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Comparison of structure- and threading-based approaches to
protein functional annotation

Michal Brylinski and Jeffrey Skolnick*

Center for the Study of Systems Biology School of Biology, Georgia Institute of Technology, 250
14th Street NW, Atlanta, GA 30318

Abstract
To exploit the vast amount of sequence information provided by the Genomic revolution, the
biological function of these sequences must be identified. As a practical matter, this is often
accomplished by functional inference. Purely sequence-based approaches, particularly in the
“twilight zone” of low sequence similarity levels, are complicated by many factors. For proteins,
structure-based techniques aim to overcome these problems; however, most require high-quality
crystal structures and suffer from complex and equivocal relations between protein fold and
function. In this study, in extensive benchmarking, we consider a number of aspects of structure-
based functional annotation: binding pocket detection, molecular function assignment and ligand-
based virtual screening. We demonstrate that protein threading driven by a strong sequence profile
component greatly improves the quality of purely structure-based functional annotation in the
“twilight zone”. By detecting evolutionarily related proteins, it considerably reduces the high false
positive rate of function inference derived on the basis of global structure similarity alone.
Combined evolution/structure-based function assignment emerges as a powerful technique that
can make a significant contribution to comprehensive proteome annotation.

Keywords
protein function annotation; sequence-based methods; structure-based methods; protein threading;
binding pocket detection; Gene Ontology molecular function; virtual screening

INTRODUCTION
In the post-genomic era, the rapid accumulation of proteins whose functions have not yet
been experimentally characterized has created a great demand for automated computational
tools that can provide insights into their function1,2. Many methods have been developed to
address this issue; they can be roughly divided into sequence- and structure-based
approaches (for reviews see 3–5). The simplest approaches infer function from close
homologues as detected by sequence similarity6–9. However, the functional divergence
observed at high levels of sequence identity (60–70%) significantly complicates annotation
transfer by homology10,11. To address this problem, some sequence-based techniques
exploit family specific sequence identity thresholds11, increase their accuracy by detecting
the presence of functionally discriminating residues12 or by identifying small sequence
signatures and functional motifs13–16. Nevertheless, purely sequence-based approaches are
in general limited to higher levels of sequence identity; predictions in the “twilight zone” of
sequence similarity17 may be inaccurate. When accuracy is maintained, it is often at the
expense of adequate coverage18.
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To extend functional inference approaches to low levels of sequence identity, a number of
structure-based methods have been developed19–22. Template-free methods rely on the
purely structural properties of the target protein of interest. They analyze the geometrical
and physicochemical features of a protein surface in order to detect functionally important
sites. Most of these techniques focus on the detection of clefts and cavities that likely bind
ligands23–29. Other methods consider blind docking of small molecules to the protein’s
structure30, scanning of the protein surface with chemical probes31,32, or they provide
functional information by examining various physicochemical properties of the protein
residues to infer binding sites19. These include the degree of surface residue
conservation33,34, the electrostatic potential35,36, the hydrophobicity distribution37,
perturbed pKa values38 or the destabilizing effect of local surface residues on the protein’s
structure39,40.

Similar to function annotation approaches based on short sequence motifs, local structural
signatures are also widely used to identify functionally important sites in proteins41–43.
Here, the library of predefined three-dimensional arrangements of a small set of key residues
is used to screen a target protein structure in order to identify similar motifs that often
indicate a common function44–46. In general, methods based on structure calculations, as
well as local structure comparison approaches are successful when applied to high-
resolution structures; their performance typically drops off when approximate protein
models, particularly these modeled using remote proteinhomology47,48, are used as the
target structures49–51. Given the current state-of-the-art in protein structure prediction52–
55, powerful structure-based methods that effectively utilize low-to-moderate quality protein
models for function assignment would be of considerable practical assistance in proteome-
scale function prediction. However, all of this is moot until one ascertains what precisely are
the limits of functional inference given exact experimental structures. This will constitute
the upper bound that any approach using predicted structures could achieve.

