Continuity of affine transformations of white noise test functionals and applications

H. H. Kuo
Louisiana State University

J. Potthoff
Universität Bielefeld

J. A. Yan
Chinese Academy of Sciences

Follow this and additional works at: https://digitalcommons.lsu.edu/mathematics_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Mathematics at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
Continuity of affine transformations of white noise test functionals and applications

H.-H. Kuo*
Department of Mathematics, Louisiana St. University, Baton Rouge, USA

J. Potthoff††
BiBoS, Universität Bielefeld, Germany

J.-A. Yan
Institute for Applied Mathematics, Academia Sinica, Beijing, People's Republic of China

Received 4 January 1991
Revised 16 August 1991

Translations and scalings defined on the Schwartz space of tempered distributions induce continuous transformations on the space of white noise test functionals [25]. Continuity of the induced transformations with respect to their parameters is proved. As a consequence one obtains a direct simple proof of the fact that the space of white noise test functionals is infinitely differentiable in Fréchet sense. Moreover, it is shown that the Wiener semigroup acts as a mollifier on the space of test functionals.

white noise analysis * affine transformation * Wiener semigroup * Fréchet derivative * Hida distribution * test functional

1. Introduction

Consider the probability space \((\mathcal{S}'(\mathbb{R}), \mathcal{B}, \mu)\) of white noise: \(\mathcal{S}'(\mathbb{R})\) is the Schwartz space of tempered distributions, \(\mathcal{B}\) its weak Borel algebra, and \(\mu\) the centered Gaussian measure whose covariance is given by the scalar product of \(L^2(\mathbb{R})\) (with Lebesgue measure).

Let \((L^2)\) be the space of (complex-valued) square integrable random variables, \((\mathcal{S})\) the space of white noise test functionals, and \((\mathcal{S})^*\) the space of Hida distributions (see below). The Gel'fand triple

\[(\mathcal{S})^* \supseteq (L^2) \supseteq (\mathcal{S}), \]

has been studied in a number of articles: we refer the reader to [9, 11, 13, 14, 15, 18, 19, 21, 23, 25] and the references quoted there. Hida distributions have applications in various domains: in quantum theory [1, 4, 10], in the theory of (anticipating)

Correspondence to: Prof. J. Potthoff, Department of Mathematics, Louisiana St. University, Baton Rouge, LA 70803-4918, USA.

* Supported by the National Science Foundation under grant DMS-9001859.
† Partially supported by the Council on Research, Louisiana State University, and the National Science Foundation under grant DMS-9001859.
stochastic differential equations [17], in the theory of stochastic partial differential
equations [2, 20], and in other fields (cf., e.g., the articles in [8]).

Let $y \in \mathcal{S}'(\mathbb{R})$, $\lambda \in \mathbb{R}$. Consider the mappings $x \mapsto x + y$, $x \mapsto \lambda x$, $x \in \mathcal{S}'(\mathbb{R})$, on $\mathcal{S}'(\mathbb{R})$. In [25] it was shown that these mappings induce continuous transformations from (\mathcal{S}) into itself:

$$\tau_y : \varphi \mapsto \varphi(\cdot + y),$$

$$\sigma_\lambda : \varphi \mapsto \varphi(\lambda \cdot).$$

(1.1)

(1.2)

Here $\varphi(\cdot + y)$ and $\varphi(\lambda \cdot)$ stand for the μ-classes of $\tilde{\varphi}(\cdot + y)$ and $\tilde{\varphi}(\lambda \cdot)$, where $\tilde{\varphi}$ is the pointwise defined, strongly continuous version of $\varphi \in (\mathcal{S})$ (cf. [1, 15]). Moreover, some interesting consequences of these continuities for those measures which are represented in $(\mathcal{S})^*$ (cf. [30] and [23, 24]) have been worked out in [25], and in [28].

In the present paper we establish the (strong) continuity of the mappings $y \mapsto \tau_y \varphi$, $\lambda \mapsto \sigma_\lambda \varphi$, where $\varphi \in (\mathcal{S})$. As a consequence we obtain the following two results:

1. the space (\mathcal{S}) is C^∞ with respect to Fréchet differentiation, the Fréchet
derivative being given by the Hida derivative (Theorem 4.1);

2. the Wiener semigroup acts as a mollifier on (\mathcal{S}): it maps an element $\varphi \in (\mathcal{S})$ (which is a μ-class) into a pointwise defined, smooth function on $\mathcal{S}'(\mathbb{R})$ and converges pointwise and uniformly on bounded sets to $\tilde{\varphi}$ as the variance parameter of the Wiener semigroup tends to zero (Theorem 5.3).

The organization of the article is as follows. In Section 2 we provide a quick review of the necessary ingredients of white noise analysis. Section 3 contains the proof of the above mentioned continuity results. In Section 4 we prove the Fréchet differentiability of the white noise test functionals, while Section 5 contains the proof of the mollifier property of the Wiener semigroup acting on (\mathcal{S}).

