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After outlining the way in which an intrinsic mean G = {Gn} on a complete metric 
space gives rise to a contractive barycentric map on some class of Borel probability 
measures and some basic examples of this process, we show how the resulting 
barycentric map gives rise to a general theory of integration of measurable functions 
into the space. We apply this machinery to the cone of positive invertible elements 
of a C∗-algebra equipped with the Thompson metric to derive barycentric maps and 
their basic properties arising from the power means. Finally we derive basic results 
for the Karcher barycenter including its approximation by the barycentric maps for 
power means and its satisfaction of the Karcher equation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A barycentric map assigns to each measure in some designated set of Borel probability measures on a 
topological space X a member of X. The map yields in an abstract fashion a method of assigning to a 
measure a barycenter or “center of mass.” In this paper we restrict to the case that X is a metric space and 
consider barycentric maps on two sets of probability Borel measures: (i) the set of probability measures of 
finite first moment, i.e., those measures μ such that 

∫
X
d(x, y) dμ(x) < ∞ for some (and hence all) y ∈ X, 

and (ii) the set of probability measures with compact support.
In [7] the last two authors have developed the theory of power means and Karcher means on the open 

cone of positive operators on a Hilbert space, a theory that directly extends to the cone P of positive 
elements on a monotone complete C∗-algebra with identity. Our main goal in this paper is to extend the 
power means and Karcher mean to contractive barycentric maps on the set of Borel probability measures 
of compact support. In Sections 2 and 3 we develop in the setting of metric spaces a general theory of 
contractive barycentric maps on spaces of Borel probability measures equipped with Wasserstein metrics, 
with particular attention to those with compact support equipped with the d∞-Wasserstein metric. We 
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also review from [8] the important technique of obtaining barycentric maps from intrinsic means. Section 4
introduces some basic examples of barycentric maps by this method.

Metric spaces equipped with barycentric maps support a related theory of integration over probability 
measures. In Section 5 we introduce and develop relevant portions of this theory. We use this theory in 
Section 6 to introduce the barycentric maps for power means and develop their basic theory. In Section 7
we turn to the barycentric map arising from the Karcher geometric mean. We show that the corresponding 
geometric barycenter satisfies an appropriate Karcher equation and is given as the limit as t → 0 of the 
power means.

We remark that finding Karcher and related barycenters of probability measures living on the cone of 
positive matrices or operators has been considered in other works; see e.g. [3] and [14]. What is different in 
this context is considering contractive barycentric maps with respect to Wasserstein metrics, particularly 
from the viewpoint of their arising naturally from means.

2. Preliminaries

For a metric space X, let B(X) be the algebra of Borel sets, the smallest σ-algebra containing the open 
sets. A Borel measure μ is a countably additive (positive) measure defined on B(X). The support of μ
consists of all points x for which μ(U) > 0 for each open set U containing x. The support of μ is always a 
closed set. The finitely supported probability measures are those of the form 

∑n
i=1 riδxi

, where for each i, 
ri ≥ 0, 

∑n
i=1 ri = 1, and δxi

is the point measure of mass 1 at the point xi.
We recall the Prohorov metric π(μ, ν) defined for two Borel probability measures μ, ν on X as the infimum 

of all ε > 0 such that for all closed sets A,

μ(A) ≤ ν(Aε) + ε, ν(A) ≤ μ(Aε) + ε,

where Aε = {x ∈ X : d(x, y) < ε for some y ∈ A}. The following result appears in [4].

Proposition 2.1. A Borel probability measure μ on a metric space (X, d) has separable support. Furthermore, 
the following are equivalent.

(1) There exists a sequence {μn} of finitely supported measures (with rational coefficients) that converges 
to μ with respect to the Prohorov metric.

(2) The support of μ has measure 1, i.e., μ is support-concentrated.

Let P(X) be the set of all support-concentrated Borel probability measures on (X, B(X)) and P0(X)
the set of all μ ∈ P(X) of the form μ = 1

n

∑n
j=1 δxj

for some n ∈ N. Members of P0(X) are also referred 
to as uniform probability measures with finite support. For p ∈ [1, ∞) let Pp(X) ⊆ P(X) be the set of 
probability measures with finite p-moment: for some (and hence all) y ∈ X,

∫
X

dp(x, y)dμ(x) < ∞.

For p = ∞, P∞(X) denotes the set of probability measures with bounded support (with respect to the 
metric d) and Pcp(X) ⊆ P∞(X) denotes those with compact support. The compactly supported measures 
will be our focus in what follows.

Let (X, M) be a measure space, a set X equipped with a σ-algebra M, and (Y, d) a metric space. 
A function f : X → Y is measurable if f−1(A) ∈ M whenever A ∈ B(Y ). For f to be measurable, it suffices 
that f−1(U) ∈ M for each open subset U of Y . Hence continuous functions are measurable in the case X
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is a metrizable space and M = B(X), the Borel algebra. A measurable map f : X → Y between metric 
spaces induces a push-forward map f∗ : P(X) → P(Y ) defined by f∗(μ)(B) = μ(f−1(B)) for μ ∈ P(X) and 
B ∈ B(Y ). Note for f continuous that supp(f∗(μ)) = f(supp(μ))−, the closure of the image of the support 
of μ.

For X a metric space, we say that ω ∈ P(X×X) is a coupling for μ, ν ∈ P(X) and that μ, ν are marginals
for ω if for all B ∈ B(X)

ω(B ×X) = μ(B) and ω(X ×B) = ν(B).

Equivalently μ and ν are the push-forwards of ω under the projection maps π1 and π2 resp. We note that 
one such coupling is the product measure μ × ν, and that for any coupling ω it must be the case that 
supp(ω) ⊆ supp(μ) × supp(ν). We denote the set of all couplings for μ, ν ∈ P(X) by Π(μ, ν).

For 1 ≤ p < ∞, the p-Wasserstein distance dWp (alternatively Kantorovich–Rubinstein distance) on 
Pp(X) is defined by

dWp (μ1, μ2) :=
(

inf
π∈Π(μ1,μ2)

∫
X×X

dp(x, y)dπ(x, y)
)1/p

.

It is known that dWp is a metric on Pp(X), is complete resp. separable whenever d is complete resp. separable 
and that P0(X) is dWp -dense in Pp(X) [1,16]. Furthermore, it follows from the Hölder inequality that dWp ≤
dWp′ whenever p ≤ p′. The last observation makes possible the definition of dW∞(μ1, μ2) = limp→∞ dWp (μ1, μ2)
on P∞(X). The limit is finite on the space P∞(X) of measures with bounded support and yields a metric 
space, complete if X is a complete metric space. The closure of P0(X) in P∞(X) is Pcp(X), the set of 
probability measures with compact support, and this fact leads to our focus on measures having compact 
support.

