1959

Effect of Nuclear Forces on the Cross-Sections of Photonuclear Reactions.

Kazuto Okamoto

Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/520

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
EFFECT OF NUCLEAR FORCES ON THE CROSS SECTIONS
OF PHOTONUCLEAR REACTIONS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Physics

by

Kazuto Okamoto
M. Sc. Tokyo University of Education, 1953
September, 1958
ACKNOWLEDGEMENTS

The author wishes to thank Professor J. S. Levinger for his valuable advice and generous encouragement during the progress of this work. He is also grateful to Professor R. E. Peierls for his kind hospitality in the Department of Mathematical Physics of the University of Birmingham. He would also like to thank the members of the University of Birmingham for their helpful discussions and advice, especially to Mr. de Providencia for his many suggestions. Finally, he would also like to express his thanks to the Research Corporation and the Fulbright Commission for giving him financial support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. CALCULATION OF THE INTEGRATED CROSS SECTION</td>
<td>11</td>
</tr>
<tr>
<td>III. THE DEPENDENCE OF THE CORRECTION OF THE INTEGRATED CROSS SECTION ON THE VALUE OF (\xi = \frac{b}{r_0})</td>
<td>24</td>
</tr>
<tr>
<td>IV. CALCULATION OF THE BREMSSTRAHLUNG CROSS SECTION</td>
<td>26</td>
</tr>
<tr>
<td>a. Damping Factor Method</td>
<td>26</td>
</tr>
<tr>
<td>b. Box Normalization Method</td>
<td>36</td>
</tr>
<tr>
<td>V. SUMMARY</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>41</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>43</td>
</tr>
<tr>
<td>VITA</td>
<td>47</td>
</tr>
</tbody>
</table>
ABSTRACT

The effect of nuclear forces, or the effect of the quasi-deuteron model, is discussed for the integrated cross section and the bremsstrahlung weighted cross section for photon absorption by nuclei.

As is verified also in other nuclear reactions, the independent particle model, in which we neglect inter-particle correlations due to nuclear forces, is a good approximation for the photonuclear reaction. In the case of our sum rule calculations knowledge of the wave functions of the excited states of a nucleus is not necessary, because the calculation can be reduced to the expectation value of some operator for the ground state, so that the approximation of the independent particle model is an appropriate one. In fact, many sum rule calculations by Levinger et al. have shown that the results of the independent particle model for the integrated cross section and the bremsstrahlung weighted cross section are not inconsistent with experiment.

On the other hand, it is undoubtedly true that there exists a strong correlation between nucleons due to nuclear forces. In the case of photonuclear reactions this dynamical correlation, or the so-called quasi-deuteron model, is known to be very important if the photon energy is more than 100 MeV. This seems to be in contradiction with the facts mentioned above, and no calculation has ever been done to solve this discrepancy.

In order to clarify this situation we shall investigate the effect of this dynamical correlation on the sum rule calculations using the Fermi gas model. We expand the wave function using
perturbation theory and take into account the two body nuclear force. The nuclear force used in our calculation is of partly Majorana exchange character and the potential is a Gaussian type without a repulsive core; the parameters are taken from the effective range theory of Blatt-Jackson.

The results of the calculation are that the integrated cross section is increased by only several per cent and the bremsstrahlung weighted cross section is decreased by the same rate. The effect of the hard core has not been estimated. It may not be very small in the case of the integrated cross section, but is probably very small in the case of the bremsstrahlung weighted cross section.
CHAPTER I

INTRODUCTION

It is now well known that at low energies a nucleus can be regarded as the assembly of approximately free nucleons, although the forces acting between two nucleons is clearly very strong. The validity of this treatment is supported by many theories and experiments.

For instance, the nuclei which have some special numbers (8, 20, 28, 50, 82, and 126) of protons or neutrons are known to be more stable than other nuclei. These numbers are called "magic numbers," and the stability of these magic number nuclei can be well explained by the shell model of Mayer and Jensen, in which the nucleons inside the nucleus are assumed to move without any mutual interaction, except that of the common shell model potential. This model has been applied also to the explanation of spin, magnetic moment, and quadrupole moment of the ground state of nuclei, and at least for some nuclei which are at or near magic numbers the treatment of the shell model has been shown to be fairly successful.

Recently the so-called cloudy crystal ball model has been proposed for the explanation of low energy reactions. In this model a nucleus is described as an over-all potential with a small imaginary part. In other words, the absorption coefficient for the motion of low energy nucleons inside the nucleus is assumed to be fairly small, and a nucleon with a kinetic energy of several Mev outside the nucleus behaves as an approximately free particle. This is essentially the same assumption as that of the shell model. The fact that this cloudy
The crystal ball model has been fairly successful for low energy neutron reactions shows that the treatment of the independent particle model (hereafter abbreviated as IPM) described at the beginning of the section holds good also in the region of several Mev.

Also in the field of photonuclear reaction the IPM shows a remarkable success, especially in the calculations of various photonuclear cross sections using the sum rule, as is seen below.

The cross section for photon absorption by a nucleus shows a large resonance at about 20 Mev, and the resonance energy depends on the mass number of the nucleus. This dependence is known to be a decreasing function of mass number, A. This resonance is usually called the giant resonance, and the mechanism of photon absorption is predominantly dipole. Many theories have been proposed to interpret this phenomenon and one of them is the sum rule, which we shall discuss here. Since it is now well known that the electric dipole approximation is fairly good in this case, we shall consider only the dipole sum rules.

We shall define the quantity which is called the dipole oscillator strength, f_{on}, by the following formula:

$$f_{\text{on}} = \frac{2M(E_n - E_0)}{\hbar^2} \left| \int \psi_n^* \psi_\alpha \, d\tau \right|^2 = \left| \chi_{\text{on}} \right|^2$$ \hspace{1cm} (1)

where E_0 and E_n are energies of the ground and excited states, M is the nucleon mass, and z is the component of the displacement along the direction of photon polarization. Then the cross section for dipole absorption of a photon which has the energy $W = E_n - E_0$ is given by:
\[\sigma_{on} = \frac{2\pi^2 e^2 \hbar}{M C} f_{on} \] (2)

According to the Thomas-Heiche-Kuhn sum rule in the case of an atom the sum of \(f_{on} \) for all states \(n \) equals the numbers of electrons.

\[\sum_n f_{on} = Z \] (3)

(This is derived using closure: \(\sum_{A} B_n^{\text{AB}} = (AB)_{\text{no}} \).

In the case of a nucleus we introduce an effective charge, which is given as \(\frac{N}{A} e \) for a proton and \(\frac{Z}{A} e \) for a neutron, respectively. Then Eq. (3) becomes in this case:

\[\sum_n f_{on} = \frac{N Z}{A} \cong \frac{A}{A} \] (3')

The approximation holds for the case of \(N = Z \).

Accordingly the integrated cross section, \(\sigma_{\text{int}} \), which is defined by the following formula

\[\sigma_{\text{int}} \equiv \int \sigma dW \equiv \sum_n \sigma_{on} \] (4)

is given by

\[\sigma_{\text{int}} = \frac{2\pi^2 e^2 \hbar}{M C} \frac{N Z}{A} \] (5)

Feenberg3, Siegert4, and Levinger and Bethe5 (hereafter abbreviated as LB) have shown that the sum rule should be changed if there is an exchange force which interchanges the positions of the particles (i.e. Majorana or Heisenberg force). For instance, in the case of the IPM and for Majorana force \(\sigma_{\text{int}} \) is given by5

\[\sigma_{\text{int}} = 60 \frac{N Z}{A} (1 + CX) \text{MeV-mb} \] (6)

\[\cong 15 A (1 + CX) \text{MeV-mb} \]
where \(x \) is the fraction of the Majorana exchange force and is usually taken as \(1/2 \). \(C \) is a constant and is usually taken as approximately 0.8 (see also in the discussion after Eq. (9)). This result is not inconsistent with experiment.

LB also calculated the bremsstrahlung weighted cross section, \(\sigma_b \), which is defined by

\[
\sigma_b \equiv \int \frac{\sigma}{\mathcal{W}} \; d\mathcal{W} = \frac{e^2}{\hbar c} \frac{4\pi x^2}{3} \left[\frac{N^2}{A^2} \langle \mathcal{E}^2 \rangle \right]_{00}^{\infty} \frac{Z^2}{A^2} \langle \mathcal{E}^2 \rangle \right]_{00}^{\infty}
\]

where \(r_i \) and \(r_j \) are the co-ordinates of proton and neutron respectively, and \(\langle \rangle \) means the expectation value for the ground state of the nucleus. If we take the IPM, the result for \(\sigma_b \) is too large as compared with experiment and has a much stronger mass number dependence than observed. Therefore LB concluded that there must be some correlation between the particles and suggested that the alpha particle model could give a result which was not inconsistent with experiment. However, even in the simple IPM in which we assume no correlation due to nuclear forces between particles there does exist a certain correlation due to the Pauli principle, as is true also in the case of electrons. Since the total wave function of a pair of protons (or neutrons) must be antisymmetric, the spatial wave function must be antisymmetric for the spin triplet state, and symmetric for the spin singlet state. Because of this property of the wave function a certain correlation appears between the particles even if we neglect nuclear forces. Let us call this correlation "the Pauli principle correlation". LB neglected this effect and calculated only the terms which correspond
to \(< r_i^2 \)>_oo and \(< r_j^2 \>_oo \) in Eq. (7). However, there are also terms of \(< r_i^2 r_j^2 \>_oo \) which are due to the Pauli principle correlation. Levinger and Kent^ (hereafter referred to as LK) pointed out this fact, calculated these terms, and found that the correction by this correlation was undoubtedly very large and reduced the value of \(\sigma_b\) considerably to fit the experimental data. For instance, for Cu LB^ obtained \(\sigma_b = 0.34\) barns assuming that the nuclear shape parameter, \(r_o\), is \(1.5 \times 10^{-13}\) cm (The nuclear radius, \(R_o\), is taken to be \(R_o = r_o A^{1/3}\).) LK showed that \(\sigma_b = 0.12\) barns for \(r_o = 1.5 \times 10^{-13}\) cm, which could be reduced to \(0.08\) barns if we used \(r_o = 1.2 \times 10^{-13}\) cm, whereas the experimental data is also \(0.08\) barns. (This value of \(r_o = 1.2 \times 10^{-13}\) cm is now regarded as more appropriate than \(r_o = 1.5 \times 10^{-13}\) cm.) LK also showed that the \(\sigma_b\) calculated in this way did not depend so strongly on the mass number of the nucleus as the results of LB. Thus the serious discrepancy between theory and experiment for \(\sigma_b\) has also been removed.

