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Abstract

Domain theory, in theoretical computer science, needs to be able to handle function spaces easily.
It also requires asymmetric spaces, and these are necessarily. fttthe same time, techniques
used with the higher separation axioms are useful there (see [Topology Appl. 199 (2002) 241]). In
order to handle all these requirements, we develop a theory of k-bispaces using bitopological spaces,
which results in a Cartesian closed category. The other well-known way to combine asymmetry
and separation is ordered topological spaces [Nachbin, Topology and Order, Van Nostrand, 1965];
we define the category of ordered k-spaces, which is isomorphic to that found among bitopological
spaces.
0 2004 Elsevier B.V. All rights reserved.
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Introduction

The theory of Hausdorff k-spaces, also cdltmmpactly generated spaces, has become
a standard part of the topological landscape and typically finds its way into topology
texts. The theory arose in the context of algebraic topology, where one desired an
extensive Cartesian closed category of tog@dal spaces, so that one could, for example,
conveniently treat homotogs in function spaces as the topological notion of pathwise
connectedness. In recent years a rathertantial theory of bitopological spaces and
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ordered spaces has arisen, and it is the purpose of this paper to consider the notion of
a k-space in these contexts.

A bitopological spacgX, t, t*), is pseudo-Hausdorf{ pH) if wheneverx ¢ cl. (y)
then there are disjoift € 7, U € t* suchthak € T andy € U. Itfollows that if (X, 7, t¥)
is pH and the specialization orderswoéndt* are partial orders and inverse to each other,
then the joint v t* is Hausdorff, and andt™* are Tp-topologies. It igoincompacitf the
join T v t* is compact andp, the space is pseudo-Hausdorff, and the specialization orders
of the topologies are inverse (order-dual) to each other.

A key example is the unit interval, with the upper and lower topolodies; {(a, 1] |
O<a<1}U{#,[0,1]} andL ={[0,a) | 0 <a < 1} U {¥, [0, 1]}. It is joincompact, since
U v L is the usual topology of0, 1], and ifx ¢ clz;(y) theny < x, and for any; between
the two,T = (z, 1], U =0, z) are such disjoint open sets.

Joincompact spaces often appear; among them are those of the(formr),
T compact Hausdorff spaces, as well as:

(a) the upper and lower topologies of compaitered spaces [9], and special cases:
(b) Scott and lower topologiexf continuous lattices, [2,6],

(c) the prime spectra of commutative rings, [5,4],

(d) finite Ty topological spaces, [7].

In the cases (c), (d) above, we only gave one topology, but given), if there
is a second topology oX such that(X, r,t*) is joincompact, thenc* is uniquely
determined; it is the topology whose closed sets are generated by the compact saturated
sets ofr (if there is such a topology, is called skew compact, or stably compact). The
uniquely determined topology* is also stably compact, and in turn determines the original
7, thus giving a type of duality (see, for example, [6], or [3, Chapter VI.6]).

The joins,t v t* are often useful and well known; they include the Lawson topology
(for (b)) and the patch topology (for (c); see [5]).

The joincompact spaces are properlgnsidered to be the “compact Hausdorff
bitopological spaces”. A very similar theoholds, (e.g., these bitopological spaces are
regular and normal; they are a complete category), and the proofs are slight adjustments of
the corresponding proofs for compact Haudfdgpaces, which give the responsibilities of
compactness to the join and those of separation to the relationship between the topologies.

It is the goal of this paper to show thgtincompact spaces can be used to define a
wider category of (bitopologicakpaces that is Cartesian closed, like that of Hausdorff k-
spaces, and to which this logic of duality extends. This will allow us to define and handle
“k-bispaces”. The investigeon is motivated in part by the fact that the types of spaces we
are considering arise frequently in domain theory, and there one wants Cartesian closed
categories to model the higher type theory t@ses in theoreticalomputer science.

An alternate approach to asymmetrisjaces is to use a topology and order definition.

We show that this can be done, and results in the same category, as holds for joincompact
vs compact ordered spaces, but not fitofpological vs ordere topological spaces.