2. White noise analysis

Consider the Wiener–Itô decomposition of (L^2) (e.g., [6]): every $\varphi \in (L^2)$ is in one-to-one correspondence with a sequence $(f^{(n)}, n \in \mathbb{N}_0)$ of elements $f^{(n)}$ in $\overline{L^2}(\mathbb{R}^\sigma)$, where $\overline{\cdot}$ means symmetrization, and

$$\|\varphi\|_2^2 = \sum_{n=0}^{\infty} n!\|f^{(n)}\|^2_{L^2(\mathbb{R}^\sigma)}.$$

(2.1)

In order to give a concrete realization of φ in terms of the sequence $(f^{(n)}, n \in \mathbb{N}_0)$, we shall now recall the definition of Wick-ordered distributions. Let $x \in \mathcal{S}'(\mathbb{R})$. Define by recursion the following distributions in $\mathcal{F}'(\mathbb{R}^\sigma)$, $n \in \mathbb{N}_0$:

$$x^{\otimes 0} := 1,$$

(2.2a)

$$x^{\otimes 1} := x,$$

(2.2b)

$$x^{\otimes (n+1)} := x^{\otimes n} \otimes x - n : x^{\otimes (n-1)} \otimes \text{Tr},$$

(2.2c)
where Tr is the following distribution in $\mathcal{S}'(\mathbb{R}^2)$,

$$
(\text{Tr}, f^{(2)}) = \int_{\mathbb{R}} f^{(2)}(t, t) \, dt, \quad f^{(2)} \in \mathcal{S}'(\mathbb{R}^2).
$$

Then we have that μ-a.e.

$$
\varphi(x) = \sum_{n=0}^{\infty} \langle x^{\otimes n}, f^{(n)} \rangle, \quad x \in \mathcal{S}'(\mathbb{R}),
$$

(2.3)

where the dual pairings are to be understood in (L^2)-sense.

Later on we shall make use of the following transformation on (L^2): for $\xi \in \mathcal{S}(\mathbb{R})$ we set

$$
\mathcal{F}\varphi(\xi) = \int \varphi(x + \xi) \, d\mu(x), \quad \varphi \in (L^2).
$$

(2.4)

By the translation formula for the Gaussian measure μ (e.g., [16]) we have

$$
\mathcal{F}\varphi(\xi) = \int \varphi(x) :e^{(x, \xi)}: \, d\mu(x),
$$

(2.5)

with the notation

$$
:e^{(x, \xi)}: = e^{(|\xi|^2/2)},
$$

where $|\cdot|_2$ is the norm of $L^2(\mathbb{R})$. It is easy to verify that for $\varphi \in (L^2)$ given as in (2.3) we have

$$
\mathcal{F}\varphi(\xi) = \sum_{n=0}^{\infty} \int_{\mathbb{R}^n} f^{(n)}(u) \xi^{\otimes n}(u) \, du.
$$

(2.6)

Let A be a closable operator on $L^2(\mathbb{R})$. Its second quantization $\Gamma(A)$ on (L^2) can be defined (on a suitable domain) by

$$
\Gamma(A)\varphi(x) = \sum_{n=0}^{\infty} \langle x^{\otimes n}, A^\otimes f^{(n)} \rangle
$$

(cf., e.g., [3, 22]). In particular, if A is self-adjoint with $\mathcal{S}(\mathbb{R}) \subset \mathcal{D}(A)$ then $\Gamma(A)$ is essentially self-adjoint on the algebra \mathcal{P} generated by the random variables $X_\xi = \langle \cdot, \xi \rangle, \xi \in \mathcal{S}(\mathbb{R})$ (which forms a dense subspace of (L^2)). From now on we make the special choice that A is the self-adjoint extension of the operator given on $\mathcal{S}(\mathbb{R})$ by $A = -\frac{d^2}{du^2} + 1 + u^2$, and we shall denote the self-adjoint extension of $\Gamma(A)$ on (L^2) by the same symbol. Note that $\text{infspec} \Gamma(A) = 1$. Therefore we may consider the following family of norms $\| \cdot \|_{2,p}, p \in \mathbb{R}_+$, on \mathcal{P}:

$$
\| \varphi \|_{2,p} = \| \Gamma(A)^p \varphi \|_2, \quad \varphi \in \mathcal{P}.
$$

By $(\mathcal{F})_p, p \in \mathbb{R}_+$, we denote the completion of \mathcal{P} under $\| \cdot \|_{2,p}$, by (\mathcal{F}) the projective limit of the family $\{(\mathcal{F})_p, p \in \mathbb{N}_0\}$. $(\mathcal{F})^*$ is by definition the dual of (\mathcal{F}). Elements in (\mathcal{F}) are called white noise test functionals, while those in $(\mathcal{F})^*$ are called Hida distributions.
The spaces \((\mathcal{F})\) and \((\mathcal{F})^*\) have been investigated and applied in a number of articles (see [18, 23, 24, 25, 27, 28, 29] and the references quoted there).

Let us recall that \((\mathcal{F})\) is a nuclear Fréchet algebra [10, 13, 14, 25, 30] whose elements \(\varphi\) admit a pointwise defined, strongly continuous version \(\tilde{\varphi}\) [1, 15]. Furthermore, the operators \(\tau_y, \sigma_\lambda, y \in \mathcal{F}'(\mathbb{R}), \lambda \in \mathbb{R}\), mentioned in Section 1 act continuously on \((\mathcal{F})[25]\).

In [12, 30] it was proved that positive Hida distributions are measures on \((\mathcal{F}'(\mathbb{R}), \mathcal{B})\). Therefore it is interesting to establish a criterion that implies that a measure on \((\mathcal{F}'(\mathbb{R}), \mathcal{B})\) has a representation by a positive Hida distribution. This has been done in [23] where \((\mathcal{F})^*\) has been characterized in terms of analytic properties of the \(\mathcal{F}\)- and the Fourier (-Gauss) transform of its elements (cf. also below). Concerning the question of representation of measures on \((\mathcal{F}'(\mathbb{R}), \mathcal{B})\) this result provides a criterion which is formulated in terms of the characteristic function of the measure in question. Roughly speaking, the characteristic function has to be real entire on \(\mathcal{F}(\mathbb{R})\), and of order 2, uniformly on the set \(\{ \xi \in \mathcal{F}(\mathbb{R}) : |A^p \xi|_2 \leq 1\}\) for some \(p \in \mathbb{N}_0\). The result of [23] has been sharpened in [27].

