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ABSTRACT 
 

This work, standing as an attempt to understand and mathematically model the small scale 
materials thermal and mechanical responses by the aid of Materials Science fundamentals, 
Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. 
Since conventional continuum plasticity and heat transfer theories, based on the local 
thermodynamic equilibrium, do not account for the microstructural characteristics of materials, 
they cannot be used to adequately address the observed mechanical and thermal response of the 
micro-scale metallic structures. Some of these cases, which are considered in this dissertation, 
include the dependency of thin films strength on the width of the sample and diffusive-ballistic 
response of temperature in the course of heat transfer.  

A thermodynamic-based higher order gradient framework is developed in order to characterize 
the mechanical and thermal behavior of metals in small volume and on the fast transient time. 
The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal 
energy exchange between energy carriers and phonon-electrons interactions are taken into 
consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate 
of dissipation. The same approach is also adopted to incorporate the effect of the material 
microstructural interface between two materials (e.g. grain boundary in crystals) into the 
formulation. The developed grain boundary flow rule accounts for the energy storage at the grain 
boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation 
transfer through the grain boundary.  

Some of the abovementioned responses of small scale metallic compounds are addressed by 
means of the numerical implementation of the developed framework within the finite element 
context. In this regard, both displacement and plastic strain fields are independently discretized 
and the numerical implementation is performed in the finite element program ABAQUS/standard 
via the user element subroutine UEL. Using this numerical capability, an extensive study is 
conducted on the major characteristics of the proposed theories for bulk and interface such as 
size effect on yield and kinematic hardening, features of boundary layer formation, thermal 
softening and grain boundary weakening, and the effect of soft and stiff interfaces.  
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CHAPTER 1 
INTRODUCTION 

 
The purpose of the current research is to develop continuum models for plastic deformation of small 

scales solid materials, along with a physical motivation from experimental observations or theoretical 
considerations from microscopic behavior of metals. This introductory part summarizes the motivation 
and importance of this work while the main body of the work is presented in detail in the remaining 
chapters. 

 

1.1. Problem Statement 

Over the last decade, the scientific research on the mechanical behavior of components at the micro- 
and nano-scale have been driven by the demands of miniaturization in fields like microelectronics,  
nanotechnology and micro-electro-mechanical systems (MEMS). These systems form a cutting edge 
technology area that is predicted to have a significant impact on key market sectors such as aerospace, 
defense, transportation, home appliances, etc. Besides these technological motivations, describing the 
mechanical behavior of metals in small scale provides a unique opportunity to investigate fundamental 
problems in micro-mechanics and material science.  

Among these micro-scale structures, the applications of thin metal films as an integral part in several 
technological systems have been broadened recently. Normally the film thickness is comparable to 
relevant microstructural length scales such as grain size, dislocation cell sizes and particle spacing, which 
in turn, the mechanical properties are strongly affected by the grain size and orientation, grain size 
distribution and crystallographic texture. Examples of the application of these materials can be found in 
surface coating (e.g. thermal barrier coating in turbine blades to advance their performance above the 
melting point; corrosion resistant coatings), MEMS (e.g. sensors and actuators), friction reducers (e.g. 
medical implants and computer hard discs), electronic circuits (e.g. resistors, transistors, capacitors, and 
inductors).  

The design and fabrication of thin films exhibit material science and engineering challenges across 
different length scales, from angstroms to millimeters where the integrated applications of theories such 
as quantum mechanics and continuum solid mechanics may be required in order to increase the 
knowledge and understanding of the various phenomena encountered as well as to engineer the materials 
in order to improve the level performance of the system.   

In addition to the micro-scale material behavior, the localization phenomena –macroscopically- 
observed in various materials is of vital importance in the performance and stability of the structures. 
Strain localization is a concept describing an inelastic deformation mode, in which the entire deformation 
of a material structure occurs in one or more narrow bands, while the rest of the structure usually exhibits 
unloading. The example of such phenomena can be found in adiabatic shear band in metallic materials 
under high speed impact, metal forming, and machining of mechanical parts. This leads to local weakness 
of the material due to the inhomogeneous deformations and material instability response.  

However, the conventional continuum theories fail to address some of the aforementioned behaviors. 
The main deficiency of these theories can be summarized in modeling: 

(i) Size dependency of the macroscopic yield strength and strain-hardening rate during the inelastic 
deformation observed from micro-mechanical experiments including those from nano/micro-indentation, 
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torsion of micron-dimensioned wires, micro-bending of thin films, and bulge test (e.g., Stolken and 
Evans, 1998; Chen et al., 2007; Xiang and Vlassak, 2005). 

(ii) The classical (macro-mechanical) test results indicating the increase in the macroscopic yield 
strength and strain-hardening rate of polycrystalline metals with decrease of the particle size and the grain 
diameter (i.e. the Hall–Petch behavior (Hall, 1951; Petch, 1953; Venkatraman and Bravman, 1992)).  

(iii) Heat transport responses under both short time and spatial scales such as high-rate heating on thin 
film and microelectronic devices and pulsed-laser processing of materials (see e.g., Sze and Ng, 2007; 
Narayan et al., 1991). 

(iv) Mesh dependency in finite element solution of the strain softening and width of localized shear 
band during the plastic deformation. 

In order to overcome the aforementioned problems, one needs to consider both the mathematical and 
physical deficiencies of the conventional theories.   

It is known that the observed size effect in macro-mechanical tests is mainly due to the interaction 
between statistically stored dislocations (SSDs) which increase with the plastic strain and density of 
geometrically necessary dislocations (GNDs), which are generated by inhomogeneous plastic flow 
attributable to gradients of plastic strain. The classical plasticity models normally ignore such a 
microstructure characteristic of materials and its evolution in the course of plasticity deformation. 
Moreover, the implicit assumption of the smooth variation in deformation in such theories is in contrast to 
the case when strain localization takes place. This leads to the ill-posedness of the standard boundary 
value problem and consequently discretization sensitivity in numerical simulations of localization and 
softening problems. Therefore, in order to preserve the well-posedeness, the conventional material 
constitutive models are required to possess a localization limiter in order to address the strain softening 
ductile behavior. 

Morover, when the medium size is of the order of or smaller than phonon mean free path, the 
temperature gradient cannot be established within the medium and the heat transport is partially diffusive 
and partly ballistic. This is caused by the activation of microstructural effects due to the small depth of the 
heat-affected zone or the smallness of the structures. On the other hand, if the response time in the small 
volume components reduces to the range comparable to the thermalization time, it leads to 
nonequilibrium transition of thermodynamics between electrons and phonons. The macroscale 
formulation of heat conduction is based on the local thermodynamic equilibrium and the continuum 
assumption where a set of partial differential equations are used to describe the macroscopic properties. 
Therefore it does not consider neither the microstructural interactions between energy carriers, nor the 
size and time dependency of the heat transport. 

 

1.2. Continuum Models 

As it is mentioned earlier the thermo-mechanical modeling of metallic components becomes more 
complex when their size reduces to the order of a few hundreds of nanometers and they are subjected to 
inhomogeneous plastic flow under short elapsed time during a transient process. Elasticity theories are 
valid at small scale since the controlling length scale in the course of reversible elastic deformation is in 
the order of atomic dimensions. Plastic deformation in the crystal structure on the other hand occurs due 
to the movements of dislocation and their interactions with the defects. Such process is irreversible and is 
affected by the microstructural characteristics of materials (e.g. crystal orientation, grain size, the 
presence of interstitials, dislocation structure and distribution and point defects) and their evolutions. The 
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length scale influencing the plastic deformation is on the order of micro-meters. This results in more 
sensitivity of the plastic deformation modeling in small volume materials. Moreover, the microscopic 
state variables (e.g. temperature, rate of loading) affect the microstructures, and hence the material 
intrinsic length scale. The aforementioned length scales are termed as physically based length scales (i.e. 
material intrinsic length scale) in the sense that they have been introduced by nature itself and through 
connection with microstructural characteristic of materials such as grain size and dislocation spacing. 

On the continuum level, the conventional theories of plasticity do not contain any length scales, thus 
they are unable to predict the sample size dependency of the mechanical response of the materials at the 
micron scale. However, these theories can be extended by introducing a length parameter in order to 
address the small scale plasticity. It should be noted that since a large number of various microscopic 
phenomena (e.g. dislocation motion and interactions, presence of voids and point defects, twining) – with 
different length scales - are involved in the course of plastic deformation, an enhanced continuum theory 
is only able to address them in average sense and in this regard the length parameter in the theory is 
purely phenomenological.  

It should be noted that even these enhanced continuum theories of plasticity break down at smaller 
scales when the number of dislocations is too small to be treated collectively and theories with higher 
resolution are required to capture the material responses. The plastic deformation in these cases can be 
modeled using Discrete Dislocations or Molecular Dynamics simulations which model the individual 
dislocations and atoms respectively.  

In addition to the above considerations regarding the plastic deformations, it is shown that the 
continuum theories of heat transport (such as Fourier law relate to the concept of local thermodynamic 
equilibrium) break down in predicting the microscale responses of metals in both space and time. When 
the phonon mean free path ℓ𝑝ℎ is of the order of or larger than the medium size 𝐿, the heat transport is not 
purely diffusive (as the Fourier law) and is partly ballistic (Figure 1.1). This is caused by the activation of 
microstructural effects due to the small depth of the heat-affected zone or the smallness of the structures. 
Therefore, transport in this regime of length scales (i.e. in the order or larger than the mean free path of 
the energy carriers) deal with scattering of energy carriers (phonons, photons, electrons) and it is nonlocal 
since the local thermodynamic equilibrium cannot be defined. Figure 1.2 shows the phonon scattering 
mechanisms and wave disturbance due to the interruption of perfect periodicity in crystalline solid. 
However, when the specimen size is comparable to the energy carrier length scales (i.e. wave length), the 
heat transport is ballistic in nature where the temperature at the boundaries governs the heat transport, and 
not the temperature gradient within the medium.  

