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SPECTRAL THEOREM APPROACH TO THE
CHARACTERISTIC FUNCTION OF QUANTUM OBSERVABLES

ANDREAS BOUKAS* AND PHILIP FEINSILVER

ABSTRACT. Using the spectral theorem we compute the Quantum Fourier
Transform or Vacuum Characteristic Function (®, e ®) of an observable
H defined as a self-adjoint sum of the generators of a finite-dimensional Lie
algebra, where ® is a unit vector in a Hilbert space H. We show how Stone’s
formula for computing the spectral resolution of a Hilbert space self-adjoint
operator, can serve as an alternative to the traditional reliance on splitting
or disentanglement formulas for the operator exponential.

1. Introduction

The simplest quantum analogue of a classical probability space (Q, o, i) where
Q) is a set, o is a sigma-algebra of subsets of {2 and p is a measure defined on o
with ©(Q) =1, is a finite dimensional quantum probability space [14] defined as a
triple (H, P(H), p) where H is a finite dimensional Hilbert space, P(H) is the set
of projections (called events) E : H — H and p : H — H is a state on H, i.e., a
positive operator of unit trace. We call trpE the probability of the event E in the
state p. For a quantum observable H, i.e. for a symmetric or Hermitian matrix
H |, the characteristic function or Fourier transform of H in the state p is defined
as trpel™t. If p is a pure state defined in terms of a unit vector u, i.e., if p = |u){(u|
then the characteristic function of H in the state defined by wu is (u, e u). By the
spectral theorem, if H =)\, E,, then for every continuous function ¢ : R — C,

S(H) = 6(An)En.

Therefore, for ¢(H) = e we have

(u, eitHu> = (u, Zeit)‘"Enw — Zem\n (u, Epu),

n

where we have assumed that the inner product is linear in the second and conjugate
linear in the first argument. If the Hilbert space H is infinite dimensional then the
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above sums are replaced by spectral integrals with respect to a resolution of the
identity {E) : A € R} and we have the corresponding formulas

1= [ xapys o) = [ o)aps
and
itH _ Tt d E )
(u, ¢ Ae {u, Exu)

For compact self-adjoint operators H, the above spectral integrals are reduced
to finite or infinite sums over the nonzero eigenvalues of H, see e.g. [17], Theorem
4.2.

The above probabilistic interpretation is based on Bochner’s theorem (see [18]
p. 346) which states that a positive definite continuous function f : R — C |, i.e.,
a continuous function f such that

/ / F(t— $)d(6)d(s) dt ds > 0,
RJR

for every continuous function ¢ : R — C with compact support, can be represented
as

£(t) = / ¢ du(N),

where v is a non-decreasing right-continuous bounded function. If f(0) = 1 then
such a function v defines a probability measure on R and Bochner’s theorem says
that f is the Fourier transform of a probability measure, i.e., the characteristic
function of a random variable that follows the probability distribution defined by
v. Moreover, the condition of positive definiteness of f is necessary and sufficient
for such a representation. The function f(t) = (u, e®*u), where u is a unit vector
and H is a self-adjoint operator as described above, is an example of such a positive
definite function.

In this paper we use this spectral theorem based approach to compute the
characteristic function of several quantum random variables H defined as self-
adjoint sums of the generators of some finite dimensional Lie algebras of interest
in quantum mechanics (the only reason why a Lie structure is assumed is because
splitting the exponential of a sum of operators is usually done through a Campbell-
Baker-Hausdorff type formula that relies on commutation relations).

If H =R" or H = C" for vectors u = (uq, ..., u,) and v = (vy, ..., v,) in H we will
use the standard inner products (u,v) = uv” and (u,v) = uv” respectively. The
identity matrix/operator is denoted by I, while ¢ denotes Dirac’s delta function
defined, for a test function ¢, by

/ 5z — a)o(x) dz — / 5(a — 2)(x) dz = ¢(a).
R R

We define the Fourier transform of f by

fo = wno = a2 [ TN (A,

— 00
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and the inverse Fourier transform of f by

0= () ) = n 2 [ e

— 00

so the inverse Fourier transform of
(27‘,)71/2 <’LL, eitHu>

gives the probability density function p(X) of H.
For a € C, let
R(a;H) = (a— H)™!
denote the resolvent of an operator H. The spectral resolution {Ey |\ € R} of
a bounded or unbounded self-adjoint operator H in a complex separable Hilbert
Space H, is given by Stone’s formula (see [5], Theorems X.6.1 and XI1.2.10))

1 oo
E b)) = lim lim — R(t—e€i; H) — R(t+¢ei; H)) dt
(o) = gt (Bt i) Rt i)
where (a, b) is the open interval a < A < b, R(t £ ei; H) = (t + i — H) ", and the
limit is in the strong operator topology. For a — —oo and b = A we have

Ex=E((=00,A) = lim B ((~00, A+ p))

1 [Med
= lim lim lim — / (R(t —ei; H) — R(t + ei; H)) dt.
p—=0t 60+ e—0+ 270 ) _
In particular (see [16], Theorem 4.31), for f,g € H,

1 [Ae—d
(f,Exg) = lim lim lim —/ (f,(R(t —et; H) — R(t+ei; H)) g) dt.