We remark that in the setting of topologicabsies, the notion of a compactly generated
or k-space has been extended to all topological spaces, not just the Hausdorff ones. In this
case the k-topology of a spadeis generated by all continuous maps (probes) from all
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core compact spaces info. The resulting category of k-spaces is again Cartesian closed
[1] and agrees with the more classical natishen restricted to Hausdorff spaces.

1. K-bispaces

Most of our notation on bitopological spaces and many basic results we use can be
found in [6]. Throughout, le®’ denote the bitopological spadg, 7, t*) (or (X, tx, Ty)
if several spaces are under consideration).Symemetrizatioiis the topologyr® = 7 v t*.
Notations without reference another topology will refer te; e.g.,cl denotes closure with
respectta . Other notations use decoration to indicate which topology they refémdpen
means open in*, S-compact means compactiri, the symmetrization.

Let <; denote the specialization order of the topology(x <. y if and only if
x € cl{y}), and let its reverse be denoted by . Of course, each closed set is@-
lower set, so their complements, the open setsgreipper sets; thel.-upper sets are
called saturatedsets. Notice that for each e X, cl(x) N cl*(x) is certainly the smallest
symmetrically closed set containing so< s = <; N <.

Basic properties. A bitopological spacet is called:

— Ty if the symmetrization topology? is 7o,

— weakly symmetri¢ws) if >+ C <,

— pseudo-HausdorffpH) if x ¢ cl{y} implies there are disjoirif € t, T* € t* such that
xeT,yeT*.

Also, X is Ty if Ty and ws, and’» (Hausdorf) if 7o and pH.

Thedualof X is X* = (X, t*, t); X has a propertpairwiseif X', X* both have it. In
particular,f : X — Y is continuousf continuous from(X, tx) to (Y, ty), So it ispairwise
continuousf continuous fromt — Y andX™* — )*, thatis, if and only if it is continuous
from (X, tx) to (¥, ry) and continuous froniX, t3) to (¥, ;). Notice that each pairwise
continuous function frond’ to ) is continuous from( X, r)f) to (Y, rYS).

Discussion of weak separation axiomday definition, X is pairwise ws if and only if
>r = <+, itis pairwiseTt if and only if this holds, andl s = <; N > is equality; that
is, if and only if <, is a partial order. As a result, i¥ is pairwiseT; thentS is Ty.

In this paper we assume unless stated otherwise, that all our bitopological spaces are
pairwiseT7. This is equivalent to requiring thatandt* are Tp-topologies ang>; = <.

We leave to the reader the trivial proofs thatlif is pairwise Hausdorff then® is
Hausdorff, and that pHs> ws. If X' is pH andX™* is ws, thent™ is pH (if x ¢ cl*{y} then
y ¢ cl{x}, so there are disjoirif* € t*, T € r such thatt € T*, y € T). Thus in this case,
X is pairwise pH; the converse, thatif is pairwise pH thet’ is pH andX™ is ws results
from observations earlier in this paragraph.

Exactly as in the one-topology case, it is shown that a joincompact space is pairwise
regular, whereX is regular if wheneverx € T € 1, there is alU € t and ar*-closedC
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such thatx e U € C € T. But C, like eachr*-closed set in a joincompact spaceris-
closed, thus S-compact, sa-compact. Clearly, if¢ is joincompact, then so i&*. Thus:
Each joincompact space tslocally compact and *-locally compact.
Each finite pairwisel; space is joincompact. For the compactness’ois immediate
from its finiteness, and it ¢ cl(y) thent¢, (x)(= ﬂxm(y)X \cl(y)) andt¢ . () =
I <, () are open and-open sets, respectively, as finite intersections of such sets; the first
containsy and the secong, and they are disjoint by transitivity &f .

Definition 1.1. The kb-coreflectionof a bitopological spaceX, is the spacek B(X) =
(X, k(X), k*(X)), whose open (respectively *-open) sets are those whose intersection with
each’-compact subspace are open (respectively *-open).

The spacet’ is ak-bispacef K B(X) = X.

X isk-T» if X is aT> k-bispace.

X is k-separatedf each$-compact subspace 1%, and hence joincompact.

Of course now bopological k-spaces ablle defined by the equivalenc&X, 7) is a
k-space if and only if X, , 7) is a k-bispace.

