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Abstract

Greenberg asked whether arithmetically equivalent number fields share the same

Iwasawa invariants. In this dissertation it is shown that the problem naturally

breaks up into four cases, depending on properties of Galois groups. This analysis

is then used to give a positive answer to Greenberg’s question in some nontrivial

examples.
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Introduction

Take Q̄ to be the algebraic closure of Q. Galois proved that two number fieldsK and

K ′ are isomorphic if and only if the Galois groups Gal(Q̄/K) and Gal(Q̄/K ′) are

conjugate in Gal(Q̄/Q). We also know that K and K ′ share the same zeta function

if and only if Gal(Q̄/K) and Gal(Q̄/K ′) are locally conjugate in Gal(Q̄/Q). While

standard conjugation (which we call global conjugation) is a single action on the

entire group, local conjugation is a distinct action for each individual element.

Because the zeta function is an invariant of a number field it follows that:

K ∼= K ′ ⇒ ζK = ζK′

In 1926, Gassmann showed that the converse need not hold [7]. If K = Q( 8
√
a)

and K ′ = Q( 8
√

16a) with a a square free integer not in the set {1, 2,−1,−2},

then ζK = ζK but K 6∼= K ′. Traditionally, two fields with the same zeta function

are called arithmetically equivalent. This, however, depends on whether or not we

consider Q to be our base field. We will use a broader definition; for our purposes, if

the Galois groups Gal(N/K) and Gal(N/K ′) are locally conjugate in Gal(N/F ),

with N a normal closure of K · K ′ over some field F , then we say K and K ′

are Gassmann equivalent over F . So Gassmann equivalent fields are arithmetically

equivalent. There are four different fields that we need to consider: the base field

F , the two arithmetically equivalent fields K and K ′, and their common normal

closure N .

Any number field K has a class group that we denote Cl(K). This group is

invariant under isomorphism. The class group of K is trivial if and only if the ring

of integers OK is a unique factorization domain. So the order of the class group
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could be considered a measure of how far a ring of integers is from being a unique

factorization domain. The class group is known to be finite and abelian. So the

class group is a direct product of finite p groups where p ∈ Z is prime. The p part

of the class group will be denoted Clp(K). In 1994 Perlis and de Smit showed if

K = Q( 8
√
a) and K ′ = Q( 8

√
16a) and a ∈ {−15,−31,−33,−63, 65, 66,−65,−66},

then Cl2(K) 6= Cl2(K
′) [3].

Fix a prime p ∈ Z. A Zp-tower is an infinite chain of number fields {K ⊂ · · · ⊂

Kn ⊂ · · · } where the Galois group Gal(Kn/K) is cyclic of order pn. This tower

will be denoted K∞/K. A number field K has degree n = r1 + 2 · r2 where r1

and r2 are the number of real embedding and complex embeddings respectively.

For any number field K there are exactly 1 + r2 independent Zp-towers. This is a

corollary of Leopoldt’s conjecture which P. Mihălescu proved in 2009 [10]. What

this indicates is that a number field K will have at least one Zp-tower, namely the

cyclotomic tower. When K is real this tower is totally real Zp-tower.

Iwasawa studied the class groups of these Zp-towers and showed that for any

Zp-tower there are integer values λ, µ, ν and n0 such that for any n ≥ n0 we have:

pλn+µp
n+ν =| Clp(Kn) |

These values are called the four Iwasawa invariants. Often they are referred

to as the three Iwasawa invariants. This is understandable since the formula is

a statement about an infinite tail. One might ask if two towers share the same

Iwasawa invariants. The towers could have different values of n0, but the p parts of

the class group could still coincide on a tail. So the values λ,µ and ν may initially

be different, but after a given shift (see lemma 3.2), we will see the values λ,µ and

ν are the same.
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Iwasawa’s student R. Greenberg asked whether the Iwasawa invariants of cyclo-

tomic Zp-towers over a pair of arithmetically equivalent fields are the same. We

generalize his question in chapter 3 as follows:

Do parallel towers over Gassmann equivalent fields share the same Iwasawa in-

variants?

J. Oh has shown that the λ invariants of parallel cyclotomic towers over Gassmann

equivalent feilds are the same [11].