In the calculations of LB and LK, the model of Fermi gas or of the IPM square well potential was used for the nucleus. Levinger^ has extended this to the simple harmonic oscillator potential \((r_o\) in this case is defined by the relation \(< r^2>_oo = \frac{3}{2} r_o^2 A^{2/3}\)) and found for \(r_o = 1.2 \times 10^{-13}\) cm

\[
\sigma_b = \frac{0.36 A^{1/3}}{mb}
\]

(8)

This agrees fairly well with experiment.

\(\sigma_b\) is calculated also by Khokhlov^ for an IPM square well. His results are summarized by Levinger^ as
\[\sigma_x = 0.30 \, \text{mb} \]

(9)

This is in good agreement with experiment and with the result of Levinger, Eq. (8), although the coefficient is somewhat smaller.

In the simple harmonic oscillator model mentioned above Levinger also calculated the value of \(C \) in Eq. (6) for \(\text{He}^4, \text{O}^{16}, \text{Ca}^{40} \). It should be pointed out here that although \(C \) represents the effect of the exchange force between the two nucleons, the wave function used in the calculation does not include any effect of nuclear forces. In other words, our model is still regarded as the IPM, even after we introduce \(C \), the effect of the two body forces.

His results for the simple harmonic oscillator model and the results of LB\(^5\) for the Fermi gas model indicate that the value of \(C \) depends on the nucleus, on the model, and on the values of the parameters used in the calculation, but is of the order of unity. For instance, for \(r_0 = 1.2 \times 10^{-13} \, \text{cm} \) it has values in the range

\[0.70 \lesssim C \lesssim 1.07 \]

(10)

It should be pointed out that the value of \(C \) also depends on the character of the nuclear forces. It is only the forces which interchange the positions of the particles that affect the value of \(C \). The above results are for Majorana exchange force. In the case of Heisenberg exchange force the results change\(^1\), but \(C \) is still of the order of unity. Other forces (the ordinary, tensor, and Bartlett forces) do not change the value of \(C \) at all.
On the other hand, Migdal12 calculated the so-called second moment, σ_{-2} which is defined by the following formula:

$$\sigma_{-2} \equiv \int \frac{\sigma}{W^2} dW$$

and showed that

$$\sigma_{-2} = \frac{\pi^2}{20} \frac{e^2}{\hbar c} \frac{R_0^2 A}{k}$$

where k is a constant which appears in the Weizsäcker mass formula13 for a nucleus in the symmetry energy term $k(N - Z)^2/A$.

Levinger10 analysed the experimental data using this result and found

$$\sigma_{-2} = 2.25 A \frac{\mu b}{MeV}$$

for $r_0 = 1.2 \times 10^{-13}$ cm and $k = 23$ Mev, whereas the experimental data show

$$\sigma_{-2} = 3.5 A \frac{\mu b}{MeV}$$

It should be mentioned here that Migdal's results can be obtained also by the Fermi gas model14 although he calculated using the collective model. This fact suggests that the agreement sometimes found between the IPM and the collective model in the case of photonuclear reaction is not necessarily fortuitous.

As we have seen, various cross sections of photonuclear reaction can be calculated by sum rules using the IPM. It should be pointed out here that in the sum rule the calculation is reduced to expectation value of some operator for the ground state, as is seen in Eq. (3) or (7). In other words, knowledge of the wave functions of the excited states is not necessary. This is a great advantage of the sum rule method, and the fact that the calculations mentioned above
agree fairly well with experiment shows that the IPM is a good approximation for the nucleus. This result is consistent with the statement at the beginning of this section.

However, it is also true that the forces between two nucleons are very strong and of short range. There must be some correlation between nucleons due to these forces in addition to the Pauli principle correlation discussed already. This we call the "dynamical correlation". In fact, there is evidence that this dynamical correlation becomes effective in the case of photonuclear reaction. In the high energy region of more than 100 Mev the energy distribution of emitted particles has a much larger high energy component than is expected by the model with no dynamical correlation. Also the angular distribution of the particles in the laboratory system shows a strong forward maximum which is inconsistent with the model without correlation. In order to explain this discrepancy Khokhlov15 and Levinger16 proposed the so-called quasi-deuteron model, in which a proton and a neutron form a deuteron-like sub-unit inside the nucleus, absorb a photon of high momentum, and are emitted from the nucleus. This model could remove the discrepancy mentioned above, and since that time a large number of experiments have been performed and the results support the validity of the quasi-deuteron model (hereafter abbreviated as qd model). It was also proposed by Yoshida17 that the dynamical correlation among n particles inside the nucleus becomes effective in the high energy photonuclear reaction and, if we change n from 12 to 2 as the energies of emitted protons
goes from 40 to 90 Mev, we can explain their angular distributions fairly well. Of course, \(n = 2 \) corresponds to the qd model.

This means that at least at the high energy of more than 100 Mev, the effect of the dynamical correlation plays an important role for the mechanism of photon absorption, while on the other hand this effect seems to be negligible from the results of the sum rule calculations. At first sight these results seem to be inconsistent with each other, but this discrepancy might be explained if we evaluate the effect of the qd model in the sum rule calculation.

Levinger tried to evaluate this effect in two different ways. He used the IPM wave function for energy less than \(E_{\text{qd}} \) and the qd wave function above; or alternatively he multiplied the qd wave function by a damping factor \(\exp(-\delta r) \). His results for \(\sigma_b \) are sensitive to the values of \(\delta \) or \(E_{\text{qd}} \); but for \(E_{\text{qd}} = 50 \text{ Mev} \) or \(\delta = 3 \times 10^{-12} \text{ cm}^{-1} \) he found that \(\sigma_b \) decreased by about 10% of the value of the IPM. This result is not inconsistent with the fact that the qd model plays an important role for the high energy photonuclear reaction, because in the case of \(\sigma_b \), a main contribution comes from the low energy part, as can be understood from the definition of \(\sigma_b \).

Since Levinger's calculation was only preliminary, we shall investigate this problem in a somewhat different way. He shall neglect the hard core of the nuclear forces so that we can expand the wave function by perturbation theory. We shall assume a Gaussian potential between a neutron and a proton and calculate both \(\sigma_{\text{int}} \) and \(\sigma_b \). We shall see that the results are that \(\sigma_{\text{int}} \) will increase by about several per cent, and \(\sigma_b \) will decrease by about the same amount. Therefore, we conclude that the IPM is a good approximation for
photonic reaction. However, it should be mentioned that Brueckner found an appreciable increase for σ_{int}. The reason for the discrepancy between his result and ours is not yet clear. If we consider the hard core for the potential, we must use a different potential; therefore, it is difficult to predict the effect of the hard core exactly. This may not be negligible for σ_{int}, but probably negligible for σ_b because of the same reason stated above.
CHAPTER II

CALCULATION OF THE INTEGRATED CROSS SECTION

As is shown by Eqs. (1), (2), and (4) the integrated cross section is given by

\[\sigma_{\text{int}} = \int \sigma \, dW = \frac{2 \pi^2 e^2 \hbar}{MC} \sum_n f_{on} \]

\[= \frac{\mu \pi^2 e^2}{\hbar C} \sum_{n} (E_n - E_0) |\langle \chi_n n |)^2 \]

(15)

In the case that there are no exchange forces \(\sum_{n} f_{on} = \frac{NZ}{A} \) as is given by Eq. (4). For \(N \geq Z \) this can be approximated by \(A/4 \), and \(\sigma_{\text{int}} \) is, as is shown by Eq. (5)

\[\sigma_{\text{int}} = 15 \ \text{A MeV- mb} \]

According to Feenberg, Siegert, and LB, this result is modified if there is an exchange force. The summed oscillator strength is given by

\[\sum_{n} f_{on} = \frac{NZ}{A} - \frac{2M}{\hbar^2} \chi \frac{L}{6} \int \psi^* \chi \chi^* \chi \psi \frac{r^2}{P_{ij} P_{ij} d\tau} \] (16)

where \(\chi \) is the fraction of the Majorana exchange forces which, as is explained after Eq. (6), is usually taken as 1/2; \(i \) and \(j \) refer to a proton and a neutron, respectively; \(r \) is the distance between them; \(V \) is the two body potential between nucleons; \(P_{ij} \) is the Majorana operator which exchanges the positions of the particles \(i \) and \(j \).

LB took a product of plane wave functions for \(\psi \), calculated the second term of Eq. (16) and showed that it was approximately
0.8\(x\), as is already discussed after Eq. (9). This value is different for different models, but at least the coefficient of \(x, C\), is of the order of unity.