The space \((\mathcal{F})\) can be characterized similarly [11, 18, 27]. Moreover, there is another characterization of \((\mathcal{F})^*\) through analytic properties of the \(\mathcal{F}\)-transform given by Lee in [19].

We remark that for all \(z \in \mathbb{C}, \xi \in \mathcal{F}(\mathbb{R})\), the function (more precisely its \(\mu\)-class) \(\exp(z(\cdot, \xi))\) belongs to \((\mathcal{F})\). Therefore we may extend the \(\mathcal{F}\) transform to \((\mathcal{F})^*\) as follows:

\[
\mathcal{F}\Phi(\xi) = \langle \Phi, \exp(-\cdot, \xi) \rangle. \tag{2.7}
\]

In [21] it was shown that for all \(\Phi, \Psi \in (\mathcal{F})^*\) there is an element \(\Phi \circ \Psi \in (\mathcal{F})^*\) so that

\[
\mathcal{F}\Phi \circ \Psi = \mathcal{F}\Phi \cdot \mathcal{F}\Psi. \tag{2.8}
\]

\(\Phi \circ \Psi\) is called the Wick product of \(\Phi\) and \(\Psi\).

We conclude this section with a sketch of the differential calculus on \((\mathcal{F})\) and \((\mathcal{F})^*\) (cf. [25, 7]).

Let \(y \in \mathcal{F}'(\mathbb{R})\) and denote by \(D_y\) the Gâteaux derivative of functions on \(\mathcal{F}'(\mathbb{R})\) in direction \(y\). For example, all functions in \(\mathcal{P}\) are Gâteaux differentiable in any direction \(y \in \mathcal{F}'(\mathbb{R})\). In [25] this has been extended to \((\mathcal{F})\): for every \(y \in \mathcal{F}'(\mathbb{R})\) there is a continuous extension of \(D_y\) acting on \((\mathcal{F})\) (denoted by the same symbol). Therefore \((\mathcal{F})\) is \(C^\infty\) in every direction of \(\mathcal{F}'(\mathbb{R})\). Moreover, we want to mention that in [25] the Taylor formula was established for \(\tau_y \varphi\),

\[
\tau_y \varphi(x) = \exp D_y \varphi(x), \quad \mu\text{-a.e. } x \in \mathcal{F}'(\mathbb{R}).
\]

Let us consider the special choice \(y = \delta_t, \; t \in \mathbb{R}\), where \(\delta_t\) is the Dirac distribution concentrated at \(t \in \mathbb{R}\). In this case we denote \(D_{\delta_t} = \partial\), and call \(\partial\), Hida derivative. Furthermore, we define for \(\varphi \in (\mathcal{F})\),

\[
\nabla \varphi(t, x) = \partial \varphi(x), \quad t \in \mathbb{R}, \quad \mu\text{-a.e. } x \in \mathcal{F}'(\mathbb{R}).
\]
It is easy to check that $\nabla \varphi \in \mathcal{F}(\mathbb{R}) \otimes (\mathcal{F})$ and more generally $\nabla^k : (\mathcal{F}) \to \mathcal{F}(\mathbb{R}^k) \otimes (\mathcal{F})$ for every $k \in \mathbb{N}$. Moreover, we have the formula [25],

$$D_y \varphi = (y, \nabla \varphi),$$

where the pairing is the one between $\mathcal{F}'(\mathbb{R})$ and $\mathcal{F}(\mathbb{R})$. The last equation justifies that we call $\nabla \varphi$ the gradient of φ.

Let D^*_y, $y \in \mathcal{F}'(\mathbb{R})$, denote the dual of D_y. It is not hard to see that if $y \in \mathcal{F}(\mathbb{R})$, D^*_y maps \mathcal{F} into itself. In view of (2.9) this implies that we may consider ∇ as a mapping from $(\mathcal{F})^*$ into $\mathcal{F}'(\mathbb{R}) \otimes (\mathcal{F})^*$, or more generally for every $k \in \mathbb{N}$, $\nabla^k : (\mathcal{F})^* \to \mathcal{F}'(\mathbb{R}^k) \otimes (\mathcal{F})^*$.

3. Continuity of affine transformations

In this section we establish the continuity of the following mappings of $\mathcal{F}'(\mathbb{R})$ and \mathbb{R} into (\mathcal{F}). For fixed $\varphi \in (\mathcal{F})$,

$$y \mapsto \tau_y \varphi = \varphi(\cdot + y), \quad y \in \mathcal{F}'(\mathbb{R}), \quad (3.1)$$

$$\lambda \mapsto \sigma_\lambda \varphi = \varphi(\lambda \cdot), \quad \lambda \in \mathbb{R}. \quad (3.2)$$

Here and in the following we consider $\mathcal{F}'(\mathbb{R})$ as equipped with the strong topology.

First we recall two formulae which have been proved in [25].

