tbody>
</table>
Table 5.5 continued. 1H NMR chemical shifts of alloviroidin analogs (NH signals for compound 45 were not observed).

<table>
<thead>
<tr>
<th>3Hyp Analog (44)</th>
<th>Val</th>
<th>4.37</th>
<th>2.06</th>
<th>0.99, 0.96</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Thr</td>
<td>8.53</td>
<td>4.79</td>
<td>4.36</td>
<td>1.24</td>
<td>-</td>
</tr>
<tr>
<td>D-Ser</td>
<td>8.47</td>
<td>4.89</td>
<td>3.78, 3.87</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3Hyp</td>
<td>-</td>
<td>4.24</td>
<td>4.38</td>
<td>2.07, 2.13</td>
<td>CδH 3.76, 3.86</td>
</tr>
<tr>
<td>Ala</td>
<td>8.49</td>
<td>4.40</td>
<td>1.21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trp (SO$_2$Me)</td>
<td>4.76</td>
<td>3.86, 3.50</td>
<td>-</td>
<td>SO$_2$Me 3.18</td>
<td></td>
</tr>
<tr>
<td>HyLeu</td>
<td>8.18</td>
<td>4.34</td>
<td>1.57, 1.93</td>
<td>1.29</td>
<td>CδH 3.57, 3.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hyp Analog (45)</th>
<th>Val</th>
<th>1.96</th>
<th>0.85, 1.83</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Thr</td>
<td>4.78</td>
<td>4.41</td>
<td>2.08</td>
<td>-</td>
</tr>
<tr>
<td>D-Ser</td>
<td>5.00</td>
<td>3.86, 3.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hyp</td>
<td>-</td>
<td>4.60</td>
<td>2.46, 2.03</td>
<td>4.46</td>
</tr>
<tr>
<td>Ala</td>
<td>4.42</td>
<td>1.19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trp (SO$_2$Me)</td>
<td>4.74</td>
<td>3.38, 3.68</td>
<td>-</td>
<td>SO$_2$Me</td>
</tr>
<tr>
<td>HyLeu</td>
<td></td>
<td></td>
<td></td>
<td>CδH</td>
</tr>
</tbody>
</table>

The upfield chemical shifts of Val1 NH and Trp6(SO$_2$Me) NH at 7.91 and 7.59 ppm in the proline analog suggest their participation in intramolecular hydrogen bonding.

In the ROESY and NOESY spectra of the analogs, very weak resonances were observed making the assignment of the cross peaks unsuccessful. This could be due to rapidly inter-converting conformers on an NMR time scale. It is not clear why the flexibility of these cyclic peptides vary with the NMR field strength. We found out that the degree of conformation flexibility was greater on the high field 700 MHz spectrometer in comparison to the 250 MHz spectrometer.
To further examine the conformation of the cycloheptapeptides, circular dichroism of alloviroidin analogs 43 and 45 were measured in water. According to Figure 5.23 the hyp analog (45) exhibits a CD spectrum similar to that of other virotoxins, specifically, two negative minima at 218 and 233 nm. In contrast, the proline analog (43) has negative minima at 196 and 214 nm. This observation indicates that virotoxins and the hyp analog (45) are likely to have similar conformations. It is important to note that the similarity in the CD spectra of virotoxins and the hyp analog (45) does not correspond to affinity for actin. The Cotton effect of the proline analog, however, exhibits marked backbone changes when compared to the natural virotoxins. These structural differences are presumed to be mainly due to isomerism about the Ser³-Pro⁴ peptide bond. These results suggest a relationship between CD and conformation interconversion, i.e., there is the possibility that the Pro analog exists as a mixture of conformers.

Figure 5.23. Circular dichroism spectra of hyp (45) and Pro (43) analogs in water (1.4 x 10⁻⁴ M).