B p—0+ 50+ e—0+ 27T J_
Thus, for a unit vector u, the vacuum resolution of the identity (terminology
coming from the case when u = ®, the vacuum vector in a Fock space) of the

operator H is given by

1 Aeed
(u, Exu) = plil(l)l+ (slirél+ eliréh o1 / (u,(R(t —ei; H) — R(t + ei; H)) u) dt.
(1.1)

In Section 9 we will show how, using formula (1.1), we can avoid the reliance
on splitting or disentanglement lemmas, such as Lemma 8.3 of Section 8 for the
splitting of operator exponentials, in order to compute the characteristic function
of a quantum random variable. In particular, Stone’s formula frees us from any
dependence on Lie algebraic structures. However, the difficulty of obtaining a
splitting lemma, is replaced by that of computing the resolvent and the resulting
spectral integrals.

— 00

2. Quantum Observables in sl(2,R)

The Lie algebra sl(2,R) of real (2 x 2) matrices of zero trace, is generated [7]

by the matrices
0 0 0 1 1 0
2= (40) =0 o) -0 5)
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with commutation relations
[A,R] = p,[p, R] = 2R, [p,A] = —2A.
We notice that the matrix
H=R-A+p= G _11)
is real symmetric, thus it is a quantum observable. Its eigenvalues are

A= V2, = V2,

with corresponding eigenspaces

Vi={av; :v; = (1 _1\@) ,x € R},
Vo ={av; v = (1 +1ﬁ> ,x € R},

corresponding normalized basic eigenvectors

1-v2 14+v2
vy 4-2v2 Vo Vat2v2
(5% = , U2 = = )
o] 1 [[v2]] 1

4-2/2 Va+2v/2

and eigen-projections

Er = (u1,u1) = ui g

)

2v/2 42\@)

12+v2) 55
Ey = (ug, ug) = ujus = . X
2v2 4+2v2

We notice that F4 and Es are a resolution of the identity, i.e.,

I=FE+F;
and
H = ME; + \E;.
Moreover
cos(v/2t) + z% sin(v/2t) z% sin(v/2t)
oitH

z% sin(v/2t) cos(v/2t) — z% sin(v/2t)
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If u = (a,b) is a unit vector in R? then for t € R,

(u, e™u) = e (u, Byu) + €2 (u, Byu) = e u” Byu + e™2u” Eyu

2 32
= (a® 4 b?) cos(V2t) + iw sin(v/2t)
V2
2 _ 32
= cos(V2t) + iw sin(v/2t),

V2

so H follows a Bernoulli distribution with probability density function

Pas(N) = i ((2 +v2(a? + 2ab — b2)) 5(vV2 = N)

n (2 —V2(a? + 2ab — b2)) 5(V2 + A)) ,
that is, H takes the values A\ = —v/2 and Ay = /2 with probabilities

P(H = —V?2) = i (2— \@(a2+2ab—b2))

and
P(H = 2) = i (2 +V2(a? + 2ab — b2))

respectively. In particular if u = (a,b) is a Fock vacuum vector, i.e. , if we require
[7] that

Au =0 and pu = cu, c € R,
then we find that ¢ = —1 and a = 0 therefore b = £1 and we obtain the charac-
teristic function in the vacuum state ® = (0,=£1),

(®, e ®) = cos(V2t) — z% sin(v/2t),

so H follows a Bernoulli distribution with probability density function

Po.s1(N) = + ((2-v2)s(va—n+ (2+v2) 8(v2+ ).

4
0 1
men-a- (0 )

is also an observable with spectral resolution

1 _1 1
Ho=ME1 4+ By = (-1)- (_21 12) +1- <%
2 32 2

GitHo _ cost isint
isint cost )’

The characteristic function of Hy is

The matrix

SN
N—

and

(u, ™oy = (a® 4+ b?) cost 4 2iabsint = cost + 2iabsint,

so H follows a Bernoulli distribution with probability density function

Pas(N) = (; + ab> S(A—1) + (; - ab> SO\ +1).
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In the Fock vacuum state ® = (0, £1) the characteristic function reduces (see also
[7]) to

(®, e"Hod) = cost,
SO
1 1
while in the states

1
u::l:\ﬁ(l,l)

we have
<u,eitHou> _ eit7
so H follows a discrete probability distribution with probability density function

pi%(l,l)o‘) = 50‘ - 1)7

i.e., in the state defined by u = :I:%(l, 1), H takes the value A = 1 with probability

1. We remark that Hy can also be regarded as a Krawtchouk-Griffiths observable
(see [6], Example 5.12).

3. Pauli Matrices and su(2)

The Pauli matrices o, j =1,2,3, of quantum mechanics,

(0 1 (0 —i (1 0
g1 = 1 0 ,02 = i 0 ,03 = 0 -1/
with commutation relations

[01,02] = 2i03, [02, 03] = 2i01, [03,01] = 2i03,

are Hermitian, i.e., self-adjoint. The matrices ioq, —i09,i03 generate the Lie alge-
bra

su(2) :{(ia ‘.Z) . 4€R,z€C)

z —a

of traceless anti-hermitian (2 x 2) matrices. The spectral decompositions of the
quantum observables corresponding to the Pauli matrices are

oG 7))
1 i
022(_1).(24 i

) (l 3
om0 () ()

ISERENSIEENI
—
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with complex exponentials

pitor _ (Cosh(it) Sinh(it)> _ (cost isint)

sinh(it) cosh(it) isint cost

pito _ (cosh(it) —i sinh(z’t)) _ ( cost sint)

isinh(it)  cosh(it) —sint cost

it
ito‘g — € 0
e - 0 e*it )

while, for u = (a,b) € C? with |a|> + |b|? = 1, using for j = 1,2, 3,
(u, eiu) = 1 (u, Byu) + €2 (u, Fou) = e a? Byu + el Equ,
we obtain the characteristic functions of o1, 09, 03,
(u, €™ u) = cosh(it) + (ba + ab) sinh(it) = cost + i(ba + ab) sint
(u, e"2u) = cosh(it) + i(ab — ba) sinh(it) = cost + (ba — ab) sint
(4, €"730) = |a|2e™ + [bl2e 1,