Any fact which holds for each bitopologicalape, holds for the dual of each. Also, since
X andX* have the samé-compact subspaces(X*) = k*(X). Thus anything shown for
arbitraryk (X') holds for eactk*(X’) as well. (Use of these and similar principles is called
an application of duality). Here are some fuddasic facts about the kb-coreflection.

Lemma 1.2.

(a) For a bitopological space, the identity mapping froB(X) to X is pairwise
continuous. Furthermore, the orders of specialization foand k(') (respectively,
t* andk* (X)) agree. Thus ift’ is pairwiseTy, then so isK B(X).

(b) X is a k-bispace if and only if each set is open when its intersection with an arbitrary
S-compact subspace is relatively open, and each set is *-open when its intersection
with an arbitraryS-compact subspace is relatively *-open.

(c) K B(X) is a k-bispace which has the same bitopological restriction to’ttempact
subspaces oft as doesX. Further, X and K B(X) have the same-compact
subspaces.

(d) Let f: X — Y; then f: KB(X) — Y is pairwise continuous if and only if, for each
S_compact subspack of X, the restriction,f|K : X|K — ) is pairwise continuous.

In particular, if X is a k-bispace, thenf: X — ) is continuous if and only if
fIK:X|K — Y is pairwise continuous for each-compactk < X. Further, if
f: X — )Y is pairwise continuous, then so 5. K B(X) — K B())).

(e) If Y € X thenK B(X)|Y € K B(X|Y), and the two are equal If is k5(X)-closed. In
particular, $-closed subspaces of k-bispaces are k-bispaces.

(f) For any indexed collection of bitopological spac&B([[; K B(X;)) = KB([],; A1),
the product in the category & B-spaces.

Proof. (a) Certainly,t C k(X), since if T € T thenT N K € t|K for eachK C X,
thus for each’-compact suchk. This applies dually ta*, so the first assertion holds.
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It immediately follows thatk B(X) is To, and thaty <;.x) x implies y <; x. Suppose
thaty ¢ clyx){x}. Then there exist#/ € k(X) such thaty e U, butx ¢ U. By definition
of k(X), the setU meets the finite, sd-compact, subspacgx, y} in a set which is
relatively open in this subspace. Thus there eXistst such thatV N {x, y} = {y}. Hence
y ¢ cl:{x}. We conclude tha&; C <;x) and thus<; = <(x). Using duality, we have
gk(z\f‘) =<; =2 = >k(X*) = >k*(X) SOKB(X) is pairWiseT]_.

(b) If X is a k-bispace, and’ N K is relatively open for each-compactk, then
T € k(X)=1,s0T is open. Conversely, if our condition holds afick k(X), thenT N K
is relatively open for each-compactk, thusT is open, sdl’ € t; this showsk(X) C 7.
Equality follows from (a), and dually%*(X) = k(X*) = t*.

(c) If T € k(X)|K then for someJ € k(X), T = U N K. But if K is $-compact, then
forsomeV e, UNK =V NK.ThusT =V NK €1|K. Thisshows(X)|K C t|K, SO
the two are equal sinceC k(X)) by (a), showing thak B(X) has the same bitopological
restriction to each-compact subspace of as does. It follows that each’-compact
subspace oft is $-compact inK B(X), and the converse holds, sincekf is compact
in k(X) Vv k*(X), it is compact in the weakerS. Thus if T € k(k(X)) then for each
S.compactk € X, T N K € k(X)|K =t|K, soT € k(X). This and its dual assert that
KB(K B(X)) = KB(X), soK B(X) is a k-bispace.

(d) For the first assertionf : K B(X) — ) is pairwise continuous if and only if,
for eachS-compact subspac& of X, and each open (respectivelyopen)V C Y,
f‘l[V] NK = (f|K)‘1[V] is relatively open (respectively;-open) in K, i.e., the
restriction f|K : X|K — ) is pairwise continuous. The second assertion is simply the
special case of the first in whicki B(X) = X.

Finally, if K C X is S-compact, therf[K] is S-compact in)), so f|K : X|K — ) is
pairwise continuous, thus so 8K : XY|K — K B()))| f[K]1(= Y| f[K] by (c)). By the last
paragraph and arbitrary nature®f f: K B(X) — K B())) is pairwise continuous.

