Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases

Dawn Y. Sumner
University of California, Davis

Ian Hawes
University of Canterbury

Tyler J. Mackey
University of California, Davis

Anne D. Jungblut
The Natural History Museum, London

Peter T. Doran
Louisiana State University

Follow this and additional works at: https://digitalcommons.lsu.edu/geo_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Geology and Geophysics at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases

Dawn Y. Sumner1, Ian Hawes2, Tyler J. Mackey1, Anne D. Jungblut3, and Peter T. Doran4

1Department of Earth and Planetary Sciences, University of California–Davis, 1 Shields Avenue, Davis, California 95616, USA
2Gateway Antarctica, University of Canterbury, Christchurch 8041, New Zealand
3Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
4Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

ABSTRACT

The evolution of oxygenic photosynthesis was the most important geochemical event in Earth history, causing the Great Oxidation Event (GOE) ~2.4 b.y. ago. However, evidence is mixed as to whether O2 production occurred locally as much as 2.8 b.y. ago, creating O2 oases, or initiated just prior to the GOE. The biogeochemical dynamics of possible O2 oases have been poorly constrained due to the absence of modern analogs. However, cyanobacteria in microbial mats in a perennially anoxic region of Lake Fryxell, Antarctica, create a 1–2 mm O2-containing layer in the upper mat during summer, providing the first known modern analog for formation of benthic O2 oases. In Lake Fryxell, benthic cyanobacteria are present below the oxycline in the lake. Mat photosynthesis rates were slow due to low photon flux rate (1–2 µmol m−2 s−1) under thick ice cover, but photosynthetic O2 production was sufficient to sustain up to 50 µmol O2 L−1, sandwiched between anoxic overlying water and anoxic sediments. We hypothesize that Archean cyanobacteria could have similarly created O2 oases in benthic mats prior to the GOE. Analogous mats may have been at least partly responsible for geological evidence of oxidative weathering prior to the GOE, and habitats such as Lake Fryxell provide natural laboratories where the impact of benthic O2 oases on biogeochemical signatures can be investigated.

INTRODUCTION

The most significant geochemical change in Earth’s history was caused by oxygenic photosynthesis in cyanobacteria (Farquhar et al., 2011; Kasting, 2013; Kump et al., 2013; Lyons et al., 2014). Prior to ~2.5 b.y. ago, most environments on Earth’s surface were anoxic. However, between 2.45 and 2.32 b.y. ago, the Great Oxidation Event (GOE) led to substantial changes in atmospheric and oceanic chemistry, including the accumulation of free molecular oxygen in the atmosphere and shallow oceans, the loss of reduced ions such as Fe(II) and Mn(II) from shallow seawater, and more robust sulfur cycling through multiple oxidation states (Farquhar et al., 2011; Kasting, 2013; Kump et al., 2013; Lyons et al., 2014). Prior to 2.45 Ga, abundant evidence suggests the presence of either local or temporally short oxidative environments, possibly including O2 (e.g., Kasting, 1992; Eigenbrode and Freeman, 2006; Anbar et al., 2007; Bosak et al., 2009; Duan et al., 2010; Kendall et al., 2010; Craja et al., 2012). Evidence for local O2 accumulation before the GOE can be reconciled with an anoxic atmosphere if “oxygen oases” emerged with sufficient oxygenic photosynthetic activity to produce local oxygenated environments, but insufficient O2 production to cause a global change in oxidation state (e.g., Kasting, 1992; Eigenbrode and Freeman, 2006; Kendall et al., 2010; Olson et al., 2013; Reinhard et al., 2013; Lalonde and Konhauser, 2015).

Oxygen oases have been proposed for open oceans and coastal waters (Fischer, 1965; Kasting, 1992; Olson et al., 2013; Reinhard et al., 2013) and more recently for terrestrial environments (Lalonde and Konhauser, 2015). In the pelagic oceans, rapid mixing and gas exchange with the atmosphere would have made it difficult for more than a few micromoles of O2 per liter to accumulate in Archean seawater (Olson et al., 2013; Reinhard et al., 2013). In contrast, benthic microbial mats have relatively low exchange rates, and solute fluxes are limited to diffusion through the boundary layer separating mats from the bulk water column. Thus, it is more likely that the first O2 oases, and those with the highest O2 concentrations, formed in benthic mats rather than in pelagic environments (e.g., Herman and Kump, 2005; Lalonde and Konhauser, 2015). Terrestrial O2 oases are of particular interest for understanding geochemical indications of oxidative weathering prior to 2.5 Ga; sulfide minerals might have oxidized within Archean soil and freshwater cyanobacterial mats without O2 accumulating in the atmosphere (Reinhard et al., 2013; Lalonde and Konhauser, 2015).