It is well known that within a protein family, the global fold is more strongly conserved than
the protein’s sequence56. Hence, at low sequence identity levels, structure-based
identification of remote homology and functional relationships inevitably outperforms
sequence-based methods57–60. Examination of known protein structures in the SCOP
database61 reveals the tendency of certain protein folds to bind substrates at a similar
location, suggesting that very distantly homologous proteins often have common binding
sites62. This observation forms the basis for FINDSITE, a structure/evolution-based
approach for ligand-binding site prediction and function annotation49. However, one should
bear in mind that divergent and convergent evolution results in a non-unique relationship
between protein fold and protein function63,64. Therefore template-based function inference
using solely global structure similarity might lead to a high false positive rate.

While a variety of purely structure-based approaches to functional inference have been
developed36,60,65,66, their precision, sensitivity and specificity have not been assessed in a
large-scale benchmark. To address this issue, in this paper, we present the results of a large-
scale benchmark comparison of structure- and threading-based approaches to the inference
of protein function, given the experimental structure of the protein of interest. The simplest
structure-based approach for functional inference merely requires significant structural
similarity between a pair of proteins. As shown below, to achieve a low false positive rate,
using structure alone requires a high structure similarity threshold, which results in very low
coverage. This problem can be addressed by introducing various filters. Here, we
demonstrate that the use of threading47,67 identified templates that share a common binding
site greatly reduces the high false positive rate in template-based function annotation by
detecting evolutionarily related homologues. Furthermore rather similar ligands tend to bind
at a given common location in the protein’s structure; this emphasizes the importance of a
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local component, such as spatial ligand clustering, in ligand selection for virtual screening.
We compare the set of templates selected on the basis of significant structure similarity to
these identified from protein threading with respect to the conservation of ligand-binding
sites and chemical properties of bound ligands. In the “twilight zone” of sequence identity,
the accuracy of function assignment is assessed at the level of binding site prediction,
molecular function transfer and the construction of ligand templates for use in virtual
screening.

MATERIALS AND METHODS
Dataset

We consider a representative dataset of 901 nonhomologous protein-ligand complexes that
cover the PDB at 35% sequence identity, where the lengths of the proteins are between 50–
400 residues and the minimum and maximum number of ligand atoms ranges from 6–100
49. Of these, we selected 842 targets for which at least one weakly homologous (less than
35% sequence identity) template with a Z-score47 ≥4 and a TM-score68 ≥0.4 can be
identified by threading. Thus, all templates with a sequence identity >35% to the target are
excluded from all aspects of the analysis. Moreover, a subset of 710 targets for which a GO
annotation is provided by Gene Ontology69 or UniProt70 was used to assess the
performance of the molecular function transfer. The datasets are available at
http://cssb.biology.gatech.edu/skolnick/files/FINDSITE.

Overview of structure- and threading-based approaches to function assignment
To assess the importance of protein threading for template-based function assignment (our
variant of which is the FINDSITE algorithm4,49), as shown in Figure 1, we apply four
procedures for template selection. For a given target, template structures are selected from
the template library either by structure alignment to the native target structure (assumed to
be apo throughout this analysis) using a purely structure-based approach or threading,
(threading-based approach). For the case of functional inference, we can simply collect the
GO terms for templates above a structural similarity threshold, left hand pane (structure-
based approach, no local filtering). We can also estimate an upper bound for the
performance of a purely structure-based approach by using only those templates that in
addition to the significant global structure similarity to their targets also have ligand-binding
sites in similar locations to the target structure (structure-based approach, correct pocket
localization). Here, we consider template structures whose binding pockets are within a
distance of 4 Å from the target pockets upon structure alignment. If no such templates can
be identified for a given target protein, the distance is gradually increased by 1 Å until at
least one template is found.