Take F∞/F to be our Zp-tower. We see in lemma 3.4 part a) that Fn ⊂ K

implies that Fn ⊂ N and by part b) that Fn ⊂ K if and only if Fn ⊂ K ′. So there

are two values: c which is the largest integer such that Fc ⊂ K, and d which is the

largest integer such that Fd ⊂ N .

We call the value d the lag of the tower. This is because there is a canonical

isomorphism from the Galois groups of Kd and K ′d over Fd to the Galois groups

of Kj and K ′j over Fj for all j ≥ d. So once we establish Gassmann equivalence

at level d then Gassmann equivalence will be preserved for the remainder of the

tower.

But Kd and K ′d might not be Gassmann equivalent over Fd. By Theorem 3.8

part a), Kd and K ′d will be Gassmann equivalent over F0. So take b ≤ c to be

maximal such that Kd and K ′d are Gassmann equivalent over Fb. By lemma 3.7

Kd and K ′d are Gassmann equivalent over Fd if and only if they are Gassmann

equivalent over Fc. Thus, we have Gassmann equivalence at level d (hence for the

rest of the tower) if and only if b = c. We call c− b the obstruction and we call c

the quasi-obstruction. This is because c = 0 implies that c− b = 0. Based on these

values, the tower can fall in to one of four possible categories.

The first category is called the trivial category. If d ≥ 0 and Kd and K ′d are

isomorphic, then we call the tower trivial. This is because isomorphic fields will al-
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ways share Iwasawa invariants. In this category the answer to Greenberg’s question

is always yes.

The second category is called the simple category. We call the tower simple

when d = 0. There are two reasons for this name. The first reason is that whenever

Gal(N/F ) is simple, d = 0 automatically. The second reason is that when d = 0

there is a canonical map from Gal(N/F ) to Gal(Nj/Fj) for any given j ≥ d.

The third category is called the reducible category. In this case, Kd and K ′d are

Gassmann equivalent over Fd, but are not isomorphic. Any reducible tower over

base field F0 can be considered as a simple tower over base field Fd. So we can

consider the reducible case and the simple case to be the same.

Both the simple case and the reducible case will yield the canonical isomorphism.

So in answering Greenberg’s question these two categories could be considered as

the same category.

Our last category will be the latent category. This is when Kd and K ′d are not

Gassmann equivalent over Fd. This holds if and only if c 6= b. We use the word latent

because a local conjugation is hidden within the group Gal(N/Fd) but revealed

when we expand to group Gal(N/F0).

When H and H ′ are locally conjugate in G, we can call (G,H,H ′) a Gassmann

triple. The local conjugation is a bijection. So | H |=| H ′ | and [G : H] = [G : H ′].

We call the value [G : H] the degree of the triple. There are exactly 19 Gassmann

triples of degree at most 15, up to isomorphism [1]. Using GAP4, we determine the

possible properties these 19 groups could have if realized as Galois groups. Any

Gassmann triple will be the base of some simple tower. One example would be

when p does not divide the order of G. But could any of these groups fall into the

other three tower categories? We answer this question in chapter 4.
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We note that these definitions give a possible blue print for the Galois groups,

but give no indicatioin if such groups can be realized as Galois groups within an

actual Zp-tower. At this point, we do have examples of “latent groups,” but we do

not have examples of “latent towers.”

We have a specific result in chapter 5. If K = Q( 8
√
a) and K ′ = Q( 8

√
16a) with

a a square free integer not in the set {1, 2,−1,−2}, then Ki
∼= K ′i when i ≥ 1 for

any Zp-towers K and K ′. This result follows from an analysis of the Galois groups,

and in all cases the towers must fall into the trivial category. Thus the answer to

Greenberg’s question will be yes.

Suppose that H = Gal(N/K) and H ′ = Gal(N/K ′) are locally conjugate in

G = Gal(N/Q). The modules Q(G/H) and Q(G/H ′) are isomorphic. We can take

any matrix mapping Q(G/H) to Q(G/H ′) and by canceling denominators, we can

construct a matrix with entries in Z. Possibly the determinant will change. This

will yield a homomorphism from Z(G/H) to Z(G/H ′). This matrix could be an

isomorphism from Zp(G/H) to Zp(G/H ′) as Zp(G)-modules. If this is the case then

Clp(K) = Clp(K
′) [14].