S0 01, 092,03 are quantum random variables following a Bernoulli distribution with
probability density function

PV = % (14 ba+ab) (A — 1) + = (1 — ba — ab) 6(A + 1),

i

pa(N\) = % (1+ba—ab) 6(A— 1)+ = (1 —ba+ ab) §(\ + 1),
p3(N) = lal*6(X = 1) + [b]*(A + 1),

[\)

respectively.

4. Pauli Matrices and su(1,1)

The matrices

and

1 )
= — = 2
wo=ge=(5 1)

satisfy (see [13]) the su(1,1) Lie algebra commutation relations:
(K1, K| = —iKo, [Ko, K1] = iK>, [K2, Ko] = iK;.
The matrix

. I V2 T Y
HZ(K1+K2)+K02(1_Z _1)

is Hermitian so it is a quantum observable. Its eigenvalues are

A1 = 7§7>\2 = 67
2 2
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with corresponding normalized basic eigenvectors
1-v3 | ;1-V3 1+v3 | ;143
7. T1 3 1 3 Tl 3

1
= yUg = —F—
3—3 1 3+3 1

and eigen-projections

55 Sl 49)

1 3
E1 = uipul = 5 )
3-1 . 3+v3
e S
3+v3 3+1 .
) 3 (1 +10)
= uqu = 3
V3+1 3—V3
\f+3(1 —1) 3
‘We have
I =F+ Es
and
H = AlEl + )\QEQ.
Moreover
cos(‘f ) z%s (@) %sin (@)
pitH _

”1 sin ( ) cos (

If u = (a,b) is a unit vector in C? then for t € R

(u, et y) = ™ (u, Eyu) + €2 (u, Byu) = e a” Eyu + 24T Eyu

i i+l oo, o . [ V3t V3t
:<\/§ba+\/§ab+\/§(|a|—|b|))sm<2>+cos<2>,

so H follows a Bernoulli distribution with probability density function

Pap() = % <1 + % ((a+ (1 +i)b)a+ ((1—1i)a— b)E)) 5 (? _ A)

1 1 . . . V3
2<1\/g((a+(1+z)b)a+((lz)ab)b))6<2+>\>.

In particular, for a =1 and b = 0,

QitH \ V3t i . [V/3t
(u, e u)—cos< 5 >+\/§ <2>7

i.e., H follows a Bernoulli distribution with probability density function

ma =4 (1 55)a (35 -2) +5 (1= ) o (B2,

ﬂ
\_/
~.
&\H
@,
=
—~

S
~—
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while for a =0 and b =1,

(u, ™ u) = cos <\/§t> _ sin <\/§t>
i 2 \/g 2 )

i.e., H follows a Bernoulli distribution with probability density function

mi=3 (1= ) (2] 45 (1 25) s (L 44).

5. The Casimir Element in so(3)

The Lie algebra so(3) of (3 x 3) skew-symmetric matrices is generated by the
matrices

00 0
00 —1],L,=
01 0 ~1

Ly =

with commutation relations
[Ly, Lyl =L,,[Ly, L) =Ly, [L,, L] = Ly.
Associated with Ly, Ly, L, is the self-adjoint central Casimir element
L=1L+ L+ L2 =-2Is,

where I3 is the (3 x 3) identity matrix. For a unit vector u = (a,b,c) in R3 we
have

(u, eitly) = e2it,
so L follows a discrete probability distribution with probability density function
p(A) = 6(A+2),
i.e., in the state defined by w, H takes the value A = —2 with probability 1.

6. Quantum Observables in h(3,R)

The Heisenberg algebra b is the three-dimensional Lie algebra with generators
D, X, h satisfying the commutation relations

(D, X] = h, [D,h] = [X,h] = 0.

A matrix representation of b is provided by the 3-dimensional matrix Lie algebra
h(3,R) defined as the vector space of matrices of the form

0 =z y
A=10 0 z|,z,y,z€R,
0 0 O
spanned by the matrices
0 10 0 0 0 0 01
D=0 0 0)],X=(0 0 1),h=1]10 0 0],
0 0 0 0 0 0 0 0 0
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which are easily seen to satisfy the commutation relations

[D,X] = h,[D,h] = [X,h] = 0.
Clearly, no linear combination of D, X and h can be symmetric on all of R? with
respect to the usual inner product. Nevertheless, the matrix

01 1
H=D+X+h+D+X+h)'=|1 0 1]|=J-1,
110

where J is the all-ones (3 x 3) matrix, is a quantum observable with eigenvalues:
A1 = 2, with multiplicity one and corresponding normalized basic eigenvector

1
u; = —(1,1,1),
1= 5L
and Ao = —1 with multiplicity 2 and corresponding orthonormalized basis eigen-
vectors
1 1
uy = —(—-1,0,1),u3 = —(-1,2,-1).