Remark 2.2. Alternatively the ∞-metric is given by

dW∞(μ, ν) = inf
π∈Π(μ,ν)

sup{d(x, y) : (x, y) ∈ supp(π)}. (2.1)

For the case that μ = (1/n) 
∑n

i=1 δxi
and ν = (1/n) 

∑n
i=1 δyi

, the equation (2.1) reduces to

dW∞(μ, ν) = min
σ∈Sn

max{d(xj , yσ(j)) : 1 ≤ j ≤ n}, (2.2)

where Sn is the permutation group on {1, . . . , n}.

We work primarily with dW∞ , which we henceforth write simply as d∞. An attractive feature of the 
d∞-metric on Pcp(X) is that a continuous map at the metric space level induces a continuous map at the 
Pcp-level.

Proposition 2.3. Let f : X → Y be a continuous map between metric spaces. Then f∗ : Pcp(X) → Pcp(Y ) is 
continuous in the d∞-topology.

Proof. Let μn → μ in Pcp(X). Note that supp(f∗(μ)) = f(supp(μ)) is compact, so f∗ carries Pcp(X) into 
Pcp(Y ). Let ε > 0. By standard compactness arguments applied to f and supp(μ), there exists δ > 0 such 
that for x ∈ supp(μ) and d(x, z) < δ, we have d(f(x), f(z)) < ε. There exists N such that d∞(μn, μ) < δ

for n ≥ N . For n ≥ N , there exists by (2.1) π ∈ Π(μ, μn) such that sup{d(x, z) : (x, z) ∈ supp(π)} < δ. 
Then (f × f)∗(π) ∈ Π(f∗(μ), f∗(μn)) and has support the compact set (f × f)(supp(π)).
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For any (f × f)(x, z) = (f(x), f(z)) in this support set, we have d(f(x), f(z)) < ε since d(x, z) < δ by 
choice of π. It follows that

d∞(f∗(μ), f∗(μn)) ≤ sup{d(u, v) : (u, v) ∈ supp((f × f)∗(π))}
= sup{d(f(x), f(z)) : (x, z) ∈ supp(π)} < ε.

We conclude that f∗(μn) → f∗(μ) in Pcp(Y ) and thus that f∗ is continuous. �
3. Means and barycenters

We begin this section by recalling (Definition 3.1 through Proposition 3.5) several needed notions and 
results from Section 3 of [8].

Definition 3.1.

(1) An n-mean Gn on a set X for n ≥ 2 is a function Gn : Xn → X that is idempotent in the sense that 
Gn(x, . . . , x) = x for all x ∈ X.

(2) An n-mean Gn is symmetric or permutation invariant if for each permutation σ of {1, . . . , n}, Gn(xσ) =
Gn(x), where x = (x1, . . . , xn) and xσ = (xσ(1), . . . , xσ(n)). A (symmetric) mean G on X is a sequence 
of means {Gn}, one (symmetric) mean for each n ≥ 2.

(3) A barycentric map or barycenter on the set of finitely supported uniform measures P0(X) is a map 
β : P0(X) → X satisfying β(δx) = x for each x ∈ X.

For x = (x1, . . . , xn) ∈ Xn, we let

xk = (x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn) ∈ Xnk, (3.3)

where the number of x-blocks is k. We define the carrier S(x) of x to be the set of entries in x, i.e., the 
smallest finite subset F such that x ∈ Fn. We set [x] equal to the equivalence class of all n-tuples obtained 
by permuting the coordinates of x = (x1, . . . , xn). Note that the operation [x]k = [xk] is well-defined and 
that all members of [x] all have the same carrier set S(x).

A tuple x = (x1, . . . , xn) ∈ Xn induces on S(x) a uniform probability measure μ with finite support by 
μ =

∑n
i=1(1/n)δxi

, where δxi
is the point measure of mass 1 at xi. Since the tuple may contain repetitions 

of some of its entries, each singleton set {x} for x ∈ {x1, . . . , xn} will have measure k/n, where k is the 
number of times that it appears in the listing x1, . . . , xn. Note that every member of [x] induces the same 
finitely supported probability measure.

Lemma 3.2. For each probability measure μ on X with finite support F for which μ(x)(= μ({x})) is rational 
for each x ∈ F , there exists a unique [x] inducing μ such that any [y] inducing μ is equal to [x]k for some 
k ≥ 1.

Definition 3.3. A mean G = {Gn} on X is said to be intrinsic if it is symmetric and for all n, k ≥ 2 and all 
x = (x1, . . . , xn) ∈ Xn,

Gn(x) = Gnk(xk).

We have the following corollary to Lemma 3.2.

Corollary 3.4. Let G be an intrinsic mean. Then for any finitely supported probability measure μ with support 
F and taking on rational values, we may define βG(μ) = Gn(x), for any x ∈ Fn that induces μ.



S. Kim et al. / J. Math. Anal. Appl. 458 (2018) 1009–1026 1013

Corollary 3.4 provides the basis for the following equivalence.

Proposition 3.5. There is a one-to-one correspondence between the intrinsic means and the barycentric maps 
on P0(X) given in one direction by assigning to an intrinsic mean G the barycentric map βG and in the 
reverse direction assigning to a barycentric map β the mean Gn(x1, . . . , xn) = β( 1

n

∑n
i=1 δxi

).

We specialize to means and barycenters in metric spaces.

Definition 3.6. An n-mean Gn : Xn → X is said to be subadditive if for all x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Xn,

d(Gn(x), Gn(y)) ≤ 1
n

n∑
j=1

d(xj , yj).

An n-mean is said to be submaxitive if

d(Gn(x), Gn(y)) ≤ max{d(xj , yj) : 1 ≤ j ≤ n}

A mean G = {Gn} is said to be subadditive resp. submaxitive if each Gn is.

In [16] Sturm considered the notion of a contractive barycentric map for the Wasserstein metric dW1
on the set of probability measures of finite first moment on a complete metric space. This notion readily 
generalizes.

Definition 3.7. Let (X, d) be a metric space. A contractive barycentric map on P1(X) is a map β : P1(X) →
X satisfying β(δx) = x for all x ∈ X and d(β(μ), β(ν)) ≤ dW1 (μ, ν) for all μ, ν ∈ P1(X). A contractive 
barycentric map on Pcp(X) is one that is contractive for d∞.