Lemma 3.1. Let $x, y \in \mathcal{F}'(\mathbb{R})$, $\lambda \in \mathbb{R}$, $n \in \mathbb{N}$. Then

$$((x + y)^{\otimes n}) = \sum_{k=0}^{n} \binom{n}{k} x^{\otimes k} \otimes y^{\otimes (n-k)}, \quad (3.3)$$

$$((\lambda x)^{\otimes n}) = \lambda^n \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} (2k-1)!! (1 - \lambda^{-2})^k (x^{\otimes (n-2k)} \otimes \text{Tr}^{\otimes k}). \quad (3.4)$$

From now on we shall denote by $| \cdot |_{2,r}$, $r \in \mathbb{R}$, the norm on $\mathcal{F}(\mathbb{R}^n)$, $n \in \mathbb{N}$, given by $| (A^{\otimes n})^r |_{2}$, and where the last norm is the one of $L^2(\mathbb{R}^n)$. Note that the family of Schwartz space norms is equivalent to the family $\{ | \cdot |_{2,p}, p \in \mathbb{N}_0 \}$, and that consequently $\mathcal{F}'(\mathbb{R}^n)$ (as a set) is the union of the spaces $\mathcal{F}_p(\mathbb{R}^n)$, $p \in \mathbb{N}_0$, where $\mathcal{F}_p(\mathbb{R}^n)$, $r \in \mathbb{R}$, denotes the completion of $\mathcal{F}(\mathbb{R}^n)$ under $| \cdot |_{2,r}$. Moreover, the strong topology on $\mathcal{F}'(\mathbb{R}^n)$ is equivalent to the inductive limit topology of the chain $\mathcal{F}_p(\mathbb{R}^n)$, $p \in \mathbb{N}_0$.

Lemma 3.2. Let $y, z \in \mathcal{F}'(\mathbb{R})$, $\varphi \in (\mathcal{F})$. For every $p \geq 0$ there exist $s, r \geq 0$ so that

$$\| \tau_y \varphi - \tau_z \varphi \|_{2,p} \leq |y - z|_{2,-q} \| \varphi \|_{2,q} (1 - [2^{-r}(1 + |y|_{2,-q} + |z|_{2,-q})]^2)^s, \quad (3.5)$$

where $q \geq p$ is such that $y, z \in \mathcal{F}_q(\mathbb{R})$.
Proof. Denote by \((f^{(n)}; n \in \mathbb{N}_0)\) the chaos decomposition of \(\varphi\). Note that by construction of \((\mathcal{F})\), for every \(p \in \mathbb{R}\),

\[
\| \varphi \|_{2,p}^2 = \sum_{n=0}^{\infty} n! \| f^{(n)} \|_{2,p}^2 < \infty.
\]

By Lemma 3.1 we have

\[
\tau_\varphi(x) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \langle x^{\otimes k}; \langle y^{\otimes (n-k)}, f^{(n)} \rangle \rangle,
\]

so that

\[
\tau_\varphi(x) - \tau_\varphi(x) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \langle x^{\otimes k}; \langle y^{\otimes (n-k)} - z^{\otimes (n-k)}, f^{(n)} \rangle \rangle.
\]

Therefore

\[
\| \tau_\varphi - \tau_\varphi \|_{2,p} \leq \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \langle (A^{\otimes k})^p (y^{\otimes (n-k)} - z^{\otimes (n-k)}), f^{(n)} \rangle \|
\]

Now estimate as follows:

\[
\| (A^{\otimes k})^p (y^{\otimes (n-k)} - z^{\otimes (n-k)}), f^{(n)} \|_2 \leq \| (A^{-n}y)^{\otimes (n-k)} - (A^{-n}z)^{\otimes (n-k)} \|_2 \| f^{(n)} \|_{2,q}
\]

\[
\leq (n-k) \rho^{n-k-1} \| y - z \|_{2,-q} \| f^{(n)} \|_{2,q},
\]

where we have set \(\rho = \| y \|_{2,-q} \vee |z|_{2,-q}\). Thus by choosing \(s, r \geq 0\) large enough we obtain the following estimation:

\[
\| \tau_\varphi - \tau_\varphi \|_{2,p} \leq \| y - z \|_{2,-q} \sum_{n=0}^{\infty} \sum_{k=0}^{n-1} \binom{n}{k} \langle (k!)^{1/2} (n-k) \rho^{n-k-1} \| f^{(n)} \|_{2,q} \|
\]

\[
\leq \| y - z \|_{2,-q} \sum_{n=1}^{\infty} (n!)^{1/2} \| f^{(n)} \|_{2,s} 2^{-m} (1 + \rho)^{(n-1)}
\]

\[
\leq \| y - z \|_{2,-q} \| \varphi \|_{2,s} \Bigg(\sum_{n=1}^{\infty} 2^{-2m} (1 + \rho)^{2(n-1)} \Bigg)^{1/2}.
\]

Here we made use of the fact that the operator norm of \(A^{-\alpha}, \alpha \geq 0\), is equal to \(2^{-\alpha}\). It is clear that we obtain (3.5) from the last inequality.

As an immediate consequence we have

Theorem 3.3. For every \(\varphi \in (\mathcal{F})\) the mapping \(y \mapsto \tau_\varphi, y \in \mathcal{F}'(\mathbb{R})\), is continuous from \(\mathcal{F}'(\mathbb{R})\) into \((\mathcal{F})\). \(\square\)

Next we want to present another proof of Theorem 3.3 which makes use of some formulae of [25]. As a preparation we quote the following result from [21].
Lemma 3.4. Let $\Phi, \Psi \in (\mathcal{S})^*$. Then we have for $\Phi \circ \Psi \in (\mathcal{S})^*$ the following inequality:
\[
\| \Phi \circ \Psi \|_{2,p} \leq \| \Phi \|_{2,p+1/\gamma} \| \Psi \|_{2,p+1/\gamma}, \quad p \in \mathbb{R}.
\] (3.6)