On the other hand, if the response time in the small volume components reduces to the range 
comparable to the thermalization time (i.e. the time needed for the electrons and lattice to achieve 
thermodynamic equilibrium), diffusion time (i.e. the time energy takes to travel through the medium), and 
the relaxation time (i.e. the time associated with the speed at which a thermal disruption moves through 
the medium), it leads to nonequilibrium transition of thermodynamics between electrons and phonons due 
to the shorter response time of electrons in metals than that of the crystal vibration or phonons. The 
validity of the Fourier law can be questioned in such situations since it represents only diffusive transport 
and yields an infinite speed for heat waves while the energy deposition and a finite speed of thermal 
propagation needs to be considered when the heating time is comparable to thermalization and diffusion 
times respectively (e.g. Joshi and Majumdar, 1993, Goodson and Flik, 1992). 
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(a)                                                (b)                                                 (c) 

Figure 1.1. Comparison of temperature profile through the thin film thickness: (a) Diffusive transport 
when 𝐿 ≫ ℓ𝑝ℎ (Fourier law); (b) Ballistic transport when 𝐿 ≪ ℓ𝑝ℎ (Casimir Limit); (c) Diffusive-

Ballistic transport when 𝐿~ℓ𝑝ℎ. 
 

 
Figure 1.2. Illustration of phonon interactions and scattering mechanisms. 

 
The continuum heat transport can be generalized to address some of the above phenomena by 

including time parameters. Again, same as the enhanced plasticity models, such generalized heat 
transports models are based on averaging the effect of physical phenomena included and can be used only 
to some extend in length and time. In the case of problems with small spatial and time measures (i.e. in 
the order of wave length and the collision time) the micro- and nano-scale heat transport models or 
quantum and atomistic simulations are required to solve such problems.   

Although, the advantage of the smaller scale models such as atomistic methods is the empowering the 
design of the new materials by predicting material composition, it is still not possible to conduct such 
simulations on realistic time and material structures (The time and length scale range of the various 
models are shown in Figure 1.3). Moreover, the quantum and atomistic models may fail to predict the 
material continuum complexity at the meso- and micro-scales. Therefore, in order to involve as many 
practicing engineers as possible in the rapid growth of micro-scale materials, the purpose of the current 
research is directed towards extending the conventional continuum theories in order to determine the 
thermal and mechanical response of small volume structures such as thin films. The temporal and spatial 
regimes of the current research are presented in Figure 1.3. Summary of the continuum based models to 
overcome the problems stated in Sec. 1 are presented below. 
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Figure 1.3. Characteristic lengths and times in solid mechanics material modeling. 

 

1.2.1. Visco-plasticity 

Visco-plasticity may be used as a procedure to regularize the elastic-plastic solid in the case of 
instabilities. It is proven that the material rate dependence leads to well posed boundary value problems 
with unique solutions by implicitly introducing a length-scale that sets the width of the shear bands in the 
course of localization of deformation (Prevost and Loret, 1990). Of course, in any particular 
circumstance, the question remains as to whether or not this is the relevant length scale. When material 
rate dependence is accounted, there is no loss for ellipticity in quasi static problems and wave speed 
remains real, as long as stress levels remain small compared to elastic stiffness. Even though the 
phenomenology of localization can be the same for both rate-dependent and rate-independent material 
behavior, pathological mesh dependence does not occur in numerical solutions for rate-dependent solids 
because boundary value problems remain well posed. The rate independent solid does emerge as the 
appropriate limit of the rate-dependent solid, although the limiting case is a singular one (Needleman, 
1988). 

1.2.2. Strain gradient plasticity 

Strain gradient plasticity theories have been proposed in a number of studies after the initiatory work 
of Aifantis, 1984), which consists of including the Laplacian of an effective strain measure into the 
classical yield condition. This explicitly introduces a characteristic length scale into the material 
constitutive relation where the stress response at a material point is assumed to depend on the state of its 
neighborhood in addition to the state of the material point itself. Strain gradient theories primarily target 
the mesh dependency in finite element simulation of the localization problem and width of shear band. 
Later, the focus in such theories has mainly directed toward the size effect and boundary layer related to 
plastic deformation of small volume metallic compounds.  
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The strain gradient theories can be classified into two groups based on the strategies for the strain 
gradient theory formulation: (i) lower-order theories consist of heuristically introducing the gradient 
dependence directly into the constitutive equations of the local type material (e.g. Acharya and Bassani, 
2000; Acharya et al., 2004; Han et al., 2005; Voyiadjis and Dorgan, 2004 ); (ii) higher-order theories 
where higher order stresses are defined as the work conjugate of strain gradient by implying the strain 
energy potential incorporating the strain gradients (e.g. Fleck et al., 1994; Gurtin, 2000;Voyiadjis et al., 
2006; Voyiadjis and Abu Al-Rub, 2007; Voyiadjis and Deliktas, 2009).  

The main distinction between the two theories arises in the restriction of the low-order theories in term 
of imposing boundary conditions, which in turn, excludes the effect of boundary related size effects (e.g. 
surface passivation in free-standing thin films; constrained plastic flow of a thin film on a substrate 
subjected to uniform loading ) and grain boundary in polycrystalline from the theory that has significant 
factors to model a realistic material behavior as the surface-to-volume ratio increases. The reason is that 
for lower-order theories the boundary conditions only can be imposed on displacement or stress and no 
gradient in plastic strain can be enforced for the case of homogeneous loading. 

1.2.3. Generalized heat transfer 

In order to address the non-equilibrium heat transfer, the generalized heat equation is taken into 
account. From a microscopic point of view, the energy exchange between electrons and phonons 
(Kaganov et al., 1956) results in a phenomenological two-step model (Anisimov et al., 1974) describing 
the temperatures of the electron gas and the metal lattice (Brorson et al., 1987; Brorson et al., 1990; 
Elsayed-Ali et al., 1991; Elsayed-Ali et al., 1987; Fujimoto et al., 1984; Groeneveld et al., 1990). The 
phonon-electron coupling factor in the two-step model has been successfully measured for several metals 
by employing ultrafast lasers. The expression of the phonon-electron coupling factor depends on either 
the electron mean free time between collisions (Kaganov et al., 1956) or thermal conductivity (Qiu and 
Tien, 1992). However, Qiu and Tien, 1993) derived the phonon-electron coupling from the solution of the 
Boltzmann equation. In contrast to the classical approach (Kaganov et al., 1956; Anisimov et al., 1974), 
the general derivation by Qiu and Tien, 1993) reveals the hyperbolic nature of energy transport by 
electrons in metals. The  derivation of the governing equation requires profound knowledge of quantum 
mechanics and the elastic and inelastic phononelectron scattering processes in energy transport (Qiu and 
Tien, 1992, 1993).  

 

1.3. Scope and Objectives 

This dissertation explores an important and under-researched topic on the multi-scale modeling in 
which the careful characterization of mechanical and thermal responses of the material requires that the 
developed continuum model represents the events that occur at the micro-scale. Computational methods 
are used in order to numerically investigate the capability of the models to address the small scale 
material responses incorporating size effects and nonequlibrium heat transfer. 

Chapter 2 deals with investigating the capability and strength of the visco-plastic continuum models in 
simulating the localization problems. The combination of both VA-BCC and VA-FCC models developed 
by Voyiadjis and Abed (Abed and Voyiadjis, 2007a, 2007b; Voyiadjis and Abed, 2006a, 2006b) are 
utilized in order to model the adiabatic and isothermal plastic flow stresses of AL-6XN stainless steel at 
low and high strain rates and over a wide range of temperatures. Computational aspects of the proposed 
model are addressed through the finite element implementation of the framework in the commercial finite 
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element code (ABAQUS) using the material subroutine VUMAT and an implicit stress integration 
algorithm. The numerical examples of material instability such as necking and shear localization are 
presented and the mesh dependency of the solutions are investigated. The consequence of this chapter is 
that the classical visco-plasticity models are not only unable to account for the size effect, but also they 
are only able to capturing mesh independency in the localization problems within a short range of mesh 
sizes. 

Chapter 3 is devoted to identifying the physical nature of the material length scale parameters of the 
first order gradient-dependent plasticity theory from micro-scale experiments. A micromechanical-based 
model for Temperature and Rate Indentation Size Effects (TRISE) encountered in nanoindentation 
experiments of metals are formulated based on different expressions of the geometrical necessary 
dislocations (GNDs) density evolution. A micromechanical-based model of variable material intrinsic 
length scale used in conjunction with gradient theories is also developed that allows for variations in 
temperature and strain rate and its dependence on the grain size and accumulated plastic strain. The 
results of the indentation experiments performed on various metals are then used to implement the 
aforementioned framework in order to predict simultaneously the TRISE and variable length scale at 
different temperatures, strain rates and various grain sizes (i.e. distances from the grain boundary). 

Chapter 4 presents a thermodynamically consistent framework in order to characterize the mechanical 
and thermal behavior of metals in small volume and on the fast transient time. In this regard, second order 
strain gradient plasticity theory is coupled with the application of micromorphic approach to the 
temperature variable. Both the VA-BCC and VA-FCC models are extended in this chapter by inclusion of 
gradient of plastic strain in order to accurately address the strengthening and hardening mechanisms 
observed in small volume metallic compounds. This formulation introduces in the constitutive equations 
two phenomenological length scales. Moreover, the effect of microstructural interaction between phonons 
and electrons in the small scale and during fast transient process are addressed by incorporating two time 
scales into the microscopic heat equation.  