Here we shall calculate this term again taking the dynamical correlation into account. We shall take the Fermi gas model for infinite nuclear matter, which is now assumed to be a fairly good approximation for the centre of a large nucleus. Since we are dealing with a pair of a neutron and a proton, the antisymmetrization of the wave function is not necessary. We shall also neglect the hard core of the two body nuclear forces, and expand the wave function as follows

\[
\psi = \psi_0 + \sum_i \frac{e^{-\frac{r_i}{a}}}{\sqrt{\Omega}} \psi_n
\]

(17)

\[
\psi_0 = \frac{1}{\Omega} e^{i \mathbf{k}_0 \cdot \mathbf{r}} e^{i \mathbf{j}_0 \cdot \mathbf{r}}
\]

(17')

\[
\psi_n = \frac{1}{\Omega} e^{i \mathbf{k}_n \cdot \mathbf{r}} e^{i \mathbf{j}_n \cdot \mathbf{r}}
\]

(17'')

where \(\Omega\) is the volume of a sphere containing \(A\) particles and is given by

\[
\Omega = \frac{4\pi}{3} r_0^3 A
\]

(18)

\(\mathbf{k}_i, \mathbf{k}_j, \mathbf{k}'_i\) and \(\mathbf{k}'_j\) are wave numbers of a proton \(i\) and a neutron \(j\), the notations \(\mathbf{r}_i\) etc. represent a vector and \(\mathbf{k}\) etc. represent a scalar product of two vectors. Since our problem now is an infinite nucleus, these wave numbers must satisfy the following relation of momentum conservation

\[
\mathbf{k}_i + \mathbf{k}_j = \mathbf{k}'_i + \mathbf{k}'_j
\]

(19)
For the sake of convenience for later calculations let us define the following quantities.

\[q = \|\mathbf{k}_f - \mathbf{k}_i \| = \|\mathbf{k}_i - \mathbf{k}_f \| \]

\[q' = \|\mathbf{k}_f' - \mathbf{k}_i \| = \|\mathbf{k}_i - \mathbf{k}_f' \| \]

\(q \) is the difference of the momenta between initial and final states in the case of an ordinary force, and \(q' \) is the corresponding quantity in the case of an exchange force.

Then Eq. (16) becomes

\[
\sum_{n=1}^{Z} \mathcal{F}_{on} = \frac{NZ}{A} - \frac{M}{3\hbar^2} \chi \sum_{i} \psi_i^* \sum_{j} r^2 V_{ij} \psi_j d\tau
\]

\[
= \frac{NZ}{A} - \frac{M}{3\hbar^2} \chi \left(\sum_{i} \left(\frac{\psi_i^*}{n} + \sum_{j} \frac{(V_{ij})_{on}}{E_0 - E_n} \psi_j^* \right) \sum_{j} r^2 V_{ij} \psi_j \right)
\times \left(\sum_{i} \left(\frac{\psi_i}{n} + \sum_{j} \frac{(V_{ij})_{on}}{E_0 - E_n} \psi_j \right) \right) d\tau
\]

\[
= \frac{NZ}{A} - \frac{M}{3\hbar^2} \chi \sum_{i} \sum_{j} r^2 V_{ij} \psi_i \psi_j d\tau
\]

\[
+ \frac{M}{3\hbar^2} \chi \sum_{i} \sum_{j} r^2 V_{ij} \sum_{n} \frac{(V_{ij})_{on}}{E_0 - E_n} \psi_i^* \psi_j + \psi_i^* \psi_j \psi_{n}^* \psi_{n} d\tau
\]

\[
- O \left[(V_{ij})_{on}^2 \right]
\]

Both \(V \) and \(V_{ij} \) are the potential between a neutron and a proton and the relation between \(V \) and \(V_{ij} \) will be given later in Eq. (24). For the sake of later discussion we reverse the order of
E_0 and E_n in the third term. Since we shall restrict ourselves to the first order perturbation calculation, we neglect the last term of order V^2. The first and second terms correspond to the first and second terms in the bracket of Eq. (6), respectively and were already calculated by Eq. 5. The third term corresponds to the dynamical correlation which we shall calculate in this paper. Let us denote the third term as $\Delta \sum \frac{f_{on}}{n}$.

Terms in $\Delta \sum \frac{f_{on}}{n}$ including P_{ij} are given by

$$\psi^*_{P_{ij}} \frac{\psi_o}{E_n-E_0} = \frac{1}{\Omega^2} \psi^*_{ij} \frac{\psi_o}{E_n-E_0}$$

Then $\Delta \sum \frac{f_{on}}{n}$ is given by

$$\Delta \sum \frac{f_{on}}{n} = + \frac{2M^2}{3 \hbar^2} \left[\sum \frac{\sum r^2 V \sum n}{E_n-E_0} \frac{(V_{ij})_{on}}{\omega} e^{i \omega \cdot \vec{r}} \right]$$

where \vec{R} is the co-ordinate of the centre of mass of the two nucleons. The integral with respect to \vec{R} gives Ω. As a potential we take a mixture of ordinary and Majorana exchange forces:

$$V_{ij} = V(1 + x P_{ij})$$

Then, $(V_{ij})_{on}$, the fourier transform of the potential, is given by

$$(V_{ij})_{on} = (V)_{on} + x (V_{P_{ij}})_{on}$$

$$= \frac{1}{\Omega} F(\vec{n}) + \frac{1}{\Omega} x F(\vec{n}')$$

(25)
where \(F(2) \) is given by

\[
F(2) = \int_0^\infty V e^{i \mathbf{L} \cdot \mathbf{r}} \, d^3 \mathbf{r}
\]

(26)

The summations with respect to \(i \), \(j \) in Eq. (21) correspond to those with respect to \(k_i, k_j \) and the summations with respect to \(n \) correspond to those with respect to \(k_i, k_j \), but can be reduced to the summation with respect to \(k_i \) only, because if \(k_i, k_j, k_i' \) are specified, \(k_j' \) is uniquely determined by Eq. (19).

Then Eq. (23) becomes

\[
\sum_n f_n = x \frac{k_i^2}{3} \left(\frac{M}{\hbar^2} \right)^2 \int_0^\infty \sum_{k_i} \sum_{k_j} \sum_{k_i'} \frac{F(2) + x F(2') e^{i \mathbf{L} \cdot \mathbf{r}}}{k_i^2 + k_j^2 + k_i'^2 - k_i^2} \, e^{-r^2 \sqrt{\alpha}} \, d^3 \mathbf{r}
\]

(27)

The term involving \(F(2) \) is difficult to evaluate. However, the value of the integral involving \(F(2) e^{i \mathbf{L} \cdot \mathbf{r}} \) is smaller than that of the integral involving \(F(2') e^{i \mathbf{L} \cdot \mathbf{r}} \) because of the "interference" between \(\mathbf{L} \) and \(\mathbf{L}' \). Therefore, in order to get the upper limit of \(\sum_n f_n \) we replace \(F(2) \) by \(F(2') \)

\[
\sum_n f_n \leq x(1+x) \left(\frac{M}{\hbar^2} \right)^2 \int_0^\infty \sum_{k_i} \sum_{k_j} \sum_{k_i'} \frac{F(2') e^{i \mathbf{L} \cdot \mathbf{r}}}{k_i^2 + k_j^2 + k_i'^2 - k_i^2} \, e^{-r^2 \sqrt{\alpha}} \, d^3 \mathbf{r}
\]

(28)

The summation with respect to \(k_i' \) in Eq. (27) is again replaced by the summation with respect to \(k_i' \), because after all there are three independent wave numbers among those which appear in Eqs. (19), (20), (20') and we can choose any three of them.

Using the relations of Eqs. (19), (20) and (20') we can simplify the energy denominator in the integral of Eq. (24)
The three dimensional summation with respect to the wave number can be transformed into the integral using the following relation

$$\sum_{k_e} = \frac{\Delta l}{(2\pi)^3} \int d^3 k_e$$

(30)

Furthermore, we must take into account the Pauli principle. Since the nucleons in the initial states must have the wave numbers lower than k_F, the Fermi wave number, and the transition must be to the unoccupied states because of the Pauli principle, we have the following relations

$$\begin{cases}
|k_e| < k_F \\
|k_f| < k_F \\
|k_e + \alpha'| > k_F \\
|k_f - \alpha'| > k_F
\end{cases}$$

(31)

$$k_F = \frac{1}{\tau_0} \frac{3}{2} \left(\frac{\pi c}{3} \right)^{\frac{1}{3}} = \frac{1.52}{\tau_0}$$

(32)

Using Eqs. (29), (30), (31), Eq. (28) can be written in the following form (we omit the inequality in Eq. (28) for the sake of simplicity).
\[\Delta \Sigma f_{0n} = \frac{x(1+x)}{3} \left(\frac{M}{\mathcal{A}^2} \right)^2 \frac{\Omega}{(2\pi)^2} \left[\frac{\Delta}{(2\pi)^3} \right]^3 \times \int_0^\infty r^2 V \, d^3 \mathbf{r} \int d^3 \mathbf{k}_e \int d^3 \mathbf{k}_d \int d^3 \mathbf{k}_d' \frac{F'(\mathbf{s}')}{\mathbf{s}'(\mathbf{s}' + \mathbf{k}_e - \mathbf{k}_d)} \]

\[= \frac{x(1+x)}{3} \left(\frac{M}{\mathcal{A}^2} \right)^2 \frac{\Omega}{(2\pi)^2} \int_0^\infty r^2 V \, d^3 \mathbf{r} \int d^3 \mathbf{k}_e \int d^3 \mathbf{k}_d \int d^3 \mathbf{k}_d' \frac{F'(\mathbf{s}')}{\mathbf{s}'(\mathbf{s}' + \mathbf{k}_e - \mathbf{k}_d)} \quad (33) \]

where the limit of the integration for \(\mathbf{k}_e \) or \(\mathbf{k}_d \) is given by Eq. (31). We also express the wave numbers in unit of the Fermi wave number, \(\mathbf{k}_F \), to simplify the limit of integration

\[\begin{align*}
\mathbf{k}_e &= \frac{\mathbf{k}_F}{\mathbf{k}_F} \mathbf{l}' \\
\mathbf{k}_d &= \frac{\mathbf{k}_F}{\mathbf{k}_F} \mathbf{m} \\
\mathbf{s}' &= \frac{\mathbf{k}_F}{\mathbf{k}_F} \mathbf{s}'
\end{align*} \quad (34) \]

then Eq. (31) becomes

\[\begin{align*}
|\mathbf{l}'| &< 1 \\
|\mathbf{m}| &< 1 \\
|\mathbf{l}' + \mathbf{s}'| &> 1 \\
|\mathbf{m} - \mathbf{s}'| &> 1
\end{align*} \quad (34') \]

where \(\mathbf{l}' \), \(\mathbf{m} \) and \(\mathbf{s}' \) are dimensionless quantities. Eq. (33) then becomes

\[\Delta \Sigma f_{0n} = \frac{x(1+x)}{3} \left(\frac{M}{\mathcal{A}^2} \right)^2 \frac{\Omega}{(2\pi)^2} \mathbf{k}_F \int_0^\infty r^2 V \, d^3 \mathbf{r} \]

\[\times \int d^3 \mathbf{l}' \int d^3 \mathbf{m} \int d^3 \mathbf{s}' \frac{F'(\mathbf{s}')}{(\mathbf{s}' + \mathbf{l}' - \mathbf{m})} \quad (35) \]

the limit of the integration is given by Eq. (34').
The integrals with respect to \(I_P \) and \(I_N \) were already done by Euler for the problem of the binding energy of the nucleus: see the Appendix.

\[
\int d^3 I_P \int d^3 I_N \frac{1}{S'(S'+I_P-I_N)} = \frac{4\pi^2}{15} \frac{P(S'')}{S'}
\]

where \(P(S') \) is the polynomial given in the Appendix.