5.2.4 Summary

In conclusion, we have examined the conformational preferences of the dipeptide fragments 231-238 using computational studies. These computational analyses indicate that the most stable
conformation of the dipeptides in the gas phase is *trans*. These findings on dipeptides are in qualitative agreement with our NMR findings on tripeptides 172-174 and 47-50. However, the calculated *cis/trans* ratio values of the dipeptides are not in accord with the NMR results of the tripeptides. This could be explained in terms of the influence of the solvent on the *cis-trans* isomerization rotational barrier in solution through hydrogen bonding, the greater flexibility of longer tripeptide fragments and the two additional stereocenters introduced by the D-threonine residue.

These conformational studies on tripeptide fragments illustrate the influence of the degree and regiochemistry of proline hydroxylation on cyclization and the conformation of the cyclic heptapeptides. In particular, the TBS protected hyp residue was found to favor the *cis* conformation facilitating peptide cyclization. From these tripeptide conformational studies, there is a possibility that the conformational interconversions observed for the cyclic peptides could be explained in terms of the *cis/trans* isomerization across the prolyl peptide bond.

NMR experiments carried out on alloviroidin analogs have allowed proton assignment but have been unsuccessful at determining the solution structures. While ROESY and NOESY have been used by others for conformational analysis of similar analogs, only weak signals were observed in our spectra suggesting high conformational flexibility at high magnetic field. Further NMR studies at different field strengths and temperatures in combination with simulated calculations should be conducted to determine the conformation of the cyclic peptides.

Analysis of two cyclic peptides by CD spectroscopy in water revealed that the CD spectrum of the hyp analog is consistent with that of the natural virotoxins. This contrasts with the CD spectrum of the proline analog. The similarity in CD of the hyp analog with that of viroidin suggests that their conformation could be similar.
5.2.5 Future Work

Given the weak signals in the NOESY and ROESY spectra of the cyclopeptides following NMR experiments at 700 MHz, we believe that performing these experiments at lower field strengths would slow down conformation interconversion and generate correlations that will be used to estimate interproton distances. Restrained energy minimizations should be performed to gain an insight into the structures of alloviroidin and analogs. Dihedral angles and distance restraints will be derived from DQF-COSY J values, ROESY and NOESY NMR data. Computational studies using SYBYL program will be used to generate structures that satisfy the NMR restraints. Energy minimization of each of the generated structures will allow them to relax to a local minimum energy. This will be achieved by heating the molecules followed by gradual cooling to enable the various conformations to relax to a minimum energy. Root mean square deviation will then be calculated for the superimposed structures.

Deuterium exchange NMR experiments will be conducted to ascertain which amide protons participate in hydrogen bonding. The cyclic peptides will be dissolved in D$_2$O and the rate of deuterium exchange will be measured by recording 1H NMR and TOCSY experiments at different temperatures and time intervals. The amide protons of residues that are not involved in hydrogen bonding ought to be exchanged for 2H and this will be evident by the disappearance of H$_N$-H$_{\alpha}$ crosspeaks in the spectrum. The rate of exchange of the amide protons will be plotted against time to generate the rate constants that will be compared to values reported in literature.

The γ,δ-dihydroxyleucine residue, which has been shown not to be essential for actin binding, could serve as a handle for the attachment of a fluorophore to produce a new probe for visualizing actin dynamics. Derivatization of alloviroidin with a fluorophore (e.g., 239) will be achieved via ester bond formation with the primary alcohol of the dihydroxyleucine residue to deliver 240 (Scheme 5.1). The affinity of this conjugate for actin will be measured and compared to that of the commercially available
phalloidin fluorescein conjugate. In the event that this approach fails, the fluorescein could be incorporated into tetrapeptide 46 prior to fragment condensation and cyclization.

Scheme 5.1. Derivatization of alloviroidin with a fluorophore.