The resultant framework contains a large number of material parameters due to the nature of the 
classical VA-BCC and VA-FCC models. This allows the constitutive model to capture phenomena over a 
wide range of strain rates and elevated temperatures under extreme loading conditions observed in large 
number of local experiments and encountered in the macro-scale applications. However, this is not 
essential in modeling the responses in small volume metallic compounds, since neither the existing 
experimental techniques provide wide range of data in order to calibrate the constitutive model, nor the 
application of these materials (e.g. thin film) includes such extreme conditions. Instead, the features such 
as size effect are more important in developing a non-local constitutive model. This deficiency is 
improved in Chapters 5 and 6 by elaborating more on the physical nature of the small scale metal 
responses. In this regard, a thermodynamic-based higher order strain gradient plasticity framework for 
coupled thermo-visco-plasticity modeling of single-crystal (i.e. thin film) is presented. The concept of the 
thermal activation energy and the dislocations interaction mechanisms are taken into consideration in 
proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same 
approach is also adopted to incorporate the effect of the material microstructural interface between two 
materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule 
accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy 
dissipation caused by the dislocation transfer through the grain boundary. The theory is developed based 
on the decomposition of the thermodynamic conjugate forces into energetic and dissipative counterparts 
which provides the constitutive equations to have both energetic and dissipative gradient length scales for 
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the grain and grain boundary. The main goal of this model is the thermodynamical consistency, simplicity 
in numerical implementation, and flexibility in material parameter calibration based on existent micro-
scale experimental data.  

Some of the abovementioned goals for developing this framework are achieved in Chapter 6 by means 
of the numerical implementation of the developed framework within the finite element context. In this 
regard, both displacement and plastic strain fields are independently discretized and the numerical 
implementation is performed in the finite element program ABAQUS/standard via the user element 
subroutine UEL. Using this numerical capability, an extensive study is conducted on the major 
characteristics of the proposed theories for bulk and interface such as size effect on yield and kinematic 
hardening, features of boundary layer formation, thermal softening and grain boundary weakening, and 
the effect of soft and stiff interfaces. The material parameters of the gradient framework are also 
calibrated using an extensive set of micro-scale experimental measurements of thin metal films over a 
wide range of sizes and temperatures of the samples. An energy based approach is also presented to 
extract the first estimate of the grain boundary model parameters from results of nano-indentation tests 
conducted near the grain boundary. Comparison of the model prediction and the test results indicate the 
capability of the proposed model in capturing the overall behavior of small volume metallic compounds 
such as Bauschinger and surface passivation effect. 
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CHAPTER 2 
LOCALIZATION IN STAINLESS STEEL USING A LOCAL 

VISCOPLASTIC MODEL 
 

2.1. Introduction 
The study of material behavior of metals under extreme conditions such as high temperatures 

and strain rates gained considerable interest lately due to its relevance in a large number of 
engineering applications. For example steel alloys are used in a wide range of applications for 
aerospace, railways, mining, automotive, and infrastructure. In this regard, the understanding of 
the thermo-mechanical behavior of these materials under extreme loading (e.g., impact and 
crash) and environmental conditions (e.g., low and high temperature) has been the subject of 
extensive studies in the past few decades, both experimentally and theoretically. The attention is 
mainly given to thermo-mechanical response under a wide range of strain rates and temperatures 
(Cazacu and Barlat, 2004; Karabin et al., 2003; Nemat-Nasser and Guo, 2003; Nemat-Nasser et 
al., 2001; Rusinek et al., 2008a; Rusinek et al., 2007), impact perforation (Borvik et al., 2005; 
Borvik et al., 2001, 2002; Borvik et al., 2003; Borvik et al., 1999 Voyiadjis et al., 2008; Rusinek 
et al., 2008b; Rusinek et al., 2009; Klepaczko et al., 2009; Dikshit et al., 1995), localization and 
shear banding   (Abed, 2010; Garstecki et al., 2003; Glema and Lodygowski, 1997; Glema et al., 
2000, 2008; Glema et al., 2010; Jankowiak et al., 2011; Lodygowski and Perzyna, 1997; Rusinek 
et al., 2005; Voyiadjis and Abed, 2007; Voyiadjis and Abu Al-Rub, 2007). 

In order to model the thermo viscoplastic behavior of steel alloys subjected to the above 
mentioned loading conditions, a number of efforts have been focused on the constitutive 
modeling in the past several decades (Johnson and Cook, 1983; Nemat-Nasser, 1982; Zerilli and 
Armstrong, 1987; Barlat et al., 1997b; Rusinek and Klepaczko, 2001; Voyiadjis and Almasri, 
2008). One desirable goal in constitutive modeling is to develop models which are widely 
applicable and capable of accounting for complex paths of deformation, temperature and strain 
rate which represent the main requirements of large deformation problems such as high speed 
machining, impact, and various primarily metal forming operations. The phenomenological 
models (e.g., Johnson and Cook, 1983; Barlat et al., 1997a) are actually designed for simplicity 
of computational implementation for static and dynamic analysis as they are relatively easy to 
calibrate with a minimum set of experimental data in the form of stress–strain curves at different 
strain rates and temperatures. More physical approaches are reported in  Zerilli and Armstrong, 
1987, Rusinek and Klepaczko, 2001, Durrenberger et al., 2008, Voyiadjis and Almasri, 2008). 
They are more complex to calibrate and less used in engineering practice.  

In the current research work, a microstructural-based constitutive relation is presented to 
investigate the strain localization of AL-6XN stainless steels. Voyiadjis and Abed (Abed and 
Voyiadjis, 2007a, 2007b; Voyiadjis and Abed, 2006a, 2006b) have recently developed two 
microstructural-based constitutive models to simulate the plastic deformation behavior for two 
different crystal structures of pure metals; body centered cubic (BCC) and face centered cubic 
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(FCC). The two constitutive models were derived based on the concept of thermal activation 
analysis and the dislocation interaction mechanisms as well as the additive decomposition of the 
thermal and athermal stresses. Both models were successfully applied to several BCC and FCC 
metals over a wide range of temperatures (77–1000 𝐾) and strain rates (0.001–8500 𝑠−1). The 
rational for the differences in the two forms mainly depends on the dislocation characteristics for 
each particular structure. BCC metals show stronger dependence of yield stress on temperature 
and strain rate while in the case of FCC metals the yield stress is mainly affected by strain 
hardening.  In other words, the cutting of dislocation forests is the principal mechanism in FCC 
metals, while in BCC metals; the overcoming of Peierls-Nabarro barriers is the principal 
mechanism. Combination of VA-FCC and VA-BCC is considered by Abed and Voyiadjis (2005) 
in order to model the plastic deformation of steel over a wide range of strain rates between 0.001 
and 8300 s−1 at temperatures from 77 to 1000 K. The modeling of the true stress–true strain 
curves is achieved by using the classical secant modulus for the case of unidirectional 
deformation and the model parameters are obtained using the experimental observations 
conducted by Nemat-Nasser and Guo (2000). 

The objective of this chapter is to characterize the strain localization behavior of AL-6XN 
stainless steel (material contains different compositions that have different crystal structures) 
using simultaneously both the VA-BCC (Abed and Voyiadjis, 2007a; Voyiadjis and Abed, 
2006a) and VA-FCC (Abed and Voyiadjis, 2007b; Voyiadjis and Abed, 2006b) models. The 
proposed microstructure based constitutive law is derived based on consistent thermodynamic 
formulations and it is implemented in the well-known finite element code ABAQUS as a user 
material VUMAT. The computational algorithms for implementing the proposed model as well 
as the radial return algorithm for integrating the material response is also summarized in this 
chapter. Numerical examples of material instability are introduced in the last section in order to 
validate and test the proposed constitutive model, and the proposed algorithm and its 
implementation in the ABAQUS finite element code. 

 
2.2. Material 

Steel alloys can be classified into two well-known categories: ferritic such as HSLA-65, DH-
36 and Weldox 460-E, and austenitic such as Nitronic-50, Uranus B66 and AL-6XN. According 
to the phase transformation diagram of steel, the percentage of carbon (C) in steel plays a crucial 
role in determining the phase behavior (ferrite or austenite) of the material over a wide range of 
temperatures. Austenitic stainless steels are usually noted for their high strength and exceptional 
toughness, ductility, and formability. They exhibit considerably better corrosion resistance than 
ferritic steels (Nemat-Nasser et al., 2001). However, AL-6XN contains more nickel and 
molybdenum than the other austenitic stainless steels which improves the chloride SCC (stress 
corrosion cracking) resistance, whereas molybdenum and nitrogen provide improved pitting and 
crevice corrosion resistance (Brooks and Lippold, 1990), since alloys high in nickel content can 
display improved austenite stability (Denhard and Espy, 1971). Table 2. 1 shows the major alloy 
content of the investigated AL-6XN stainless steel as given by Nemat-Nasser et al., 2001). 
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Table 2.1. Major alloy content of AL-6XN (%) Nemat-Nasser et al., 2001) 

C Cr Ni Si Mn Mo N Cu 
0.024 20.56 23.84 0.36 0.41 6.21 0.213 0.2 
 
The AL-6XN alloy is a high-strength stainless steel designed to resist chloride pitting, crevice 

corrosion, and stress corrosion cracking. It is, generally, utilized in applications where good 
strength is required in the environments where chloride pitting and stress corrosion cracking is a 
problem. Nemat-Nasser et al., 2001) investigated the plastic flow of AL-6XN stainless steel and 
the corresponding deformation mechanisms first through systematic compression experiments 
performed over a wide range of temperatures and different strain rates and second through 
theoretical modeling using the experimental results and based on the mechanisms of thermally 
activated dislocation motion. In this chapter, the experimental results provided by Nemat-Nasser 
et al., 2001) will be utilized in determining the material parameters for the proposed plastic 
deformation modeling of AL-6XN. 