To determine if Clp(K) = Clp(K
′) we need to compute invertible matrices map-

ping Z(G/H) to Z(G/H ′). A matrix is called doublly stochastic if the sum of the

entries in every row is equal to the sum of the entries in every column. We show that

these matrices are doubly stochastic. However, we show something even stronger.

If a matrix has entries in ring R we call the matrix general doubly stochastic if

any value r ∈ R occurs the same number of times in every row and the same

number of times in every column. We see that general doubly stochastic implies

doubly stochastic. By proposition 6.11 all these matrices will be generally doubly

stochastic. If p does not divide the determinant of such a matrix then we will be

able to map Clp(K) to Clp(K
′).
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We apply these matrices to our four types of towers. We skip the trivial case

because the answer to Greenberg’s question is yes. Both the simple and reducible

cases will yeild the canonical group isomorphism. The canonical map will preserve

the same doubly stochastic matrices from level d to level j with j ≥ d.

In the latent case, all matrices at level d will have determinant 0. Thus p will

divide the determinant for all primes p. However we can construct matrices for Kd

and K ′d over Fb with nonzero determinant and matrices for Kj and K ′j over Fb with

nonzero determinant, where j ≥ d. But the base field Fb will remain fixed. So as

j tends to infinity, the dimension of the matrix will also tend to infinity. However,

by lemma 6.18, if there is a matrix A at level (Kd, K
′
d, F0) such that p - det(A)

then there is a matrix A∗ at level (Kj, K
′
j, F0) such that p - det(A∗).

So the algorithm for solving Greenberg’s question will be as follows. Take K and

K ′ Gassmann equivalent over F . Compute our values c,b and d.

Step 1) If Kd
∼= K ′d then Kj

∼= K ′j for all j ≥ d and the answer to Greenberg’s

question is yes.

Step 2) If b = c we have either a simple or reducible tower. In both of these

cases there will be a doubly stochastic matrix A at level (Kd, K
′
d, Fd). If p - det(A)

then Clp(Kd) ∼= Clp(K
′
d). But Clp(Kj) ∼= Clp(K

′
j) using the same matrix A, and the

answer to Greenberg’s question is yes.

Step 3) If b 6= c we have a latent tower and such a matrix can not be constructed

for Kd and K ′d over Fd. However such a matrix A can be constructed for Kd and

K ′d over Fb. If p - det(A) then Clp(Kd) ∼= Clp(K
′
d) and Clp(Kj) ∼= Clp(K

′
j) using a

larger matrix A∗ with p - det(A). The answer to Greenberg’s question is yes.

6



Note if all such matrices are divisible by p then our method will not yield an

answer to Greenberg’s Question.

In the final chapter, we attempt to better understand these matrices by realizing

the Gassmann triples under geometric construction. Listing the triples in order by

index, the first four triples will have indices of 7,8,8 and 11. Note that the matrices

will map Zp(G/H) to Zp(G/H ′). So the index of the triple is the dimension of the

matrix. The parent group G acts transitively on both G/H and G/H ′. Thus G

acts transitively on the rows and the columns of the matrix.

The parent group of the triple with index 7 will be the simple group of order

168. This is the automorphism group of Fano plane. The subgroup that fixes a

single vertex will be H and the subgroup that fixes a line of the Fano plane will

be H ′.

The parent group of one triple of index 8 is GL(3, 2), which has order 48. Geo-

metrically, we construct the affine geometry of order 3, which has 9 vertices and 12

lines. By omitting one vertex we will have 8 vertices and 8 lines. Again, the group

that fixes a vertex will be H and the group that fixes a line will be H ′.

The other triple of index 8 will have a parent group of order 32. To construct

this group geometrically, take the 8 vertices to be the corners of a cube. Then

twist the top face 45 degrees. Instead of considering lines with 3 vertices, we need

to consider planes with 4 vertices. Under this construction, there are 10 planes

determined by 4 vertices, but this includes the top and bottom planes which will

only map to each other. Group G will act transitively on the remaining 8 planes.

Thus, the group that fixes a vertex will be H, and the group that fixes one of these

8 planes will be H ′.

7



All three of these constructions are matroids. The subgroup H fixes an element

of the matroid, while H ′ fixes a circuit. Can this construction be generalized to

any Gassmann triple?