V2 6

The associated eigen-projections are

1 1 1 1
E1:<U1,U1>=u1u1—§ 11 1
1 1 1
_ T T
By = <UQ,’U2> + <U,3,U3> = U3 U2 + U3 U3
1o -1\ /1 -2 1
:7000+6—24—2
10 1 1 -2 1
2 -1 -1
—— (-1 2 -1,
-1 -1 2
with
I =FE+ Ey,
and

H = ME| + X\ Es.
If u = (a,b,c) is a unit vector in R? then for t € R:
(u, ey = 1 (u, Eyu) + €2 (u, Eyu)

_ (1_ (a+l;+c)2)e—it+ (a+g+6)262it’

i.e., H follows a Bernoulli distribution with probability density function

(a+b+c)?

Pape(A) = (1 - 3> o(A+1)+ M

S\ —2).
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7. Multiplication and Differentiation L?-Operators

The classical Heisenberg Lie algebra of quantum mechanics has generators
P, X, I and non-zero commutation relations among generators

[P, X] = —ihl.

The (self-adjoint) position, momentum and identity operators defined in L?(R,C)
with inner product

1 _
()= = / F@g() de,
by
(X F)(@) = 2 f(2), (P f)(&) = —i b f' (@), (L) (&) = f(x),

1f)(x)
realize the Heisenberg commutation relations on dom(X) N dom(P), where
dom(X) = {f € L*(R,C)) : /ac2 |f(2)|? dz < +oo}
R

and
2

df (x)
dx

dom(P) = { f € L*R,C) : f is absolutely continuous, /
R

daL‘<—&—oo}7

are respectively the, dense in L?*(R,C), domains of X and P (see [8], Sec. 2.3
and [18], Sec VII 3). Functions in the domain of P are continuous and vanish at
infinity (see [15], Section 5.6). Using

a—i—aJr a—aJr
X=vh—— , P=vVh , 7.1
NG Vai (7.1)

we obtain the Boson pair
X+iP  , X-—iP
= , a = ,
V2h V2h

with
[a,a') =1, a* =al, a® =0 ,where ® = ®(z) =7 Ve 5.

We notice that
@[ = (@, ®) = 1.

Moreover
1

22
—erfﬁ ; lim ®(z) =0,
™

r—+oo

o' (z) =

so ® is bounded on R, which means that ® is Lipschitz and therefore absolutely
continuous on R. Since

h3/2
/x2 |®(2)]?de = —— < +oo,/
i 2 R

® will be our prototype unit vector in dom(X) N dom(P).

do(z) |?

1
dr = —= < 400,
dx +

~ pi/2
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Theorem 7.1. If units are chosen so that h = 1, then the vacuum characteristic
function of the quantum observable
H=X+P
18
S 2
(@, P) =7,
i.e., the underlying probability distribution is Gaussian.

Proof. The spectral resolutions of X and P are (see [18], Sec. XI.5 and XI.6)

X:/)\dE,\; P:/)\dEﬁ\:/)\d(UEAU_l),
R R R

where
1), ift <A
E*f(t):{ A,
and
E\=UE\U !,
where
N =en 2 [ epeds = tm @m 2 [ s

is the Fourier transform of f and
UTH)) = U ) (1) = (Uf) (1)

By the Campbell-Baker—Hausdorff formula [11] (see also [7], splitting formula for
the Heisenberg group) we have

o ) s ) 2, ) ine2
etheti — ezt(P+X)+2[th,ti] — ezt(P+X) 5 (—ih) _ 6zt(P-l—X)e—2 ,

where both sides of the above are unitary operators. Therefore,

) . ) ine? ) . a2
ezt(P+X) — ethe'LtXe = _ ethetie T

Thus
; it2 . . it2 . .
<(I),eth(b> _ 6—7<®’etheZth)> — e 3 <e—ZtP(b’etiq)>
it2 . ’ .
=" </ e 1A d(UENU‘l)fb,/e”’\ dE\D)
R R
it2 . - ’
== /e”A dA</ e "N QUENUY)®, E\®)
R R
it2 . - ’
=e 2 //ew‘e””\ dy dyx (ExUr®, U* Ex®).
RJR
Now,
o0 . 2
(UT1®)(t) = (UD)(—t) = (277)—1/2/ e D(s)ds = 7 Ve T,
SO N
_ — _tZ
(ExUT'®) (1) =7 e T x (D).
Similarly,

(Ex®)(t) = P(E)X e 5 (1),
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where
1, ift<A
X(~o00,] (t) = { 0, ift>A\
and
U BAD)(0) = (UEA®)(—1) = (2m) 2 [ e (s (5)ds
>\ .
= (271)_1/2/ e P (s)ds.
Thus
o —
dxdy (E,\/U_1<I>, U E\®) =dydy / (ExU—1®)(t) (U*E\D)(t) dt
— 00

1 ™ Y s
:ﬂ—ﬁd)\d)\/[m € 7 X o) /700 e "eT T dsdt

1 X 2 A t
= ——dydy ez e le™ T dsdt
2 [m [m

1 ’2 A Ly 2
= ——d, (e_A2 / e "N em T ds dA')
™2 —co

e eIV L) dNdN.