The following is part of Proposition 2.7 of [8].

Proposition 3.8. A subadditive intrinsic mean G on a metric space X uniquely gives rise to a contrac-
tive barycentric map on P0(X). If X is complete, the barycentric map uniquely extends to a contractive 
barycentric map βG : P1(X) → X and from Pcp(X) to X for the case that G is submaxitive.

Remark 3.9. Note that a dW1 -contractive barycentric map restricts to a d∞-contractive barycentric map on 
Pcp(X) since dW1 ≤ d∞.

4. Some basic examples

We recall the following basic example, which appears as Example 2.9 of [8].

Example 4.1. We consider the arithmetic mean An(x1, . . . , xn) for n ≥ 2 on a Banach space E equipped 
with the norm metric. This mean is intrinsic and easily seen to be subadditive, and hence uniquely extends 
to a contractive barycentric map A : P1(E) → E. We note from [9,16] that P1(E) is the set of Radon 
measures μ on E satisfying 

∫
E
||x||dμ(x) < ∞. For each μ ∈ P1(E), the identity map on E is Bochner 

μ-integrable and A(μ) =
∫
E
x dμ(x).

Let C be an open cone in a Banach space E such that its closure C is a closed normal cone in E. The 
cone C defines a partial order on E given by x ≤ y if and only if y − x ∈ C. The Thompson metric on C is 
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given by d(x, y) = r if and only if er = min{t ≥ 0 : x ≤ ty, y ≤ tx}. It is a standard and basic result that 
the Thompson metric is a complete metric and that the Thompson metric topology agrees with the relative 
norm topology [17,12,13].

Example 4.2. The hypotheses of Proposition 3.8 hold for the special case that p = ∞ and G is the arithmetic 
mean restricted to an open cone of a Banach space equipped with the Thompson metric for which the closure 
is a normal cone; see [7, Proposition 2.4]. (Note in particular that the arithmetic mean is submaxitive, 
but not subadditive with respect to the Thompson metric.) Hence there exists an d∞-contractive map 
A∞ : Pcp(C) → C. Since the Thompson metric topology agrees with the relative norm topology the 
inclusion (C, d) ↪→ (E, ‖ · ‖) is continuous, hence from Proposition 2.3 the inclusion Pcp(C) ↪→ Pcp(E) is 
continuous, and thus the composition

Pcp(C) ↪→ Pcp(E) ↪→ P1(E) A−→ E

is continuous, the second arrow being continuous since dW1 ≤ d∞. The composition Pcp(C) A∞−→ C ↪→ E is 
continuous since A∞ is continuous and the Thompson metric topology and relative norm topology agree 
on C. Since both compositions are continuous and are both the usual arithmetic mean on the dense subset 
P0(C), we see that they are equal on all of Pcp(C). Note that the image of the second composition is 
contained in C, so the same is true of the first composition.

The following, which essentially appears as Proposition 4.10 of [14], gives a convenient sufficient condition 
for a mean to be submaxitive.

Proposition 4.3. Suppose C is an open cone in a Banach space E such that its closure C is a closed normal 
cone in E. A mean Gn : Cn → C is submaxitive if it is monotonic and subhomogeneous, i.e., satisfies for 
c ≥ 1, Gn(cx1, . . . , cxn) ≤ cGn(x1, . . . , xn).

Proof. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn. Let ri = d(xi, yi), the metric d being the Thompson met-
ric (the definition is recalled just below). Then xi ≤ eriyi and yi ≤ erixi for all i. Set M = max1≤i≤n{eri}. 
Using monotonicity and subhomogeneity, we obtain

Gn(x) ≤ Gn(My1, . . . ,Myn) ≤ MGn(y),

and similarly Gn(y) ≤ MGn(x), so d(Gn(x), Gn(y)) ≤ logM = max1≤i≤n{ri} = max1≤i≤n{d(xi, yi)}. 
Hence Gn is submaxitive. �

Let A be a C∗-algebra with identity, S(A) the closed subspace of self-adjoint elements, and let P =
P(A) ⊆ S(A) be the open convex cone of strictly positive elements. The group GL(A) of invertible elements 
acts on P via congruence transformations: Γc(x) = cxc∗. For x, y ∈ S(A), we write x ≤ y if y − x ∈ C, and 
x < y if y − x ∈ C.

For a, b ∈ P and t ∈ R, the t-weighted geometric mean of a and b is defined by

a#tb = a1/2(a−1/2ba−1/2)ta1/2. (4.4)

Some basic properties of the t-weighted mean are

(i) (Loewner–Heinz inequality) a#tb ≤ c#td for a ≤ c, b ≤ d and t ∈ [0, 1];
(ii) m(a#tb)m∗ = (mam∗)#t(mbm∗) for m ∈ GL(A);
(iii) a#tb ≤ (1 − t)a + tb for t ∈ [0, 1].
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For t = 1/2, a#1/2b = b#1/2a is called simply the geometric mean of a and b and denoted a#b.
The Thompson metric on P is defined by d(a, b) = max{logM(b/a), logM(a/b)}, where M(b/a) =

inf{α > 0 : b ≤ αa} and coincides with d(a, b) = || log(a−1/2ba−1/2)||. Furthermore, a#b is a midpoint of a
and b in the Thompson metric and t 	→ a#tb, 0 ≤ t ≤ 1, is a metric geodesic from a to b.

The logarithm map log : P → E := S(A) is differentiable and is contractive from the exponential metric 
increasing (EMI) property ([5,11])

|| log x− log y|| ≤ d(x, y), x, y ∈ P. (4.5)

This property reflects the seminegative curvature of the Thompson metric, which can be realized as a 
Banach–Finsler metric arising from the Banach space norm on S(A): for a ∈ P, the Finsler norm of v ∈
TaP = E is given by ‖v‖ = ‖a−1/2va−1/2‖ and the exponential and logarithm maps are

expa(v) = a1/2 exp(a−1/2va−1/2)a1/2, (4.6)

loga(x) = a1/2 log(a−1/2xa−1/2)a1/2. (4.7)

Example 4.4. The Karcher mean Λ = {Λn} on P is defined as the unique solution in P of the Karcher 
equation

x = Λn(a1, . . . an) ⇐⇒
n∑

i=1
log(x−1/2aix

−1/2) = 0.

It has been shown in [7] for C∗-algebras that are monotone complete that this equation does indeed have a 
unique solution in P and that the resulting mean Λn for n ≥ 2 has the following properties:

(i) Λn is symmetric and idempotent;
(ii) (Monotonicity) If bi ≤ ai for all 1 ≤ i ≤ n, then Λn(b1, . . . , bn) ≤ Λn(a1, . . . , an);
(iii) (Subadditivity) d(Λn(a1, . . . , an), Λn(b1, . . . , bn)) ≤ (1/n) 

∑n
i=1 d(ai, bi), where d is the Thompson met-

ric.