Then Eq. (35) becomes (we denote \(S'I \) as \(S \) for the sake of simplicity).

\[
\Delta f_{on} = \chi (1+x) \frac{\Omega}{\Phi^5} \left(\frac{M}{\Phi^2} \right)^2 \frac{\omega}{(2\pi)^6} \frac{\kappa}{F}
\times \int_0^\infty r^2 V d^3 r \int_0^\infty S d S \frac{F(S) P(S)}{S} e^{i \kappa F S} \]

The first integral with respect to \(S \) can be carried out very easily if we take the potential \(V \) as a Gaussian type. According to the effective range theory, \(V \) for the Gaussian potential is given by

\[
V = -S_0 V_0 e^{-\frac{r^2}{\lambda^2}}
\]

\[
V_0 = \frac{2 \cdot 9.21 \cdot e^2}{b^2} \text{MeV} \cdot 1.0^{-26} \text{cm}^2
\]

\[
\lambda = \frac{b}{(2.06)^{1/2}}
\]

where \(b \) is called the intrinsic range of nuclear forces, and is approximately \(2 \times 10^{-13} \text{cm} \). The results of our calculation depend on
the ratio of \(b/\rho_0 \) which will be discussed in Sec. III. \(\rho_0 \) is called the well depth parameter, which determines the depth of the potential. (In the original paper of Blatt-Jackson\(^{21}\), this is denoted as \(S \), but we use \(\rho_0 \) because we already used \(S \)). According to Blatt-Jackson's effective range theory, if \(\rho_0 \approx \rho \), \(b \) is equal to the effective range, which can be determined by experiment and is given by\(^{22}\)

\[
\rho_{0s} = (2.40 \pm 0.28) \times 10^{-3} \text{ cm}
\]

\[
\rho_{0t} = (1.70 \pm 0.028) \times 10^{-3} \text{ cm}
\]

for the singlet and triplet states respectively. (It should be noted that the effective range is usually denoted as \(r_0 \), but in our case \(\rho_0 \) is the nuclear shape parameter and is in this paper taken to be \(1.2 \times 10^{-13} \text{ cm} \). The relation between the intrinsic and effective ranges is discussed in great detail in the paper of Blatt-Jackson\(^{21}\). For the present we shall restrict ourselves to the triplet state, since we are now dealing with the problem of a quasi-deuteron.

For the sake of simplicity of calculation we introduce the following quantity

\[
\frac{M}{\hbar^2} V = -S \cdot W = -S \cdot W_0 \cdot e^{-\frac{x^2}{\rho_0^2}}
\]

\[
W_0 = \frac{M}{\hbar^2} V_0 = \frac{5.83}{\rho_0^2}
\]

Then Eq. (37) becomes

\[
\Delta \Sigma_{\text{on}} = x(1 + x) \frac{\Omega_0}{4\pi} \frac{M}{\hbar^2} \frac{\Omega}{(2\pi)^2} \int_{\rho_0}^{\infty} W e^{-\frac{x^2}{\rho_0^2}} \int_{0}^{2\pi} \int_{0}^{\pi} r^2 \cos \theta \cos \phi S \cos \delta \cos \phi S d\phi \cos \delta d\epsilon
\]

The first integral is evaluated as follows
\[
\int_0^\infty r^2 W e^{i k_F S r} \, dr = W_0 \int_0^\infty r^2 e^{-\frac{r^2}{\lambda^2}} e^{i k_F S r} \, dr \\
= 2\pi W_0 \int_0^\infty r^2 e^{-\frac{r^2}{\lambda^2}} \, dr \int \frac{e^{i k_F S r}}{\ell} \, d\omega \\
= 4\pi W_0 \frac{1}{k_F S} \int_0^\infty r^3 e^{-\frac{r^2}{\lambda^2}} \sin k_F S r \, dr \\
= \frac{\pi^{\frac{3}{2}}}{4} W_0 \lambda^5 (6 - k_F \lambda^2 S^2) e^{-\frac{\lambda^2}{4} k_F^2 S^2}
\]

Inserting Eq. (45) into Eq. (44), we get

\[
\Delta \frac{\Sigma f_{on}}{n} = -S_0 x (1 + x) \frac{\pi^{\frac{3}{2}}}{4} \frac{M}{\lambda^3} \frac{\partial}{\partial \ell} \frac{\lambda^5 W_0}{(2\pi)^{\ell} k_F} \times \int_0^\infty (6 - k_F \lambda^2 S^2) e^{-\frac{\lambda^2}{4} k_F^2 S^2} \frac{f(s)}{F(s)} \, dS
\]

\(f(s)\) in the integral is defined by Eq. (26) and for the potential of Eq. (43) it is given as

\[
\frac{M}{\lambda^2} F(s) = \frac{M}{\lambda^3} \int_0^\infty V e^{i k_F S r} \, dr \\
= -S_0 \int_0^\infty W e^{i k_F S r} \, dr \\
= -S_0 W_0 \int_0^\infty e^{-\frac{r^2}{\lambda^2}} e^{i k_F S r} \, dr \\
= -S_0 W_0 \frac{\pi^{\frac{3}{2}}}{4} \lambda e^{-\frac{\lambda^2}{4} k_F^2 S^2}
\]
Then Eq. (47) becomes
\[\Delta \frac{\Sigma f_{on}}{n} = + S_0^2 \alpha (1+x) \frac{\pi^3}{45} \frac{\Omega}{2^6 \pi^6} \frac{\epsilon^5}{e F} \frac{\gamma^7}{\gamma^8} W_0^2 \]
\[\times \int_0^{\infty} (6 - \frac{2}{e F} \gamma^2 S^2) e^{-\frac{2}{e F} S^2} \frac{dS}{s(S)} \quad (49) \]

If we put \(S = 2u \) Eq. (49) becomes
\[\Delta \frac{\Sigma f_{on}}{n} = S_0^2 \alpha (1+x) \text{const} \times 4 \int_0^{\infty} (6 - 4 \frac{2}{e F} \gamma^2 u^2) e P(u) u d u \quad (50) \]

Let us denote \(h \times \text{const. as } k \). Then inserting Eqs. (18), (32), (40), and (44), \(K \) is given by
\[K = \frac{4}{45} \frac{1}{2^6 \pi^3} \frac{4}{3} \gamma^8 \frac{A}{\gamma^7} \frac{1}{2^7} \left(\frac{\pi}{3} \right)^{\frac{7}{3}} \frac{b^8}{(2.06)^b} \left(\frac{5.53}{b^2} \right)^2 \quad (51) \]
\[= 0.006 A \xi^{42} \quad (\xi = b/\gamma^2) \]

Eq. (50) then becomes \(S_0^2 x (1+x) K J \) where \(J \) is defined by
\[J = \int_0^{\infty} (6 - \beta u^2) e^{-\alpha u^2} P(u) u d u \quad (52) \]
where \(\alpha = 2 \frac{2}{e F} \gamma^2 \quad \beta = 2 \alpha \)

where \(P(u) \) is the polynomial given in the Appendix. If we expand \(P(u) \) into the power series and take up to a certain term as is shown in the Appendix, \(J \) is
\[J = J_1 + J_2 \quad (53) \]
\[J_1 = \int_0^1 (6 - \beta u^2) \left[40 (1 - \log 2) u^3 - 10 u^5 + \frac{4}{3} u^7 + 0.21 u^9 \right] e^{-\alpha u^2} d u \quad (53') \]
\[J_2 = \int_0^\infty (6 - \beta u^2) \left[\frac{10}{3} + \frac{1}{3} \frac{1}{u^2} + 0.16 \frac{1}{u^4} \right] e^{-\alpha u^2} d u \quad (53'') \]

\(J_1 \) can be calculated analytically.
If we use Eqs. (32) and (40), \(a \) is given by

\[
\alpha = 2 \lambda^2 \kappa_F^2 \\
= 2 \times \frac{e^2}{2.06} \frac{1}{\gamma_0^2} \frac{9}{\pi} \left(\frac{2 \pi}{3} \right) \frac{\lambda^2}{
\end{array}
\]

(55)

Using Eq. (55) and the relation \(\beta = 2u \) of Eq. (52), Eq. (54) becomes

\[
J_1 = 2.42 \xi^{-4} \left(1 - 0.128 \xi^{-4} + 0.108 \xi^{-6} \right)
\]

\[
+ e^{2.25 \xi^{2}} \left(3.61 - 5.03 \xi^{-2} - 2.13 \xi^{-4} + 0.0385 \xi^{-6}
\right.

\[
- 0.277 \xi^{-8} - 0.261 \xi^{-10} \right)
\]

(56)

\(J_2 \) is evaluated numerically

\[
J_2 = \int_1^\infty \left[(1.5 \xi^2 + 2.50 \xi^2 - 20) + (0.72 \xi^2 - 2) \right] e^{2.25 \xi^2} \xi^2 d\xi (57)
\]

Of course, the values of \(J_1 \) and \(J_2 \) are dependent on the value of \(\xi \).