:fﬂ(

Therefore, using the integration formula

/ ef(a:v+ib)2 do — ﬁ ;a,beR, a>0,
a

— 00

twice, we obtain

it? ’ ’ A2
(@, eitH ) 767—// QA it (e’* —iAX 77) dy dy
77\/

_ —tT ezt)\’—é2 (/ zt)\———v)\/\ d)\) d\
71—\/» R R

, . ’ 2
_ 1 ”2 eit)\/_¥ (6_2()\/_t)2 / e—(%)\—i\/i()\ —t)) d)\) d)\/
’/T\f R R

e

_ 1+1)f2 2 ’
— /e A 7,+1)t)\ d)\/
R

(%+1)t2 'Lt2 N t(L+1)
R

(1+1)f (6 ﬁ)
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8. Boson and X, P Form of su(1,1)

If Ko, K1, K> satisfy the su(1,1) commutation relations then [13] the change of
basis operators
K. =K, +iKo,K_ = K| —iKs, Ko,

satisfy the commutation relations

[Ko, K] = K4, [Ky, K| = —2K,,
and have the boson realization
1 1 1
K, = 5 (aT)Q,K_ =3 (a)?, Ko = 1 (aa’ +a'a).

Lemma 8.1. In terms of the position and momentum operators X and P of
Section 7, for h=1,

1 1
Ky + K- +Ko=7 (3Xx* - P?) + 51
Proof. By (7.2)
1
(a")* = 5 (X —iP) (X —iP),

QQ:%(X+Z'P)(X+Z'P),
aTa:%(X+iP)(X—iP).

Multiplying out and using

PX =XP—il,
we obtain
(aT)Q:%(X2—P2—2iXP—I),
aQ:%(X2fP2+2iXP+I),
aTa:%(X2+P2+I).
Since
aaT:InLaTa,
we have
K++K,+K0:§(a) +§(a) +Z(aa +a'a)
:%(XQ—P2—2Z'XP—I)+i(X2—P2+2iXP+I)
1/1 1
+7 2(X2+P2+I)+I+2(X2+P2+I))
_Llax2_p2y, L
—4(3X P?) + 31
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Lemma 8.2. With X and P as in Section 7 and h =1,

[ePX7, X P] = 2ibX%e?X", (8.1)
GiDXP p2 _ —2b p2 ibX P (8.2)
(2% P?) = (2b — 46°X? + 4ibX P) "X, (83)

for all b € C.

Proof. The proof can be done by working directly with the X, P commutation
relations. However, (8.1) and (8.3) can be obtained from formulas (vi) and (i),
respectively, of Lemma 3.2 of [1] with the correspondence

1
Sy =-P?, S2=X? 8] = S +iXP.
Formula (8.2) is obtained, in like manner, from (2.11) of Lemma 2 of [2]. O

Lemma 8.3. With X and P as in Section 7, and h =1, for all s € C and a,b € R,

S(@XPHDP?) _ o30(s) ga()X? in(s)X P or(s)P? (8.4)
where
1 /a
a(s) = 2\/;tanh(2\/% s), (8.5)
p(s) = 746/0 q(t) dt = log(sech(2vabs)), (8.6)

r(s) = b/os 2000 gy — b/os (sech(2\/£t))2 dt = ;\/Etanh(zx/@s). (8.7)

Proof. Let R(s) and L(s) be, respectively, the right and left hand sides of equation
(8.4). Then

dL
== (aX?+bP>)L(s), L(0)=1. (8.8)
We will show that
d
dij — (aX® +bP?)R(s) , R(0) =1, (8.9)

as well. That will imply L(s) = R(s) for all s. Clearly R(0) = I. Moreover, direct
differentiation gives
drR 1

el ip’(s)R(s) + ¢ (5)X2R(s) + ip/ (5)e?P(5) 1) X* X peip(s)X P cr(s)P*
s

+ T,/(S)eép(s)eq(s)XQeip(s)XPPQQT(s)PQ )
By (8.1) and (8.2),
X xp = (2ig(s)X* + X P) ea(9X*

and
eip(s)XPP2 _ e—2p(s)P2eip(s)XP.
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Thus
08— WP )R(s) + ¢ ()X Rls) — 29/ (5)a(s) X* B(s) + ip/(5) X PR(s)

1
2
+ 7,/(8)67%p(s)eq(s)Xz132eip(s)XPer(s)P2 )

By (8.3),
1()X* p2 — pea(s)X* | (2q(s) — 4q(s)*X? + 4ig(s) X P) a(5)X*
Thus, using (8.5)-(8.7) to replace p'(s), ¢’(s) and '(s), we obtain

dR
i (aX? 4+ bP*)R(s).
(]
Lemma 8.4. With =1 and X, P as in Section 7, forn € N={1,2 ...},
(XP)™ = (1) Fi"FS(n, k) X*PF,
k=1

where S(n, k) are the Stirling numbers of the second kind.
Proof. Tt is known (see, for example, [4]) that, if [a,a’] = 1 then

(aTa)n = Z S(n, k)aTkak,

k=1

from which the result follows by taking @ = iP and af = X. O

Notice that for each s = it, t € R, using properties of the hyperbolic functions
and (8.5)-(8.7), we see that if ab < 0 then both sides of (8.4) consist of unitary
operators (see, for example, Chapter 2 of [10]) of the form e*/)7T where T is an
unbounded, densely defined, self-adjoint operator and f : R — R. In particular,
using the X, P commutation relations,

eip(it)XP _ eif(t)(XP+PX)e—f(t)I,

where f(t) = @ eR.
Theorem 8.5. In the notation of Lemma 8.3, with s =it, t € R,

3p(
<(I),eit(aX2+bP2)(I)> _ \/iezp( t)

V(i) + (24(it) = 1)(2r(it) - 1)

Proof. By Lemma 8.3,
(D, eit(aX2+bP2)(I)> = (®, 6%p(it)eq(it)X2eip(it)Xper(it)Pz(I)>
= e3P(it) (1) X7 @ (i(I)XPer(i)P* gy,