(e)LetA C Y C X. ThenA is closed inK B(X)|Y iff:

(%) forsomeB, BN K is closed inkK for each’-compact subspadé of X andA = BNY;
while A is closed inK B(X|Y) iff:
(*x) AN L is closed inL for each®-compact subspade of X|Y.

Note thatL C Y is an’-compact subspace d&f|Y if and only if L is S-compact inX..
Thus if (x) holds then for each-compact subspadeof X|Y, ANL = (BNY)NL = BNL
is closed, showing#x). ThusK B(X)|Y € KB(X|Y).

Further, if Y is k5(X) closed andX is k5 (X)-compact, therk NY is k5 (X)-closed
in K, so is aks (X)-compact subspace &f|Y. Thus if (xx) holds then we havex] with
B = A; this shows the reverse inequality, KB (X)|Y = K B(X|Y).

(f) For products, notice first that at each coordingteéhe projection (composed with
the identity) is pairwise continuous frofn[; K B(X;) to X}, so the identity map from
[1; KB(X:) to [[; &; must be pairwise continuous as W& herefore by (d), the identity
is also pairwise continuous fro&i B([ [; K B(X;)) to K B(K B([[; X)) = K B([[; Xi).

To complete the proof, note that thgentity is pairwise continuous from& B([ [, X;)
to [[; K B(X;), since for each coordinatg, each projectionr; is pairwise continuous
from K B([ [, (X)) to K B(X;) by (d). Then (again by (d)) the identity is continuous from
K B(KB([, X)) = KB([, %) to KB([], KB(X;)). O
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In fact, Lemma 1.2(a) and (d) show that the identity &0B (X)) — X is the k-bispace
coreflection oft'. Here are some basic facts about weak separation and the kb-coreflection:

Lemma 1.3.

(a) For pairwiseT1 bitopological spaces, pj—= 7> — k-separated.
(b) SupposeY is k-separated. IM C X is S-compact, ther, M is closed ink(X) and M
is closed inkS(X) = k(X) Vv k*(X).

Proof. (a) The first assertion is the definition B4, while the second comes from the fact
that if X is T» then so are all its subspaces, showing k-separation.

(b) Let M be an$-compact subspace of. For each’-compact subspack of X,
M U K is S-compact, so joincompact. Sindé is S-compact,, M N (M U K) is closed in
the pairwise pH subspadé U K of X', andM is closed in the Hausdorff subspakeJ K
of (X, 75). Then({ M) N K is closed i(M U K) N K = K, an arbitrary’-compact subset,
S0 M is closed ink(X): alsoM N K is S-closed there, s/ is 5-closed. O

The assumption of k-separation is essential in Lemma 1.3(b). Fotdel(w, cf, cf),
cf, the cofinite topology. Thep) is not k-separated; further, all subsets &reompact
and saturated, s& B()) = ). But infinite subsets are not closed nbrlosed, so the
conclusions of Lemma 1.3(b) fail for this space.

Below, we consider the categoBy of pairwise Ty bitopological spaces and pairwise
continuous maps, and its full subcategoriesisepk-separated spaceBB of pairwiseT>
bitopological spaces, and®B of T> k-bispaces. Certainly any subspace of a pair#ise
space is pairwisé;. That any product of pairwisg; spaces is pairwisg; follows directly
from the fact that th@y-property is productive and the specialization on the product is the
product of the specialization orders of the factors. Thusntains products and equalizers,
and so it is a complete category;aetly the same argument works fByB.

For sefB, note that pairwise continuous maps must“seontinuous, so equalizers
on pairwiseT» spaces aré-closed subspaces. Thus for Bepqualizers are subspaces
whose intersection wit-compact subspaces ateclosed; such subspaces are inBep
by Lemma 1.2(e). Suppose now that the factats j € J, are k-separated. Then for
eachS-compact subspacg of X, w;[K]is S_compact in thejth factor X; (since the
symmetrization topology of the product is the product of the symmetrization topologies).
SinceX; is k-separatedy;[K] is pH, and henc¢[x;[K] is a pH-space containing .
Thus K is pH; we conclude that the produff X; is k-separated. Thus sBgs also a
complete category. The completeness @B was shown in Lemma 1.2(e) and (f), and
the comment that equalizers arelosed subspaces.