The parent group of the triple with index 11 will be the simple group of order

660 and the subgroups H and H ′ are both isomorphic to the automorphism group

of a buckyball (or soccer ball). But can we realize this group of order 660 as the

automorphism group on 11 vertices? There is such a construction in E. Brown’s

“Fabulous (11, 5, 2) Biplane”. Again H will fix a vertex, but H ′ will fix a collection

of 5 vertices which Brown calls a “block” or a “variety.”

As a matroid, this block would be a circuit of order 5. That would make the

dimension 5 − 1 = 4 and geometric constructions are difficult to visualize in di-

mensions greater than 3. So although this matroid construction is interesting, it

is not practical for our purposes. There is more information in a matroid than we

actually need. Simply taking vertices and blocks as in Brown’s construction will

be enough.

The appendix has a matrix for each of the 19 triples with degree less than

16. DeSmit has listed the values of p for which Zp(G/H) 6∼= Zp(G/H ′) as Zp(G)-

modules for each of the 19 triples. We do not verify his result here. However for

each triple we construct a matrix with determinant that is a power of a single

prime. And in each case the prime is the value p for which Zp(G/H) 6∼= Zp(G/H ′)

according to deSmit.
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Chapter 1
Local Conjugacy and Gassmann
Equivalent Groups

Unless stated otherwise the lettersB,B′, G,H,H ′,M, V,W,X and Y will be groups,

possibly infinite, with the following properties.

• H and H ′ are subsets of G

• W �G such that W ⊂ H ∩H ′

• M �G such that M 6⊂ H ∩H ′

• B = H ∩M and B′ = H ′ ∩M

• The groups V , X and Y will be arbitrary

Let x, y ∈ G. The notation x ∼G y denotes that x is conjugate to y in G.

Definition 1.1. Let H ≤ G and H ′ ≤ G. We say that H and H ′ are locally

conjugate in G (or LC in G) if there is a bijection φ : H → H ′ such that for each

h ∈ H then φ(h) ∼G h. The map φ is called a local conjugation. We denote that

H and H ′ are locally conjugate in G by H ∼locG H ′.

Definition 1.2. If there is an element g ∈ G for which gHg−1 = H ′ then H and

H ′ are globally conjugate denoted H ∼G H ′.

Notice that H ∼G H implies the H ∼locG H ′. This follows directly from the

definitions. But does the converse hold? If H ∼locG H ′ there may not be a single

element in G that conjugates H and H ′.

Definition 1.3. If H and H ′ are locally conjugate in G but not conjugate in G,

then we say that H and H ′ are non trivial local conjugates in G (or NTLC).
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Example 1.4. Let G = {αaβbγc} with the following relations.

o(α) = 8 βα = α3β

o(β) = 2 γα = α5γ

o(γ) = 2 βγ = γβ

This group can also be denoted (C8 o V4). If we let H =< β, γ >= {e, β, γ, βγ}

and H ′ =< β, α4γ >= {e, β, α4γ, α4βγ} then by taking φ to be the bijection taking

each displayed element of H to the corresponding displayed element of H ′ we have

eee−1 = e = φ(e)

eβe−1 = β = φ(β)

αγα7 = αα35γ = α4(α8)4γ = α4γ = φ(γ)

α2βγα6 = α2βα30γ = α2βα6(α8)4γ =

= α2βα6γ = α2α18βγ =

= α4(α8)2βγ = α4βγ = φ(βγ)

Thus H ∼locG H ′. By way of contradiction suppose there is some g = αnβmγk ∈ G

for which gHg−1 = H ′. Now gHg−1 = αn(βmγk)H(βmγk)−1α−n = αnHα−n. So

without loss of generality we can suppose m = k = 0. Now:
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αneα−n = e

αnβα−n = αnα−3nβ = α−2nβ = α6nβ

αnγα−n = αnα−5nγ = α−4nγ = α4nγ

αnβγα−n = αnβα−5nγ = αnα−15nβγ =

= α−14nβγ = α2nβγ

This forces:

a) α6nβ = β and 6n ≡ 0 (mod 8)

b) α4nγ = α4γ and 4n ≡ 4 (mod 8)

But a) implies that n is even while b) implies that n is odd. This is a contradicition.