Using
pdX? _ / PICOL S SN COL / e N gRY;
]R R
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where {E)} and {E!} are the spectral resolutions of X and P respectively, and
the fact that the inner product is linear in the second and conjugate linear in the
first argument, we have

(@, eit(aX2+bP2)(I>> _ <(I),e%p(it)eq(it)Xzeip(it)XPer(it)P2(I)>
— e3p(it) / / eq(it)A2er(it)>\’2d)\ dy (Ex®, ez‘p(it)XPE/X@.
RJR
Using, as in the proof of Theorem 7.1,

(EX(I))(t) = q)(t)X(_oc,,\] (t)7
and
(U1) (1) = 7~ V4e™ 5 = d(t),
we obtain
(B\®) (t) = (UEAU'®) (t) = (Ux_.,,®) (1)

00 A
= (2m)"1/2 / eistx(,x,k](s)cb(s) ds = 2*1/27r*3/4/ St

By Lemma 8.4,
<E)\q)7elp(zt)XPE$\,(I>> = Z ¢ p,'gj ) <E)\q), (XP)”E;\,@)
n=1 .
— i"p(it)" & ks
- Z ol Z(—l) kin=kS(n, k) (Ex®, X* P*E}, @)
n=1 k=1
= Fl)"”“%ﬂn, k)(E\®, X" P*ES, @)
n=1k=1 n:
o0 n 2n—k t n
=SS P gy xy0, PR )
n=1k=1 n.
oo n -k . n
t
=3 PO k) (X B, PREL @),
n=1k=1 '
Since
Xt = /RAkdEA S L /RMkdEﬁu,
we have

(X*E\®, P*E,, @) :/R/RA’“M’“dAdM<EAE,\<1>,E§ij\,<I>)
— /R /R AFM* dpdpr (Emina ) @5 Elpin(aran ®)

:/R/RAkMdedM (/RWEllnin(M,A')q)(t)dt>

1 / / AFAgF min(A,A)  pmin(M,\) (s
—_ M" dady / / et 28 dsdt | .
7T\/§ R JR —o0 —o0o
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If min(A, A) = A and/or min(M, \') = A’ then

min(A,\)  pmin(M,\)
dadn / / 13 () gy
—o0 —o0

Thus we get a nonzero result for min(A,A) = A and min(M,\) = M, ie., for
A < Xand M < ), in which case

1 A N A M AP
<XkE)\<I>,PkES\/(I>> = ﬁ/ / AFMF dpdyy / / etz (57 geqt
™ —00 J —00 —o0 J —00
1Y ‘ 2
7/ / AkMkezMA——(M +A2 )deA
™2 J oo

dxdx (X" E\®, PFE), @) = TAU”“ eI =E VN g\
™

and

Thus

. 2 2L ikp(it)”
dy dy <E,\(I>7 62p(1t)XPES\/(I’> = Z Z %S(n, k)d)\ dy <XkE)\(I), PkES\’CI)>

1 > i ik it)" . / 1 2 12
_ ZZ 2 p(Zt) S(n’k))\kA/kez)\)\ —5(AT+A )dAdA/,

and

, T 1 an = p(it)"
(D’ ezt(aX2+bP2)q) _ egp(lt)
{ )=~7% Z m

/ / IO ’"(“WZZ’CS (n, k)N RN =3O gy gy
k=1

Since S(n,0) = 0 and S(n, k) =0 for k > n,

iisnk S o) ZZSnk
n=1k=1

=0n=0
where we have used the identity (see [9], equation (9.70)),

Z »L _ (e - )"
= n! k!

(Z)\/\) _ eik)\'(e”(“)—l)

)

Thus
<(I)7eit(ax2+bpz)(1)> _ 126%1)(“)/‘/e(q(it)f%))\QJr(r(it)f%))\/2+i/\)\/ep<it) AN
T

Using the integration formula

; 2T
eaac2+,3y2+z'y:cy drdy = ,
/R /]R V72 +4daf
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we obtain

. 2 2 \/ieép(it)
ezt(aX bP*) = )
) = P T e D)@ 1)

]

Corollary 8.6. For h = 1, the vacuum characteristic function of the quantum
observable
H=K,+K_ + K

8

) 6 sech (%) :
(®, e @) = .
3+ 310g2 (sech (%)) — 3tanh? ( f) + 4iv/3 tanh ( f)

Proof. For X, P and ® as in Section 7,

H:K++K_+Ko:l(3X2—P2)+EI.

Thus, by Theorem 8.5 and Lemma 8.3 with a = Z and b = —7, using
tanh(—z) = —tanh(z) ; sech(—x) = Sech(x),

we have

a(it) =~ tan (”5> ,

2

p(it) = log (sech <t\2/§>> ,

r(it) = —%t h( ‘2/§> 7
and

, 9 ezp(it)
R L ,
Vo(it)? + (2q(it) — 1))(2r(it) — 1)

6 sech (i) ’

3+ 3log? (Sech ( ‘f)) — 3tanh’ (%) + 4iv/3 tanh (%)

9. Computing the Vacuum Resolution and the Characteristic
Function with Stone’s Formula

In the following we use Stone’s Formula (1.1) to compute the vacuum resolution
of the identity, i.e., (®, E,®), and the characteristic function

/eitA d(®, E\®),
R
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of the operators X, P and X + P of Section 7.

