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METHODOLOGY Open Access

Calculating an optimal box size for ligand
docking and virtual screening against
experimental and predicted binding pockets
Wei P. Feinstein1,2 and Michal Brylinski1,2*

Abstract

Background: Computational approaches have emerged as an instrumental methodology in modern research. For
example, virtual screening by molecular docking is routinely used in computer-aided drug discovery. One of the
critical parameters for ligand docking is the size of a search space used to identify low-energy binding poses of
drug candidates. Currently available docking packages often come with a default protocol for calculating the box
size, however, many of these procedures have not been systematically evaluated.

Methods: In this study, we investigate how the docking accuracy of AutoDock Vina is affected by the selection
of a search space. We propose a new procedure for calculating the optimal docking box size that maximizes the
accuracy of binding pose prediction against a non-redundant and representative dataset of 3,659 protein-ligand
complexes selected from the Protein Data Bank. Subsequently, we use the Directory of Useful Decoys, Enhanced
to demonstrate that the optimized docking box size also yields an improved ranking in virtual screening. Binding
pockets in both datasets are derived from the experimental complex structures and, additionally, predicted by
eFindSite.

Results: A systematic analysis of ligand binding poses generated by AutoDock Vina shows that the highest
accuracy is achieved when the dimensions of the search space are 2.9 times larger than the radius of gyration of a
docking compound. Subsequent virtual screening benchmarks demonstrate that this optimized docking box size
also improves compound ranking. For instance, using predicted ligand binding sites, the average enrichment factor
calculated for the top 1 % (10 %) of the screening library is 8.20 (3.28) for the optimized protocol, compared to 7.67
(3.19) for the default procedure. Depending on the evaluation metric, the optimal docking box size gives better
ranking in virtual screening for about two-thirds of target proteins.

Conclusions: This fully automated procedure can be used to optimize docking protocols in order to improve the
ranking accuracy in production virtual screening simulations. Importantly, the optimized search space systematically
yields better results than the default method not only for experimental pockets, but also for those predicted from
protein structures. A script for calculating the optimal docking box size is freely available at www.brylinski.org/
content/docking-box-size.
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Background
Due to advances in information technology, computa-
tional approaches have become an important component
of modern biological research. Consequently, the past
couple of decades have seen a vigorous development of ad
rem bio-algorithms. For example, protein tertiary struc-
tures can be reliably modeled using amino acid sequences
[1–3] to help infer their molecular functions [4–6]. Fur-
thermore, putative ligand binding pockets can be confi-
dently predicted from these computer-generated protein
models [7–9] and used as target sites for the discovery of
new pharmaceuticals [10–12]. Among various technolo-
gies developed to date, molecular docking has profound
applications in drug design, e.g. it can be used to help
identify novel lead compounds [13–15] as well as to sup-
port drug repositioning [16–18]. One of the most import-
ant techniques in computer-aided drug development is
virtual screening, which performs a systematic docking of
a large number of drug candidates into target proteins to
detect those molecules having a high binding affinity. This
procedure reduces the huge initial repository of chemical
compounds to a manageable size allowing experimental
efforts to focus on the synthesis of a handful of molecules
and their subsequent screening against biological targets.
In addition to virtual screening supporting the early-stage
identification of lead compounds, inverse virtual screening
is another cost-reduction strategy, in which a single drug
is evaluated against many proteins in order to identify its
putative off-targets [19, 20]. On that account, molecular
docking holds a great promise to speed up drug discovery,
thus it is widely used as an integral part of many currently
ongoing drug development projects.
The goal of molecular docking is to predict non-

covalent interactions between a ligand and its receptor
protein [21, 22]. A typical docking procedure incorpo-
rates two important components: a binding pose predic-
tion and the estimation of binding affinity. It is important
to note that when ligands bind to their receptor proteins,
both molecules may undergo conformational changes,
however, allowing for molecular flexibility in docking is
computationally challenging because of a large number
of rotatable bonds, or the degrees of freedom. Therefore,
various methods to sample the conformational space
have been developed. For example, systematic sampling
techniques [23], Monte Carlo methods [24], genetic search
algorithms [25], fragment-based incremental extension
methods [26], and rotamer library-based docking using
pre-computed low-energy conformations [27] are among
many sampling techniques designed to tackle the com-
plexity caused by many degrees of freedom. Each pre-
dicted binding pose is assigned a binding affinity that can
be calculated using a variety of scoring functions. The
most commonly used functions fall into three categor-
ies, those employing molecular mechanics force fields