5.3 EXPERIMENTAL SECTION

5.3.1 General Methods: As for Chapter 4 with the following additions and modifications: For NMR studies, 2 mg of each cyclic peptide was dissolved in 200 μL of 90% H₂O/10% D₂O, pH 3.0 (the NMR solvent was prepared by mixing D₂O (10 mL) and HPLC grade H₂O (90 mL). The pH of the solvent mixture was adjusted to 3.0 using 0.1 M HCl and 1M NaOH solutions). Solvent suppression was done using WATERGATE sequence. The ROESY and NOESY experiments were performed at 150, 200, 300, 400, and 500 ms mixing times. Spectra assignment was achieved using Sparky and NMRViewJ software packages.
The \textit{ab initio} and density functional calculation studies were performed using the Gaussian 09 package. Geometry optimizations for the \textit{trans} and \textit{cis} conformers of the dipeptides were carried out at the AM1, HF/3-21G and B3LYP/6-31g* methods and basis sets. Frequency analyses were performed at B3LYP/6-31g* level to verify the nature of the stationary points obtained and to calculate the zero point vibrational energies that were used to calculate Gibbs free energies in the gas phase at 298 K.

Circular Dichroism spectra (with sample concentrations of 1.4×10^{-4} M in water) were measured on a Jasco J-815 spectropolarimeter using a rectangular cell with a path length of 1 mm. Each measurement was the average result of three scans. Baseline spectrum of H$_2$O was subtracted.
REFERENCES

258

259

105. Kahl, J. U.; Wieland, T., "Synthesis of two naturally occurring diastereomeric dihydroxyprolines: 2,3-trans-3,4-trans-3,4-dihydroxy-l-proline and 2,3-cis-3,4-trans-3,4-dihydroxy-l-proline," *Liebigs Annalen der Chemie* 1981, (8), 1445-1450.

APPENDIX: LETTERS OF PERMISSION

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.
No charge permission and attribution

Permission for this particular request is granted for print and electronic formats at no charge. Figures and tables may be modified. Appropriate credit should be given. Please print this page for your records and provide a copy to your publisher. Requests for up to 4 figures require only this record. Five or more figures will generate a printout of additional terms and conditions. Appropriate credit should read: "Reprinted with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.

This permission does not apply to images that are credited to publications other than ACS journals. For images credited to non-ACS journal publications, you will need to obtain permission from the journal referenced in the Table/Figure/Micrograph legend or credit line before making any use of the image(s) or table(s).
JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Aug 13, 2011

This is a License Agreement between Benson Edagwa ("You") and John Wiley and Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by John Wiley and Sons, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

<table>
<thead>
<tr>
<th>License Number</th>
<th>2644470328175</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Apr 06, 2011</td>
</tr>
<tr>
<td>Licensed content publisher</td>
<td>John Wiley and Sons</td>
</tr>
<tr>
<td>Licensed content publication</td>
<td>Chemical Biology & Drug Design</td>
</tr>
<tr>
<td>Licensed content title</td>
<td>NMR spectra and restrained molecular dynamics of the mushroom toxin virolisin</td>
</tr>
<tr>
<td>Licensed content author</td>
<td>R. BHASKARAN, CHIN YU</td>
</tr>
<tr>
<td>Licensed content date</td>
<td>Apr 1, 1994</td>
</tr>
<tr>
<td>Start page</td>
<td>393</td>
</tr>
<tr>
<td>End page</td>
<td>401</td>
</tr>
<tr>
<td>Type of use</td>
<td>Dissertation/Thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>University/Academic</td>
</tr>
<tr>
<td>Format</td>
<td>Print and electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>Figure/table</td>
</tr>
<tr>
<td>Number of figures/tables</td>
<td>2</td>
</tr>
<tr>
<td>Number of extracts</td>
<td>figure2 and figure 5</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Order reference number</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.00 USD</td>
</tr>
</tbody>
</table>

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a "Wiley Company") or a society for whom a Wiley Company has exclusive publishing rights in relation to a particular journal (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your Rightslink account (these are available at any time at http://myaccount.copyright.com)

Terms and Conditions
1. The materials you have requested permission to reproduce (the "Materials") are protected by copyright.
JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Aug 13, 2011

This is a License Agreement between Benson Edagwa ("You") and John Wiley and Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by John Wiley and Sons, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