Let X and) be bitopological spaces, and Bt denote the function space of pairwise
continuous maps, together with thecompact open topologyefined analogously to the
usual compact open topology: a subbasic open set is one of theNgemV) := {f €
YX: f[C] < V}, whereC is anS-compact subset of andV e ty (respectivelyV e 7y).
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Proposition 1.4. The categorie®, se®, 7>B, and kZ>B are complete categories. Let
X € B, and lety € B (respectively,) € se, ) € T»B); then Y* e B (respectively,
V¥ ese®B, VX € T2B).

Proof. We have already verified completess in the preceding comments.

Suppose) is in one of the above categories, akds the underlying set of’. Then
the bitopological product spadq y ) (of all functions fromX to Y) is in that category,
and contains (as a subset) the set of pairwise continuous fungtidnsThe product
topology is the point-open topology, which is weaker than our modified compact-open
topology since all finite sets afecompact. IfK is an®-compact subset g¢¥, then it is
S-compactas a subspace[gf, Y and hence pH as asubspac¢pf V. Let f, g € Y+ and
suppose thaf < g in the order of specialization ¢f y V. This means that (x) <., g(x)
for eachx € X. Let N(K, V) be a subbasic open set of,x containingf, i.e., K is
S-compact inX, V € 1y, and f[K] C V. SinceV is open, it is a saturated set, thus
f(x) <zy, g(x) for eachx € K implies g[K] C V, i.e., g € N(K, V). It follows that
each open set i is a saturated set inr,y restricted toy*. The $-compact open
topology is finer than the product topology, and it follows that the specialization orders of
these two topologies agree (this is always true if one topology is finer than another and
any open set in the finer is saturated with respect to the courser). This holds-¥ot
as well; since the specializations of the two are unchanged, this space is paliwise
Further, if two topologies are enlarged on a pH bitopological space but their specializations
are unchanged, the resulting space is pH. By these last commeat& — ) € B,
YeseB = V¥ ese, and) € LB=> V¥ € LB. O

Proposition 1.5. If X is k-separated then the evaluation map: K BQY¥ x X) — Vis
pairwise continuous.

Proof. By Lemma 1.2(d), it will do to showv:L — ) is pairwise continuous for each
S_compact subspadeof Y¥ x X. ThenL € Y* x wy[L]. Butwy[L] C X is S-compact,
so it is joincompact ifY’ is k-separated. But theny[L] is locally compact, and thus it is
well-known thatev|yX x wy[L] is continuous, and dually, it is *-continuous as welta

Lemma 1.6.

(a) Let X be a k-separated k-bispace and [t be k-separated. The&k B(Y?) =
K B(K B())?%) as bitopological spaces.

(b) Let X, Y, Z be k-separated spaces. Then a mapK B(X x Z) — ) is pairwise
continuous if and only if the induced map

F:KB(Z)— Y¥
is pairwise continuous, whelE is defined by the rule
(F(2))(x) = F(x,2).

Proof. (a) It follows from Lemma 1.2(d) that the function spacgs and (K B()))~*
contain the same set of functions. Each topologK &()) is finer than the corresponding
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topology of ), so the identity map from(K B())))¥ to Y is pairwise continuous,
and thus it follows from Lemma 1.2(d) anddposition 1.5 that the identity map from
K B(KB())¥) to K B(YX) is continuous.

Conversely leC be an®-compact subset @P¥ and letg € C. Suppose that (K, U)
is at-subbasic open set containiggn K B())?Y, whereU is r-open inK B())) andK
is S-compact inX. By Proposition 1.5 the evaluation map fraknB()¥ x X) — ) is
pairwise continuous and hence so its restrictiolCte K. Thus its image is -compact
in ), so U intersected with the image is relativety-open. By standard compactness
arguments, there is a relativelyopen subse’ aroundg in C such that the evaluation map
carriesW x K into the intersection of/ and the image of x K, soW Cc N(K,U)NC.
Hence the identity mapping frogit to K B())¥ is continuous when restricted to each
S_compact subset @¥¥ . By Lemma 1.2(d) the identity map fro&i B(Y) to K B())~*
is continuous. That it is also continuous fraknB()¥) to K B(K B())¥) then follows
from (c) and (d) of Lemma 1.2. Dually;continuity holds.