For binding site based functional inference, both structure- and threading-based approaches,
follow the same procedure to predict binding pockets and to assign the function (Figure 1,
two right panes). Ligand-bound template structures are superimposed onto the target’s
structure using the TM-align structure alignment algorithm71; see below. Then, binding
pockets are identified by the spatial clustering of the centers of mass of template-bound
ligands by an average linkage clustering procedure and ranked by the number of binding
ligands. This step is termed “local filtering”. Thus, this is a binding site matching approach
based on the location and frequency of bound ligands. It is not based on identifying clefts
present in the protein structure. The simulation time depends on the number and size of the
identified template proteins and varies from minutes to hours on a single state of the art
processor core. For template-based binding site prediction, the fraction of templates that
share a common top-ranked binding site is used to construct a primary confidence index that
classifies the reliability of the pocket prediction as Easy, Medium or Hard49. We
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demonstrate below that the overall accuracy of binding site prediction is well correlated with
this classification. In all cases, the performance of structure- and threading-based approaches
is compared with randomly selected patches on the target protein surface.

Structure-based template selection
Given a native structure, the structure-based approach uses structural alignments to identify
the set of relevant templates. In general, protein structure alignment approaches attempt to
establish equivalences between a pair of structures based on their three-dimensional
conformation where the equivalent residues are not a priori given71–73. Here, we use the
TM-align structure alignment algorithm71 that combines the TM-score68 rotation matrix
and Dynamic Programming to identify the “best” structural alignment. By weighting small
inter-structural distances stronger than large distances, the TM-score rotation matrix is more
sensitive to the global topology than the traditionally used global root-mean-square-
deviation74 (RMSD). Moreover, the statistical significance of the alignment for a given
TM-score is protein length independent. For a pair of randomly related protein structure,
their average TM-score is 0.30, with a standard deviation of 0.01. For each target protein,
structurally similar templates (with <35% sequence identity to the target protein) are
selected from the template library based on the TM-score reported by TM-align. Here, we
used the TM-score threshold of 0.4, which is indicative of highly significant structural
similarity75. A detailed comparison of the performance of TM-align with other algorithms
has been done elsewhere71,76,77.

Threading-based template selection
Protein threading was developed to match target sequences to proteins adopting very similar
structures67. In practice, threading that employs a strong sequence profile component47
works by detecting evolutionary related proteins49. For a given sequence, template
structures are identified from a non-redundant fold library by threading the target sequence
through the template structures and selecting the best alignment by a scoring function. Score
significance is evaluated by a Z-score (score in standard deviation units relative to the mean
of the structure template library) of the sequence mounted in a given template structure
using the best alignment given by Dynamic Programming. For threading-based template
selection, we used the PROSPECTOR_3 program47, butin principle any-state-of-the-art
algorithm can be used with comparable results (unpublished results). From the threading
templates provided by PROSPECTOR_3, we used only those templates with <35%
sequence identity to the target protein, a Z-score ≥4 and a TM-score ≥0.4 between the
template and the experimental structure.

Template selection by a sequence profile-profile algorithm
Ligand-binding site prediction using the set of templates selected by threading is compared
to those identified by a sequence profile-profile alignment algorithm. Here, we use HHpred
1.5.0.1, which is based on the pairwise comparison of profile hidden Markov models
(HMMs)78. For a given target sequence, the HMM profile is constructed from a non-
redundant sequence library and the secondary structure is predicted by PSIPRED 2.6179.
Subsequently, each query HHM is calibrated on a non-redundant SCOP61 library. Remote
homologues (<35% sequence identity to the target and a TM-score ≥0.4) are selected from
the template library using an estimated probability of 0.5 for a template to be evolutionarily
related to the target sequence. If no hits are detected at the 0.5 threshold for a given target
protein, a probability of 0.3 is used. The set of templates selected by HHpred are used to
replace those identified by threading or structure alignment in ligand binding site prediction
by FINDSITE (see two right panes in Figure 1).
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Template-free pocket prediction methods
The results of ligand-binding site prediction using the template-based approach
(FINDSITE49) were compared to those obtained using geometric template-free algorithms:
LigsiteCS 34 and Fpocket26. LigsiteCS, an extension of Ligsite24, uses the Connolly
molecular surface (BALL implementation80), which is a combination of the van der Waals
surface of the protein and the probe sphere surface to detect putative binding sites. Fpocket
employs Voronoi tessellation (Qhull implementation81) and evaluates the identified binding
sites using a pocket score that considers several pocket descriptors: the number of alpha
spheres, the cavity density, a polarity score, a mean local hydrophobic density and the ratio
of apolar/polar alpha spheres. For both programs, the default set of parameters was used.