such as CHARMM [28] and GROMACS [29], empirical
methods implemented in Glide [30] and AutoDock [31],
and knowledge-based potentials, e.g. DrugScore [32] and
its successor, DSX [33]. As a result of molecular docking,
conformational poses generated from a large number of
trials within a search space are ranked and the top-ranked
conformation is selected as a putative ligand-protein
complex. A broad interest in compound docking brought
about a significant progress in the development of dock-
ing algorithms with many tools currently available; for
instance, AutoDock [31, 34], GOLD [35], Glide [30],
rDOCK [36], Surflex-Dock [37], FlexX [38], FRED [39],
and DOCK [40]. Among these, AutoDock Vina (shortly
Vina) [34] is one of the most widely used docking
packages in structure-based drug discovery. Compared
to its predecessors, Vina features optimized sampling algo-
rithms, new scoring functions, and a support for multi-
threading to achieve not only higher prediction accuracy
but also a significantly improved performance [41].
Molecular docking typically requires a user-defined

docking search space, which is explored for possible
ligand binding conformations. The selection of a good
search space, i.e. the docking box, is a non-trivial task. A
narrow search space may produce an insufficient num-
ber of conformations, whereas a generously large dock-
ing space could result in generating too many irrelevant
binding poses. Thus, an optimally confined search space
is critical for the success of molecular docking. Many
current docking protocols offer a default method for
estimating the box size. For example, the default box
size in Vina is calculated using experimentally solved
protein-ligand complex structures. First, an initial dock-
ing box is constructed to enclose the bound ligand, and
then the box size is increased in random directions to
ensure that the minimum length in any dimension is at
least 22.5 Å [34]. Similarly, a docking sphere in GOLD
has a radius of 15 Å and it is centered at the position of
selected ligand atoms, whereas FRED requires the box
size to be expanded to 14,000 Å3 based on the coordi-
nates of co-crystallized ligands [42]; these default param-
eters can be changed by a user.
In the same way as the abovementioned examples,

most molecular docking packages require co-crystallized
ligands as a starting point to compute the docking box
size. However, this information is not always known
because only ligand-free experimental structures or hom-
ology models are available for many pharmacologically
important drug targets. This necessitates using predicted
ligand binding sites, which are often less accurate than
those extracted from ligand-bound structures. Further-
more, using the default box size calculated from a struc-
ture complexed with one ligand may not necessarily yield
the highest docking accuracy for another compound, es-
pecially when they significantly differ in size. To address
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these issues, we developed a procedure to customize the
box size for individual query ligands in order to maximize
the accuracy of molecular docking. Specifically, we sys-
tematically examined the docking accuracy as a function
of the search space dimensions. Furthermore, we found a
correlation between the size of the optimal search space
and the radius of gyration of a docking ligand. These
results can help fully automate large-scale virtual screen-
ing calculations by customizing docking protocols on the
fly for individual library compounds.

Results and discussion
Optimization of docking box size
Molecular docking using Vina is typically conducted
using the default box size, which is calculated based on
the coordinates of the native ligand interacting with a
protein of interest in the experimental structure. How-
ever, the coordinates of bound ligands are not always
available, in contrast to their chemical structures that
are known. Also, the size of a molecule can be effectively
described by the radius of gyration, Rg, that is a widely
used indicator of the dimensions and the mass distribu-
tion of a molecule [43]. For example, a statistical analysis
showed a direct relation between Rg and the compact-
ness of protein structures [44]. In this study, we system-
atically examine the outcome of molecular docking using
different box sizes that depend on the Rg of query li-
gands. To maintain a negligible computational overhead,
we relate the docking accuracy to Rg calculated using a
single low-energy conformer constructed for each query
compound. As shown in Fig. 1, this Rg value is highly
correlated with the average Rg computed for a set of
100 random rotamers that represent the internal con-
formational space of individual ligands. The Pearson
correlation coefficient is 0.89, therefore, we use Rg values
obtained from single low-energy conformers in the sub-
sequent calculations.
The PDB-bench dataset is used to optimize the box