We note also that the Karcher mean Λ is intrinsic since the left hand side of the Karcher equation for 
(a1, . . . , an)k is just k times that for (a1, . . . , an), and hence still equal to 0 for the same x. We thus have 
the following.

Proposition 4.5. Proposition 3.8 yields a uniquely determined contractive barycentric map βΛ : P1(P) → P

satisfying β((1/n) 
∑n

i=1 δai
) = Λn(a1, . . . , an).

5. Integrals

Each barycentric map gives rise to an associated theory of integration over probability measures. We 
consider some elementary properties of this integration for barycentric maps for the previously considered 
cases that β is defined on P1(X) or on Pcp(X).

Definition 5.1. Let X be a metric space and let β be a contractive barycentric map. Let (M, M, P ) be a 
measure space equipped with a probability P . For f : M → X measurable, we define∫

M

f dP =
∫
M

f(x)dP (x) := β(f∗(P )),

provided the push-forward f∗(P ) is in the domain of β. In the latter case we call f integrable.
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We have the following general “change of variables” formula.

Proposition 5.2. Let (M, M, P ) be a probability measure space, X and Y metric spaces equipped with barycen-
tric maps, and f : M → X, g : X → Y Borel measurable maps.

(i) g∗(f∗(P )) = (g ◦ f)∗(P );
(ii)

∫
X
g df∗(P ) =

∫
M

g ◦ f dP , provided either integral exists.

Proof. Item (i) follows directly from the definition of the push-forward map. For item (ii) we observe

∫
X

g df∗(P ) = β(g∗(f∗(P ))) = β((g ◦ f)∗(P )) =
∫
M

g ◦ f dP.

The outer equalities hold by definition, the inner one by (i). Since by (i) the two probabilities to which β is 
applied are equal, the last assertion of (ii) follows. �

We have the following general variant of | 
∫ b

a
f(x)dx| ≤

∫ b

a
|f(x)|dx.

Lemma 5.3. Let β : P1(X) → X be a contractive barycentric map, where P1(X) is equipped with the 
Wasserstein metric dW1 , let (M, M, P ) be a probability measure space, and let f, g : M → X be integrable 
maps. Then

d

⎛
⎝∫

M

f dP,

∫
M

g dP

⎞
⎠ ≤

∫
M

d(f(x), g(x)) dP (x)

and for p = ∞,

d

⎛
⎝∫

M

f dP,

∫
M

g dP

⎞
⎠ ≤ sup{d(f(x), g(x)) : x ∈ M}

Proof. We observe that

d

⎛
⎝∫

M

f dP,

∫
M

g dP

⎞
⎠ = d(β(f∗(P )), β(g∗(P ))) ≤ dW1 (f∗(P ), g∗(P ))

≤
∫

X×X

d(x, y) d(f × g)∗(P )(x, y)

=
∫
M

d(f(x), g(x)) dP (x),

where the first inequality follows from the contractivity of β, the second from the fact (f × g)∗(P ) is a 
coupling for f∗(P ) and g∗(P ), and the last equality follows from change of variables. For the case p = ∞, 
we obtain by similar reasoning

d

⎛
⎝∫

M

f dP,

∫
M

g dP

⎞
⎠ = d(β(f∗(P )), β(g∗(P ))) ≤ d∞(f∗(P ), g∗(P ))
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≤ sup{d(y, z) : (y, z) ∈ supp ((f × g)∗(P ))}

≤ sup{d(f(x), g(x)) : x ∈ M},

where the last inequality follows from supp(f × g)∗(P ) ⊆ (f × g)(M) and the last supremum is taken over 
a dense subset of (f × g)(M). �

For the following result, which gives a general condition for integrability, see Lemma 3.2 of [8].

Lemma 5.4. Let f : X → Y be a Lipschitz map with Lipschitz constant C. Then f∗ : Pp(X) → Pp(Y ) is 
Lipschitz with Lipschitz constant C for 1 ≤ p ≤ ∞.

The following useful result for the Pcp-case follows from Proposition 2.3.

Proposition 5.5. Let f : X → Y be a continuous function between metric spaces, where Y is equipped with 
a contractive barycentric map βY on Pcp(Y ). Then 

∫
X
f dμ exists for any μ ∈ Pcp(X). Furthermore, if μn

converges to μ in the d∞-topology of Pcp(X), then 
∫
X
f dμn →

∫
X
f dμ in Y .

Proof. By Proposition 2.3, f∗ carries Pcp(X) continuously into Pcp(Y ). In particular, βY (f∗(μ)) =
∫
X
f dμ

exists. By continuity of f∗ and βY ,

∫
X

f dμn = βY (f∗(μn)) → βY (f∗(μ)) =
∫
X

f dμ. �

We also need the following variant of the preceding result.

Lemma 5.6. Let (X, dX) and (Y, dY ) be metric spaces, let β : Pcp(Y ) → Y be a contractive barycentric map, 
and let F : Pcp(X) ×X → Y be continuous. Let μn → μ in Pcp(X) and suppose there exists a compact set 
K ⊆ X such that supp(μn) ⊆ K for each n. If xn → x in X, then 

∫
X
F (xn, y)dμn(y) →

∫
X
F (x, y)dμ(y)

in Y .

Proof. Without loss of generality we may assume that supp(μ) ⊆ K by taking its union with K if necessary. 
The convergent sequence {μn} together with its limit μ form a compact subset of Pcp(X); call it J . Then 
J ×K is a compact subset of Pcp(X) ×X, and hence F restricted to J ×K is uniformly continuous, where 
the metric d chosen on Pcp(X) × X is the sum of the coordinate metrics. For ε > 0, choose δ > 0 such 
that for (ν1, x1), (ν2, x2) ∈ J ×K, d((ν1, x1), (ν2, x2)) < δ implies dY (F (ν1, x1), F (ν2, x2)) < ε. There exists 
N such that d∞(μn, μ) < δ for n ≥ N , and hence d((μn, x), (μ, x)) < δ for each x ∈ X. We thus have 
dY (F (μn, x), F (μ, x)) < ε for each x ∈ K and n ≥ N . We note also by our assumption on the supports that 
integrals over X for each μn and μ can be reduced to integrals over K. It follows from Lemma 5.3 (taking 
f = F (μn, ·) and g = F (μ, ·)) for n ≥ N that

dY

⎛
⎝∫

X

F (μn, x)dμn(x),
∫
X

F (μ, x)dμn(x)

⎞
⎠

= dY

⎛
⎝∫

K

F (μn, x)dμn(x),
∫
K

F (μ, x)dμn(x)

⎞
⎠ ≤ ε.
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Also by Proposition 5.5, 
∫
X
F (μ, x)dμn(x) →

∫
X
F (μ, x)dμ(x), so for large n,

dY

⎛
⎝∫

X

F (μ, x)dμn(x),
∫
X

F (μ, x)dμ(x)

⎞
⎠ ≤ ε.