It is known that the austenitic steel exhibits a single-phase, face-centered cubic (FCC) 
structure while the ferrite exhibits a body-centered face (BCC) structure. It should be noted that 
although the Al-6XN alloy is an austenitic stainless steel material, the plastic deformation or the 
dislocation interactions in the microstructure scale shows a combination of both BCC and FCC 
effects under low and high strain rates and temperatures. In other words, both the yield and the 
hardening stresses are affected by temperature and strain rates as will be shown in the following 
sections.  

 
2.3. Physically Based Viscoplastic Formulation of the Constitutive Relations 

2.3.1. Micro-mechanical based model 
The plastic behavior of metals can be determined by investigating the dislocation dynamics of 

their crystals, which are generated, moved and stored during the inelastic deformation. In turn, 
the most important features that should serve as constituent elements of an appropriate theory of 
crystal plasticity are the motion, multiplication and interaction of these dislocations.  

A theoretical description of plasticity should aim at relating the macroscopic deformation 
behavior at both the intrinsic properties of the deforming material and the externally imposed 
deformation conditions. On the microscopic scale, the plastic flow of crystalline materials is 
controlled by the generation, motion and interactions between dislocations. Thus, the constitutive 
description must, in principle, bridge the entire hierarchy of length scales, starting from the 
determination of the single dislocation properties on an atomistic scale and proceeding up to the 
characterization of the macroscopic material properties. In many cases, conclusions about the 
macroscopic deformation behavior can be obtained by investigating the temperature and strain 
rate dependence of the flow stress for pure BCC and FCC metals by considering the properties of 
single dislocations (Zaiser et al., 1999).  
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The dislocations are assumed to move in a periodic potential and the average dislocation 
velocity 𝜈  is determined by the thermodynamic probability of achieving sufficient energy 
temperature 𝑇 to move past a peak in the potential. In other words, it is determined through 
thermal activation by overcoming local obstacles to dislocation motion. Many expressions 
defining the dislocation speed for thermally activated dislocation glides may be found in the 
literature (e.g. Hirth and Nix, 1969). The following general expression, however, is postulated 
(Bammann and Aifantis, 1982): 

 

𝜈 = 𝜈0 exp �−
𝐺𝑎𝑐𝑡
𝐾𝑇

� (1) 

 
where 𝐾  is the Boltzmann’s constant, and 𝑇  is the absolute temperature. The reference 

dislocation velocity 𝜈0 represents the peak value where the temperature reaches or exceeds the 
melting point. It is defined by 𝜈0 = 𝑑𝑚 𝑡𝑤⁄ , where 𝑡𝑤 represents the time that a dislocation waits 
at an obstacle and 𝑑𝑚 is the average distance the dislocation moves between the obstacles. The 
shear stress-dependent free energy of activation 𝐺𝑎𝑐𝑡 may depend not only on stress but also on 
the internal structure. Kocks et al., 1975) suggested the following definition to relate the 
activation energy 𝐺 to the thermal flow stress 𝜎𝑡ℎ: 

 

G = 𝐺0 exp �1 − �
𝜎𝑡ℎ
𝜎�
�
𝑞1
�
𝑞2

 (2) 

 
where 𝐺0 is the reference Gibbs energy at zero Kelvin temperature, 𝜎� is the threshold stress at 

which the dislocations can overcome the barriers without the assistance of thermal activation 
(𝜎𝑡ℎ = 𝜎�  where G = 0.0), and 𝑞1  and 𝑞2  are constants defining the shape of the short-range 
barriers. According to Kocks, 2001) the typical values of the constant 𝑞2 are 3/2 and 2 that is 
equivalent to a triangular obstacle profile near the top. On the other hand, the typical values of 
the constant 𝑞1 are 1/2 and 2/3 which characterizes the tail of the obstacle.Equating Eqs. (1) and 
(2), the thermal yield stress is obtained as follows: 

 
𝜎𝑡ℎ = 𝜎�𝒢(𝑇, 𝑝̇) (3) 

 
where 𝜎�  denotes the threshold stress at which the dislocations can overcome the barriers 

without the assistance of thermal activation and 
 

𝒢(𝑇, 𝑝̇) = �1 − �−𝛽2𝑇 ln 𝜂0
𝑣𝑝�

1/𝑞1�
1/𝑞2

 (4) 

 
In Eq. (4), the viscous parameter 𝜂0

𝑣𝑝 and material parameter 𝛽2 are defined in terms of the 
microstructure physical quantities such that: 
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𝛽2 =
𝐾
𝐺0

 (5) 

𝜂0
𝑣𝑝 = (𝑀𝑏𝑑(𝜌𝑖𝑑 + 𝑀𝑚(1 − exp(−𝑘𝑎𝑝))/𝑘𝑎))−1𝑡𝑤0   (6) 

 
where  𝑀  can be interpreted as the Schmidt orientation factor, 𝑏  is the magnitude of the 

Burgers vector, 𝑑 the average distance the dislocation moves between the obstacles, 𝜌𝑖 the initial 
dislocation density, 𝑡𝑤  is the average waiting time of dislocations at an obstacle, 𝑘𝑎  is the 
dislocation annihilation factor which may depend on both the temperature and strain rate, and 
𝑀𝑚 = 1 𝑏𝑙⁄   represents the dislocation multiplication factors where 𝑙 is the dislocation mean free 
path. The viscosity parameter depends on the viscoplastic strain and helps in introducing a 
proper definition for the length scale.  

Voyiadjis and Abed, 2005) also derived a physically based definition of threshold strain 
hardening, 𝑅 after considering the plastic strain evolution of the forest dislocation density. The 
accumulation process of the material dislocation density during the plastic deformation was 
investigated extensively by many authors (see for example, Bammann, 2001; Barlat et al., 2002; 
Klepaczko, 1987; Kubin and Estrin, 1990). Klepaczko, 1987) showed that the growth of 
dislocation density is nearly linear with regard to the deformation in the first steps of the 
hardening process, independently of the temperature. This is followed by a recombination of the 
dislocations that is assumed to be proportional with the probability of dislocation meeting that is 
to say of the dislocation density. Based on this hypothesis, the following simple relation for the 
evolution of the total dislocation density, 𝜌𝑑, was presented Klepaczko, 1987): 

 
𝑑𝜌𝑑

𝑑𝜀𝑝
= 𝑀𝑚 − 𝑘𝑎(𝜌𝑑 − 𝜌𝑖𝑑) (7) 

 
where 𝜌𝑖𝑑 is the initial dislocation density encountered in the material due to the manufacture 

process or by nature. The plastic strain evolution of the effective total dislocation density can be 
defined, after solving the differential equation Eq. (7), in terms of the internal physical quantities 
as follows: 

 

𝜌𝑑 =
𝑀𝑚

𝑘𝑎
(1 − 𝑒−𝑘𝑎𝑝) (8) 

 
Making use of Taylor shear flow (Taylor, 1938) and substituting 𝜌𝑑 defined by Eq. (8), the 

expression of threshold strain hardening can be obtained as follows:  
 

𝑅(𝑝) = 𝐵(1 − 𝑒−𝑘𝑎𝑝)1/2 (9) 
 
The parameter 𝐵 is defined in terms of the microstructure quantities as follows: 
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𝐵 = 𝑚𝑠𝑐ℎ𝛼𝑠ℎ𝜇𝑎𝑐𝑡𝑏(𝑀𝑚/𝑘𝑎)1/2 (10) 
 
where 𝑚 is the orientation factor that relates the shear stress to the normal stress, 𝜎 = 𝑚𝑠𝑐ℎ𝜏 , 

(𝑚𝑠𝑐ℎ = √3) for the case of the von Mises flow rule, 𝛼𝑠ℎ  is a constant which represents the 
portion of the shear modulus, and 𝜇𝑎𝑐𝑡, is contributing to the activation energy with both being at 
zero temperature.  

2.3.2. Plastic deformation modeling of AL-6XN stainless steel 
As explained earlier, the microstructure of AL-6XN stainless steel mainly consists of 

components that have two types of crystal structure; BCC and FCC. Therefore, a combination of 
the aforementioned VA-FCC and VA-BCC models (Abed and Voyiadjis, 2007a, 2007b; 
Voyiadjis and Abed, 2006a, 2006b) is going to be used in order to characterize the plastic 
deformation of such materials. Moreover, the experimental observations of this material at 
different strain rates and temperatures are considered. According to Nemat-Nasser et al., 2001), 
the experimental results of Al-6XN stainless steel reveal some characteristics that need to be 
addressed in the plastic deformation modeling: 

(i) Both the hardening and the yield stress depend on the temperature and the strain rate and 
their corresponding history, which is not the case if one has either a BCC or FCC metal structure.  

(ii) Second characteristic is that the microstructure of the material evolves mainly with the 
temperature history.  

(iii) The long-range obstacles are related to the plastic strain as well as the initial yield stress.  
(iv) Finally, the dynamic strain aging takes place when the temperature reaches the critical 

values (600–1000 K), becoming weaker when the temperature exceeds 1000 K and increasing 
with strain. 

In order to understand the deformation behavior of this material, a constitutive description is 
required. Thus, the above experimental observations should be included and addressed properly 
in order to have a suitable flow stress model for this material (AL-6XN). The dynamic strain 
aging effects, however, are not included in the present model since the plastic flow is considered 
in the range of temperatures and strain rates where diffusion and creep are not dominant. In other 
words, the plastic deformation is attributed to the motion of dislocations only. 