Theorem 9.1. The vacuum spectral resolution of X is

1 e
(D, E\D) = m/_oo e”% ds.
Moreover, fort € R,
(@, D) =2 7.
Proof. For a € C with Ima # 0 and for s € R,

R(a; X)g(s) = G(s) <= g(s) = (a = X)G(s)
= g(s) = (a—5)G(s)
< G(s) = 9(s) .
a—s
The function G is in the domain of X, since the continuous functions
1 2
Y(s) = m, o(s) = s"(s)
satisfy
lim ¥(s) =0¢€R, Sggloodz(s) =1€eR,

s—too

and are therefore bounded. Thus, since g € L?(R, C),
/ G(s)|2ds < +oo,/ 2 |G(s)|? ds < +o0.
R R

By (L.1),

1 [Ae—d
(®,E7\®) = lim lim lim —/ (P, (R(t —€i; X) — R(t+€i; X)) @) dt

p—0+ 50+ e—0+ 271

A4p—6
= lim lim lim —/ / R(t—e€i; X)— R(t+ei; X)) D(s)dsdt

p—0+ 60+ e—0+ 271
Ap—§ 1 1
= lim lim lim — / / - — - dsdt
p—0+ 50+ e—0+ 270 t—ie—s t+ie—s

_61—1)0+7T3/2/ / (t—s)2+¢ ds di.

Since the continuous (thus measurable) function

_s2

e
(t,S)e(—OO,)\]XR—)meR

is nonnegative, by Fubini’s theorem we can reverse the order of integration and

obtain
(®, E\D) —61_1>I(I)1+ 7r3/2/ / e +€2 dt ds,
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which, since

A
1 1 -1 -
/ . dt=—arctan " =
oo (t—8)2+ €2 € €

1< (s—A) w)
=——l|arctan{ —— | — = |,
€ € 2

1 e 2 [ s—A
P, E\®) = lim —— == .
(@, E\D) elirgl+7r3/2 [We <2 arctan( - >) ds

Splitting the integral as
S A oo
fol
—o0 —oo A

- A
lim arctan <S> = :I:I
€

becomes

we notice that

e—0t 2’

with the minus and plus signs corresponding to the first and second integral re-
spectively. Thus, using the bounded convergence theorem to pass lim,_,g+ under
the integral sign, we obtain

2

1 )\
P E\P) = ——+ % ds.
<a)\> 71_1/2/_006 S

Thus,

(®, "X D) :/eiM d(®, E\®)
R

in 1 -3 g

- &

R VT
L / itA— 2
=— [ T dA
VT R

2

=V2e 7.

Theorem 9.2. The vacuum spectral resolution of P is
1 A 2
(®, E\D) :wff/ e ® ds.

Moreover, fort € R,

(®, ") = ﬁe‘g.
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Proof. For a € C with Ima # 0 and for s € R,
R(a; P)g(s) = G(s) <= g(s) = (a — P)G(s)
— g(s) = <a—|— di) G(s)
< G'(s) —iaG(s) = —ig(s)
— (e_mSG(s))/ = —ije " g(s). (9.1)
Since G is in the domain of P, it follows that lim; 1., G(t) = 0. Therefore,
tiigrnoo le™" G (t)| = tiigrnoo e!M™maG ()] =0, if Ima < 0,

and
lim [e7"G(t)] = lim €'™2|G(t)| =0, if Ima > 0.
t t——o0

——00

For Ima < 0, integrating (9.1) from ¢ to co and then replacing ¢ by s, we obtain

oo
—e"¥G(s) = —i/ e =t g(t) dt,
S

S0

o .

G(s) = z/ e =Yg (1) dt,

while, for Ima > 0, integrating (9.1) from —oo to ¢ and then replacing ¢ by s, we
obtain

G(s) = —i / e g(t) dt.

— 00

Thus,
—i [°__ e Dgt)dt, ifIma>0
R(a; P)g(s) = |
i [ et s=tg(t) dt, if Ima <0
For g(t) = ®(t) we find
—ip VA [T el m0-% gt if Tma > 0
R(a; P)®(s) =
. +2
i/ [ etalsm= g, if Ima <0
Thus,
1 s
(®,E,®) = lim lim lim —/ (D, (R(t — €i; P) — R(t + €i; P)) @) dt

p—0+ 60+ e—0+ 271 00

~ lim 7/ / R(t — ei; P) — R(t + ei; P)) B(s) ds dt

e—0+ 271

:E—>O+ 71'3/2/ /

( (e+zt)s/ —(n+e)w——dw+e(zt )s /S e(e—it)w—% dw) ds dt.
S — 00
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For each t € (—o0, A], using the triangle inequality, the integration formulas

o0 :l: ,“]2 52 o0 S2
eTT T dw = V2me T, e~z ds = V/2m,
— 00 — 00

2
and the fact that, for sufficiently small €, ez < 3 and e*® + e~ < 3, we see that
the function

Fulsit) o= e—% ) (e(e+it)s/ e—(it+e)w—w72 dw + elit=9)s / ole— it)yw— 2 dw)
Ej — 00

satisfies
[fe(s;0)] < f(s) :=9V2me™ 7,

with -
/ f(s)ds =187 < 0.

Thus, by the Bounded Convergence Theorem, we may pass the limit € — 07 inside
the integral with respect to s. Moreover, for a < 0 and t € (—a, A],

\ | stsityas

A
/ 187 dt = (A — a)187 < co.