Evaluating the possible extent and weathering potential of Archean freshwater O2 oases is difficult due to a paucity of modern analogs; none have been previously identified in anoxic environments. Although O2 concentrations in cyanobacterial mats are commonly higher than in their environment during the day, their biogeochemical dynamics are likely different than in O2 oases on a reducing Earth due to the prevalence of O2 rather than reduced ions in the overlying water column. In contrast, benthic mats in Lake Fryxell, McMurdo Dry Valleys, Antarctica, accumulate O2 during the summer below a poorly mixed, anoxic water column. Here, we describe the conditions under which this localized O2 oasis forms and consider implications for Archean lacustrine O2 oases.

LAKE FRYXELL

Lake Fryxell (75°35′S, 163°35′E, Fig. 1) is a perennially ice-covered lake in the McMurdo Dry Valleys, Antarctica. The lake occupies a closed basin; meltwater streams flow into the lake during summer, but water is lost only through ablation of ice from the surface and water evaporation from a summer “moat” of meltwater around the margins of the lake (Lawrence and Hendy, 1985). Historical imbalances in water supply and loss resulted in evaporation and refilling events, creating density stratification of the lake due to increasing salinity with depth (Lyons et al., 2005). This stratification inhibits...
mixing, as does the permanent ice cover; solute transport below 5 m is dominated by diffusion. The perennial ice cover, which was 4–5 m thick in A.D. 2012, affects gas equilibration with the atmosphere. Dissolved gases enter the lake through stream inflow and are excluded from ice as water freezes, leading to gas accumulation in the upper water column over time. Atmospheric gases such as N₂, O₂, and noble gases are present at concentrations well above atmospheric saturation and are prevented from ebullition by hydrostatic pressure (Craig et al., 1992). Vertical gas transport is, however, limited to diffusion, and, while O₂ is present at high concentrations near the surface of the lake, microbial metabolic process produce an oxycline within the lake at the mat in 1.0 mm increments. The position of the mat surface was estimated by the diver and confirmed by a break in the dissolved O₂ versus depth profile. The diffusive flux of O₂ from the microbial mat into the overlying bottom water and the underlying sediments was calculated from the measured steady-state O₂ gradients according to methods described by Vopel and Hawes (2006) and Hawes et al. (2014).

RESULTS

Conductivity, Temperature, Oxygen, and Irradiance

Conductivity increased steadily between 6 m and 11 m depth, from <1 to 5 mS cm⁻¹. Water temperature ranged from slightly above 2.5 °C to slightly less than 2.75 °C, demonstrating that increasing salt content caused density stabilization of the water column. The water column was supersaturated with O₂ to a depth of 9.1 m (1 atm saturation at ambient temperature is ~450 µmol L⁻¹), transitioning to complete anoxia below ~9.8 m (Fig. 2). We refer to the depth at which O₂ is unmeasurable as the “O₂ limit”.

During November 2012, the average daily PAR flux incident to the Lake Fryxell weather station ranged from 277 to 783 (average = 600) µmol photons m⁻² s⁻¹. Average daily maxima and minima were 1186 and 96 µmol photons m⁻² s⁻¹, respectively. The percent surface incident PAR reaching the lake floor fell from 0.74% at 8.9 m to 0.27% at the O₂ limit (9.8 m), 0.20% at 10.4 m, and 0.12% at 11.0 m. Combined surface incident and underwater measurements suggest that at the O₂ limit, monthly average PAR was ~1.6 µmol photons m⁻² s⁻¹, which is above the minimum required light flux of ~1 µmol photons m⁻² s⁻¹ for oxygenic photosynthesis estimated for nearby Lake Hoare (Hawes et al., 2001, 2014; Vopel and Hawes, 2006), while average maximum daily values exceeded 3 µmol photons m⁻² s⁻¹. The daily average 1 µmol photons m⁻² s⁻¹ threshold was reached at 10.4 m depth, well into the anoxic zone of Lake Fryxell.