To deform a metal beyond the elastic limit means to activate and move its dislocations 
through the crystal. Once the dislocations start moving through the crystal, two types of obstacles 
are encountered that try to prevent dislocation movements through the lattice; long range and 
short-range barriers. The long range obstacles are due to the structure of the material and cannot 
be overcome by introducing thermal energy through the crystal, while, the short-range barriers 
can be overcome by thermal energy (Kocks, 2001). Utilizing the two physically based BCC and 
FCC models, the flow stress of AL-6XN stainless steel consists of thermal and athermal parts. 
The thermal part is attributed to the short-range barriers which include the Peierls stress, point 
defects such as vacancies and self-interstitials, and dislocations intersection with slip planes. The 
long-range effects, on the other hand, such as the stress field of dislocation forests and grain 
boundaries are independent of strain rate and temperature and thus, contribute to the athermal 
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part of the flow stress. The total flow stress is additively decomposed into the thermal 𝜎𝑡ℎ  and the 
athermal 𝜎𝑎𝑡ℎ  components as follows: 

 
𝜎 = 𝜎𝑡ℎ + 𝜎𝑎𝑡ℎ (11) 

 
It is known by now that the flow stress of a material is a function of some internal 

microstructural parameters as well as the temperature and strain rate. The internal 
microstructural components include grain size, Burgers vector, and both the forest and mobile 
dislocation densities (Abed and Voyiadjis, 2007a, 2007b; Voyiadjis and Abed, 2006a, 2006b). 
The assumption used in Eq. (11) for the additive decomposition of the flow stress, is a result of 
experimental observations which show that at certain strain rate, the increase in the temperature 
beyond such a limit will cause no further degradation on the flow stress. There is always a 
certain amount of stress in the material that is independent of temperature and, therefore, should 
be added to the total flow stress. This kind of stress is called the athermal stress which is 
physically interpreted as the resistance of the long-range obstacles to the movement of the 
thermally activated dislocations. 

In most metals, the temperature variation of the flow stress at certain strain and strain rate 
shows that the flow stress decreases as the temperature increases until a point where no further 
decreasing is allowed and the stress becomes constant. This point represents the athermal stress 
value on the stress axis and the critical temperature value, 𝑇𝑐𝑟 , on the temperature axis. The 
critical temperature changes with strain rate while the athermal stress is independent of strain 
rate. In general, the athermal component of FCC metals consists of one component that is 
independent of strain, whereas, an additional strain-dependent component exists in BCC metals. 
The physical interpretation of the athermal stress component was investigated by many authors. 
Zerilli and Armstrong, 1987) attributed the strain-independent component of the athermal stress 
to the influence of the solute and the initial dislocation density (originated in the material) on the 
yield stress. They defined the athermal stress component as the product of the microstructural 
stress intensity and the inverse square root of the average grain diameter. Nemat-Nasser and 
Guo, 2000) indicated that for BCC metals, the athermal resistance to the motion of dislocations 
is due to the elastic stress field generated by the dislocations, point defects, grain boundaries, and 
various other impurities found in the composition of the material. That is, no temperature and 
strain rate effects are encountered except the temperature dependence on the elastic modulus. 
Moreover, since the plastic strain increases monotonically and the plastic strain rate is always 
greater than zero, consequently the plastic strain can be used to define the variation of the mobile 
dislocation density, the average grain size, and other parameters that affect the athermal 
component of the flow stress. 

For the case of AL-6XN, the above physical interpretations as well as the experimental 
observations at different strain rates and temperatures lead to the following definition of the 
athermal component of the flow stress: 
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𝜎𝑎𝑡ℎ = 𝑌𝑎 + 𝑅(𝑝) (12) 
 
where 𝑌𝑎 is the athermal hardening parameter and 𝑅 is defined in Eq. (9). 
The thermal activation analysis of AL-6XN under different strain rates shows two different 

behaviors of BCC and FCC. The mechanism of BCC metals is defined as the overcoming of the 
short range barriers (Peierls–Nabarro barriers) through the movement of the initial dislocations 
(original dislocations), that is, the thermal stress contributes to the yield stress and does not 
depend on the accumulation of the dislocation densities through the plastic deformation. On the 
other hand, the cutting of dislocations forests which is attributed to the evolution and the 
accumulation of the mobile dislocations during the plastic deformation is the principle 
mechanism in FCC metals. This implies that the thermal stress in FCC is strongly dependent on 
the plastic strain. 

Therefore, the thermally activated flow stress of AL-6XN is additively decomposed here into 
two parts as follows: 

 
𝜎𝑡ℎ = 𝑌𝑡ℎ(𝑝̇,𝑇) + 𝑅𝑡ℎ(𝑝, 𝑝̇,𝑇) (13) 

 
 
where both the thermal yield stress 𝑌𝑡ℎ  and thermal hardening 𝑅𝑡ℎ  are defined as follows1: 
 

        𝑅𝑡ℎ = 𝑅�(𝑝)𝒢(𝑇, 𝑝̇) (14) 

        𝑌𝑡ℎ = 𝑌�𝒢(𝑇, 𝑝̇) (15) 

 
The thermal and athermal stresses for BCC and FCC metals are expressed as (Voyiadjis and 

Abed, 2006a, 2007a): 
 
VA-FCC 

𝜎𝑎𝑡ℎ = 𝑌𝑎;  𝜎𝑡ℎ = 𝑅𝑡ℎ(𝑝, 𝑝̇,𝑇) (16) 
 
VA-BCC 

𝜎𝑎𝑡ℎ = 𝑅(𝑝);  𝜎𝑡ℎ = 𝑌𝑡ℎ(𝑝̇,𝑇) (17) 
 

                                                           
1 It should be noted that the functional form of both 𝑅(𝑝) and 𝑅�(𝑝) is the one derived in Eq. (9). However, since 

the material parameters in the thermal and athermal isotropic hardening are not identical, different notations are 
considered here such as (𝑝) = 𝐵(1 − 𝑒−𝑘𝑎𝑝)1/2  , 𝑅�(𝑝) = 𝐵�(1 − 𝑒−𝑘𝑎𝑝)1/2 , and 𝑅𝑡ℎ(𝑝, 𝑝̇,𝑇) = 𝑅� �1 −

�−𝛽̂2𝑇 ln 𝜂̂0
𝑣𝑝�1/𝑞1�

1/𝑞2
.  
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2.3.3. Thermodynamical aspects of the model 
A thermodynamically consistent mathematical formulation is used as a framework to 

introduce constitutive equations. Thermodynamics with internal state variables offers both 
guidelines and some constrains for the choice of the evolution equations. Thermo-elastic-
viscoplastic deformation behavior in the absence of damage is considered in this research that is 
defined using two potentials; the thermodynamic potential to describe the present state and the 
dissipative potential to describe the irreversible evolution behavior. 

For this purpose the second principle of thermodynamics is postulated respectively as follows: 
 
Entropy production inequalities: 

𝜌𝓈̇𝑇 + 𝜎𝑖𝑗𝜀𝑖̇𝑗𝑒 + 𝒴𝑝̇ − 𝑞𝑖
𝑇,𝑖

𝑇
− 𝜌℮̇  ≥ 0 (18) 

 
where 𝜌 is the mass density, ℮ is the specific internal energy and the term 𝓈 is the specific 

entropy. In the above relation, 𝑞𝑖 is the heat flux vector and 𝒴 is the flow resistance. 
An inelastic body is one in which the strain is determined by the stress and by some additional 

internal variables. Virtually any attribute of microstructure that undergoes irreversible 
rearrangement associated with change of free energy is a candidate for a description by an 
internal state variable (ISV)  (McDowell, 1991; McDowell, 1992). ISV constitutive theory is 
based on the assumption that nonequilibrium, irreversible process can be treated as a sequence of 
constrained equilibrium states. The path history dependence is embedded in the evolution of the 
ISVs, thereby extending the equilibrium state space to describe nonequilibrium processes. In so 
doing, it is presumed that the processes involved are not too far from equilibrium at each stage. 
In this regard, the strain rate role can be included in the free energy function through the 
definition of other state variables. Hence, within the thermodynamic framework and considering 
an infinitesimal displacement/strain relationship, 𝜀𝑖̇𝑗 = 𝜀𝑖̇𝑗𝑒 + 𝜀𝑖̇𝑗

𝑣𝑝 , the Helmholtz free energy 
function in terms of observable and internal state variables is given as follows: 

 

        𝛹 = 𝛹(𝜀𝑖𝑗𝑒 ,𝑇) (19) 

 
where p characterizes the isotropic (scalar) hardening in plasticity/viscoplasticity. 

Accordingly, the time derivative of Eq. (19) with respect to its internal state variables gives 
 

        𝛹̇ =
𝜕𝛹
𝜕𝜀𝑖𝑗𝑒

𝜀𝑖̇𝑗𝑒 +
𝜕𝛹
𝜕𝑇

𝑇̇ (20) 

 
By introducing the Helmhotz free energy such that 𝛹 = ℮− 𝑇𝓈, followed by taking the time 

derivative of this relation and substituting in Eq. (18), the following Clausius-Duhem inequality 
is obtained: 
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𝜎𝑖𝑗𝜀𝑖̇𝑗𝑒 + 𝒴𝑝̇ − 𝜌𝛹̇ − 𝜌𝓈𝑇̇ − (𝑞𝑖
𝑇,𝑖

𝑇
) ≥ 0 (21) 

 
Substituting the rate of the Helmholtz free energy, Eq. (20), along with the decomposition of 

the total strain tensor, into the above Clausius-Duhem inequality, Eq. (21), one obtains the 
following thermodynamic constraint: 

 

�𝜎𝑖𝑗 − 𝜌
𝜕Ψ
𝜕𝜀𝑖𝑗𝑒

� 𝜀𝑖̇𝑗𝑒 − 𝜌 �𝓈 +
𝜕Ψ
𝜕𝑇

� 𝑇̇ + 𝒴𝑝̇ − 𝑞𝑖
𝑇,𝑖

𝑇
≥ 0 (22) 

 
The previous expression must be valid for arbitrary reversible changes in the observable 

variables, so that the first two terms must vanish independently which result in the following 
thermodynamic state laws: 

𝜎𝑖𝑗 = 𝜌
𝜕Ψ
𝜕𝜀𝑖𝑗𝑒

;     𝓈 = −
𝜕Ψ
𝜕𝑇

  (23) 

 
The remaining terms in the inequality, given by Eq. (21), correspond to the dissipation 

function:  

𝒟 =  𝒴𝑝̇ − 𝑞𝑖
𝑇,𝑖

𝑇
≥ 0 (24) 

 
Introducing mechanical constitutive models into a thermodynamic framework allows the 

partition of the plastic work into the energy stored by the material (due to hardening) and the one 
dissipated as heat. In the case of dissipative processes, the viscoplastic dissipation potential is 
expressed as a continuous and convex scalar valued function of the flux variables.  