size in order to maximize the docking accuracy of Vina.
Specifically, for each target protein, we performed ligand
docking using a cubic box centered at the binding site.
Edge lengths determining the box size were assigned a
value in the rage of 2–36 Å with an incremental interval
of 2 Å. To account for ligands that differ in size, we
define a relative docking box size as the ratio of the lig-
and radius of gyration to the actual box size. Figure 2
shows the docking accuracy as a function of the relative
box size, assessed by the root-mean-square deviation
(RMSD) from the crystal structure calculated over ligand
heavy atoms, the fraction of recovered binding residues
(non-specific contacts), and the fraction of recovered
protein-ligand contacts (specific contacts). Low RMSD
values and the high fractions of contacts indicate bet-
ter ligand binding pose predictions. Regardless of the

evaluation metric used, Vina consistently gives the high-
est prediction accuracy at the Rg to box size ratio of 0.35,
which corresponds to the box size of 2.857 × Rg. Using
experimental binding pockets, the optimized box size
yields an average RMSD (Fig. 2a), the fraction of binding
residues (Fig. 2b) and the fraction of specific contacts
(Fig. 2c) of 4.0 Å, 0.92 and 0.58, respectively, whereas the
corresponding values for docking calculations using the
default box size are 4.9 Å, 0.78 and 0.44 (see the right
panel in Fig. 2). Note that the default protocol produces
results that are comparable to those reported in other
large-scale docking evaluation studies [45]. This improved
performance of Vina holds for binding sites predicted by
eFindSite as well, where using the optimized docking
protocol improves RMSD by 2.5 Å and increases the frac-
tion of binding residues and specific contacts by 10 % on
average. Figure 3 shows that the optimized box size is
systematically smaller than the default one. Therefore,
extending the box to at least 22.5 Å in any dimension
according to the default procedure may result in scoring
failures. On the other hand, box sizes that are too small
would likely cause the correct binding mode to extend
outside the docking region leading to frequent sampling
failures. We note that the optimal box size is calcu-
lated directly from the Rg of a docking ligand, thus it
can be obtained for an arbitrary compound. Further-
more, a high prediction accuracy against pockets iden-
tified by eFindSite demonstrates that Vina can be used
in large-scale docking applications, for example, those

Fig. 1 Correlation between the radii of gyration calculated using a
single and multiple ligand conformations. For each ligand from the
PDB-bench dataset, we calculated the radius of gyration (Rg) for a
single low-energy conformation as well as the average Rg±standard
deviation for a set of 100 random rotamers. The regression line is
shown in black
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employing structural genomics targets with computa-
tionally detected binding sites.

Virtual screening benchmarks using DUD-E dataset
Thus far, we established a protocol for calculating the op-
timal box size for molecular docking that gives the best
accuracy in binding pose prediction. Next, we use the
Directory of Useful Decoys, Enhanced (DUD-E) to evalu-
ate the performance of Vina in virtual screening. The
DUD-E dataset comprises 102 receptor proteins repre-
senting many important drug targets, each including sets
of bioactive and decoy compounds. Decoy molecules are
selected to match the physicochemical properties of the
corresponding bioactives, yet they have different topolo-
gies. Therefore, DUD-E provides an excellent dataset for
benchmarking docking algorithms and scoring functions
to help objectively evaluate the capability to differentiate
between active and decoy compounds, which is critical
for a reliable compound ranking in virtual screening.
First, we docked all molecules to their target pro-

teins using the default and optimized protocols and
collected binding affinities reported by Vina. Although

the optimized box size was determined individually for
each molecule, these calculations produce a negligible
overhead since Vina computes grid maps quickly and
automatically without storing any intermediate data on
the disk [34]. Table 1 shows that on average, actives have
higher predicted affinities than decoy compounds (the
lower the score, the higher the affinity). For instance,
using the default box size gives the absolute difference
between the average scores for active and decoy com-
pounds of 0.85 for experimental and 0.73 for predicted
binding pockets. When the optimized docking protocol
is used in Vina, the differences increase to 0.97 and 0.85,
respectively. Table 1 also includes the corresponding
p-values calculated using the Mann–Whitney U test, a
nonparametric alternative to the t-test [46]. In both cases,
p-values for the optimized box size are lower than those
obtained using the default protocol, suggesting that
ligand docking with the optimized box size should more
effectively distinguish active compounds from decoys.
Next, we assess the ranking accuracy in virtual screening

using several performance metrics widely used in chemin-
formatics. These include enrichment factors calculated for