However, as we shall see in Sec. III, \(\xi \) is usually greater than 1.5 and for this value of \(\xi \) all other terms except the first one of \(J_1 \) are very small and can be neglected. In other words, we can safely approximate

\[
J = J_1 + J_2 \approx 2.42 \xi^{-4}
\]

(58)

Combining Eqs. (51) and (58) we get

\[
\Delta \sum f_{0n} = 0.0145 A S_0^2 x (1+x)
\]

\[
\approx 0.058 \frac{N Z}{A} S_0^2 x (1+x)
\]

(59)
In this approximation \(\Delta \frac{\gamma}{\eta} \) is independent of \(\xi \). In the second approximation we put \(N = 2 \) as we did in Eqs. (3'), (5), and (6). If we choose the well depth parameter \(S_0 = 1 \), the coefficient of \(N^2/2 \cdot x^2 \) becomes simply 0.058. Let us denote this coefficient as \(C' \).

Combining Eqs. (5) and (18) we get

\[
\sigma_{\text{int}} = \frac{2 \pi^2 e^2}{MC} \frac{NZ}{A} \left\{ 1 + (C + C')x + C'x^2 \right\}
\]

(60)

The value of \(C \) for the Fermi gas with a two body Gaussian potential, which corresponds to our present case, is given by Levinger

\[
C = 1.07 \quad \text{for} \quad r_0 = 1.2
\]

(61)

From our calculation we know

\[
C' \approx 0.06
\]

(62)

We shall see in the next section that the value of \(C' \) does not depend so strongly on the value of \(r_0 \) provided that the latter lies in the range which is regarded as reasonable from our present knowledge concerning nuclei.

Substituting, we obtain as a final result

\[
\sigma_{\text{int}} = 15A \left(1 + 1.13x + 0.06x^2 \right)
\]

(63)

Using the usual value \(x = 1/2 \), we see that \(C \) in Eq. (6) is increased from 1.07 to 1.16. In other words, the effect of the qd model is about 9\% increase of \(C \), but if we put \(x = 1/2 \), the coefficient of \(15A \) is increased from 1.54 to 1.58. In other words, the final result is only 3\% increase. Furthermore, as is stated after Eq. (27) our results should be regarded as an upper limit of the qd effect. Therefore, the true value of this effect is less than this. We conclude that the effect of the qd model on the integrated cross section is to increase it by only a few per cent.
CHAPTER III

THE DEPENDENCE OF THE CORRECTION OF THE INTEGRATED CROSS SECTION ON THE VALUE OF $\xi = b/r_0$

As is stated after Eq. (57) we neglected many terms of Eqs. (56) and (57). Of course, this approximation should be justified. Since all quantities are functions of ξ, we shall investigate the variation of J with respect to ξ, i.e. the dependence of C' on $\xi = b/r_0$.

1. $\xi = 0$

From Eqs. (48) and (51) $a = \beta = 0$

Inserting $a = \beta = 0$ into Eqs. (53') and (53'') we find that J_1 and J_2 have finite values. Since $\Delta \frac{\delta J}{\delta \xi}$ is proportional to KJ and K is proportional to ξ^2 (Eq. 51) C' in this case is zero.

$$C' = 0 \quad \text{for} \quad \xi = 0 \quad (61')$$

2. $\xi \to \infty$

Combining the results of Eqs. (51), (56), and (57) we find

$$C' = 0.06 \quad \text{for} \quad \xi \to \infty \quad (65)$$

3. $0 < \xi < \infty$

In this case we must evaluate C' by numerical calculations using Eqs. (51), (56), and (57). The calculations are performed for $1 \leq \xi \leq 2$ and the results are shown in Figure 1. In order to facilitate the comparison with Levinger's results, which are shown in Figure 2, we plot it with respect to ζ. ($\zeta = \xi' = r_0/b$)

24
As seen in Figure 1 the effect of the dynamical correlation is constant for $0 < \frac{r_o}{b} < 1$. For larger γ, the effect rapidly decreases and approaches zero asymptotically. In other words, this effect is roughly constant as long as the particle lies in the range of nuclear forces of an average nearest particle and rapidly vanishes if it goes outside the range. This seems to be a reasonable conclusion. The value of r_o is taken to be 1.2×10^{-13} cm and since we choose $s_o = 1$, the value of b equals to r_{ot}, 1.7×10^{-13} cm. Then the value of γ is about 0.7. The value of b will change if we change s_o, and also the value of r_o is different from different experiments; but at least from our present knowledge the value of their ratio, γ, lies in the region shown in Figure 1, and in this region the value of C' is constant and is given by Eq. (62). In other words, the approximation of Eq. (57) is justified.
a. Damping Factor Method

The Bremsstrahlung weighted cross section is given by the following formulae

\[\sigma_B = \int \sigma dW \]

\[= \frac{2\pi^2 e^2 \hbar}{MC} \sum_n \frac{f_{on}}{E_n - E_0} \]

\[= \phi \kappa^2 \frac{e^2}{\hbar C} \sum_n \frac{f_{on}}{2M} \frac{E_n - E_0}{E_n - E_0} \]

Inserting Eq. (1) we get

\[\sigma_B = \phi \kappa^2 \frac{e^2}{\hbar C} \sum_n \left| \left(\frac{N}{A} \sum \xi_i - \frac{Z}{A} \sum \xi_j \right) \right|^2 \]

Here \(i \) and \(j \) are referred to a proton and a neutron respectively as before. We introduced an effective charge of \(\frac{N}{A} e \) for a proton and \(\frac{Z}{A} e \) for a neutron.

Eq. (67) can be transformed as follows:

\[\sigma_B = \phi \kappa^2 \frac{e^2}{\hbar C} \left\langle \left(\frac{N}{A} \sum \xi_i - \frac{Z}{A} \sum \xi_j \right)^2 \right\rangle_{oo} \]

\[= \phi \kappa^2 \frac{e^2}{\hbar C} \left[\frac{N^2}{A} \sum_{i\neq i} \left\langle \xi_i \xi_j \right\rangle_{oo} + \frac{Z^2}{A} \sum_{j\neq j} \left\langle \xi_i \xi_j \right\rangle_{oo} + 2 \frac{N^2}{A^2} \sum_{i\neq i} \sum_{j\neq j} \left\langle \xi_i \xi_j \right\rangle_{oo} \right] \]

\[= \phi \kappa^2 \frac{e^2}{\hbar C} \left[\frac{N}{A} \sum \frac{1}{3} \left\langle \xi_i \xi_j \right\rangle_{oo} + \frac{Z}{A} \sum \frac{2}{3} \left\langle \xi_i \xi_j \right\rangle_{oo} \right. \]

\[+ 2 \frac{N}{A^2} \sum_{i\neq i} \sum_{j\neq j} \left\langle \xi_i \xi_j \right\rangle_{oo} \]

\[= \phi \kappa^2 \frac{e^2}{\hbar C} \left[\frac{N}{A} \frac{1}{3} \sum \left\langle \xi_i \xi_j \right\rangle_{oo} + \frac{Z}{A} \sum \left(\frac{N}{3A} + \frac{2}{3} \right) \sum_{i\neq i} \sum_{j\neq j} \left\langle \xi_i \xi_j \right\rangle_{oo} \right. \]

\[- 2 \frac{N}{A^2} \sum_{i\neq i} \sum_{j\neq j} \left\langle \xi_i \xi_j \right\rangle_{oo} \]

\[= \phi \kappa^2 \frac{e^2}{\hbar C} \frac{N}{A} \left[\frac{1}{3} \sum \left\langle \xi_i \xi_j \right\rangle_{oo} + \frac{2}{A} \left(\frac{N}{3} + \frac{2}{3} \right) \sum_{i\neq i} \sum_{j\neq j} \left\langle \xi_i \xi_j \right\rangle_{oo} \right. \]

\[- \frac{2}{A} \sum_{i\neq i} \sum_{j\neq j} \left\langle \xi_i \xi_j \right\rangle_{oo} \]
where S_n is the statistical factor for the singlet and triplet states. The first term is originally given by L_3^S and can be taken from the experimental data of the nuclear radius. The second term $<\sum_{i\neq j} z_i z_j>_{\infty}$ corresponds to the Pauli principle correlation and is calculated by L_K^7. The third term $<\sum_{i \neq j} z_i z_j>_{\infty}$ corresponds to the dynamical correlation which we are now going to discuss. If we put $N = Z$, we obtain

$$\sigma_b = \frac{\alpha^2}{137} A \left[\frac{1}{f} R_0^2 + \frac{4}{A} B_\alpha \sum_{i \leq j} <z_i z_j>_{\infty} - \frac{2}{A} B_\alpha \sum_{i \neq j} <z_i z_j>_{\infty} \right] \tag{69}$$

Therefore, the change of σ_b due to the dynamical correlation, or the qd effect is given by

$$\Delta \sigma_b = -\frac{2\alpha^2}{137} B_\alpha \sum_{i \neq j} <z_i z_j>_{\infty} \tag{70}$$

If we assume the charge independence of nuclear forces (Nuclear forces do not depend on the charges of nucleons.), the dynamical correlation between the singlet n-p pair cancels exactly with that between n-n and p-p pair. Therefore, we shall consider only the triplet n-p pair. We introduce the following variables to simplify the calculation

$$z = \frac{1}{2} (z_i + z_j) \quad (71)$$

$$z_{ij} = z_j - z_i \quad (72)$$

Then $z_i z_j$ becomes

$$z_i z_j = z^2 - \frac{1}{4} z_{ij}^2 \quad (73)$$

In order to calculate $<z_i z_j>_{\infty}$ we use the wave function of Eq. (15)

$$<z_i z_j>_{\infty} = <\Psi | z_i z_j | \Psi>$$

$$= <\Psi + \frac{z}{E_0 - E_n} \Psi | z_i z_j | \Psi + \frac{z}{E_0 - E_n} \Psi>$$
\[= \langle \psi_0 | x_i x_j | \psi_0 \rangle + 2 \langle \sum_n \frac{(V_{ij})_{on}}{E_n - E_o} \psi_n | x_i x_j | \psi_0 \rangle \]
\[+ O[(CV_{ij})_{on}] \]