Lemma 3.5. Let $y, z \in \mathcal{S}'(\mathbb{R}), \varphi \in (\mathcal{S})$. Set $\rho = \|y\|_{2,-q} \vee \|z\|_{2,-q}$ for q sufficiently large so that $y, z \in \mathcal{S}'_{-q}(\mathbb{R})$. Then for every $p \in \mathbb{R}$,
\[
\| \tau_y \varphi - \tau_z \varphi \|_{2,p} \leq \| y - z \|_{2,-q} \| \varphi \|_{2,p+q+1/2} e^{\rho^{1/2}}.
\] (3.7)

Proof. Note that by Corollary 2.8 in [25], we have that for every $\Phi \in (\mathcal{S})^*$ the following formula holds:
\[
\langle \Phi, \tau_y \varphi - \tau_z \varphi \rangle = \langle \Phi \circ (E_y - E_z), \varphi \rangle,
\]
where E_x, $x \in \mathcal{S}'(\mathbb{R})$, is determined by $\mathcal{S}E_x(\xi) = \exp((x, \xi))$, $\xi \in \mathcal{S}(\mathbb{R})$. Note that $x \in \mathcal{S}'(\mathbb{R})$ implies that $E_x \in (\mathcal{S})_p$, $p \in \mathbb{R}$.

Let $r = p \vee q + 1/2$. Then
\[
\| \tau_y \varphi - \tau_z \varphi \|_{2,p} \leq \sup_{\Phi \in (\mathcal{S})^*} \| \langle \Phi \circ (E_y - E_z), \varphi \rangle \|
\]
\[
= \sup_{\Phi} \| \Phi \circ (E_y - E_z) \|_{2,r} \| \varphi \|_{2,r}
\]
\[
\leq \sup_{\Phi} \| \Phi \|_{2,-r+1/2} \| E_y - E_z \|_{2,-r+1/2} \| \varphi \|_{2,r}
\]
\[
\leq \| E_y - E_z \|_{2,-q} \| \varphi \|_{2,r}.
\]
It remains to estimate
\[
\| E_y - E_z \|_{2,-q} = \sum_{n=1}^{\infty} \frac{1}{n!} \| y^\otimes n - z^\otimes n \|_{2,-q}
\]
\[
\leq \| y - z \|_{2,-q} \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \rho^{2(n-1)}
\]
\[
= \| y - z \|_{2,-q} e^{\rho^{1/2}},
\]
to finish the proof. □

It is clear that Lemma 3.5 provides another proof of Theorem 3.3.

Next we turn our attention to the scaling transformation σ_x. First we prepare the following result whose proof is elementary and therefore omitted.

Lemma 3.6. Let $n, k \in \mathbb{N}_0$, $k \leq \lfloor \frac{1}{2} n \rfloor$, and $\lambda_1, \lambda_2 \in \mathbb{R}$. Then
\[
| \lambda_1^{(n-2k)}(\lambda_1^2 - 1)^k - \lambda_2^{(n-2k)}(\lambda_2^2 - 1)^k | \leq n | \lambda_1 - \lambda_2 | (1 + \lambda^2)^{(n-1)/2},
\]
where $\lambda = | \lambda_1 | \vee | \lambda_2 |$. □
Lemma 3.7. Let $\lambda_1, \lambda_2 \in \mathbb{R}$, $\varphi \in (\mathcal{S})$. For every $p \in \mathbb{R}$ there exists $q \in \mathbb{R}$ so that

$$\|\sigma_{\lambda_1} \varphi - \sigma_{\lambda_2} \varphi\|_{2,p} \leq K_\lambda |\lambda_1 - \lambda_2| \|\varphi\|_{2,q},$$

where $K_\lambda > 0$ is a constant depending only on λ.

Proof. Without loss of generality we may assume that $p > \frac{1}{4}$. By Lemma 3.1 we have for $\varphi \in (\mathcal{S})$ with chaos decomposition given by $(f^{(n)}): n \in \mathbb{N}_0$,

$$\sigma_{\lambda_1} \varphi(x) - \sigma_{\lambda_2} \varphi(x) = \sum_{n=0}^{\infty} \sum_{k=0}^{\lceil n/2 \rceil} \binom{n}{2k} (2k-1)!! (\lambda_1^{n-2k} - 1)^k - (\lambda_2^{n-2k} - 1)^k \cdot \langle \text{Tr}^{\otimes k}, f^{(n)} \rangle.$$

The factor in $[\cdot]$ will be denoted by $\gamma_{n,k}(\lambda_1, \lambda_2)$. Then

$$\|\sigma_{\lambda_1} \varphi - \sigma_{\lambda_2} \varphi\|_{2,p} \leq \sum_{n=0}^{\infty} \sum_{k=0}^{\lceil n/2 \rceil} \binom{n}{2k} (2k-1)!! ((n-2k)!)^{1/2} \gamma_{n,k}(\lambda_1, \lambda_2).$$

Note that $((n-2k)!)^{1/2}(2k-1)!! \leq (n!)^{1/2}$. It is easy to see that $|\text{Tr}|_{2,-p} = \|A^{-2p}\|_{\text{HS}} < \infty$, for $p > \frac{1}{4}$. This implies the following estimate:

$$\|(A^{n-2k}) \langle \text{Tr}^{\otimes k}, f^{(n)} \rangle\|_{2} \leq \|f^{(n)}\|_{2,p} \|A^{-2p}\|_{\text{HS}}^k.$$