Mat Composition

Laminated cohesive microbial mats coated the sediment-water interface to a water depth of more than 10.2 m. Deeper surfaces were still mat covered, but the mat surface was not cohesive. Based on field microscopy, the bulk of the mats at 9.0 m and 9.8 m consisted of cyanobacteria of the Leptolyngbya, Pseudanabaena, and Phormidium morphotypes (Table DR1). Mats under O₂ supersaturated water at 9.0 m had pinnacles and were dominated by Leptolyngbya morphotypes (<2 µm filament width), whereas the 9.8 m mats at the O₂ limit were flat and dominated by a conspicuous green film of a Phormidium morphotype with filament diameter of >6 µm (Fig. DR1 in the Data Repository; Table DR1), with the diatom Dicodesmis contenta also present in some samples.

Dissolved Oxygen Microprofiles and Oxygen Dynamics

Microelectrode O₂ profiles of benthic mats in the oxic part of the lake were similar to those previously seen in the photic zones of similar Antarctic lakes (Fig. 3A; Table DR2; e.g., Hawes et al., 2014). They show an increase in O₂ through the diffusive boundary layer separating the bulk water from the mat, a substantial O₂ subsurface peak of >800 µmol O₂ L⁻¹ at ~2 mm below the surface of the mat, then a gradual decline in O₂ with depth, and remaining oxic to ~17 mm. In contrast, profiles at 9.8 m showed
no O₂ in the bulk water column, an increase in O₂ through the few millimeters of water above the mat, and an O₂ peak at ~1 mm depth below the mat surface of 50 µmol O₂ L⁻¹ (10% atmospheric saturation), becoming anoxic again at a mat depth of ~6 mm (Fig. 3B; Table DR3). The spatial distribution of O₂ within the mats allows calculation of net fluxes associated with the O₂ oasis. Diffusion of O₂ away from the O₂ maxima in microbial mats is an indicator of the net rate of photosynthetic O₂ production (Berg et al., 1998; Hawes et al., 2014), and fluxes of O₂ can be calculated using the slopes of O₂ gradients and appropriate diffusion constants. Using a diffusion coefficient (D) at 0 °C of 9.13 × 10⁻⁶ cm² s⁻¹ (Broecker and Peng, 1974; modified for temperature according to Li and Gregory, 1974), the flux of O₂ from the 9.8 m mat to the water column was ~0.04 µmol O₂ m⁻² s⁻¹. A similar calculation of downward flux suggests that 0.013 µmol O₂ m⁻² s⁻¹ was diffusing downward into the mat (calculated using a 20% reduction in D, within the mat matrix; Vopel and Hawes, 2006). The total export of O₂ from the photic zone was 0.05 µmol O₂ m⁻² s⁻¹. This result is consistent with the expected rate of photosynthesis at the time of O₂ profiling, when irradiance was ~2.3 µmol photons m⁻² s⁻¹. For nearby Lake Hoare, Hawes et al. (2014) presented evidence that microbial mats absorb 50% of incident irradiance into photosynthetic systems, and that the quantum yield of photosynthesis of shade-adapted mats is 0.06 mol O₂ mol⁻¹ photons. If the Lake Fryxell mats behave similarly, photosynthetic production by mats at 9.8 m would be 0.07 µmol O₂ m⁻² s⁻¹, slightly in excess of the calculated net flux out of the mat based on the diffusion profile. The excess of 0.02 µmol O₂ m⁻² s⁻¹ could have been consumed by respiration and sulfide oxidation within the mat.

DYNAMICS OF OXYGEN OASES

The two key factors required for development of mat O₂ oases are (1) O₂ production that exceeds local consumption, and (2) relatively slow O₂ transport out of the mat. As soon as O₂ production exceeds local consumption, O₂ transiently accumulates. When the export of O₂ to the surrounding environment is sufficiently slow, a stable O₂ oasis develops. One does develop at 9.8 m in Lake Fryxell even at very low photosynthetic rates. In addition, the net annual export of O₂ from mats at 9.8 m and deeper in Lake Fryxell is not sufficient to even seasonally oxidize the local water column, even though photosynthetic O₂ production is sufficient to create the O₂ oasis. The size and temporal persistence of the oasis depends on the spatial distribution and rates of O₂ production and consumption. These rates will change as irradiance fluctuates daily and seasonally. At higher irradiance, a larger O₂ peak and enhanced export to overlying waters and underlying sediments are likely, potentially facilitating oxidation of reduced species such as HS⁻, Fe(II), and Mn(II) at the boundary between the oasis and anoxic waters. Conversely, at lower irradiance, the mats will contain a smaller O₂ peak, export less O₂, and support less oxidation of reduced species. During the winter when there is no light, the O₂ oasis is predicted to disappear entirely.