Since we are now dealing with the problem of the first order perturbation, we neglect the last term. The first term vanishes because it is the integral of an odd function. Using the relation of Eq. (73) the second term becomes

\[= 2 \langle \sum_n \frac{(V_{ij})_{on}}{E_n - E_o} \psi_n | x_i x_j | \psi_0 \rangle \]
\[= 2 \int \int \sum_n \frac{(V_{ij})_{on}}{E_n - E_o} \psi_n x_i^2 \psi_0 \, d\tau_i \, d\tau_j \]
\[- \frac{1}{2} \int \int \sum_n \frac{(V_{ij})_{on}}{E_n - E_o} \psi_n x_{ij}^2 \psi_0 \, d\tau_i \, d\tau_j \]

The first term of Eq. (75) vanishes because of the orthogonality of the wave functions. Finally, the quantity to be calculated (let us call this quantity I)

\[I \equiv \sum_i \sum_j \langle x_i x_j | \psi_0 \rangle \]
\[= - \frac{1}{2} \sum_i \sum_j \int \int \sum_n \frac{(V_{ij})_{on}}{E_n - E_o} \psi_n x_{ij}^2 \psi_0 \, d\tau_i \, d\tau_j \]
\[= \frac{1}{6} \int \int \sum_i \sum_j \sum_n \frac{(V_{ij})_{on}}{E_n - E_o} \psi_n \, d\tau_i \, d\tau_j \]

Here we reversed the order of I_o and E_n as we did in Eq. (23) to simplify the calculation, and also made use of the relation of \[< \frac{r^2}{ij} >_o = 1/3 < \frac{r^2}{n} >_o . \]
Inserting the explicit forms of the functions defined by Eqs. (17), (24), and (25) we obtain

\[I = \frac{1}{3} \frac{M}{\Omega^2} \int \sum_i \sum_j \sum_{ij} \frac{F(x) + \alpha F(x')}{\Omega^2 + \Omega_i^2 - \Omega_j^2} \frac{e^{-i2\pi r \cdot \delta^3 \mathbf{r}}}{r^2 \delta^3 \mathbf{r}} \]

The integral with respect to \(R \) reduces the denominator from \(\Omega^3 \) to \(\Omega^2 \) as in the case of Eq. (21). The calculations are quite similar to those in Sec. II. However, in the case of \(\sigma_{\text{int}} \) we took only the part including \(F(x') \) because the part including \(F(x) \) is small due to the interference of \(\mathbf{u} \) and \(\mathbf{u}' \) as is stated after Eq. (23). In the case of \(\sigma_b \), \(e^{i\pi \mathbf{r}} \) appears in the integral instead of \(e^{i\pi \mathbf{r}'} \) for the case of \(\sigma_{\text{int}} \), therefore, the situation is reversed and the part including \(F(x') \) is expected to be smaller than the part including \(F(x) \). Following the same argument after Eq. (27) we replace in this case \(F(x) \) by \(F(x') \) and regard the resultant value as the upper limit of the contribution of the quark effect. Namely

\[I = (1 + \alpha) \frac{1}{3} \frac{M}{\Omega^2} \int \sum_i \sum_j \sum_{ij} \frac{F(x) e^{i2\pi r \cdot \delta^3 \mathbf{r}}}{\Omega^2 + \Omega_i^2 - \Omega_j^2} \frac{r^2 \delta^3 \mathbf{r}}{r^2 \delta^3 \mathbf{r}} \]

After that the calculation proceeds in a very similar way to that of \(\sigma_{\text{int}} \).

\[I = (1 + \alpha) \frac{1}{3} \frac{M}{\Omega^2} \left[\frac{\Omega}{(2\pi)^3} \right]^3 \int r^2 \delta^3 \mathbf{r} \int \delta^3 \mathbf{r}_i \int \delta^3 \mathbf{r}_j \int \delta^3 \mathbf{r}_k \int \delta^3 \mathbf{r}_l \frac{F(x) e^{i2\pi r \cdot \delta^3 \mathbf{r}}}{\Omega_i^2 + \Omega_j^2 - \Omega_k^2 - \Omega_l^2} \]

Letting \(\gamma \) and \(\Delta \) the quantities are

\[I = (1 + \alpha) \frac{1}{6} \frac{M}{\Omega^2} \left[\frac{\Omega}{(2\pi)^3} \right]^3 \int \delta^3 \mathbf{r} \int \delta^3 \mathbf{r}_i \int \delta^3 \mathbf{r}_j \int \delta^3 \mathbf{r}_k \int \delta^3 \mathbf{r}_l \frac{F(x) e^{i2\pi r \cdot \delta^3 \mathbf{r}}}{\Omega_i^2 + \Omega_j^2 - \Omega_k^2 - \Omega_l^2} \]

(79)
where \(\mathcal{E}_F Z = \mathcal{Z} \) and the limit of the integration is given by Eq. (31) or Eq. (31'). The integrals with respect to \(\mathcal{Z} \) and \(\mathcal{W} \) are exactly the same as the case of \(\sigma_{int} \) and are given in the Appendix.

\[
\int d^3 \mathcal{Z} \int d^3 \mathcal{W} \frac{1}{S(S + \mathcal{Z} - \mathcal{W})} = \frac{4\pi^2}{15} \frac{P(S)}{S}
\]

Inserting this into Eq. (79) we obtain

\[
I = \frac{1 + x}{10} \frac{M}{\mathcal{K}^2} \frac{\Omega}{(2\pi)^3} \mathcal{H}_F \int_0^\infty r^2 e^{-i \mathcal{E} \mathcal{S} r} \int_0^\infty \frac{F(s) P(s)}{S} \frac{d^3 r}{d^3 \mathcal{S}}
\]

However, unlike the case of \(\sigma_{int} \), the integral with respect to \(r \) will diverge. Therefore, we introduce a damping factor \(e^{-\frac{r^2}{\ell^2}} \).

Physically speaking this corresponds to regarding the nucleus as having a Gaussian density distribution. \(\ell \) in this case corresponds to a mean square radius of such a nucleus defined by the following formula

\[
\int_0^\infty \frac{r^2 e^{-\frac{r^2}{\ell^2}} \frac{d^3 r}{d^3 \mathcal{S}}}{r^2 e^{-\frac{r^2}{\ell^2}} \frac{d^3 r}{d^3 \mathcal{S}}} = \frac{3}{5} \mathcal{R}_0
\]

In other words \(\ell \) is given by

\[
\ell = \left(\frac{2}{3} \right)^{\frac{1}{2}} \mathcal{R}_0
\]

Then the first integral in Eq. (81) can be calculated in the same way as Eq. (46)

\[
\int_0^\infty r^2 e^{-i \mathcal{E}_F \mathcal{S} r} \frac{d^3 r}{d^3 \mathcal{S}} \rightarrow \int_0^\infty r^2 e^{-i \mathcal{E}_F \mathcal{S} r} \frac{d^3 r}{d^3 \mathcal{S}}
\]

\[
= \frac{2\pi^2}{\mathcal{S}} \ell^5 (6 - \mathcal{E}_F \ell^2 \mathcal{S}) e^{-\frac{\ell^2}{\mathcal{E}_F^2} \mathcal{S}^2}
\]
After that the calculation again becomes exactly the same as that of Sec. II except \(\lambda \) is replaced by \(\frac{1}{\rho} \):

\[
I = \frac{1+\chi}{90} \frac{M}{\kappa^2} \frac{\Omega}{(2\pi)^5} \kappa_F \frac{\rho^\frac{3}{4}}{4} \left(\frac{2}{3} \right) \frac{1}{\pi} \gamma_0 \int_0^\infty \left(6 - \kappa_F^2 \ell^2 S^2 \right) e^{-\frac{\kappa_F^2 S^2}{4}} \times F(s) P(s) \, d^3S
\]

\[
= \frac{1+\chi}{90} \frac{M}{\kappa^2} \frac{1}{(2\pi)^5} \left(\frac{\pi}{3} \right) \left(\frac{\pi}{2} \right) \rho_0 A_0 \frac{1}{\pi} \gamma_0 \int_0^\infty \left(6 - \kappa_F^2 \ell^2 S^2 \right) e^{-\frac{\kappa_F^2 S^2}{4}} F(s) P(s) \, d^3S
\]

\[= -\frac{1+\chi}{90} \frac{1}{(2\pi)^5} \frac{3}{2} \left(\frac{\pi}{3} \right) \left(\frac{\pi}{2} \right) \rho_0 A_0 \frac{1}{\pi} \gamma_0 \int_0^\infty \left(6 - \kappa_F^2 \ell^2 S^2 \right) e^{-\frac{\kappa_F^2 S^2}{4}} F(s) P(s) \, d^3S\]

(85)