Fig. 2 Optimization of the docking box size for Vina using the PDB-bench dataset. Docking accuracy assessed by (a) the RMSD over ligand heavy
atoms, (b) the fraction of recovered binding residues, and (c) the fraction of recovered protein-ligand contacts, is plotted as a function of the ratio
of the ligand radius of gyration to the box size. The corresponding docking accuracy using the default search space is shown on the right. Squares
represent the mean values for each metric and whiskers show the standard deviation. The results obtained for experimental binding sites
(black squares) are compared to those predicted by eFindSite (gray squares)
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the top 1 and 10 % of the ranked library (EF1 % and
EF10 %), the Boltzmann-Enhanced Discrimination of
Receiver Operating Characteristics (BEDROC20) score,
the area under the enrichment curve (AUC), and the
top fraction of the ranked library that contains 50 %
of the active compounds (ACT-50 %). We note that
binding sites were identified by eFindSite for 77 DUD-E
proteins, therefore in addition to the complete DUD-E
dataset (D101, experimental binding sites only), we report
the results for this subset of 77 proteins (D77, experimen-
tal and predicted pockets). Table 2 shows that when the
default protocol is used, the average EF1 %, EF10 %, BED-
ROC20, AUC and ACT-50 % for the D77 are 8.126, 3.324,

0.229, 0.697 and 0.244, respectively. Using the optimized
box size in Vina improves the performance of virtual
screening to 8.131, 3.443, 0.234, 0.703 and 0.234. As
expected, when virtual screening is carried out for pre-
dicted pockets, the overall accuracy is somewhat lower
than that for experimental binding sites. Nevertheless, the
optimized docking protocol systematically improves the
ranking capabilities of Vina; for instance, EF1 % increases
from 7.670 to 8.205, EF10 % increases from 3.193 to 3.283
and BEDROC20 increases from 0.218 to 0.229. Although
not all differences are statistically significant as evaluated
by the Wilcoxon signed-rank test [47] (e.g. these calcu-
lated for EF1 %), many p-values reported in Table 2 are
either within (e.g. EF10 % for experimental pockets in
D101 and BEDROC20 for predicted pockets) or slightly
above (e.g. BEDROC20 for experimental pockets in D101,
and AUC for experimental and predicted pockets in D77)
the significance level of 0.05.
Figure 4 presents the results obtained for individual

proteins in the D77 dataset with the green areas
highlighting those targets for which the optimized box
size yields a higher ranking accuracy than the default
protocol. Using EF1 %, EF10 %, BEDROC20, AUC and
ACT-50 % as the evaluation metric, the optimized box
size improves compound ranking for experimental bind-
ing sites (black crosses in Fig. 4) in 60, 66, 57, 61 and
65 % of the cases, respectively. The optimized protocol
yields slightly higher improvements than the default
procedure for computationally predicted pockets (blue
triangles in Fig. 4), where better ranking is obtained for
66, 64, 64, 60 and 65 % of the target proteins. This ana-
lysis demonstrates that the accuracy of virtual screening
can be quantitatively improved for about two-thirds of
the cases by simply adjusting the docking box size based
on the Rg of screening compounds.

A case study for ligand binding pose prediction
To illustrate the improvement in docking accuracy using
the optimized box size, we selected a 315 aa human aldose
reductase holoenzyme complexed with nicotinamide-
adenine-dinucleotide phosphate, NADP (PDB-ID: 1ads,
chain A); this enzyme has been implicated in the de-
velopment of diabetic and galactosemic complications
[48]. Figure 5 shows the search space for ligand dock-
ing by Vina and the corresponding predicted binding
poses. The default box size of x = 30.66 Å, y = 27.98 Å
and z = 22.50 Å (Fig. 5a) was calculated based on the
conformation of NADP bound to its target in the crystal
structure, whereas the optimized box size of x = y = z =
18.88 Å (Fig. 5b) was calculated from the Rg of NADP.
The predicted binding poses of NADP (green sticks) are
compared to the ligand orientation in the complex crystal
structure (blue sticks). The default protocol generated a
large docking box and produced the binding pose with

Table 1 Binding affinity prediction by Vina for the DUD-E
dataset. Experimental and predicted binding sites are used in
molecular docking with the default and optimized box sizes.
Average values and the corresponding standard deviations are
reported separately for active and decoy compounds; p-values
are calculated using the Mann–Whitney U test