< 18,

with

Thus, by the Bounded Convergence Theorem, we may pass the limit ¢ — 07 inside
fa’\(...) dt as well, and we obtain

(@, E\®) = limoo@,E((a,)\])(I))

a——

- al}moo eli)r(l;l+ 27'('3/2 / /

x < (e+it)s / —(itrw—5" g | lit=0)s / elemw—14 dw) ds dt
- a—> ) 2773/2 / /

. 8 ) w?
% <ezts/ e—ztw—T dw+ezt5/ e—itw—T d’LU) ds dt
1 A 0o 2. ey . w2

N 73/2/ e_-7+m/ e~ quds di

27T —00 J —c0 —00

A > 7“2+its > —itw—
:2773/2/00/00 2 ds[we 2 dwdt

A

2773/2 . (\/ﬂe 7) (\/?efé) dt

A
— —¢2
= / e " dt.
—0o0

Nl



24 ANDREAS BOUKAS AND PHILIP FEINSILVER

Thus,

) . 1 A2
e (D, B\ D) = / et —e” T dA
R R ﬁ
1 t2

= 7/61‘0\—% d\=+v2e 7.
R

NG

(®, P ) = /

Theorem 9.3. The vacuum spectral resolution of X + P is

+2

(D, E\®) = ~7 dt.

1 )\
L / y
V2T ) oo
Moreover, fort € R,

(@, et XFP) @) = e
Proof. For a € C with Ima # 0 and for s € R,
R(a; X + P)g(s) = G(s) < g(s) = (a — X — P)G(s)

— g(s) = (a —s+ z;i) G(s)
<~ G'(s) +i(s—a)G(s) = —ig(s)
— <ei(f”)a(s)) — _ici(F ) g(s). (9.2

As in the proof of Theorems 9.1 and 9.2, for Ima < 0, integrating (9.2) from ¢ to
oo and then replacing t by s, we obtain

+2

—ei(§_a5) G(s) = —i /00 ei(T_at)g(t) dt,

SO

G(S) _ Z/oo ei(t2582 _a(t_s))g(t) dt,

while, for Ima > 0, integrating (9.2) from —oo to ¢t and then replacing ¢ by s, we
obtain

G(s) = —i/ (= 7a(tis))g(t) dt.
Thus,

—i[° ei(t z

7a(tis))g(t) dt, ifIma>0

2_,2

if ei(t g 7a(tis))g(t) dt, if Ima <0

For g(t) = ®(¢t) we find

L2 g2 : +2
LA el( 7ol 75))77 dt, ifIma>0
R(a; X + P)®(s) =
022

. t2
im VA [ el< 2 7a(t75)>77 dt , if Ima <0
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Thus, as in the proof of Theorems 9.1 and 9.2,
(@, ExD)

= I, 2m/ / R(t —€i; X + P) — R(t + €i; X + P)) ®(s) ds dt

el—l>%1+ 71'3/2 / /

X (/ S (T g w—s)) -5 dw+/s (i) - dw> ds dt

— 00

1 A o “’ _e —t(w— s))—w—
27 N
1 o= (14) 5 +its X -2 it
=532 z ds e 2 dw | dt
a — 00
_ —(144) 5 +zts dS
7r3/2 ‘/
1 )\
2m3/2 /—oo
1 A t2
= m/ \/57'1'677 dt
i — 00

Thus,

dt

5 2
T e T dt

141

<‘b,€it(X+P)(I)> _ / eit)\ d<©,E)\(b> — / 6it)\
R R

1 itA— A2 2
= e’ T d\=e" 7.
\/27T/R

Remark 9.4. Computing the resolvent and the resulting integral in Stone’s formula
for the anti-commutator operator T'= X P + PX is not easy. Not much can be
found on that in the literature. The operator T'= X P + PX is a case where the
Lie algebraic method of using an appropriate splitting lemma, seems to have an
advantage over the analytic method that uses the vacuum spectral resolution. We
will return to the computation of the vacuum spectral resolution of X P 4+ PX, as
well as of aX? + bP?, with the use of Stone’s formula, in the sequel to this paper.

The following Theorem gives an example of how the vacuum spectral resolution
can be computed, once the characteristic function is known.

Theorem 9.5. Fort € R,
(@, et XPTPX) ) — (secht)l/z.
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Moreover, the differential with respect to \ of the vacuum spectral resolution of
XP+ PX is

1—i [ _» 1-2ix 1\ = 142i) 1
d (@, Er0) = — ! <ez*B(1;42,2)+ez*B<1;+42,2>) dx,
/I

where ;
B(z;a,b) = / 21— 1) tat
0
is the incomplete Beta function.

Proof. Using

a + al a—at
X = , P=
V2 V2i
and
[a, aT] =1,
we find that

XP+PX =i((a')?-a?).
By Proposition 3.4 of [1], (or by Proposition 3.9 of [2], see also Proposition 4.1.1
of [7] and Proposition 4 of [3], where it is shown that XP + PX is a continuous
binomial or Beta process), it follows that
(@, e XPHPX) @) = (@, eH(** (D)) ) = (secht)"/?.

Therefore,

1 it \ 1 / it d
[ e 4@, By D) = —— [ ¢ LD, By®) d\ = —— (sech )2,
75 [ B8 = o [ 0 T B8 = o Gkt

which means that

d
5(@,EA<I>>

is the inverse Fourier transform of

1 1/2
secht ,
o (secht)

ie.,

d 1—2 xA 1—2iA 1 EY 1+2iM 1
— (D, E)\P) = "2 B(-1;,—, = 2 Bl-1;,—, = .
d)\< s X > A <€ 2 ( ) 4 72)+€2 < ) 4 a2>)

O
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