Combining the previous two displays and applying the triangle inequality, we conclude for large enough n
that

dY

⎛
⎝∫

X

F (μn, x)dμn(x),
∫
X

F (μ, x)dμ(x)

⎞
⎠ ≤ 2ε. �

Remark 5.7. For a curve γ : [0, 1] → X on a metric space X equipped with a contractive barycentric map 
β on Pcp(X), the integral

1∫
0

γ(t) dμ(t) := β(γ∗(μ))

exists for μ ∈ P1([0, 1]). For Lebesgue measure m, we simply write 
∫ 1
0 γ(t) dt.

For x, y ∈ P, the cone of positive invertible elements of a C∗-algebra, γ(t) := x#ty is a minimal geodesic 
for the Thompson metric, that is,

d(γ(t), γ(s)) = d(x, y)|t− s|

and hence γ is Lipschitz with the Lipschitz constant d(x, y). By Lemma 5.4 and Proposition 5.5, we have a 
continuous map from P1([0, 1]) to P:

μ 	→
1∫

0

x#ty dμ(t) := βΛ(γ∗(μ)).

The preceding gives rise to a (separately) continuous map from Lemma 5.3

P
2 × P1([0, 1]) → P, (x, y, μ) 	→

1∫
0

x#ty dμ(t).

6. The power mean

In this section we let P denote the open convex cone of positive definite n ×n-matrices, or more generally 
the open cone (open in the space of self-adjoint elements) of positive invertible elements of a C∗-algebra 
A with identity e equipped with the Thompson metric. We have seen in Example 4.2 that there is a 
∞-contractive arithmetic barycentric map βA : P∞(P) → P, where P∞(P) is endowed with the d∞-metric 
arising from the Thompson metric.

We can use the integration of the previous section to extend the power means on P to the Borel measures 
Pcp(P) of compact support. Note that in the case of the cone of positive definite matrices these agree with 
the measures of bounded support.
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First we define F (x, y) = x#ty, the weighted geometric mean, and set for μ ∈ Pcp(P)

g(x) =
∫
P

F (x, y) dμ(y) =
∫
P

x#ty dμ(y).

For fixed x and 0 < t < 1, it is well-known that the maps y 	→ x#ty and x 	→ x#ty are strictly contractive 
with respect to the Thompson metric d; indeed d(x#ty, x#tz) ≤ td(y, z) and d(w#ty, x#ty) ≤ (1 −t)d(w, x). 
In particular, both maps are continuous. By Proposition 5.5,

βA(F (x, ·)∗(μ)) =
∫
P

F (x, y) dμ(y) =
∫
P

x#ty dμ(y)

exists. We next define the power mean for μ ∈ Pcp(P).

Definition 6.1. For the positive cone P and 0 < t ≤ 1, we define the power mean Pt : Pcp(P) → P by 
Pt(μ) = x, where x is the unique fixed point of the equation

x =
∫
P

x#ty dμ(y). (6.8)

Remark 6.2. For the case μ = (1/n) 
∑n

i=1 δxi
, the equation (6.8) reduces to

x =
∫
P

x#ty dμ(y) = βA

(
F (x, ·)∗

(
1
n

n∑
i=1

δxi

))

= βA

(
1
n

n∑
i=1

δx#txi

)
= 1

n

n∑
i=1

x#txi.

This calculation shows that for the case of means, equivalently uniform probability measures with finite 
support, this definition collapses to the one appearing in [7, Section 3]. We note that if xi’s mutually 

commute, then the equation x = 1
n

∑n
i=1 x#txi has the unique solution in P given by x =

( 1
n

∑n
i=1 x

t
i

)1/t.
To establish existence and uniqueness of the power mean in the Borel measure setting, we need to establish 

existence and uniqueness of the solution to equation (6.8).

Lemma 6.3. The map f(x) =
∫
P
x#ty dμ(y) for μ ∈ Pcp(P) is a strict contraction, and hence has a unique 

fixed point.

Proof. By Theorem 3.1 of [7] and its proof (and the calculation of the preceding remark) the map f satisfies 
d(f(w), f(x)) ≤ (1 − t)d(w, x) for all x, w ∈ P, provided μ ∈ P0(P). For general μ by density of P0(P) in 
Pcp(P), we may find a sequence {μn} ⊆ P0(P) that converges to μ with respect to d∞. By Proposition 5.5

d(f(w), f(x)) = d

⎛
⎝∫

P

w#ty dμ(y),
∫
P

x#ty dμ(y)

⎞
⎠

= lim
n

d

⎛
⎝∫

P

w#ty dμn(y),
∫
P

x#ty dμn(y)

⎞
⎠ ≤ (1 − t)d(w, x).

Since the Thompson metric on P is complete, the lemma follows from the Banach fixed point theorem. �
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Since the Thompson metric on P satisfies d(y−1, z−1) = d(y, z) for any y, z ∈ P, the map g(x) =[∫
P
(x#ty)−1 dμ(y)

]−1 for μ ∈ Pcp(P) and t ∈ (0, 1] is a strict contraction, and hence has a unique fixed 
point by the Banach fixed point theorem.

Definition 6.4. For −1 ≤ t < 0, we define the power mean Pt : Pcp(P) → P by Pt(μ) = x, where x is the 
unique fixed point of the equation

x =

⎡
⎣∫

P

(x#−ty)−1 dμ(y)

⎤
⎦
−1

. (6.9)

We introduce t-th powers on P(P) for t ∈ R \ {0}. For O ∈ B(P) we let

μt(O) := μ(O 1
t ), (6.10)

where Ot := {at : a ∈ O}. Note that μt ∈ Pcp(P) whenever μ ∈ Pcp(P). In terms of push-forward measures, 
μt = f∗(μ), where f(x) = xt. For t ∈ [−1, 1] \ {0} the map f : P → P given by f(x) = xt is a Lipschitz 
function with Lipschitz constant |t| with respect to the Thompson metric. By Lemma 5.4 the push-forward 
measure μt = f∗(μ) : Pp(P) → Pp(P) is also the Lipschitz function with Lipschitz constant |t| for 1 ≤ p ≤ ∞.