(b) By Lemma 1.2(f), the bitopological spac&B(X x KB(Z)) and KB(X x 2Z)
agree. IfF is pairwise continuous, then sof since it is the composite

KB(X x 2) —> KB(X x KB(2)) 2L KB(X x Yy¥) 5,
where the second map is pairwise continuous by Lemma 1.2(d) and the third is pairwise
continuous by Proposition 1.5.

Conversely, ifF : K B(X x Z) — ) is continuous, we now prove that: K B(Z) —
V¥ is continuous. Letk be an’-compact subset of, let zo € K, and let F(zo) €
N(C, V), whereC is 5-compact and’ is ty-open. TherF (x, zo) € V for all x € C, that
is, F(C x {zo0}) € V. Now F restricted toC x K is pairwise continuous, and a standard
compactness argument then implies that there exists @ s¢tich is relativelyrz-open
in K such thatF(C x U) C V, i.e., F(U) C V. It follows that F restricted toK is t-
continuous and dually*-continuous. By Proposition 1., is pairwise continuous. O

Theorem 1.7. Let X, ), Z be k-separated k-bispaces. Then the currying mapping
Fi> F:YKB@Xx2) (yX)Z

sendingF : K B(X x Z) — Y to F: Z — V¥ defined by the ruléF (z))(x) = F(x, z) is

a pairwise homeomorphism.

Proof. It follows from Lemma 1.6(b) that the mapping — Fis a bijection (since
K B(Z) = Z by hypothesis). Lef belong to the subbasic open sétk1, N(K2, V)),
whereK is an®-compact subset df, K> is anS-compact subset of, andV is ty-open.

It follows that F (K2 x K1) C V, and hence thaW (K2 x K1, V) is a subbasic open set
aroundF in YXBX*2) \which is carried intaV (K1, N(K2, V)).

Conversely suppose tha& is an S-compact subset ok B(X x Z) (and hence of
X x Z)andN (K, W) is a subbasic open set containifigwhereW is ty-open. Then the
projectionsk; and K5 of K into Z and X, respectively, aré -compact, andr restricted
to K> x K; is pairwise continuous. For eadh, z) € K, there existdJ, ;) containing
x which is relativelyzy-open inK» and V, ., containingz which is relativelyzz-open
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in Ky such thatF (U ;) x Vix,;)) € W. For each(x, z) € K, pick ans-compact subset
C(x,2) X Dix,2) € Utx,z) X Vix,z) CONtAINING(x, z) in its T3, ,-interior relative tokz x K1.
Then finitely many covek, sayC; x D; fori =1,...,n. ThenF(C; x D;) € W for
eachi, i.e., F € (}_; N(Di, N(C;, W)). It now follows easily that ifG also belongs
to this intersection, their € N(K, W). Of course the result holds dually for thé-
topologies. O

Theorem 1.8. The category KB is Cartesian closed.

Proof. It was shown to be complete in Proposition 1.4, and closed under the construction
of spaces of pairwise continuous maps in Lemma 1.6(a).

We know from Theorem 1.7 that for any k-separated k-bispaces, the currying map
from YK B(X*2) tg (y¥)Z s a pairwise homeomorphism, so by Lemma 1.2(d) it is also
one fromK B(YXB(Xx2)) to0 K B(V¥)Z€). By Lemma 1.6(a) the latter is the same as
K B(K B(Y¥)?), completing the proof. O

2. Ordered k-spaces

In his classic monograph [9], Nachbin studied topologies with orders. In this section
we find a topology-and-order characterization of the category of pairfgidebispaces
and pairwise continuous maps introducea\d The resulting category of spaces with
topology and order and continuous, order-preserving maps will then be Cartesian closed.