If we put \(s = 2u \) as we did in Sec. II:

\[
I = -S_0 (1+\chi) \frac{1}{90} \frac{\pi^3}{(2\pi)^5} \frac{3}{2} \left(\frac{\pi}{3} \right) \left(\frac{\pi}{2} \right) \rho_0 \gamma_0 A_0 \frac{1}{\pi} \frac{u^3}{\ell^2} \int_0^\infty \left(6 - 4 \kappa_F^2 \ell^2 u^2 \right) e^{-\frac{(\ell^2 + \lambda^2) \kappa_F^2 u^2}{4}} P(u) \, d^3u
\]

\[= -S_0 (1+\chi) \frac{1}{15} \gamma_0 A_0 \frac{1}{\pi} \frac{5.53}{(2.06)^\frac{1}{2}} \ell^2 \int_0^\infty \left(6 - 4 \kappa_F^2 \ell^2 u^2 \right) e^{-\frac{(\ell^2 + \lambda^2) \kappa_F^2 u^2}{4}} P(u) \, d^3u\]

\[= -S_0 (1+\chi) \times 1.73 \times 10^{-4} \ell \gamma_0 A_0 \frac{1}{\pi} \frac{5.53}{(2.06)^\frac{1}{2}} \ell \int_0^\infty \left(6 - 4 \kappa_F^2 \ell^2 u^2 \right) e^{-\frac{(\ell^2 + \lambda^2) \kappa_F^2 u^2}{4}} P(u) \, d^3u\]

(86)
where

\[J' = \int_0^\infty (6 - \beta' u^2) e^{-x' u^2} \mathrm{d}u \]

\[x' = (L^2 + \Lambda^2) \frac{e^2}{e_F} \]

\[\beta' = 4 \epsilon^2 \frac{e^2}{e_F} \]

If we choose \(s = 1, b = r = 1.7 \times 10^{-13} \text{cm} \) (see after Eqs. (42), (43).) Putting \(r_0 = 1.2 \times 10^{-13} \text{cm} \) and \(x = 1/2 \) we obtain

\[I = -5.29 A_3^3 J' \cdot 10^{-30} \text{cm}^2 \]

The calculation of \(J' \) is identical to that of \(J \) in Sec. III, if we replace \(a', \beta' \) by \(a, \beta \). However, in the case of \(J \) the simple relation of \(\beta = 2a \) holds, whereas in the case of \(J, a', \beta' \) are not proportional to each other. If we substitute \(\Lambda, \lambda, \) and \(k_p \) using Eqs. (83), (41), and (33) we find

\[\alpha' = 0.93 A_3^3 + 1.13 \xi^2 \]

\[\beta' = 3.71 A_3^3 \]

where \(\xi = b/r_0 \) as defined in Sec. II. From this we see that the relation between \(a' \) and \(\beta' \) is very complicated.

The calculation is performed in a very similar way to that of \(J \) in Sec. II \(J' \) is decomposed into two parts as in the case of

\[J' = J'_1 + J'_2 \]

\[J'_1 = \int_0^1 (6 - \beta' u^2) \left[40(1 - \log 2) u^3 - 10 u^5 + \frac{5}{3} u^7 + 0.21 u^9 \right] e^{-x' u^2} \mathrm{d}u \]

\[J'_2 = \int_1^\infty (6 - \beta' u^2) \left[\frac{10}{3} + \frac{1}{3} \frac{1}{u^2} + 0.16 \frac{1}{u^4} \right] e^{-x' u^2} \mathrm{d}u \]
However, in the case of \(J \), \(c = 2 \lambda \frac{2}{k^2} = 2.25 \xi^2 \) and is fairly small if \(\xi \) is small. In the case of \(J' \), \(c' \) is given by Eq. (88) and is more than 10, because we are now dealing with a fairly large nucleus. (For a small nucleus the plane wave function which we have been using is not appropriate and our entire calculation becomes invalid in this case). Since \(\alpha' \) is fairly large, \(J'_2 \) can be safely neglected as compared with \(J'_1 \). The expansion of \(J'_1 \) is exactly the same as \(J'_1 \) given in Eq. (54), if we replace \(\alpha \) by \(\alpha' \), and the terms after \(e^{-\alpha'} \) are completely negligible because \(\alpha' \) is at least more than 10. Therefore, we get similarly to Eq. (54),

\[
J' \approx J'_1 \approx 36.822 \alpha'^{-2} (12.274 \beta' + 60) \alpha'^{-3} + (30 \beta + 24) \alpha'^{-4} - (16 \beta' - 5.12) \alpha'^{-5} \tag{93}
\]

The evaluation of \(J' \) is done numerically. However, as we see from Eqs. (89) and (89') \(\alpha' \) is a function of \(A \) and \(\xi \), and \(\beta' \) is a function of \(A \); hence, the value of \(J' \) depends not only on \(\xi \) but also on \(A \). This dependence is different from that of \(J \). Numerical results are listed in Table I.

<table>
<thead>
<tr>
<th>TABLE I Values of</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>216</td>
</tr>
</tbody>
</table>

As we see in Table I, for \(A = 64 \) the sign of \(J'_1 \) changes for \(\xi = 2.0 \): i.e., the results become qualitatively different. This is unreasonable. However, since we assume \(r_0 = 1.2 \times 10^{-13} \text{cm} \), \(\xi = 2.0 \) means \(b = 2.4 \times 10^{-13} \text{cm} \), which is too large and should be excluded.
Furthermore, we use the plane wave as a wave function, which is a fairly good approximation for a heavy nucleus, but may not be so good for such a light nucleus. Therefore, this discrepancy should not be taken so seriously. From other results of Table I we see that the variation of J_1 with respect to E_0 is not so strong for large nuclei.

Combining these results with Eqs. (70) and (87) we get the final results. However, we must determine the statistical factor, S_t, in Eq. (70). Since we are dealing with the triplet state as is stated after Eq. (70), S_t is usually taken as $3/4$, but as we see in Eq. (77) and in other equations, we took the sum with respect to the number of states, and each state has four particles. Therefore S_t is given by

$$S_t = \frac{3}{4} \times 4 = 3$$

Combining Eqs. (70), (87), (94) we get

$$\Delta \sigma E = + \frac{6 \pi^2}{137} \cdot 5.29 A^{3/2} J' \mu B$$

$$= + 2.30 A^{3/2} J' \mu B$$

Since we assume $s_0 = 1$, $b = 1.7 \times 10^{-13}$ cm (See after Eq. (86), the value of E_0 is approximately 1.5. Therefore, we take the results of the second column of Table I. The values of $\Delta \sigma E$ in mb for $A = 64$, 125, 216 are listed in Table II together with the results of previous calculations of the IPM7, 9, 10, for nuclei with approximately the same mass numbers, and also with the experiments.
TABLE II

<table>
<thead>
<tr>
<th>Results of $\Delta \sigma_x$ and σ_x in mb</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>$\Delta \sigma_x$</td>
</tr>
<tr>
<td>σ_x^{cal}</td>
</tr>
<tr>
<td>σ_x^{exp}</td>
</tr>
</tbody>
</table>

| $\frac{\Delta \sigma_x}{\sigma_x}$ (%) | 1.2 | 1.5 | 2.7 | 3.0 | 3.5 | 4.0 |

Calculated and experimental values are for $\text{Cu}^{63,65}$, I^{127}, Bi^{209}, respectively. All these values are taken from Table II of ref. 10. Calculated values are for $r_0 = 1.2 \times 10^{-13}$ cm, $b = 1.7 \times 10^{-13}$ cm, $S_0 = 1$.

a. Khokhlov, ref. 9
b. Levinger, ref. 7
c. Rustgi and Levinger, ref. 11

From Table II, we see that the q_d effect on σ_b is to decrease it by several per cent and this percentage increases with increasing A. Therefore, we shall investigate this effect for infinitely large nuclei. If we put A as infinity in Eq. (86) or (87) we find

$$\beta' = 4a'$$

for $a = \infty$ \hfill (96)

The calculation of J' becomes very simple and quite similar to that of J in Sec. II (In the case of J, $\beta = 2a$)

$$J \approx J_1 \rightarrow -12.274 \frac{A^{-2}}{a} \rightarrow -14.253 A^{-\frac{4}{3}}$$ \hfill (97)

$$\Delta \sigma_x, \lim = -0.023 \frac{A^{\frac{4}{3}}}{mb}$$ \hfill (98)
whereas in the IPM σ_b is given by Eq. (9)

$$\sigma_{IPM} = 0.30 A_{3mL}$$

Therefore

$$\lim_{A \to \infty} \left| \frac{\Delta \sigma_{b}}{\sigma_{b}} \right| = 8\%$$

b. **Box Normalization Method**

Since we used a damping factor $e^{-\frac{r^2}{\alpha^2}}$ in our calculation of σ_b, the results may not be so reliable. In order to test the validity of this method let us try to evaluate σ_b in some other way.

We shall start from Eq. (81) but replace the integration with respect to s by a sum with respect to l. In other words, instead of transforming all sums which appear in Eq. (78) into integrals, we shall transform the first two of them and leave the last one in the form of a sum with respect to l.

$$I = \frac{1 + x}{90} \frac{M}{\alpha^2} \frac{\Omega}{(2\pi)^7} \frac{r}{k} \int r^2 e^{-\frac{r^2}{\alpha^2}} d^3 l = \frac{1 + x}{90} \frac{M}{\alpha^2} \frac{\Omega}{(2\pi)^7} \frac{r}{k} \int r^2 e^{-\frac{r^2}{\alpha^2}} d^3 l = \frac{1 + x}{90} \frac{M}{\alpha^2} \frac{\Omega}{(2\pi)^7} \frac{r}{k} \int r^2 e^{-\frac{r^2}{\alpha^2}} d^3 l = \frac{1 + x}{90} \frac{M}{\alpha^2} \frac{\Omega}{(2\pi)^7} \frac{r}{k} \int r^2 e^{-\frac{r^2}{\alpha^2}} d^3 l \frac{F(s) P(s)}{s}$$

(100)

where the summation with respect to l is a three-dimensional one.

Let us introduce here the box normalization. In other words, we shall assume that the whole system is in a large cubic box and decompose L into its three components. For each component we have

$$\begin{align*}
L_x &= L_x \cdot 2\pi / L \\
L_y &= L_y \cdot 2\pi / L \\
L_z &= L_z \cdot 2\pi / L
\end{align*}$$

(101)
where L is the dimension of the cube, and n_x, n_y, n_z are positive integers including zero. Physically speaking this corresponds to regarding a nucleus as a cubic box with a periodic wave function.