(cf. also [25, proof of Theorem 2.11], correcting a mistake there). Using Lemma 3.6 we find

$$\|\sigma_{\lambda_1} \varphi - \sigma_{\lambda_2} \varphi\|_{2,p} \leq |\lambda_1 - \lambda_2| \sum_{n=0}^{\infty} (n!)^{1/2} n (1 + \lambda^2)^{(n-1)/2} (1 + \|A^{-2p}\|_{\text{HS}}^{1/2})^n \|f^{(n)}\|_{2,p}.$$

Choose $q > p$ large enough. Then

$$\|\sigma_{\lambda_1} \varphi - \sigma_{\lambda_2} \varphi\|_{2,p} \leq K_\lambda |\lambda_1 - \lambda_2| \sum_{n=0}^{\infty} (n!)^{1/2} 2^{-n} \|f^{(n)}\|_{2,q} \leq K_\lambda |\lambda_1 - \lambda_2| \|\varphi\|_{2,q}.$$

This concludes the proof. □

We remark in passing that one can estimate $\|\sigma_{\lambda_1} \varphi - \sigma_{\lambda_2} \varphi\|_{2,p}$ also in a similar way as in our second proof of Theorem 3.2.

We have proved the following result.

Theorem 3.8. For every $\varphi \in (\mathcal{S})$ the mapping $\lambda \mapsto \sigma_\lambda \varphi$ is continuous from \mathbb{R} into (\mathcal{S}). □

We conclude this section by indicating a consequence for measures on $(\mathcal{S}(\mathbb{R}), \mathcal{B})$ which are represented by a Hida distribution. Assume that ν is a measure on
Then there exists \(d\nu/d\mu \in \mathcal{S}^* \) so that for all \(\varphi \in \mathcal{S} \) we have
\[
\left\langle \frac{d\nu}{d\mu}, \varphi \right\rangle = \int \tilde{\varphi}(x) \, d\nu(x).
\]
Set \(\sigma_\lambda \nu(E) = \nu(\lambda^{-1} E), \lambda \neq 0, E \in \mathcal{B} \). By [25, Theorem 2.12], we have that \(d\nu_\lambda/d\mu \in \mathcal{S}^* \), too. Theorem 3.8 implies:

Corollary 3.9. The family of measures \(\sigma_\lambda \nu, \lambda \in \mathbb{R}, \lambda \neq 0 \), is weakly continuous on \(\mathcal{S} \).

We expect that Corollary 3.9 will be important for a formulation of the theory of large deviations within white noise analysis.

4. Fréchet differentiability of test functionals

In this section we apply the continuity result of Section 3 to establish the following theorem.

Theorem 4.1. Every element \(\varphi \in \mathcal{S} \) is \(\mu \)-a.e. infinitely often Fréchet differentiable, its Fréchet derivative of order \(k \) being given by \(\nabla^k \varphi \in \mathcal{S}(\mathbb{R}^k) \otimes \mathcal{S} \). In particular, the pointwise defined version \(\tilde{\varphi} \) of \(\varphi \) is everywhere \(C^\infty \) in Fréchet sense.

Remark. This theorem follows also from the results in [19]. We are going to give a direct proof below.

Proof. For notational simplicity, let us identify \(\varphi \in \mathcal{S} \) with its pointwise defined version. Fix \(x, y \in \mathcal{S}(\mathbb{R}) \), and let \(\lambda \in \mathbb{R} \). Set
\[
\phi_{x,y}(\lambda) := \varphi(x + \lambda y).
\]
Because \(\varphi \) is everywhere Gâteaux differentiable in direction \(y \), we see immediately that \(\phi_{x,y} \) is differentiable and that
\[
\phi_{x,y}'(\lambda) = (D_x \varphi)(x + \lambda y) = (\sigma_\lambda \tau_y D_x \varphi)(y).
\]
Note that the results in [25] imply that \(\tau_y D_x \varphi \) is the continuous version of an element in \(\mathcal{S} \). Therefore Theorem 3.8 implies that \(\phi_{x,y}' \) is continuous. Moreover, we have
\[
\varphi(x + y) - \varphi(x) = \int_0^1 \phi_{x,y}'(\lambda) \, d\lambda,
\]
and by (2.9),
\[
\varphi(x + y) - \varphi(x) - \langle y, \nabla \varphi(x) \rangle = \int_0^1 \langle y, \nabla \varphi(x + \lambda y) - \nabla \varphi(x) \rangle \, d\lambda.
\]
y is in $\mathcal{S}_p(\mathbb{R})$ for some $p \in \mathbb{N}_0$. Assume that it tends to zero in $\mathcal{S}_p(\mathbb{R})$ (so that it tends to zero in the strong topology of $\mathcal{S}'(\mathbb{R})$). Estimate as follows:

$$
|\varphi(x+y) - \varphi(x) - \langle y, \nabla \varphi(x) \rangle| \leq |y|_{2,-p} \int_0^1 |\nabla \varphi(x + \lambda y) - \nabla \varphi(x)|_{2,p} \, d\lambda
$$

$$
\leq |y|_{2,-p} \sup_{\lambda \in [0,1]} |\nabla \varphi(x + \lambda y) - \nabla \varphi(x)|_{2,p}.
$$