Using the Legendre-Fenchel transformation of the above viscoplastic dissipation potential, 
complementary laws can be obtained in the form of the evolution laws of flux variables in terms 
of the dual variables 

        𝑓 = 𝑓(𝜎𝑖𝑗,𝒴) (25) 

It is obvious that the above intrinsic potential is attributed only to the viscoplastic mechanical 
process. In this regard, the evolution laws of the internal state variables are obtained using the 
maximum dissipation principle after utilizing the calculus of function of several variables with 
the Lagrange multiplier, 𝜆̇𝑣𝑝  as follows: 

        Ω = 𝒟 − 𝜆̇𝑣𝑝𝑓 (26) 

 
According to the maximum dissipation principle, the viscoplastic dissipation function is 

maximized over all other possible admissible states by the actual state of the thermodynamic 
forces. Therefore, the following conditions are used to maximize the objective function,  Ω: 
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∂Ω
∂𝜎𝑖𝑗

= 0;    
∂Ω
∂𝒴

= 0 

 
(27) 

The Mises flow rule represents a constitutive description of plastic flow based on a co-
directionality hypothesis which requires that the direction 𝜏𝑖𝑗/�𝜏𝑖𝑗� of the deviatoric stress (i.e. 
𝜏𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝑚𝑚𝛿𝑖𝑗/3) coincides with that of plastic flow as described by the flow direction 𝑁𝑖𝑗: 

 

𝑁𝑖𝑗 = �3
2

𝜏𝑖𝑗
�𝜏𝑖𝑗�

= �3
2

𝜀𝑖̇𝑗
𝑣𝑝

�𝜀𝑖̇𝑗
𝑣𝑝�

= �3
2
𝜀𝑖̇𝑗
𝑣𝑝

𝑝̇
 (28) 

 
The generalized normality hypothesis is recovered here after substituting Eq. (26) into Eq. 

(27) and the following corresponding thermodynamic flow laws are then obtained: 
 

𝜀𝑖̇𝑗
𝑣𝑝 = 𝜆̇𝑣𝑝 𝜕𝑓

𝜕𝜎𝑖𝑗
;   𝑝̇ = −𝜆̇𝑣𝑝 𝜕𝑓

𝜕𝒴
; 𝜆̇𝑣𝑝𝑓 = 0 (29) 

 
A second requirement of this flow rule is that the magnitude of the deviatoric stress be a 

function 

𝜏𝑖𝑗 = �3
2
𝒴(𝑝, 𝑝̇,𝑇)𝑁𝑖𝑗 (30) 

 
The (strictly positive) scalar function 𝒴(𝑝, 𝑝̇,𝑇)  is the flow resistance. According to the 

micromechanical based model of stainless-steel presented in Sec. 2.2 one can postulate the 
functional form of the flow resistance as follows: 

 
𝒴(𝑝, 𝑝̇,𝑇) = 𝑌𝑎 + 𝑌�𝒢(𝑇, 𝑝̇) + 𝑅(𝑝) + 𝑅�(𝑝)𝒢(𝑇, 𝑝̇) (31) 

 
The definition of the proper viscoplastic potential as well as the Helmholtz free energy is 

required to provide sufficient equations for the unique solution for the described inelastic 
material behavior. This description of plastic flow in the Mises flow rule is based on the tacit 
assumption that the defect energy vanishes. Therefore, one postulates the following general 
definition of the free energy 𝛹 for the alloys:  

  

𝜌𝛹 =
1
2
𝜀𝑖𝑗𝑒 𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝑒  (32) 

 
where  𝐸𝑖𝑗𝑘𝑙  is the fourth order elastic tensor and is defined as follows: 
 

𝐸𝑖𝑗𝑘𝑙 = 𝐾𝛿𝑖𝑗𝛿𝑘𝑙 + 2𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑖𝑗𝛿𝑘𝑙/3) (33) 
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Moreover, in view of Eqs. (28) and (30), one may consider the dissipation as a function such 

that 

𝒟 = �3
2
𝒴(𝑝, 𝑝̇,𝑇)�𝜀𝑖̇𝑗

𝑣𝑝� −
1
2
𝑘
𝑇
𝑇,𝑖𝑇,𝑖 (34) 

 
Finally, the physically based thermal/dynamic yield function is used in deriving the evolution 

of the governing equations of the constitutive model as follows: 
 

𝑓 = 𝜎𝑒𝑞 − �𝑌𝑎 + 𝑌� �1−�−𝛽2𝑇ln�𝜂0
𝑣𝑝𝑝̇��

1
𝑞1�

1/𝑞2

+ 𝑅 + 𝑅� �1−�−𝛽̂2𝑇ln�𝜂̂0
𝑣𝑝𝑝̇��

1
𝑞1�

1/𝑞2

� (35) 

 
Where 𝜎𝑒𝑞 is known as the equivalent stress defined in the deviatoric space as follows: 

𝜎𝑒𝑞 = �
3
2
𝜏𝑖𝑗𝜏𝑖𝑗�

1/2

= �3
2
�𝜏𝑖𝑗� (36) 

 
Finally, the role of temperature which is considered extremely important in the case of 

adiabatic deformation, that is a result of the high strain rate of loading, is included through the 
following evolution relation in the next section. 

 

2.3.4. Evolution equation of temperature (𝑻̇) 
Viscoplastic adiabatic deformation of metals is not only influenced by the rate of loading but 

also by the initial testing temperature as well as its evolution as the plastic work accumulates.  
The relation of the first law of thermodynamics by ignoring the temperature gradient effect, 
assuming no external heat during the deformation (adiabatic) is as follows: 

 
Conservation of energy: 

𝜌℮̇ = 𝜎𝑖𝑗𝜀𝑖̇𝑗𝑒 + 𝒴𝑝̇ − 𝑞𝑖,𝑖 (37) 
 
Substituting for the internal energy density rate ℮  after taking the time rate of  

𝛹 = ℮− 𝑇𝓈, into the first law of thermodynamics, Eq. (37), yields the following energy balance 
relation: 

𝜌�𝛹̇ + 𝑇̇𝓈 + 𝑇𝓈̇� − 𝜎𝑖𝑗𝜀𝑖̇𝑗𝑒 − 𝒴𝑝̇ + 𝑞𝑖,𝑖 = 0 (38) 
 
By solving for the entropy rate and substituting into the thermomechanical heat balance 

equation the following relation is obtained as follows: 

𝜌𝑐𝑝𝑇̇ = 𝒴𝑝̇ +
1
2
𝑘
𝑇
𝑇,𝑖𝑇,𝑖 − 𝑇

𝜕𝜎𝑖𝑗
𝜕𝑇

𝜀𝑖̇𝑗𝑒  (39) 
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where 𝑐𝑝 = 𝑇𝜕𝑠/𝜕𝑇 is the tangent specific heat capacity at constant pressure. Eq. (39) can 

further be simplified, by utilizing Eq. (29) for the definition of 𝑝̇  along with assuming the 
adiabatic condition 1 , such that the temperature is evaluated during the thermo-viscoplastic 
deformation by the following evolution equation: 

 
𝑇̇ = 𝑧𝜆̇𝑣𝑝 (40) 

Where 
 

𝑧 =
1
𝜌𝑐𝑝

(𝜎𝑒𝑞 − 𝒴) (41) 

 
 
where  𝜌 denotes the material density and 𝑐𝑝 represents the tangent specific heat capacity at 

constant pressure. It is obvious from the definitions of the evolution equations, that most of these 
state variables are driven by the incremental evolution of the viscoplastic multiplier, 𝜆̇𝑣𝑝 that can 
be obtained using the consistency condition. 

 
2.4. Computational Aspects of the Physically Based Formulation 

2.4.1. Constitutive integration algorithm of the viscoplasticy theory 
A numerical algorithm for the integration of the rate constitutive equations presented in the 

previous section is required in order to obtain the updated solution for the rate of stress and 
internal state variable at each time step. A number of authors have advocated the use of the 
return mapping (or radial return) algorithms for the integration of elastoplastic and 
elastoviscoplastic constitutive relations (e.g. Krieg and Krieg, 1977; Ortiz and Simo, 1986). Such 
algorithem is taken into account in the work presented here. Radial return mapping scheme 
consists of two steps such as the initial elastic predictor step where the trial stress is calculated 
which gives the state of stress away from the yield surface and the plastic corrector step which 
returns the stress on the updated yield surface. The main ingredient of the method is an 
integration scheme which transforms the set of the constitutive equations into a set of nonlinear 
algebraic equations. Here a fully implicit method based on backward Euler scheme is used. In 
this scheme the increments of the plastic strain and the internal sate variables are calculated at 
the end of the time step and the yield condition is enforced at the end of the step: 

 
 

                                                           
1 Due to the high strain rates and short duration of the loading, heat loss through conduction, 

convection, or radiation is neglected in comparison to the thermoplastic heating, and therefore 
𝑞𝑖,𝑖 = 0. 
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𝜀𝑛+1 = 𝜀𝑛 + 𝛥𝜀 
𝜀𝑛+1
𝑣𝑝 = 𝜀𝑛