Class Experimental binding sites Predicted binding sites

Default Optimized Default Optimized

Actives −8.70 ± 2.17 −8.25 ± 2.72 −9.00 ± 1.54 −8.48 ± 2.07

Decoys −7.85 ± 2.07 −7.28 ± 2.53 −8.23 ± 1.28 −7.63 ± 1.91

Differencea 0.85 0.97 0.73 0.85

p-value 0.139 0.025 0.181 0.043
aAbsolute value for a difference between the mean binding affinities predicted
for actives and decoys

Fig. 3 Correlation between default and optimized docking box sizes
for the PDB-bench dataset. Each gray square corresponds to one
PDB-bench ligand with the default and optimized box sizes
represented by their volumes. The solid line is the diagonal and the
dashed line shows the minimum volume for a default box calculated
as 22.5 Å × 22.5 Å × 22.5 Å
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an RMSD from native of 13.9 Å. In contrast, a smaller
box was constructed by the optimized method, which re-
sulted in the final conformation of NADP that has an
RMSD of 2.7 Å. Thus, using the optimized search space
significantly improved the accuracy of NADP binding
pose prediction by Vina.

Conclusions
Molecular docking has profound applications in drug dis-
covery and development. Selecting an appropriate search
space is critical to achieve high prediction accuracy in
structure-based virtual screening. Here, we developed a
procedure to customize the box size for individual query
ligands in order to maximize the docking accuracy. Fur-
thermore, we found a correlation between the dimensions
of the optimal search space and the radius of gyration of a
docking compound. This docking protocol essentially
brings down the number of scoring failures resulting from
too generous box sizes, simultaneously avoiding sampling
failures caused by a search space that is too narrow.
Large-scale benchmarking calculations on the DUD-E
dataset show that using the optimized box size also
improves the ranking accuracy in virtual screening over
the default protocol. Importantly, the enhanced docking
performance is also validated in simulations against
predicted binding sites, which expands the scope of
molecular docking by including computationally detected
pockets. In summary, these results can help fully auto-
mate large-scale virtual screening calculations by custom-
izing docking protocols on the fly for individual library
compounds. A script for calculating the optimal docking

box size is freely available at www.brylinski.org/content/
docking-box-size.

Methods
Molecular docking using autodock vina
AutoDock Vina (version 1.1.2) [34] is used in this project
to conduct molecular docking. Target protein structures
are converted to the required PDBQT format using MGL
Tools (version 1.5.4) [31]. Open Babel (version 2.3.1) [49]
is used to add polar hydrogens and partial charges to
ligand atoms as well as to convert these molecules to the
PDBQT format. The default box size is calculated follow-
ing the protocol outlined by the authors of Vina [34].
Briefly, an initial docking box is calculated from the coor-
dinates of a bound ligand in the crystal structure, and the
box dimensions in x, y and z are increased by 10 Å. Add-
itionally, one of the two directions in each dimension is
randomly chosen and further increased by 5 Å. Finally,
if the box size in any dimension is smaller than 22.5 Å, it
is extended to this value. In this study, an experimental
binding site is defined as the geometric center of a ligand
bound to the target protein, whereas the computationally
predicted binding pocket center is obtained from eFind-
Site [9]. Docking simulations using predicted pockets start
with a random ligand conformer generated by obconfor-
mer from Open Babel [49]; moreover, the ligand is ran-
domly spun around all axes in order to avoid providing
the docking program with any structural information on
the native binding pose. All ligands are also translated so
that their geometric centers overlap with predicted pocket
centers.

Fig. 5 Case study for molecular docking by Vina. Gray ribbons represent human aldose reductase with (a) the default and (b) the optimized
docking boxes shown in red. Predicted binding poses for NADP (green sticks) are compared to that in the experimental complex structure
(blue sticks)
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Protein data bank benchmark dataset
The benchmarking dataset, referred to as the PDB-
bench, is used to optimize box sizes in order to yield the
highest docking accuracy. PDB-bench was compiled from
the Protein Small Molecule Database [50] and the Pro-
tein Data Bank (PDB) [51] by including only proteins
50–600 residues in length with the redundancy removed
at 40 % pairwise sequence identity using PISCES [52].
The length constraints are imposed due to the subse-
quent use of protein threading, however, these do not
exclude pharmacologically relevant molecules such as
G-protein coupled receptors (GPCRs) and protein ki-
nases. Furthermore, we selected those proteins for which
at least three weakly homologous and structurally related
ligand-bound templates were detected by meta-threading
using eThread [3]. We note that weak homology is
defined by the maximum sequence identity of 40 %, and
the structural similarity of ≥0.4 TM-score [53] as reported
by Fr-TM-align [54]. Furthermore, only non-covalently
bound small organic compounds with 6–100 heavy atoms
were selected. As the result, a representative and non-
redundant PDB-bench comprises 3,659 experimental
structures of protein-ligand complexes; this dataset is
available at www.brylinski.org/content/docking-box-size.