We write

$$
\|\nabla \varphi(x + \lambda y) - \nabla \varphi(x)\|_{2,p} = \sup_{z \in \mathcal{S}'(\mathbb{R}), |z|_{2,-p} = 1} |\langle z, \nabla \varphi(x + \lambda y) - \nabla \varphi(x) \rangle|
$$

$$
= \sup_z \left| (D_2 \varphi)(x + \lambda y) - (D_2 \varphi)(x) \right|
$$

$$
- \sup_z \left| \langle \delta_x, \tau_y D_2 \varphi - D_2 \varphi \rangle \right|
$$

where $\delta_x \in (\mathcal{S})^*$ is evaluation at $x \in \mathcal{S}'(\mathbb{R})$: $\langle \delta_x, \psi \rangle = \tilde{\psi}(x)$, $\psi \in (\mathcal{S})$. Note that $\delta_x \in (\mathcal{S})_-$, for some $r \in \mathbb{R}_+$ (e.g., [15]). Applying Lemma 3.5 we find the bound

$$
|\nabla \varphi(x + \lambda y) - \nabla \varphi(x)|_{2,p} \leq \lambda |y|_{2,-p} \|\delta_x\|_{2,-r} e^{\|y\|^2_{2,-r/2}} \sup_z \|D_2 \varphi\|_{2,r'},
$$

for some $r' \in \mathbb{R}_+$. Inequality (3.18) of [25] implies

$$
\|D_2 \varphi\|_{2,r'} \leq \text{const} \cdot \|z\|_{2,-p} \|\varphi\|_{2,r'}
$$

for some $r'' \in \mathbb{R}_+$. Therefore we have altogether proved that for $y \in \mathcal{S}'(\mathbb{R})$ with $|y|_{2,-p} \leq 1$,

$$
|\nabla \varphi(x + \lambda y) - \nabla \varphi(x)|_{2,p} \leq C_x |y|_{2,-p} \|\varphi\|_{2,r''},
$$

where C_x is a constant depending only on $x \in \mathcal{S}'(\mathbb{R})$. Hence it follows that

$$
|\varphi(x+y) - \varphi(x) - \langle y, \nabla \varphi(x) \rangle| \leq C_x |y|_{2,-p} \|\varphi\|_{2,r''}.
$$

Thus we have proved that φ has Fréchet derivative $\nabla \varphi$. Since $\nabla \varphi \in \mathcal{S}(\mathbb{R}) \otimes (\mathcal{S})$ [25] we may now use induction to obtain the statement of the theorem. \qed

5. The Wiener semigroup as a mollifier

In this section we consider the Wiener semigroup acting on (\mathcal{S}).

We begin with the following remark. For $t \geq 0$, $x \in \mathcal{S}'(\mathbb{R})$, $\varphi \in (\mathcal{S})$, we have

$$
\sigma_{\sqrt{t}} \tau_x \varphi \in (\mathcal{S}),
$$

and

$$
(\sigma_{\sqrt{t}} \tau_x \varphi)(y) = (\tau_y \varphi)(\sqrt{t} y) = \tilde{\varphi}(\sqrt{t} y + x).
$$

Thus we may define

$$
(P_t \varphi)(x) := \langle 1, \sigma_{\sqrt{t}} \tau_x \varphi \rangle, \quad (5.1)
$$
and it is clear that we obtain for \(t > 0 \),

\[
P_t \varphi(x) = \int (u_{it} \tau_x \varphi)(y) \, d\mu(y) - \int \tilde{\varphi}(\sqrt{t} y + x) \, d\mu(y)
= \int \tilde{\varphi}(y) \, d\mu_{t,x}(y),
\]

(5.2)

where \(\mu_{t,x} \) is the Gaussian measure on \((\mathcal{F}(\mathbb{R}), \mathcal{B})\) with mean \(x \) and covariance operator \(t \cdot \text{Id} \). The family \(\{ P_t : t \in \mathbb{R}_+ \} \) is called Wiener semigroup (cf. [5]). For a discussion of the semigroup property we also refer to the end of this section.

Using Theorem 2.6 and Theorem 2.11 in [25] we may also represent \(P_t \) as follows. \(\mu_{t,x} \) is represented by a Hida distribution \(d\mu_{t,x} / d\mu \in (\mathcal{F})^*, \) and we can write \((t > 0, \ x \in \mathcal{F}(\mathbb{R}))\)

\[
(P_t \varphi)(x) = \left(\frac{d\mu_{t,x}}{d\mu} \varphi \right).
\]

(5.3)

By Theorem 2.11 in [25], which states the continuity of \(\sigma \), as an operator on \(\mathcal{F} \), and by Theorem 3.3 and Theorem 3.8, we obtain the following result.

Theorem 5.1. For every \(\varphi \in \mathcal{F} \), the mapping

\[
(t, x) \mapsto P_t \varphi(x)
\]

is continuous from \([0, \infty) \times \mathcal{F}(\mathbb{R})\) into \(C \).

Let \(t > 0 \). We can say more about \(P_t \varphi(x) \) as a function of \(x \in \mathcal{F}(\mathbb{R}) \):

Lemma 5.2. For every \(\varphi \) in \(\mathcal{F} \), \(t > 0 \), the function \(x \mapsto P_t \varphi(x) \) on \(\mathcal{F}(\mathbb{R}) \) is \(C^\infty \) (in Gâteaux sense) in every direction of \(\mathcal{F}(\mathbb{R}) \).