Remark 6.5. Since (x#ty)−1 = x−1#ty
−1, the equation (6.9) can be written as

x−1 =
∫
P

x−1#−ty
−1 dμ(y) =

∫
P

x−1#−ty dμ
−1(y).

So we have Pt(μ)−1 = x−1 = P−t(μ−1).

We recall the following well-known result; see e.g., [11] and [6, Section 4]. The notation L(f) refers to 
the Lipschitz constant of f .

Proposition 6.6. Let (X, d) be a complete metric space, 0 ≤ λ < 1, and Cλ(X) = {f : X → X : L(f) ≤ λ}. 
For f ∈ Cλ(X) let p(f) ∈ X denote the unique fixed point of f . If we endow Cλ(X) with the topology of 
pointwise convergence, then the fixed point map p : Cλ(X) → X is continuous.

Proposition 6.7. The power mean is contractive for the Thompson metric d, i.e., d(Pt(μ), Pt(ν)) ≤ d∞(μ, ν)
for μ, ν ∈ Pcp(P) and t ∈ [−1, 1] \ {0}.

Proof. By [7, Proposition 3.6] and Remark 6.2 for μ = (1/n) 
∑n

i=1 δxi
and ν = (1/n) 

∑n
i=1 δyi

, 
d(Pt(μ), Pt(ν)) ≤ max{d(xi, yi) : 1 ≤ i ≤ n}. Since Pt is symmetric, it follows that d(Pt(μ), Pt(ν)) ≤
d∞(μ, ν), see Remark 2.2. Since any two members of P0(P) can be rewritten as uniform measures with 
finite support for a common n (by appropriately dividing up the point masses of each), we conclude that 
Pt is contractive on P0(P) equipped with the d∞ metric. By standard metric space properties, Pt uniquely 
extends to a contractive map Gt : Pcp(P) → P.

It remains to show that Gt(μ) = Pt(μ) for all μ ∈ Pcp(P) and t ∈ [−1, 1] \ {0}. Let {μn} ⊆ P0(P) be a 
sequence converging to μ in Pcp(P). For each ν ∈ Pcp(P) and t ∈ (0, 1], define Fν(x) =

∫
P
x#ty dν(y). Then 

by Proposition 5.5 for any x ∈ P,

Fμn
(x) =

∫
P

x#ty dμn(y) →
∫
P

x#ty dμ(y) = Fμ(x).
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This shows that Fμn
converges to Fμ pointwise. From Lemma 6.3 and Proposition 6.6 we conclude that 

Pt(μn), the fixed point of Fμn
converges to Pt(μ), the fixed point of Fμ. By the previous paragraph Pt(μn) →

Gt(μ). Hence Gt(μ) = Pt(μ) for t ∈ (0, 1]. Applying the similar argument to Hν(x) =
[∫

P
(x#−ty)−1 dν(y)

]−1

for ν ∈ Pcp(P) and t ∈ (0, 1] and using continuity of the inverse map x ∈ P 	→ x−1 ∈ P, we conclude 
that Pt(μn), the fixed point of Hμn

converges to Pt(μ), the fixed point of Hμ. Hence Gt(μ) = Pt(μ) for 
t ∈ [−1, 0). �

In the following, a subset U ⊆ P is called an upper set, if whenever a ∈ U and a ≤ b, then b ∈ U . 
We define partial order on the set of Borel probability measures, sometimes called the stochastic order, by 
μ ≤ ν for μ, ν ∈ P(P) if and only if μ(U) ≤ ν(U) for any upper Borel set U . Note that the power mean Pt

on P0(P) is a contractive, monotonic intrinsic mean [7, Proposition 3.6]. The monotonicity extends to the 
corresponding barycentric map Pt on Pcp(P). To show this we need the following lemma.

Lemma 6.8. Given μ ∈ Pcp(P), there exists a sequence {μn} ⊆ P0(P) such that μn → μ with respect to the 
d∞-metric, and μ ≤ μn for each n. Similarly there exists a sequence in P0(P) converging to μ from below.

Proof. One sees directly from the definition of the Thompson metric that the closed ε-ball around x ∈ P

has largest element eεx, smallest element e−εx, and is equal to the order interval

[e−εx, eεx] = {y ∈ P : e−εx ≤ y ≤ eεx}.

By the compactness of supp(μ), there exist finitely many elements x1, . . . , xn ∈ supp(μ) such that supp(μ) ⊆⋃n
i=1[e−εxi, eεxi]. Note that xi ≤ w :=

∑n
i=1 xi for each i. Define f : P → P by f(x) = eεxi, where x ∈

[e−εxi, eεxi], but x /∈ [e−εxj , eεxj ] for j < i. For all x /∈
⋃n

i=1[e−εxi, eεxi], we pick some “trash collection” 
point q and define f(x) = q. Since x ≤ f(x) for each x ∈ supp(μ), and hence B ∩ supp(μ) ⊆ f−1(B) for any 
upper Borel set B, it is easy to verify that μ ≤ f∗(μ) in the stochastic order.

Define λ : P → P ×P by λ(x) = (x, f(x)). It follows directly that λ∗(μ) ∈ Π(μ, f∗(μ)) and that supp(λ∗(μ))
is the closure of {(x, y) ∈ supp(μ) × P : y = f(x)}. Since for each x ∈ supp(μ), d(x, f(x)) ≤ 2ε from the 
definition of f , we conclude that d∞(μ, f∗(μ)) ≤ 2ε. Applying the preceding construction to 2ε = 1/n for each 
n gives the desired sequence {μn}. If we modify the definition of f to f(x) = e−εxi for x ∈

⋃n
i=1[e−εxi, eεxi], 

we obtain a sequence converging to μ from below. �
Theorem 6.9. Let μ, ν ∈ Pcp(P) and t ∈ (0, 1]. Then Pt(μ) ≤ Pt(ν) whenever μ ≤ ν.

Proof. By Lemma 6.8 pick sequences {μn}, {νn} ⊆ P0(P) such that μn → μ from below and νn → ν from 
above. Then μn ≤ νn and hence Pt(μn) ≤ Pt(νn) for each n, since Pt is monotonic as a mean [7, Theorem 
3.6(4)] and hence on members of P0(P). Since Pt is contractive by Proposition 6.7, hence continuous, it 
follows from the closedness of the Loewner partial order on P that Pt(μ) ≤ Pt(ν). �

We also show the monotonicity of power means in parameter t ∈ [−1, 1] \ {0}.