Inference of molecular function
Each target protein is annotated with a set of Gene Ontology (GO) terms69 extracted from
the template proteins. Molecular function is transferred from the templates to the target
protein with a probability that corresponds to the fraction of templates annotated with a
particular GO term. GO parent nodes are traced to explore the more general ontology
classes. Function transferability is investigated for an increasing probability threshold from
0.0 (all template GO terms are transferred to the target) to 0.95 (only highly conserved GO
terms that are common for 95% of the templates are transferred). Of course, such an
approach has all the disadvantages and advantages of the GO description of molecular
function. Function annotation using the sets of threading and structure templates is
compared with randomly assigned molecular function according to the frequencies of GO
terms in the dataset. The results are assessed by Precision-Recall analysis82 with the
precision and recall defined as:

(1)

(2)

where TP, FP and FN denote true positives, false positives and false negatives, respectively.

In addition to the molecular function annotation, the conservation of GO terms with respect
to the TM-score is evaluated for all target-template pairs. Here, we use Matthew’s
correlation coefficient (MCC) to quantify the functional similarity between a template and
its target:

(3)

where TP, TN, FP and FN denote respectively: true positives (number of GO terms common
for both the target and its template), true negatives (number of GO terms absent in the
template as well as in its target), false positives (number of GO terms specific only for the
template) and false negatives (number of GO terms specific only for the target).

Virtual screening
As in the case of FINDSITE4,49, for the purely structure-based approach, we can also
exploit information on the chemical properties of the binding ligands to construct ligand
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templates for ligand-based virtual screening. For each predicted binding pocket, the bound
ligands are extracted from the template complex structures, converted into 1024–bit
SMILES strings83 and clustered using a Tanimoto coefficient84 of 0.7. Subsequently,
representative molecules selected from the clusters are used to rank the screening library
using a weighted Tanimoto coefficient (mTCave):

(4)

where n is the number of ligand clusters, wi is the fraction of ligands that belong to cluster i,
and  is the average TC (TCave) calculated for the representative ligand from cluster i
and a library compound. The overlap between two fingerprints is measured by the average
Tanimoto coefficient, TCave, defined as85–87:

(5)

where TC’ is the TC calculated for bit positions set to zero rather than to one as in the
traditional TC84.

As a background library in ligand-based virtual screening, we use the KEGG compound
library88 that consists of 12,158 chemically diverse molecules. The performance of
threading and structure based template selection is assessed based on the ranks assigned to
the compounds complexed with the target proteins in the crystal structure with respect to the
background molecules and compared to random ligand selection. Finally, similar to the
primary confidence index for pocket detection, we demonstrate that the relative size of the
largest cluster of ligands extracted from the predicted binding sites (with a minimum of 5
ligands) can be used as a secondary confidence index to assess the reliability of ligand
ranking.

RESULTS
Functional and structural relationships between templates and their targets

First, we analyze the conservation of ligand binding features in the templates selected by
threading and structure alignment with respect to the target crystal structures. Figure 2
shows the fraction of templates whose binding pocket center is within 4 Å and 8 Å from the
target’s pocket center as a function of the TM-score. We again note that a TM-score ≥0.4
indicates significant structural similarity. Clearly, threading effectively detects and
eliminates evolutionarily unrelated proteins with different binding site localization,
particularly for a TM-score <0.7. For example, only 6% (18%) of the templates selected
based on structure similarity alone and having a TM-score between 0.4–0.5 bind ligands
within a distance of 4 Å (8 Å) from the target bound ligand (Figure 2A). Using threading,
this fraction increases to 34% (49%) (Figure 2B). As shown in subsequent analysis, the
higher fraction of templates that bind ligands in similar locations greatly improves the
accuracy of the pocket prediction and the ranking capability in particular.