Definition 2.1. A topology and order triple(tot) X = (X, v, <), is a topological space
(X, v) with a partial ordec< on X. ForatotuS ={T ev |[x e T&x < y=y e T}is
called thetopology of uppev-open setsu® = {T € v |x € T&x >y = y € T} is called
thetopology of lowew-open setsandBi(X) = (X, vS, v?) is itsassociated bitopological
space

Atot (X, v, <), isorder T» if < is closed in(X, v)2 andsemiclosedf for eachx € X,
+x and|x are closed sets. It strongly 7> if < is closed in(X, vS) x (X, v>). (The first
two of these terms are from [9]; McCartan originated the term strofigin [8].)

A tot X is anordered k-spacéf for eachT C X, T is open if and only if, for each
vS v vZ-compactk € X, T N K is relativelyvS v v=-open. The category of strongly
T, ordered k-spaces and continuous,argreserving maps, is denoted k©.

Ordered k-spaces are equivalently those Xatfor which (X, v) is a k-space and each
vS v vZ-compact subspace is-compact. To see this, note that surely, eacbompact
subspace is< v v=-compact, so the two notions of compactness are equivalent in spaces
with the latter property, and these are therefore ordered k-spaces. Converxely,ah
ordered k-space ankl is anu'S v vZ-compact subspace, note thiaiis v-compact. For if
KCUJrI, ' Cu,thenk CY{TNK |T € I'},and each suchN K = Ur N K for some
Ur € vS v vZ, so by theuS v v=-compactness ok, there is a finite se6 of thoseT
suchthatk C | {Ur N K | T € G} €| JG. ThatX is an ordered k-space (¥, v) is aT»
k-space then follows from the equivalence of the two notions of compactness.
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We need the following simple properties of topological ordered triples:
Lemma 2.2.

(a) A tot X is semiclosed if and only i =< < and >=<,>. In this case, BiX) is
pairwiseTy.

(b) StronglyT, — order T, —> semiclosed.

(c) A bitopological space X, , t*), is pH if and only if<; is closed int x 7*. Thus ifX
is a semiclosed tot, thex is stronglyT> if and only if Bi(X) is pairwiseT>.

Proof. (a) Surely if X is semiclosed then eachx is vS-closed, and necessarily the
smallest such set containing socl,<{x} = |x; similarly, tx = cl>{x}. The converse
is clear, and since is a partial ordemBi(X) is pairwiseT1 in this situation.

(b) The first implication is the observation thatsf is closed inuS x v= then it is
closed in the strongew?. For the second, note that #f is closed in(X, v)? then> is
closed in[(X, v)2]~1 = (X, v)?, so equality, that is< N >, is closed in(X, v)2, whence
(X, v) is T». Then, lettingr,, andi,, denote theith coordinate projection and injection, for
eachy, |x x {x} =7, [{x}]N <, thus|x = i7[}x x {x}], is closed by the continuity of
these maps, antlx is closed dually; thaX is semiclosed now results from (a).

(c) If <, isclosed int x t*, x, y € X andx £ y, then sincex, y) € X2\ <, an open
setin the product, there afee 7, U € t* withx € T, y € U such tha{T x U]1N <= 4.
But thisimplies thatit € T, u € U, thens £, u, whence # u; in other wordsT NU =,
so the space is pH. For the converse, note th&Xifr, t*), is pH andx . y, then there
are disjointT e t,U e t*,withx € T, y e U. Butthen[T x UIN <=0, sinceifre T,
t<ru,thenueT sou¢ U.SoX x X\ <risopenin(X, 1) x (X, t*), so<; is closed
there.

If X is semiclosed, thert = <,,< and>=<,,>. Thus by the assertion just proved,
Bi(X) is pairwise pH (and sinc€ is a partial order, pairwis®) if and only if, < is closed
inuS x v (thus> is closed inu? x vS), thatis, if and only ifX is strongly7>. O

We also use a key result from the classic Naia [9, Theorem 4, p. 46], which states:
Suppose K, v) is compact and is a partial order closed ik x K. If C,D C K are
closed andCN | D =y, thenforsom& e vS,U ev>,CCT,DCU,andTNU = .
As a result, in this situation, if £ y thentx, |y are disjoint, the first closed in=, the
second inus, so by the Nachbin result, there are disjoihie vS, U € vZ such that
xefxCT,yelyCU,so(K,vS,v?)is pH;thatitis pairwisel, results from the fact
that the specializations are partial orders and inverse to each other.