Implications for Archean Oxygen Oases

We propose that variations in the balance of net O₂ production and flux of reduced species in Lake Fryxell provide a modern analog for development of O₂ oases prior to the GOE. Archean terrestrial aquatic environments as old as 2.7 b.y. commonly contained benthic mats (e.g., Buck, 1980; Buick, 1992; Rye and Holland, 2000). Once these mats contained cyanobacteria, they likely developed O₂ oases even at very low net photosynthetic rates, such as the 0.05 µmol O₂ m⁻² s⁻¹ observed at 9.8 m in Lake Fryxell. At such low fluxes, all of the O₂ exported from the mat would have been consumed by oxidation of reduced species in the surrounding environment (e.g., Lalonde and Konhauser, 2015). Thus, O₂ oases with tens of micromoles O₂ per liter could have persisted for a long time without oxidizing large habitats. The size, productivity, and frequency of O₂ oases would have gradually increased with the ecological expansion of cyanobacteria and the evolution of more robust oxygenic photosynthesis. Eventually, O₂ oases may have expanded to the open oceans, although O₂ concentrations were likely an order of magnitude lower (Olson et al., 2013; Reinhard et al., 2013). Gradual declines in the concentrations of reduced species in seawater would have accompanied the spread of oxygenic photosynthesis and decreased the flux of reduced gases to the atmosphere from the oceans. With this expansion, Earth was primed for the GOE.

An accumulation of O₂ in benthic mats can explain some of the geochemical signatures of early weathering. Specifically, the ~50 µmol O₂ L⁻¹ observed in Lake Fryxell O₂ oases is sufficiently high to allow some pyrite oxidation at reasonable sediment fluxes (Reinhard et al., 2013; Lalonde and Konhauser, 2015). Evidence for oxidative pyrite weathering on land extends back as far as 2.8 b.y. based on models of sulfur fluxes to the oceans (Stieken et al., 2012) as well as intervals of enhanced molybdenum influx prior to the GOE (Anbar et al., 2007; Duan et al., 2010; Czaja et al., 2012). The “whiffs of oxygen” proposed for these intervals (e.g., Anbar et al., 2007) may record enhanced terrestrial O₂ oasis development rather than changes in the oxidation state of the atmosphere. Using Lake Fryxell O₂ oases as a model, the search for evidence for Archean O₂ can be more precisely targeted at environments where O₂ oases may have had a substantial impact on biogeochemical cycles as well as those environments where the first, small, transient oases may have formed.

CONCLUSIONS

The presence of transient O₂ oases in Lake Fryxell benthic mats demonstrates that cyanobacteria are capable of producing O₂ oases with sustained concentrations of ~50 µmol O₂ L⁻¹ s⁻¹ without oxidizing their environment. These oases provide a model for Archean O₂ oases, which may have formed prior to the oxidation of Earth’s oceans and atmosphere. Similar benthic O₂ oases could have provided environments for oxidative weathering of continental minerals such as pyrite, creating the geochemical signatures indicating “whiffs of oxygen” prior to the GOE.

ACKNOWLEDGMENTS

The collection of field data was supported by the National Science Foundation Division of Polar Programs through grant number 1115245, the McMurdo Long Term Ecological Research project. Sumner and Mackey were supported by NASA Astrobiology through grant NN13AI60G. We thank both the U.S. Antarctic program and Antarctica NZ for logistic support. We thank James Kasting and an anonymous reviewer for helpful comments.

REFERENCES CITED

Figure 3. Profiles of dissolved oxygen through mat-water interfaces in Lake Fryxell, Antarctica. A: Mean and range of two replicate profiles through a mat in anoxic part of water column (9.0 m depth). B: Mean and one standard deviation of five replicate profiles in anoxic part of water column (9.8 m depth).