Next, the conservation of molecular function according to the Gene Ontology classification,
one of the most common classification systems for proteins that provides the functional
description for both enzymes and non-enzymes69, is presented for all target-template pairs
in Figure 3. Here, we use GO molecular functions, which typically describe molecular
events such as catalytic or binding activities that can be directly linked to the active or
binding sites. A relatively low functional similarity between structure templates selected
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based on TM-score alone and their targets is observed for a TM-score <0.7 (Figure 3A).
However, the number of templates annotated with similar GO terms increases if threading
filtered templates are considered (Figure 3B). For a TM-score of 0.4–0.5, the fraction of
templates that have similar molecular functions, as assessed by a MCC ≥0.7 (≥0.5), is 3%
(9%) and 17% (34%) for the structure-and threading-based set of templates, respectively.
Moreover, as shown in Figure 3C, the fraction of templates having the same Gene Ontology
classification as the target significantly improves when local filtering by the common
binding site localization is applied. Here, for a TM-score of 0.4–0.5, the fraction of
threading templates with a MCC ≥0.7 (≥0.5) to their targets is 22% (41%). Furthermore, as
it is evident in Figure 4, protein threading also tends to detect templates that bind similar
ligands to the target-bound molecules. For a TM-score of 0.4–0.5, 8% (14%) of the
structure-based templates bind ligands whose Tanimoto coefficient to the native ligand is
≥0.7 (≥0.5) (Figure 4A). This fraction increases to 28% (39%) if the templates identified by
threading are used (Figure 4B). Additionally, local component, filtering by the common
localization of the binding pockets, promotes the selection of ligands with even higher
chemical similarity to the target-bound compounds for all values of the TM-score above 0.4,
This is shown in Figure 4C, where only threading filtered templates that have binding sites
within 8 Å from the target-bound ligands are considered. Here, 50% of ligands have a
Tanimoto coefficient ≥0.7 in the ranges of TM-scores between 0.4–0.5. This effect is of
particular importance in virtual screening, where the screening library is ranked by
fingerprint-based ligand profiles constructed from the compounds extracted from the
template complex structures.

These results suggest that in practice, a high structural similarity cutoff should be used for
the template selection in purely structure-based function assignment. The disadvantage of
such an approach is that this structurally discriminative threshold eliminates most
functionally related templates; thus the number of suitable targets for template-based
function annotation would be limited. As shown in Figure 5, 90% of the templates in our
dataset have a TM-score <0.7 to their targets. In the evolutionarily related set of templates,
as provided by threading, 60% of the templates have a TM-score <0.7; these would be
undetected if one applied a discriminative TM-score cutoff of 0.7. Hence, protein threading
appears as a more functionally oriented filter that allows using more permissive structural
similarity cutoffs with the false positive cases eliminated by evolutionary restraints.

Template detection by threading
Finally, for each target protein, we identify the largest set of templates with similar binding
pockets and assess the recall and precision of their detection by threading. These templates
are selected based on significant global structure similarity (TM-score ≥0.4), similar ligand-
binding site localization (the distance between target- and template-bound ligands upon the
structure alignment of the proteins ≤4 Å) and the chemical properties of the bound ligands
(Tanimoto coefficient between target-and template-bound ligands ≥0.7). Figure 6 presents
the recall and precision of the template identification by threading with respect to the global
target-template structure similarity. Above a TM-score of 0.5, the recall of templates with
similar pocket localization is >0.66. When the chemical similarity of the bound ligands is
also taken into account, the recall of the templates increases to >0.79 for a TM-score ≥0.5.
This clearly demonstrates that protein threading effectively detects template structures that
bind chemically similar ligands in similar locations. However, the substantially lower
precision values suggest that the threading-identified set of templates also contain many
false positives, i.e. proteins which, despite their global structure similarity to the target, bind
ligands in different locations or tend to bind chemically unrelated (Tanimoto coefficient
<0.7) molecules in similar locations. As we show in the function annotation benchmarks
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(see below), this false positive rate can be considerably reduced using subsequent filtration
by the subset of templates that share the most frequent binding site.