<table>
<thead>
<tr>
<th>License Number</th>
<th>2727311004638</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Aug 13, 2011</td>
</tr>
<tr>
<td>Licensed content publisher</td>
<td>John Wiley and Sons</td>
</tr>
<tr>
<td>Licensed content publication</td>
<td>Chemistry - A European Journal</td>
</tr>
<tr>
<td>Licensed content title</td>
<td>Solid State and Solution Conformation of [Ala7]-Phallolidin: A Synthetic Phallotoxin Analogue</td>
</tr>
<tr>
<td>Licensed content author</td>
<td>Giancarlo Zanotti, Lucia Falcigno, Michele Saviano, Gabriella D'Auria, Bianca Maria Bruno, Tiziano Campanile, Livio Paolillo</td>
</tr>
<tr>
<td>Licensed content date</td>
<td>Apr 1, 2001</td>
</tr>
<tr>
<td>Start page</td>
<td>1479</td>
</tr>
<tr>
<td>End page</td>
<td>1485</td>
</tr>
<tr>
<td>Type of use</td>
<td>Dissertation/Thesis</td>
</tr>
<tr>
<td>Requestor type</td>
<td>University/Academic</td>
</tr>
<tr>
<td>Format</td>
<td>Electronic</td>
</tr>
<tr>
<td>Portion</td>
<td>Figure/table</td>
</tr>
<tr>
<td>Number of figures/tables</td>
<td>1</td>
</tr>
<tr>
<td>Number of extracts</td>
<td></td>
</tr>
<tr>
<td>Original Wiley figure/table number(s)</td>
<td>Figure 2</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Order reference number</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.00 USD</td>
</tr>
</tbody>
</table>

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a "Wiley Company") or a society for whom a Wiley Company has exclusive publishing rights in relation to a particular journal (collectively WILEY). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your Rightslink account (these are available at any time at http://myaccount.copyright.com)

Terms and Conditions

1. The materials you have requested permission to reproduce (the "Materials") are protected by
This is a License Agreement between Benson Edagwa ("You") and John Wiley and Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by John Wiley and Sons, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

License Number 2727311406791
License date Aug 13, 2011
Licensed content publisher John Wiley and Sons
Licensed content publication Chemistry - A European Journal
Licensed content title Phalloidin Synthetic Analogues: Structural Requirements in the Interaction with F-Actin
Licensed content author Lucia Falcigno, Susan Costantini, Gabriella Dapos; Auria, Bianca Maria Bruno, Suse Zobeley, Giancarlo Zanotti, Livio Paolillo
Licensed content date Nov 5, 2001
Start page 4665
End page 4673
Type of use Dissertation/Thesis
Requestor type University/Academic
Format Electronic
Portion Figure/table
Number of figures/tables 1
Number of extracts
Original Wiley figure/table number(s) Figure 3
Will you be translating? No
Order reference number
Total 0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a "Wiley Company") or a society for whom a Wiley Company has exclusive publishing rights in relation to a particular journal (collectively WILEY). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your Rightslink account (these are available at any time at http://myaccount.copyright.com)

Terms and Conditions

1. The materials you have requested permission to reproduce (the "Materials") are protected by
VITA

Benson J. Edagwa received his Bachelor of Science degree in chemistry in 2005 from Moi University, Kenya. He was introduced to organic chemistry research in Prof. Paul Ndalut’s laboratory, and his undergraduate thesis was on the anthelmintic value of pymac and diatomite. In the Fall of 2006, Benson was accepted into the doctoral program in the chemistry department at Louisiana State University, USA, where he is currently a doctoral candidate in organic chemistry working under the direction of Prof. Carol M. Taylor. His graduate dissertation work involves the first total synthesis of a virotoxin and three analogs to investigate the role of proline hydroxylation in the conformation and biological activity of these compounds. In the graduate school, Benson received the Charles Coates Travel Award and the Kiran Allam International Award for outstanding research and teaching in chemistry. He is a member of the American Chemical Society and the Kenyan Chemical Society.