Theorem 6.10. For μ ∈ Pcp(P) and 0 < t ≤ s ≤ 1,

P−s(μ) ≤ P−t(μ) ≤ Pt(μ) ≤ Ps(μ).

Proof. For general μ by density of P0(P) in Pcp(P), we can find a sequence {μn} ⊆ P0(P) that converges 
to μ with respect to d∞. It has been shown in [7] that P−s(μn) ≤ P−t(μn) ≤ Pt(μn) ≤ Ps(μn). Taking the 
limit as n → ∞ yields the desired inequalities, since the Loewner order is closed and the power mean is 
continuous. �
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7. The Karcher barycenter

For positive definite matrices a1, . . . , an of the same dimension the Karcher mean, or the least squares 
mean, Λ(a1, . . . , an) is defined as the unique minimizer of the sum of squares of the Riemannian distances 
to each of a1, . . . , an. That is,

Λ(a1, . . . , an) = arg min
x∈P

n∑
j=1

d2(x, aj),

where d(a, b) = ‖ log(a−1/2ba−1/2)‖2 denotes the Riemannian distance between a and b. Furthermore, it has 
been shown [2] that the Karcher mean Λ(a1, . . . , an) is the unique positive definite solution x of the Karcher 
equation

n∑
j=1

log(x−1/2ajx
−1/2) = 0. (7.11)

One has no Riemannian metric on the open cone of positive invertible operators of an infinite-dimensional 
Hilbert space. Nevertheless, Lawson and Lim [7] have defined the Karcher mean Λ(a1, . . . , an) of positive 
invertible operators as the unique positive solution of the Karcher equation (7.11) and have successfully 
established a generalization of matrix power means to the setting of positive invertible operators. Indeed 
the theory extends to the open cone (open in the space of self-adjoint elements) of positive invertible elements 
of a monotone complete C∗-algebra A with identity equipped with the Thompson metric, our setting for 
the remainder of this section. Moreover, the Karcher mean is intrinsic and contractive with respect to the 
Thompson metric, so by Proposition 3.8 there exists a unique contractive barycentric map βΛ : P1(P) → P

satisfying

βΛ

⎛
⎝ 1
n

n∑
j=1

δaj

⎞
⎠ = Λ(a1, . . . , an).

We call βΛ(μ) for μ ∈ Pcp(P) the Karcher barycenter of μ. In this section we study the Karcher barycenter 
for the probability measures with compact support on P.

We have from (4.5) and Lemma 5.4 that the logarithm map induces the Lipschitz map with Lipschitz 
constant 1

log∗ : Pp(P) → Pp(S(A)), 1 ≤ p ≤ ∞.

For μ ∈ P1(P) and x ∈ P, let μx := g∗(μ) ∈ P1(P), where g : P → P defined by g(a) = x−1/2ax−1/2. Then

∫
P

log(x−1/2ax−1/2)dμ(a) =
∫
P

log a dμx(a) = βA(log∗ μx), (7.12)

where the second integral is the Bochner integral from Example 4.1. We define the Karcher equation for 
μ ∈ P1(P);

∫
P

log(x−1/2ax−1/2) dμ(a) = 0. (7.13)
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In terms of the Banach–Finsler structure on P, the Karcher equation is equivalent to∫
P

exp−1
x (a) dμ(a) = 0. (7.14)

Theorem 7.1. The barycenter βΛ(μ) for μ ∈ Pcp(P) is a solution of the Karcher equation
∫
P

log(x−1/2ax−1/2)dμ(a) = 0. (7.15)

Proof. Let {μn} be a sequence in P0(P) that converges to μ. By working in the compact metric space 
A = supp(μ) with probability measure μ|A and using the density of P0(A) in Pcp(A), we can assume that 
each μn has support contained in A. For each μn = (1/nk) 

∑nk

i=1 δai
, we have

∫
P

log
(
(βΛ(μn))−1/2a(βΛ(μn))−1/2

)
dμn(a) = 1

nk

nk∑
i=1

log
(
(βΛ(μn))−1/2ai(βΛ(μn))−1/2

)

= 0

Let F : Pcp(P) × P → S(A) be defined by F (μ, a) = log
(
(βΛ(μ))−1/2a(βΛ(μ))−1/2), a continuous function, 

since βΛ is contractive by Proposition 3.8, hence continuous, and taking powers, products and the logarithm 
map are continuous. Then by Lemma 5.6

0 = lim
n

∫
P

log
(
(βΛ(μn))−1/2a(βΛ(μn))−1/2

)
dμn(a)

=
∫
P

log
(
(βΛ(μ))−1/2a(βΛ(μ))−1/2

)
dμ(a). �

Remark 7.2. Since the preparation and submission of this manuscript, Y. Lim and M. Pálfia have shown 
that the solution of the Karcher equation (7.15) is unique, even in the most general setting of μ ∈ P1(P)
[10].

Theorem 7.3. The Karcher barycenter βΛ(μ) for μ ∈ Pcp(P) is invariant under inversion and congruence 
transformations, that is,

βΛ(μ)−1 = βΛ(μ−1),

mβΛ(μ)m∗ = βΛ(m.μ), m ∈ GL(A),

where μ−1 and m.μ are the push-forward of μ under inversion and the congruence transformation by m; 
a 	→ mam∗.

Proof. The formula is known for the Karcher mean from [7], hence for measures in P0(P). The theorem 
follows from the density of P0(P), the continuity of βΛ, and Proposition 2.3 applied to the inversion map. 
A similar argument holds for the congruence transformations. �
Theorem 7.4. For μ ∈ Pcp(P),

lim
t→0

Pt(μ) = βΛ(μ),

in the strong topology of P.
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Proof. We first consider the case t > 0. Let μ ∈ Pcp(P). By Theorem 6.10 Pt(μ) ≤ Ps(μ) for 0 < t ≤ s. We 
claim that βΛ(μ) is the greatest lower bound of {Pt(μ) : t > 0}, which will guarantee the strong convergence, 
since A is a monotone complete C∗-algebra. By Lemma 6.8 there exists a sequence {μn} ⊆ P0(P) such that 
μn → μ with respect to the d∞-metric and μ ≤ μn for each n. From the continuity of βΛ and of Pt

(Proposition 6.7), we have βΛ(μn) → βΛ(μ) and Pt(μn) → Pt(μ). Since from [7] for t > 0, βΛ(μn) ≤ Pt(μn)
for each n, we have by the closedness of the Loewner order that

βΛ(μ) = lim
n

βΛ(μn) ≤ lim
n

Pt(μn) = Pt(μ).