Proof. Let \(\varphi \in \mathcal{F} \), \(\xi, \eta \in \mathcal{F}(\mathbb{R}) \). Consider

\[
\mathcal{F}\varphi(\xi) - \mathcal{F}\varphi(\eta) = (\mathcal{L}^{(t, \xi)}, -\mathcal{L}^{(t, \eta)}, \varphi)
= \int_0^1 \left[\frac{d}{d\lambda} \left(\mathcal{L}^{(t, \lambda \xi + (1-\lambda) \eta)}, \varphi \right) \right] d\lambda
= \int_0^1 \left(\frac{d}{d\lambda} \mathcal{L}(\lambda \xi + (1-\lambda) \eta) \right) d\lambda.
\]

Denote \(\xi_\lambda = \lambda \xi + (1-\lambda) \eta \). It is straightforward to check that for every \(p \in \mathbb{N}_0 \),

\[
\left| \frac{d}{d\lambda} \mathcal{L}(\xi_\lambda) \right| \leq |\xi - \eta|_{L^{2-p}} e^{\|\xi\|_{L^p}^p + \|\eta\|_{L^p}^p} \|\varphi\|_{L^{2,p+1}}.
\]

Thus for every \(\varphi \in \mathcal{F} \), \(\mathcal{F}\varphi \) extends to a strongly continuous mapping on \(\mathcal{F}(\mathbb{R}) \). Moreover, it follows from the results in [18] that \(\mathcal{F}\varphi \) is ray entire, which in turn
implies that (the extended map) $\mathcal{S}\varphi$ is Gâteaux differentiable to every order in every direction (cf. also Proposition 2.3 in [23]). Now we may write ($t > 0$)

$$P_t\varphi(x) = \mathcal{S}(\sigma_{\sqrt{t}}\varphi)(t^{-1/2}x).$$

Thus $x \mapsto P_t\varphi(x)$ is infinitely often Gâteaux differentiable in every direction. \qed

Next we investigate the behaviour of $P_t\varphi$ as t tends to zero.

By Theorem 3.8 we know that as $t \to 0$, $\sigma_{\sqrt{t}}\varphi$ converges in \mathcal{S}' to $\sigma_0\varphi$, i.e., to the μ-class $[\tilde{\psi}(0)]$ of $\tilde{\psi}(0)$. Therefore we have

$$\lim_{t \to 0} (1, \sigma_{\sqrt{t}}\tau_x\varphi) = (1, [\tilde{\varphi}(x)]),$$

and hence

$$\lim_{t \to 0} P_t\varphi(x) = \tilde{\varphi}(x),$$

the convergence being uniform on bounded sets of $\mathcal{S}'(\mathbb{R})$ (since $\tilde{\varphi}$ is uniformly continuous on bounded sets [15]).

Theorem 5.3. The Wiener semigroup maps $\varphi \in \mathcal{S}$ into a pointwise defined function $x \mapsto P_t\varphi(x)$ on $\mathcal{S}'(\mathbb{R})$, which is infinitely often differentiable (in Gâteaux sense) in every direction. As t tends to zero, $P_t\varphi(x)$ converges pointwise (uniformly on bounded sets) to $\tilde{\varphi}(x)$.

Let us give a second simple proof of Theorem 5.3 for the case that t tends to zero through a positive sequence.

Second proof of Theorem 5.3 (sequential case). Let us show that for every $x \in \mathcal{S}'(\mathbb{R})$, $d\mu_{t,x}/d\mu \to \delta_x$ strongly in $(\mathcal{S})^*$ as t tends to zero.

Compute the \mathcal{S}-transform of $d\mu_{t,x}/d\mu$: let $\xi \in \mathcal{S}(\mathbb{R})$ then

$$\mathcal{S}\left(\frac{d\mu_{t,x}}{d\mu}(\xi)\right) = e^{-\|x\|^2/2+(x,\xi)} \int e^{\mathcal{S}(\delta_x)(y)} d\mu(y) = e^{-\|x\|^2/2+(x,\xi)}.$$

Obviously, $\mathcal{S}(d\mu_{t,x}/d\mu)(\xi)$ converges to $\exp((x, \xi))$: as $t \to 0$. But this expression is the \mathcal{S}-transform of δ_x. Theorem 2.7 in [23] implies then that $d\mu_{t,x}/d\mu \to \delta_x$ strongly in $(\mathcal{S})^*$ as $t \to 0$. \qed

We conclude this paper with a remark on the semigroup property of the family $\{P_t: t \in \mathbb{R}_+\}$.

It was shown in [29] that for $\varphi \in \mathcal{S}$, $P_t\varphi$ is a version of an element $[P_t\varphi]$ in \mathcal{S}, and because of Theorem 5.1 it is the (unique) pointwise defined, strongly continuous version of this class: $[P_t\varphi] = P_t\varphi$. We remark in passing that Theorem 4.1 implies that $P_t\varphi$ is infinitely often Fréchet differentiable.
We define

\[P_sP_t \phi := P_s(P_t \phi), \quad s, t \in \mathbb{R}_+. \]

For \(s, t > 0 \) one obtains after a straightforward computation

\[(P_sP_t \phi)(x) = \int \tilde{\phi}(y + x) d(\mu_{s,t,0} \ast \mu_{t,0})(y), \]

where \(\ast \) denotes convolution. It is well-known (and simple to prove) that \(\mu_{s,0} \ast \mu_{t,0} = \mu_{s+t,0} \). (For example, this follows directly from Theorem 4.1, (4.2) and (2.30) in [25].) Thus we have

\[(P_sP_t \phi)(x) = \int \tilde{\phi}(y + x) d\mu_{s+t,0}(y) = P_{s+t} \phi(x), \]

which states the semigroup property of \(\{P_t : t \in \mathbb{R}_+\} \).

Acknowledgement

J. Potthoff and J.-A. Yan acknowledge gratefully the kind hospitality of Professors S. Albeverio, Ph. Blanchard and L. Streit at BiBoS, Universität Bielefeld and Ruhr-Universität Bochum.

References