Function annotation benchmarks
Next, we assess the performance of purely structure- and threading-based templates, in
comprehensive function annotation in the “twilight zone” of sequence similarity. Protein
function has many facets, ranging from biochemical to cellular to phenotypical3,89. In this
work, we focus on catalytic and binding activities that involve direct interactions with small
molecules and report the results of functional annotation at the level of binding pocket
detection, molecular function assignment and ligand-based virtual screening.

Primary confidence index for pocket detection
Binding pockets are identified by the spatial clustering of the center of mass of template-
bound ligands aligned to the target crystal structure and ranked by the number of binding
ligands. Figures 7A and 7B show for purely structure similarity based approach and the
threading-based approach the fraction of targets for which the binding pocket center can be
predicted within a distance of 4 Å and 8 Å as a function of the fraction of templates that
share a common top-ranked binding site, with a minimum of 5 templates identified. Quite
similar behavior for structure-based and threading-based approaches is seen. High accuracy
in binding pocket prediction typically requires relatively a high fraction (≥0.4) of the
templates that have a common pocket. If this fraction drops below 0.2, the chances that the
top-ranked binding site is predicted within 4 Å or 8 Å are rather low (~20% using 4 Å as a
hit criterion). We use this observation to construct a primary confidence index that classifies
targets as Easy (≥0.4), Medium (<0.4 and ≥0.2) and Hard (<0.2 or less than 5 templates) for
binding pocket prediction.

The fraction of Easy, Medium and Hard targets in the benchmark set of 842 proteins is
presented in Figure 8 for the set of templates selected by structure similarity and threading.
The high content of false positives in the structure-based set of templates leads to mainly
moderate confidence predictions (44.1%) (Figure 8A). In contrast, most of the proteins in
the dataset appear as Easy targets if the threading filtered set of templates is used (Figure
8B). Consequently, for these targets, the threading-based template selection approach
identifies binding pockets with quite high accuracy, as shown below.

Binding pocket prediction
The performance of structure-and threading-based template identification in binding site
detection and ranking is presented in Figure 9. Figure 9A shows the cumulative fraction of
proteins for which the center of the best of top five predicted binding sites was predicted
within some distance from the center of mass of a ligand in the crystal complex. Since the
set of structure-based templates can be considered as a superset with respect to the templates
selected by threading, all binding pockets identified using threading-based templates are also
detected by employing the structure-based set. This explains the relatively small difference
(5%) in the pocket distance prediction using a 8 Å cutoff as a hit criterion, if the best of top
five predicted binding sites is considered. However, a significant drop off in the ranking
capability is observed when structure-based templates are used (Figure 9A, inset). For the
set of templates selected by structure similarity and threading, the best predicted binding
pocket is at rank 1 in 56.3% and 78.5% of the cases, respectively. In addition, Figure 9B
presents the ranking accuracy when the top 100 predicted binding pockets are considered.
Here, the ability of the structure- and threading-based approach to assign the best pocket
with rank 1 is 50.2% and 75.9%, respectively.
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a local component in structure based functional inference algorithms, which in practice
corresponds to the spatial clustering of the template-bound ligands.