Then the integral in Eq. (100) becomes

$$\int_{r^2} e^{i \frac{2\pi}{L} n_x x} dx \int_{r^2} e^{i \frac{2\pi}{L} n_y y} dy \int_{r^2} e^{i \frac{2\pi}{L} n_z z} dz$$

The integration with respect to y and z is straightforward and gives us a delta function:

$$\int_{-\frac{L}{2}}^{\frac{L}{2}} e^{i \frac{2\pi}{L} n_y y} dy = L \delta_{n_y}$$

$$\int_{-\frac{L}{2}}^{\frac{L}{2}} e^{i \frac{2\pi}{L} n_z z} dz = L \delta_{n_z}$$

When we evaluate the integral we should demand that $n_y = n_z = 0$ because otherwise the above integrals become zero. Since $n_y = n_z = 0$, $n_x = 0$ means $q = 0$. However, since $P(q)$ in Eq. (100) is proportional to q^2 (see Appendix) and $P(q)$ has no singularity at $q = 0$ because of its definition, Eq. (100) becomes zero if $q = 0$. In other words, we must assume $n_x \neq 0$.

In such a case the integral with respect to x can be carried out by partial integration:

$$\int_{-\frac{L}{2}}^{\frac{L}{2}} x^2 e^{i \frac{2\pi}{L} n_x x} dx = \frac{1}{2 \pi^2 n_x^2} L^3 \cos n_x$$

Therefore, for $q \neq 0$,

$$\int_0^\infty r^2 e^{i \frac{2\pi}{L} n_x x} d^3 r \rightarrow 3 L^3 \delta_{n_y} \delta_{n_z} \frac{(-1)^n \ell^3}{2 \pi^2 n_x^2}$$

$$= \frac{6 L^5 (-1)^n}{(2 \pi)^3 n_x^2}$$
Substituting this into Eq. (100) we find for $x = 1/2$

$$I = \frac{1}{16} \frac{M}{k^2} \frac{\lambda_0^2}{(2\pi)^3} \sum_{n_x=1}^{\infty} \frac{(-1)^{n_x}}{n_x^2} \frac{F(a)P(a)}{\eta}$$

(106)

On the other hand if L is very large, q is very small for fixed n_x.

Then from the Appendix

$$\lim_{q \to 0} \frac{F(q)^2 P(q)}{q} = F(0) \lim_{q \to 0} \frac{P(q)}{q}$$

(107)

$$= 10(1 - \log 2) F(0) \frac{q^2}{2k^2}$$

$$= 10(1 - \log 2) \frac{F(0) Random}{} \frac{k}{L} n_x$$

Substituting this into Eq. (106) we get

$$I = (1 - \log 2) \frac{M}{k^2} \frac{\lambda_0^2}{(2\pi)^3} \sum_{n_x=1}^{\infty} \frac{(-1)^{n_x}}{n_x^2} \frac{F(a)P(a)}{\eta}$$

(108)

$$= (1 - \log 2) \frac{\lambda_0^2}{(2\pi)^3} \sum_{n_x=1}^{\infty} \frac{(-1)^{n_x}}{n_x^2} \frac{F(a)P(a)}{\eta}$$

where λ and λ_0 are given in Eqs. (41) and (45).

In order to determine L we shall assume that the volume of

the cube is the same as that of a spherical nucleus of radius R_0.

$$L^3 = \frac{4\pi}{3} R_0^3$$

(109)

$$L = \left(\frac{4\pi}{3}\right)^{1/3} R_0^2$$

(110)

Then I becomes

$$I = (1 - \log 2) \frac{\lambda_0^2}{(2\pi)^3} \sum_{n_x=1}^{\infty} \frac{(-1)^{n_x}}{n_x^2} \frac{F(a)P(a)}{\eta}$$

(111)

From Eqs. (70) and (94) we get

$$\Delta \sigma = -0.04 A^{3/2} mb$$

(112)

here again we assumed $r_0 = 1.2 \times 10^{-13}$ cm and $b = 1.7 \times 10^{-13}$ cm as

before. Comparing with Eq. (9) we get
However, we should regard this value as an over-estimate because we assume that the nucleus is a cube and that the nuclear wave function does not damp at all at the boundary. On the contrary in the former method we assume that a nucleus is a sphere and the wave function damps in a Gaussian way. Therefore, these two methods should be regarded as an upper and lower limit respectively. Since the box normalization method gives us about 13% and the damping factor method gives us several per cent we can conclude that the effect of the dynamical correlation on the bremsstrahlung weighted cross section is a decrease of several to ten per cent.

This is not inconsistent with the preliminary result of Levinger\(^\text{18}\) that \(\alpha_b\) will decrease by about 10%.

\[
\left| \frac{\Delta \sigma}{\sigma} \right| \approx 13\% \quad (113)
\]
CHAPTER V

SUMMARY

The effect of the dynamical correlation, or the effect of the quasi-deuteron model, on the cross sections of photonuclear reaction has been treated using perturbation theory. The results are that this effect increases the integrated cross section, σ_{int}, by about several per cent, and decreases the bremsstrahlung weighted cross section, σ_b, by about the same percentage.

In the above analyses, however, we did not take into account the effect of the hard core of the nuclear two-body potential. It may affect the results for σ_{int} because σ_{int} is the expectation value of $r^{2ij} p_{ij}$, but this effect probably will not be so large as to change the main conclusion. For example, Gomes, Walecka, and Weisskopf have shown that in the case of an attractive potential with a hard core the wave function outside the core is similar to that of the IPM. This seems to support the above prediction. For σ_b this effect is clearly not so large, because σ_b is the expectation value of r^2, the main contribution for which comes from the region of large r, where the effect of the hard core can be regarded as negligible.
The integrations with respect to I^p and I^n for the energy denominator of Eq. (34) have been carried out by Euler for the problem of the binding energy of the nucleus. We shall summarize Euler's calculation. We omit the prime and write S' instead of S'' for the sake of simplicity

\[
D = \int d^3 S \int d^3 P \int d^3 N \frac{1}{S (S + I^p - I^n)}
\]

where a is the auxiliary variable introduced to transform the integrals.

The integration is divided into two parts. Putting $a_s = y$ we get

\[
D_a = \int d^3 S \int_0^{\infty} e^{-a_s^2} \left(\int_0^{\infty} e^{-a_s^2} \right) d\alpha \int e^{-a_s^2} d^3 P \int e^{-a_s^2} d^3 N
\]

where for $u < 1$

\[
P(u) \equiv P(u)
\]

\[
= \log (1 + u) \left[a + \frac{3}{2} u - 2 u^2 + \frac{3}{2} u^3 \right] + 29 u^2 - 3 u^3
\]

\[
+ \log (1 - u) \left[a - \frac{3}{2} u + 2 u^2 - \frac{3}{2} u^3 \right] - 40 u^2 \log 2
\]

41
The error of this approximation is about 0.2%.

for $u > 1$

\[
P(u) \equiv P_2(u)
= \log(u+1) \cdot [4-20u^2-20u^3+4u^5] + 4u^3 + 22u
+ \log(u-1) \cdot [-4+20u^2-20u^3+4u^5] + \log u \cdot [40u^2-8u^5]
\]

\[
\approx \frac{10}{3} \frac{1}{u^4} + \frac{1}{5} \frac{1}{u^3} + 0.16 \frac{1}{u^5}
\]

The error of this approximation is about 1%.
REFERENCES

 M. G. Mayer, Phys. Rev., 78, 16 (1950)

 New York and London (1940), p. 240

13. J. M. Blatt, V. F. Weisskopf, Theoretical Nuclear Physics,
 (1953) p. 227

14. J. S. Levinger, Nuclear Physics to be published.

16. J. S. Levinger, Phys. Rev., 84, 43 (1951)

19. K. A. Brueckner, talk at Ann Arbor Nuclear Physics Conference (1955)
 p. 52, 55.
23. L. C. Gomes, J. D. Walecka, V. F. Weisskopf, Annals of Physics 3,
 241 (1958)
Figure 1. The effect of the dynamical correlation on the integrated cross section as a function of ξ. C' is the coefficient which appears in Eq. (60) and represents the effect of the dynamical correlation. $\xi = r_0 / b$ where r_0 is the nuclear shape parameter. (The nuclear radius is given by $R_0 = r_0^{A^{1/3}}$). b is the intrinsic range of nuclear forces. The "allowed region" shown by the bracket is the region of ξ from our present knowledge about nuclei.

Figure 2. The effect of the exchange force on the integrated cross section calculated using the IPM by Levinger (ref. 8). C is the coefficient which appears in Eq. (6) or (60) and represents this effect in the IPM. ξ is the same as in Figure 1.
VITA

Kazuto Okamoto was born on April 15, 1927, in Tokyo, Japan. He entered The Tokyo Metropolitan First Middle School in 1940 and finished his course in 1944. He entered The First High School (Tokyo) in 1944 and graduated from it in 1948. He entered Tokyo University of Education in 1950, graduated from it in 1953, and was awarded a degree of Master of Science. He then studied in the Graduate School of the same university from 1953 to 1956. After that he left Japan to attend the Graduate School of the Louisiana State University in September, 1956, as a candidate for the Doctor of Philosophy degree in the Department of Physics. He was in the Department of Mathematical Physics in the University of Birmingham, England, from September, 1957, to August, 1958, but he was still enrolled as a graduate student of the Louisiana State University during his stay in England.
EXAMINATION AND THESIS REPORT

Candidate: K. O. Kamoto

Major Field: Physics

Title of Thesis: Effect of Nuclear Forces on the Cross Sections of Photodisintegration Reactions

Approved:

Joseph S. Levering
Major Professor and Chairman

Richard F. Russell
Dean of the Graduate School

EXAMINING COMMITTEE:

R. McDonald

J. M. Reynolds

John H. Barrett

Vincent E. Parker

A. C. Mobley

Date of Examination:

Sept. 19, 1958