Also, as a result, ifX is compact and is a closed partial order, than= v< v v=:
certainly it suffices to show € vS v vZ, but if x € V € v, then for eachy € V, either
x & y, in which case by the previous paragraph there are dis;lgilqtu<, Uy e vZ with
x € Ty, y € Uy, or similarly there are disjoinTy € v>, Uy € uS with x € Ty, y € U,.
ThusX\V € Uyex\v Uy, so for some finitd" € X\ 7, X\ V € U, r Uy. ButthenT =
Nyer Ty is a finite intersection of elements off Uv= andx € T € X \ U, Uy C V.

Of course, since/<, v2 are both closed under finite intersections, whenaverV < v,
there arel’ € uS, W e uZ suchthak e TN W C V.
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Theorem 2.3. The categories KO and k-I>B are isomorphic via the associated
bitopology functor, Bi, defined i2.1 on objects, and defined on maps by Bi= f.

Proof. First we discuss behavior &i on objects. If(X, v, <) € k — T>0 we now show
thatBi(X) is a k-bispace: Suppose thate k(vS). ThenT N K is in the restriction of
vS CuS v to K foreachuS v vZ-compact subspadé, thus by definition of ordered
k-space,T € v; also in particular, whenever < y andx € T, thenT N {x, y} is in the
restriction ofus to {x, y}, soy e T'; this shows thaf” must be an upper set, thiisc vs.
This holds dually fon=, soBi(X) is a k-bispace. If furthek{ is closed inuS x v, then
Bi(X) is pairwiseT> by Lemma 2.2(c).

To see thaBi is one—one, leK = (X, v, <) andY = (7, 0, <). If Bi(X) = Bi(Y) then
surely X = Y andvS = 6= so their specializations are equal, and these<am@nd <,
respectively, by Lemma 2.2(a) and (b), thds= <. Also, vS v v= = 6= v #Z, so these
two topologies have the same compact subspacesthe same restrictions to them, and so
T ev<<=T|K € (vS vv?)|K foreachuS v vZ-compactk < T|K € (6= Vv 0%)|K
for each#= v §=-compactk <= T < 4. By all of this paragraph, we have=Y.

Finally, we show thaiBi is onto. If (X, 7, t*) is a pairwiseT> k-bispace, letX =
(X, k(r v ¥),<¢). Then by definition(X, k(t v t*)) is a k-space; als&; is closed
int x t*. By Lemma 1.2(c), applied teX, r v t*,7 v ), k(r v *) andt v t* have
the same compact subspaces and the same restrictions to thi€ng dny one of these,
((r v t)|K)ST = t|K since by [6, 3.1], the closed setsofk are the<,-lowert v t*-
compact (=r v t*-closed) sets. Similarly(r v t*)|K)>* = t*| K, showing since this is a
k-bispace thak(r v t*)St =t andk(t v %)Z* = r*; therefore X is an ordered k-space
and(X, 7, t*) = Bi(X).

For maps, letX,Y be as above, and lef:X — Y; note that if U € 6= then by
continuity and order-preservatiofi; 1[U] € v<; since the same holds for, >, we have
f = Bi(f):Bi(X) — Bi(Y); now clearlyBi is a functor.

Certainly Bi is faithful (one—one from the map$ — Y to Bi(X) — Bi(Y) for each
X,Y). Itis also full (onto between these sets of maps), singe Bi(X) — Bi(Y) theng
is specialization-preserving betwee&n < and <y<, and these ar& and <, respectively,
by Lemma 2.2(a) and (b), spis order-preserving. Singeis continuous fromus to 6=
and fromv? to 67, it is continuous with respect to the joingS v v= to 6= v 6=,
Thusg is S-continuous on alf-compact subspaces Bf(X), and therefore on all compact
subsets oK. Since(X, v) is a k-spaceg is continuous fromv to 6. Thereforeg: X — Y,
completing our proof. O

Thus, though the theories of orderexpblogical spaces and of bitopological spaces
differ, those of Hausdorff ordered k-spa@esl Hausdorff k-bispaces are identical.
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