Paradoxically, from the point of view of protein structure prediction, an ideal threading
algorithm whose performance is comparable to that of structure alignment, would not
improve the inference of molecular function as it would reduce to the purely structure based
approach examined here with its demonstrated poorer results. This dictates two independent
directions for the further development of threading algorithms. For the purpose of protein
structure prediction, a structure-based threading with the capabilities to detect structurally
related templates should be pursued to detect those unrecognized templates with a similar
fold. On the other hand, effective function inference requires an evolutionary-oriented
version of threading that employs a strong sequence profile component. Interestingly, the
variant of threading used here as well as HHpred, a sequence profile-profile method, already
performs very close to the estimated theoretical limit for template-based function inference.
Rather, it is the absence of structurally and functionally related templates that is the major
limiting factor. The growing number of protein crystal structures solved in the complexed
state will expand the pool of suitable targets for sequence profile driven template-based
annotation of proteins. Thus, the combined evolution/structure-based function assignment
emerges as a powerful technique to assist in comprehensive and fully automated proteome
annotation.
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Figure 1.
Flowchart of structure- and threading-based approaches to function inference. Details are
given in the text.
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Figure 2.
Fraction of templates selected by (A) structure alignment and (B) threading that have a
binding pocket center within 4 Å and 8 Å from the target pocket center as a function of the
TM-score.
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Figure 3.
Fraction of templates annotated with similar GO terms as their targets as selected by (A)
structure alignment and (B, C) threading as a function of the TM-score. Functional similarity
is assessed by a Matthew’s correlation coefficient (MCC) ≥0.7 and ≥0.5. In C, templates
that bind ligands with a distance from the target-bound ligand > 8 Å are excluded.
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Figure 4.
Fraction of templates selected by (A) structure alignment and (B, C) threading that bind
similar ligands to the target-bound molecules as a function of the TM-score. Chemical
similarity of ligands is assessed by a Tanimoto coefficient (TC) ≥0.7 and ≥0.5. In C,
templates that bind ligands with a distance from the target-bound ligand >8Å are excluded.
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Figure 5.
Cumulative fraction of template proteins selected by structure alignment and threading that
have a TM-score to the target crystal structure ≤the value on the x-axis to the right of the
corresponding bar graph.
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Figure 6.
Recall and precision of template detection by threading as a function of the target-template
global structure similarity (assessed by the TM-score, x-axis).
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Figure 7.
Fraction of targets for which the top-ranked binding pocket’s center was predicted within a
distance of 4 Å and 8 Å from the center of mass of a ligand in the crystal complex as a
function of the primary confidence index for (A) structure-and (B) threading-based
approach. The primary confidence index corresponds to the fraction of templates that share a
common top-ranked predicted binding site.
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Figure 8.
Primary confidence of FINDSITE predictions using the set of templates selected by
structure alignment and threading.
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Figure 9.
Performance of FINDSITE in binding site prediction using the set of templates selected by
structure alignment and threading compared with randomly selected patches on the target
protein surface and similar pockets identified in the template structures (Structure/pockets).
(A) Cumulative fraction of proteins with a distance between the center of mass of a ligand in
the crystal complex and the center of the best of top five predicted binding sites displayed on
the x-axis. Inset plot shows the rank of the best of top five predicted binding sites. (B) Best
pocket rank considering the top 100 predicted binding pockets.
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Figure 10.
Performance of FINDSITE in binding site prediction using the set of templates selected by
threading and HHpred compared with LigsiteCS, Fpocket and similar pockets identified in
the template structures (Structure/pockets). Results are presented as the cumulative fraction
of proteins with a distance between the center of mass of a ligand in the crystal complex and
the center of the best of top five predicted binding sites displayed on the x-axis. Binding site
prediction accuracy is reported for (A) the subset of 555 proteins with at least one template
structure that binds a similar ligand in the similar location and (B) the subset of 259 proteins
with no such templates (see text for details). Inset bar plots show the fraction of Easy,
Medium and Hard targets using the primary confidence index.
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Figure 11.
Precision-Recall graphs for GO molecular function prediction using the set of templates
selected by structure alignment and threading, compared to random function assignment and
function transfer from similar pockets identified in the template structures (Structure/
pockets). The results are shown for (A) the top-ranked and (B) the best of top five predicted
binding sites.

Brylinski and Skolnick Page 30

Proteins. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
Performance of ligand-based virtual screening to identify the native bound ligand using the
set of templates selected by structure alignment and threading. The native ligand ranking
accuracy using ligand templates extracted from (A) the top-ranked and (B) the best of top
five predicted binding sites is compared to random ligand selection and ligand ranking using
spatially similar pockets identified in the template structures (Structure/pockets). Dashed
lines delineate the top 1% and 10% of the ranked screening library.
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Figure 13.
Fraction of targets for which the native ligand was ranked within the top 1% and 10% of the
screening library as a function of the secondary confidence index for (A) structure- and (B)
threading-based approach. The secondary confidence index corresponds to the relative size
of the largest cluster of ligands extracted from the best of top five predicted binding sites.
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