Thus βΛ(μ) is a lower bound for {Pt(μ) : 0 < t}. Suppose that ν is another lower bound. Then for 
any n and t > 0, ν ≤ Pt(μ) ≤ Pt(μn), the last inequality by the monotonicity of Pt. It follows that 
ν ≤ limt→0+ Pt(μn) = βΛ(μn), the equality coming from [7], and hence ν ≤ limn βΛ(μn) = βΛ(μ). Hence 
βΛ(μ) is the greatest lower bound. Since A is monotone complete, the desired result follows for t > 0. 
A similar argument obtains for t < 0. �

Next, we introduce a curve δx#tμ on P1(P) from the Dirac measure δx to μ and establish a fixed point 
theorem associated with the curve δx#tμ. Let x ∈ P, t ≥ 0 and μ ∈ P1(P). Define x#tμ ∈ P1(P) by 
x#tμ = f∗(μ), where f(a) = x#ta. Note that x#0μ = δx and x#1μ = μ. For t > 0, since x#tz = a if and 
only if z = x#1/ta,

(x#tμ)(O) := μ({x#1/ta : a ∈ O}).

For example, if μ = 1
n

∑n
j=1 δaj

∈ P0(P) then x#tμ = 1
n

∑n
j=1 δx#taj

.
The following shows in particular the continuity of t 	→ x#tμ.

Lemma 7.5. For μ, ν ∈ P1(P) and t, s ∈ [0, 1],

dW1 (x#tμ, y#sν) ≤ (1 − t)d(x, y) + tdW1 (μ, ν) + |t− s|dW1 (δy, ν).

Proof. Use d(a#tb, c#tb) ≤ (1 − t)d(a, c) + td(b, d) + |t − s|d(c, d) and for μ = 1
n

∑n
j=1 δxj

, ν = 1
n

∑n
j=1 δyj

, 
and 1 ≤ p < ∞

dW1 (μ, ν) = min
σ∈Sn

⎛
⎝ 1
n

n∑
j=1

d(xj , yσ(j))

⎞
⎠ . �

For μ ∈ P1(P) and t > 0, we set μx = x−1/2.μ(= g∗(μ)), where g(a) = x−1/2ax−1/2 and μt
x := (μx)t. 

Note that μt
x = (h ◦ g)∗(μ), where h(a) = at.

Lemma 7.6. We have x−1/2βΛ(x#tμ)x−1/2 = βΛ(μt
x).

Proof. One can directly see that for μ = 1
n

∑n
j=1 δaj

∈ P0(P), μt
x = 1

n

∑n
j=1 δ(x−1/2ajx−1/2)t and thus

x−1/2βΛ(x#tμ)x−1/2 = x−1/2Λ(x#ta1, . . . , x#tan)x−1/2

= Λ((x−1/2a1x
−1/2)t, . . . , (x−1/2anx

−1/2)t)

= βΛ

⎛
⎝ 1
n

n∑
j=1

δ(x−1/2ajx−1/2)t

⎞
⎠ = βΛ(μt

x).

By continuity of βΛ and the preceding lemma, passing to the limit yields that it holds for all μ ∈ P1(P). �
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Theorem 7.7. For t ∈ (0, 1) and μ ∈ P1(P), βΛ(μ) is the unique solution of

x = βΛ(x#tμ) (7.16)

which is equivalent to e = βΛ(μt
x).

Proof. Define F : P → P by F (x) = βΛ(x#tμ). For μ = 1
n

∑n
j=1 δaj

,

d(F (x), F (y)) = d

⎛
⎝βΛ

⎛
⎝ 1
n

n∑
j=1

δx#taj

⎞
⎠ , βΛ

⎛
⎝ 1
n

n∑
j=1

δy#taj

⎞
⎠
⎞
⎠

= d(Λ(x#ta1, . . . , x#tan),Λ(y#ta1, . . . , y#tan))

≤ 1
n

n∑
j=1

d(x#taj , y#taj) ≤ (1 − t)d(x, y)

where the last inequality follows from d(z#ty, x#ty) ≤ (1 − t)d(z, x). Moreover from (Theorem 6.3, [7]), 
βΛ(μ) = Λ(a1, . . . , an) is the unique solution of

x = Λ(x#ta1, . . . , x#tan) = βΛ(x#tμ).

Pick a sequence {μn} ⊂ P0(P) converging to μ in P1(P). Then

d(F (x), F (y)) = lim
n→∞

d(βΛ(x#tμn), βΛ(y#tμn))

≤ (1 − t) lim
n→∞

d(x, y) = (1 − t)d(x, y)

which shows that F is a strict contraction for the Thompson metric and hence x = F (x) has a unique 
solution. Moreover, F (βΛ(μ)) = limn→∞ F (βΛ(μn)) = limn→∞ βΛ(μn) = βΛ(μ).

By Lemma 7.6 the equation (7.16) is equivalent to e = x−1/2βΛ(x#tμ)x−1/2 = βΛ(μt
x). This completes 

the proof. �
Theorem 7.8. Suppose that for each μ ∈ Pcp(P), there exists sufficiently small t > 0 such that

0 =
∫
P

log(x−1/2ax−1/2)t dμ(a) =
∫
P

log a dμt
x(a)

has a unique solution in P. Then the Karcher equation (7.15) has a unique solution.

Proof. Let μ ∈ Pcp(P). By Theorem 7.1, βΛ(μ) is a solution of the Karcher equation 0 =∫
P
log(x−1/2ax−1/2)t dμ(a). Suppose that w is another solution of the Karcher equation. Then

0 = t

∫
P

log(w−1/2aw−1/2) dμ(a) =
∫
P

log(w−1/2aw−1/2)t dμ(a) =
∫
P

log a dμt
w(a)

for any t > 0, where the last equality follows from the change of variables. From e−1/2ae−1/2 = eae = a

and hypothesis, e = βΛ(μt
w) for a sufficiently small t > 0. By Theorem 7.7, w = βΛ(μ). �

Remark 7.9. The hypothesis is valid for μ ∈ P0(P) by using Implicit Function Theorem ([7]). Note that 
supp(μt

w) =
(
w−1/2supp(μ)w−1/2)t. By compactness of the support of μ, d(supp(μt

w), e) → 0 as t → 0+.
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Remark 7.10. In light of recent work of M. Pálfia [15], the restriction in this section to monotone C∗-algebras 
can be dropped, i.e., the results remain valid for general unital C∗-algebras.
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