𝑣𝑝 + 𝛥𝜀𝑣𝑝 = 𝜀𝑛
𝑣𝑝 + 𝛥𝜆𝑣𝑝𝑁𝑛+1 

𝑁𝑛+1 = 3𝜏𝑛+1/2𝜎𝑛+1
𝑒𝑞  

𝑅𝑛+1 = 𝑅𝑛 + 𝛥𝜆𝑣𝑝𝑘𝑎(𝐵2 − 𝑅𝑛+12)/2𝑅𝑛+1 
𝑅�𝑛+1 = 𝑅�𝑛 + 𝛥𝜆𝑣𝑝𝒢𝑘𝑎(𝐵�2 − 𝑅�𝑛+1

2)/2𝑅�𝑛+1 
𝑇𝑛+1 = 𝑇𝑛 + 𝛥𝜆𝑣𝑝𝑧𝑛+1 

𝑧𝑛+1 = (𝜎𝑛+1
𝑒𝑞 − 𝒴𝑛+1)/𝜌𝑐𝑝 

𝜎𝑛+1 = 𝜎𝑛 + 𝛥𝜎 = 𝐸: �𝜀𝑛+1 − 𝜀𝑛+1
𝑣𝑝 � 

𝑓𝑛+1𝑑 = 𝑓𝑛𝑑 + 𝛥𝑓𝑑 

(42) 

 
where the dynamic yield function that is defined at the end of the considered discrete time 

step is as follows: 

        
𝑓𝑛+1𝑑 = 𝜎𝑛+1

𝑒𝑞 − 𝑌𝑎 − 𝑅𝑛+1 − 𝑌� �1−�−𝛽2𝑇𝑛+1ln�𝜂0𝑛+1
𝑣𝑝 𝑝̇��

1
𝑞1�

1/𝑞2

− 𝑅�𝑛+1 �1−�−𝛽̂2𝑇𝑛+1ln�𝜂̂0𝑛+1
𝑣𝑝 𝑝̇��

1
𝑞1�

1/𝑞2

 

(43) 

 
Substituting Eq. (42)2 into Eq. (43), one obtains 
 
        𝜎𝑛+1 = 𝜎𝑛+1∗ − 𝐸:𝑁𝑛+1Δ𝜆𝑣𝑝 (44) 

 
where 𝜎𝑛+1∗ = 𝜎𝑛+1 + 𝐸: Δ𝜀 is the trial stress of the elastic predictor. The elastic predictor 

phase is driven by the increment in the total strain. The quantity −𝐸:𝑁𝑛+1Δ𝜆𝑣𝑝 is the plastic 
corrector which returns the trial stress onto a suitably updated yield surface along a direction 
specified by the plastic flow direction at the end point. As one can see from Eq. (44) the plastic 
corrector phase is controlled by the increment in Δ𝜆𝑣𝑝. 

For isotropic elasticity an additive decomposition of strains and associated flow, the problem 
of solving for Δ𝜆𝑣𝑝  can be reduced to solving a non-linear scalar equation in the deviatoric stress 
space as will be explained in this subsection. It is obvious that the hydrostatic part of the trial 
and the converged stresses given in Eq. (44) are identical, i.e. 𝑡𝑟(𝝈𝑛+1∗ ) = 𝑡𝑟(𝝈𝑛+1)  since 
𝑡𝑟(𝑵𝑛+1) = 0 for the von Mises plasticity/viscoplasticity. Thus, splitting the stresses in Eq. (44) 
into the deviatoric and hydrostatic components yields: 

 
        𝝉𝑛+1 = 𝝉𝑛+1∗ − 2𝜇Δ𝜆𝑣𝑝𝑵𝑛+1        (45) 

 
The remaining part is to find a proper way of solving for the viscoplastic multiplier  𝜆𝑣𝑝  in 

order to update the current stress and the other thermodynamic conjugate forces. 
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2.4.1.1. Nonlinear scalar equation 
For isotropic elasticity with an additive decomposition of strains and associated flow, the 

problem of solving for Δ𝜆𝑣𝑝  can be reduced to solving a nonlinear scalar equation in the 
deviatoric stress space. In this case, the definition of the equivalent stress 𝝈𝑛+1

𝑒𝑞  along with 𝑵𝑛+1 
is rewritten as follows: 

 

        𝜎𝑛+1
𝑒𝑞 = �3

2𝝉𝑛+1: 𝝉𝑛+1 = �3
2 ‖𝝉𝑛+1‖ (46) 

        𝑵𝑛+1 =
3
2
𝝉𝑛+1
𝜎𝑛+1
𝑒𝑞  (47) 

 
Furthermore, the corresponding trial stresses can be rewritten in a similar way as in the above 

two relations, that is: 

        𝜎𝑛+1
𝑒𝑞 ∗ = �3

2𝝉𝑛+1
∗ : 𝝉𝑛+1∗  = �3

2 ‖𝝉𝑛+1∗ ‖ (48) 

        𝑵𝑛+1
∗ =

3
2
𝝉𝑛+1∗

𝜎𝑛+1
𝑒𝑞  (49) 

 
Hence, from Eq. (45), 𝑵𝑛+1 is determined exclusively in terms of the trial stress 𝝉𝑛+1∗ , as 

follows: 

        𝑵𝑛+1 =
3
2
𝝉𝑛+1∗

𝜎𝑛+1
𝑒𝑞 = 𝑵𝑛+1

∗  (50) 

 
In this regard, Eq. (50) represents the main principle of the return mapping algorithm as it 

returns the trial stress to the yield surface radially in the deviatoric stress space. This, actually, is 
considered as the key feature of the radial return method as 𝑵 remains radial and unchanged 
throughout the plastic/viscoplastic corrector phase of the algorithm. The details of the derivation 
of the nonlinear scalar relation for determining the consistency parameter Δ𝜆𝑣𝑝  is outlined 
below.  

 
2.4.1.2. Determination of the Viscoplastic Multiplier 𝜆𝑣𝑝 

Here the derivation of the nonlinear scalar relation for the consistency parameter Δ𝜆𝑣𝑝  is 
presented. By taking the dot product of Eq. (45) with 𝑵𝑛+1, and with the aid of Eq. (50) and 
noting that 𝑵𝑛+1:𝑵𝑛+1 = 3/2 , one obtains the following scalar equation: 

 

        𝜎𝑛+1
𝑒𝑞 = 𝜎𝑛+1

𝑒𝑞 ∗ − 3𝜇Δ𝜆𝑣𝑝 (51) 

 
Substituting Eq. (45) in the dynamic yield function at the end of the increment, Eq. (43), one 

obtains the following nonlinear scalar relation that determines the consistency parameter Δ𝜆𝑣𝑝. 
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𝑟(𝛥𝜆𝑣𝑝) = 𝜎𝑛+1

𝑒𝑞∗ − 𝛥𝜆𝑣𝑝(3𝜇)−𝑅𝑛+1 −𝑌� �1−�−𝛽2𝑇𝑛+1𝑙𝑛 �𝜂0𝑛+1
𝑣𝑝 𝑝̇��

1
𝑞1�

1/𝑞2

−𝑅�𝑛+1 �1−�−𝛽�2𝑇𝑛+1𝑙𝑛�𝜂�0𝑛+1
𝑣𝑝 𝑝̇��

1
𝑞1�

1/𝑞2

 

(52) 

 
The above relation, Eq. (52), is the key equation for the numerical method. It can be solved 

using the local Newton–Raphson method with one variable for each iteration, such that 
 

        (𝛥𝜆𝑣𝑝)𝑖+1 = (𝛥𝜆𝑣𝑝)𝑖 − ( 𝐽(𝛥𝜆𝑣𝑝) )𝑖 (𝑟(𝛥𝜆𝑣𝑝))𝑖 (53) 

 
in which the superscript 𝑖 and 𝑖 + 1 refer to the previous iteration and to the current iteration, 

respectively, and the Jacobian in this case is a scalar quantity defined as follows: 
 

        𝐽(𝛥𝜆𝑣𝑝) = �
𝜕𝑟(𝛥𝜆𝑣𝑝)
𝜕𝛥𝜆𝑣𝑝

�
−1

 (54) 

where 

        𝜕𝑟(𝛥𝜆𝑣𝑝)
𝜕𝛥𝜆𝑣𝑝

= −3𝜇 − ℎ𝑛+1 − 𝜃𝑛+1 −
𝑦𝑛+1
Δ𝑡

 (55) 

 
Herein, the scalar parameters ℎ, 𝜃, and 𝑦, given in the following Eqs. (56) to (58), are defined 

at the end of the considered time step 
 

        ℎ =
𝑘

2𝑅
(𝐵2 − 𝑅2) +

𝒢𝑘
2𝑅�

(𝐵�2 − 𝑅�2) (56) 

        𝜃 = 𝑧𝑌�𝜁ln (𝜂0
𝑣𝑝𝛥𝜆𝑣𝑝/Δ𝑡) + 𝑧𝑅�𝜁ln (𝜂�0

𝑣𝑝𝑝̇) (57) 

        𝑦 = Δ𝑡𝑌�𝑇𝜁/𝛥𝜆𝑣𝑝 + Δ𝑡𝑅�𝑇𝜁/𝛥𝜆𝑣𝑝 (58) 

        𝜁 =
𝛽2
𝑞1𝑞2

�1 − �−𝛽2𝑇ln �𝜂0
𝑣𝑝 𝛥𝜆𝑣𝑝

Δ𝑡 ��
1/𝑞1

�

(1/𝑞2)−1

�−𝛽2𝑇ln �𝜂0
𝑣𝑝 𝛥𝜆𝑣𝑝

Δ𝑡 ��
(1/𝑞1)−1

 (59) 

        𝜁� =
𝛽2

𝑞1𝑞2
�1 − �−𝛽�2𝑇ln�𝜂�0

𝑣𝑝 𝛥𝜆
𝑣𝑝

Δ𝑡
��

1/𝑞1

�

�1/𝑞2�−1

�−𝛽�2𝑇ln�𝜂�0
𝑣𝑝 𝛥𝜆

𝑣𝑝

Δ𝑡
��

(1/𝑞1)−1

 (60) 

 
It should be noted here that Eq. (53) can be solved by a method similar to the successive 

substitution at which the iterations are ended when an acceptable accuracy in the dynamic yield 
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function falls within a prescribed tolerance. The convergence of the successive iteration process 
is guaranteed as proved by Kobayashi and Ohno, 2002) since the residual r is a convex function 
of  𝛥𝜆𝑣𝑝.  