Optimal box size and ligand radius of gyration
In order to optimize the search space, we perform a
series of docking calculations for each target using a
cubic box whose edge lengths range from 2 to 36 Å with
a small incremental step size of 2 Å to ensure a fine-
grained sampling. Next, we analyze docking accuracy as
a function of the size of a query compound size by cal-
culating the ratio of the radius of gyration of a ligand
(Rg) to the box size. Rg is defined as follows:

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

k¼1
r
⇀
k − r

⇀
center

�� ��2
r

ð1Þ

where N is the total number of ligand heavy atoms, the
vector r

⇀
k corresponds to the Cartesian coordinates of

each heavy atom, and r
⇀
center represents the geometric

center of a ligand.
By default, we calculate Rg for a single low-energy con-

former generated for each query compound by obcon-
former from Open Babel [49]. For comparison, we also
calculated the average values of Rg ± standard deviation
using sets of 100 random rotamers generated by obrota-
mer (Open Babel [49]) for PDB-bench ligands.

Directory of useful decoys, enhanced dataset
DUD-E, an enhanced version of the DUD dataset [55],
comprises a diverse set of 101 proteins including many
pharmacologically important targets such as ion channels
and GPCRs [56]. DUD-E features 22,886 experimentally

validated active compounds with an average number of
224 ligands per each protein target, and over 1,000,000
decoy molecules at an approximate ratio of 50 per 1 active
compound. These decoys have similar chemical properties
yet different topologies than the corresponding active
compounds. Therefore, the DUD-E dataset allows per-
forming rigorous and unbiased tests of docking algorithms,
scoring functions and virtual screening tools [57, 58].
Similar to the PDB-bench dataset, we carried out docking
calculations using experimental pocket centers calculated
from 101 representative complex structures included in
DUD-E (the D101 set). Furthermore, we evaluate the
accuracy of virtual screening for a subset of 77 proteins
whose binding sites were successfully predicted by eFind-
Site (the D77 set). A binding site prediction is considered
successful when the distance between the predicted and
experimental pocket center is below 8 Å.

Evaluation metrics for molecular docking and virtual
screening
Docking accuracy is assessed by the root-mean-square de-
viation (RMSD) from the crystal structure calculated over
ligand heavy atoms [59], and the fraction of recovered
protein-ligand contacts. Specific interatomic contacts be-
tween ligand and protein heavy atoms are identified using
the LPC program [60]. In addition, we use the fraction of
non-specific contacts between ligand heavy atoms and
protein residues, where all atoms belonging to the same
residue are equivalent. More accurate docking predictions
are characterized by lower RMSD values as well as higher
fractions of specific and non-specific contacts compared
to those less accurate.
Virtual screening results are assessed by several com-

monly used evaluation metrics. Enrichment factors EF1 %

and EF10 % count the fraction of actives in the top 1 and
10 % of the ranked library, respectively. In order to
address the “early recognition problem”, we use the
Boltzmann-Enhanced Discrimination of Receiver Operat-
ing Characteristics (BEDROC20) score that calculates
80 % of the enrichment from the top 8 % of the ranked
library [61]. In addition, we evaluate the area under the
enrichment curve (AUC) that determines the discrimina-
tive capability by measuring the distribution of actives
over the entire library. Finally, we calculate ACT-50 %,
which corresponds to the top fraction of the ranked
library that contains half of the active compounds.

Abbreviations
ACT-50 %: The fraction of the ranked library that contain 50 % actives;
AUC: The area under the enrichment curve; BEDROC20: Boltzmann-Enhanced
Discrimination of Receiver Operating Characteristics; DUD-E: Directory of
Useful Decoys, Enhanced; EF1 %: The enrichment factor for the top 1 % of
the ranked library; EF10 %: The enrichment factor for the top 10 % of the
ranked library; GPCRs: G-protein coupled receptors; NADP: Nicotinamide
adenine dinucleotide phosphate; PDB: Protein Data Bank; Rg: The radius of
gyration; RMSD: The root-mean-square deviation; Vina: AutoDock Vina.
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