 
2.5. Finite Element Implementation and Numerical Results 

2.5.1. Material parameters 
Determining the material parameters of the proposed constitutive model is the important part 

for capturing the actual behavior of the material. True stress-strain curves of AL-6XN at 
temperatures ranging from 77 to 1000 K were obtained by Nemat-Nasser et al., 2001). These 
curves will be used here in order to obtain the different material constants needed for the 
constitutive modeling of the material. It should be noted that in both the experimental results and 
the present model the plastic flow is considered in the range of temperatures and strain rates 
where diffusion and creep are not dominant and the plastic deformation is only attributed to the 
motion of dislocations. The procedure to determine the constitutive model parameters is initiated 
by studying the stress–temperature relations at different values of plastic strains for a specific 
strain rate. It should be note that the material parameters are previously determined by Abed and 
Voyiadjis, 2005 and a summary of the procedure is summarized here. However, minor changes 
on these parameters are required in order to capture better agreement between the experiments 
with the finite element results. 

The experimental values of the thermal stress component at each strain rate are calculated by 
deducting the athermal flow stress component from the total flow stress. From the thermal stress 
for the case of various strain rates for different plastic strains reported by Nemat-Nasser et al., 
2001), it is clear that the thermal stress varies with the variation of the plastic strain for 
temperatures below 1000 K while it is strain-independent and vanishes when the temperature 
passes the critical value (>700 K). Hence, the experimental values of the thermal stress at zero 
plastic strain and for different strain rates are utilized here in determining the thermal yield stress 
component (Figure 2.1(a)). Once the thermal yield stress is estimated, the hardening component 
of the thermal stress is obtained by utilizing the net values of the experimental results for 
different strain rates and specific plastic strain (Figure 2.1(b)).  

The constant values of the flow stresses encountered at temperatures above the critical value 
are used here in order to calculate the values of the athermal hardening constants by utilizing the 
nonlinear least-squares fit. The value of 𝑌𝑎 represents the athermal stress at zero plastic strain or 
the athermal component of the initial yield stress. Subtraction of the above stress increments 
(athermal stresses) from the overall stress leads to the thermal component of the flow stress 
which is accounted for by the thermal yield stress and the thermal hardening stress respectively.  

The last step is determining the rest of the constants. True stress-strain diagram for wide range 
of temperatures obtained from experimental data of Nemat-Nasser et al., 2001)  is used here for 
this work. As shown in Figure 2.2(a), the constitutive model equation in stress-strain-temperature 
is fitted along with experimental data at dynamic strain rates of 3500/𝑠  using Levenberg-
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Marquardt Algorithm. The above mentioned parameters are defined as constants in order to find 
the other parameters. It can be seen from this figure that the stress-strain curve decreases 
smoothly with increasing temperature and reaches a value independent of temperature at about 
700 K. In addition, the true stress-strain curves of the constitutive model are plotted in Figure 2. 
2 (b) for strain rates ranging from 10−4/𝑠  at quasistatic condition to 104/𝑠  representing the 
dynamic regime. The experimental results at high strain rates show high disturbance in stress-
strain diagrams which is a common phenomenon at this range of rates. These curves were 
smoothed here in order to be comparable to the model. Both the yield and flow stresses increase 
with the increase in strain rate but the rate of increase in yield stress is higher than that of the rate 
in the flow stress. Furthermore, the difference between stress-strain curves at low and high 
strains remains nearly constant. One can therefore conclude that both strain hardening and the 
yield stress is dependent on strain rate and temperature, as is observed in general for AL-6XN 
stainless steel. There is a good agreement between the model with obtained parameters and the 
experimental data. 

2.5.2. Axisymmetric uniaxial tension problem 
 
In this section, a uniaxial tensile problem loaded with different velocities and initial 

temperatures is considered in order to validate the material parameters obtained from the one-
dimensional tests for AL-6XN (Table 2. 1) and to demonstrate the capability of the finite-
element formulation to capture the effect of strain rates (velocity) and temperatures on the stress-
strain curves as compared with the experimental results. Due to symmetry, only a quarter of the 
problem is considered and solved initially with a mesh of one axisymetric element (CAX4R 
ABAQUS type).  

Initially, different values of velocities, which are equivalent to various strain rates (e.g. V = 
40m/s is equivalent to 4000/s of strain rate) for the proposed problem dimensions (10 mm ×10 
mm), are axially applied to the one-element specimen at different initial temperatures. This 
velocity impact is kept constant over a total time step of 100µs (𝑡 = 0.0001 𝑠) in order to allow 
strains to exceed 40%. The finite-element results of the proposed model are compared with the 
experimental results conducted at the same above-mentioned loading conditions (Nemat-Nasser 
et al., 2001). The results for comparison are illustrated in Figure 2.3 (a) and (b) and show very 
good correlations between numerical and experimental data 1 . Since the numerical analysis 
results agree well with the experimental data, one can conclude that the constitutive model and 
the material parameters are implemented well in the ABAQUS/VUMAT using the proposed 
model. 

                                                           
1 The kink observed ate the onset of plasticity in Figure 2. 3 (b) is mainly due to the numerical errors.  
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(a) 

 
(b) 

 
Figure 2.1. Temperature variations of the (a) thermal yield stress (𝑌𝑡ℎ) and (b) thermal 

hardening stress (𝑅𝑡ℎ) predicted using the proposed model, and compared to the experimental 
results at 15% plastic strain and for different strain rates Abed and Voyiadjis, 2005 [experimental 

data taken from Nemat-Nasser et al., 2001)]. 
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(a) 

 
(b) 

 
Figure 2.2. True stress and true plastic strain for AL-6XN stainless steel for a wide range of 

(a) temperatures in 3500/𝑠 of strain rate ( R-square = 0.9205) ; (b) strain rates at 296 K ( R-
square = 0.995) [experimental data taken from Nemat-Nasser et al., 2001)]. 
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2.5.3. Localization in a simple tension plane strain problem 
 
The plastic deformation of polycrystalline solids incorporates microscopically localized 

deformation modes that can be precursors to strain localization or specifically narrow bands of 
intense straining. Such phenomena are considered very important as they dominate the 
deformation process and/or fracture modes in many materials particularly in metals. In the 
classical rate-independent plasticity theory, the onset of strain softening results in the 
mathematical ill posedness of the field equations. Since there is no length scale involved, the 
localization zone stays confined to the size of one element. As a result, a finer element size leads 
to a smaller localization thickness with higher peak strains. This mesh sensitivity may be solved 
by introducing a viscosity term that helps in keeping the field equation well posed. In this study, 
the developed physically based constitutive viscoplastic model is utilized in investigating the 
localization problems for AL-6XN using the verified material parameters listed in Table 2. 2. 

 
2.5.3.1. Necking problem 

A simple uniaxial plane strain tension problem, with dimensions and loading history given in 
Figure 2.4(a) and (b), respectively, is considered in this example to study the initiation and 
development of strain localization in tensile deformation of AL-6XN. The theoretical 
formulations and computational algorithms of the proposed elasto–viscoplastic constitutive 
models are tested using different mesh configurations. In this regard, the considered problem is 
modeled and meshed with three different mesh discretizations (Mesh1: 7 × 15, Mesh2: 10 × 25, 
Mesh3: 10 × 50 elements) as shown in Figure 2.4(c) using the four-node plane strain element 
with reduced integration. 

In this example, a displacement velocity of 33 m/s (1650 𝑠−1 strain rate) is applied with an 
initial temperature of 77K using the three considered meshes. This displacement velocity is 
maintained over a total time step of 150 µs ensuring about 5 mm displacement in the axial 
direction. In the adiabatic deformation process of this metal and after large amount of strains, the 
localization is controlled by a necking at one of the four corners. In Figure 2.5(a), the deformed 
and undeformed displacement patterns as well as the contours of Mises stress are illustrated at a 
time step of 150 µs (5 mm applied displacement) for the three considered meshes. The 
corresponding contours of the equivalent plastic strain are shown in Figure 2.5(b). Although the 
material localization is dominated by the necking process (no pronounced shear bands), mesh-
independent results are obtained from almost all the three mesh discretizations. Moreover, 
objectivity can also be observed from the load–displacement curves presented in Figure 2.6(a) 
over the total applied displacement (5 mm). It is obvious from the stress–displacement curves 
that the hardening stresses increase with the applied displacement due to the accumulation of the 
plastic strains. 



30 
 

 
(a) 

 
(b) 

Figure 2.3. True stress-strain curves obtained from numerical analyses using proposed model, 
for AL-6XN stainless steel, and compared to the experimental results Nemat-Nasser et al., 2001: 
(a) Adiabatic true stress-strain curves at 3500/s strain rate and for different initial temperatures; 
(b) Adiabatic (𝜀̇ = 8300𝑠−1, 3500𝑠−1) and Isothermal (𝜀̇ = 0.1𝑠−1, 0.001𝑠−1) true stress-strain 

curves at 293K of initial temperature and for different strain rates. 
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(a) 

 
(b) 

Figure 2.5. Mesh-independent results for AL-6XN at V = 33 m/s (1650 s�x1 strain rate) and 
𝑇0 = 77𝐾 for the different element discretizations at 150 µs (5 mm applied displacement): (a) 

displacement patterns and Mises stresses; and (b) contours of the equivalent plastic strain. 
 