This example shows us that H ∼locG H ′ 6⇒ H ∼G H ′ .

Lemma 1.5. Let X be a subgroup of Y . Then H and H ′ are locally conjugate in

G iff H ×X and H ′ ×X are locally conjugate in G× Y .

Proof: ⇒ Let φ : H → H ′ be a local conjugation in G. Define ψ : H × X →

H ′ × X by ψ(h, x) = (φ(h), x). There is g ∈ G such that φ(h) = ghg−1. Hence

(g, 1Y )(h, x)(g, 1Y )−1 = (ghg−1, 1Y x1Y ) = (φ(h), x) and ψ is a local conjugation.

⇐ Let ψ : (H ×X)→ (H ′×X) be a local conjugation in G×Y . Notice for any

h ∈ H there is some (g, y) ∈ G×Y so that ψ(h×1X) = (g×y)(h×1X)(g×y)−1 =

(ghg−1, yy−1) = (ghg−1, 1Y ) and we have that ψ(h, 1X) ∼G×Y (h, 1X). Hence ψ

induces a bijection from H × {1X} to H ′ × {1X}. So define φ : H → H ′ to be the

bijection induced by ψ. Thus h ∼G φ(h) for each h ∈ H. Therefore φ is a local

conjugation. 2

Recall that gG denotes the conjugacy class of g in G.
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Definition 1.6. (Gassmann’s condition) The triple (G,H,H ′) is called a Gassmann

triple if for all g ∈ G we have that | gG ∩H |=| gG ∩H ′ |

Lemma 1.7. If (G,H,H ′) is a Gassmann Triple then H and H ′ are locally con-

jugate in G.

Proof: Suppose |gG ∩ H| = |gG ∩ H ′| for all g in G. Fix α ∈ H and take any

bijection ψα : αG∩H → αG∩H ′. Note as α varies over H the sets αG∩H partition

H. Now define ψ : H → H ′ so that its restriction to each equivalence class αG ∩H

is ψα. So ψ is a bijection. If h ∈ H then ψ(h) ∈ hG ∩ H ′. Thus ψ(h) ∈ H ′ with

ψ(h) ∼G h. Therefore ψ is a local conjugation from H to H ′. 2

We will see in Proposition 1.15 that the converse also holds.

Proposition 1.8. The following are equivalent.

a) H and H ′ are locally conjugate in G

b) H/W and H ′/W are locally conjugate in G/W

c) H × V and H ′ × V are locally conjugate in G× V

d) H × 1V and H ′ × 1V are locally conjugate in G× V

Proof: Note that a)⇔ c) is an application of Lemma 1.5 where Y = X = V and

a) ⇔ d) is an application of Lemma 1.5 where Y = V and X = 1V . We need only

check that a) ⇔ b).

a) ⇒ b)

Let φ : H → H ′ be a local conjugation in G. Fix g ∈ G. We want to show that

| (gW )G/W ∩H/W |=| (gW )G/W ∩H ′/W |. So let Sg = {x ∈ G | xW ∼G/W gW}.

Let Tg = H ∩ Sg and let T ′g = H ′ ∩ Sg.
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If h ∈ Tg then φ(h) ∈ H ′. But φ(h) ∼G h and hW ∼G/W gW thus φ(h)W ∼G/W

gW . So φ(h) ∈ Sg and φ(h) ∈ T ′g. Thus the image of Tg through φ is a subset of

T ′g. By symmetry the image of T ′g through φ−1 is a subset Tg. Since φ and φ−1 are

both injective it follows that φ is a bijection from Tg to T ′g. And | Tg |=| T ′g |.

If yW = xW and x ∈ Tg then y ∈ Tg by construction. Thus for all x ∈ Tg

we have that xW ⊆ Tg; likewise for all x ∈ T ′g we have that xW ⊆ T ′g. But by

construction

x ∈ Tg iff xW ∈ {gWG/W ∩H/W}.

Thus if we take x ∈ Tg then

| gWG/W ∩H/W |=| Tg | / | xW |=| Tg | / | W | .

Likewise

x ∈ T ′g iff xW ∈ {gWG/W ∩H ′/W}

and | gWG/W ∩H ′/W |=| T ′g | / | W |.

Hence

| gWG/W ∩H/W |=| Tg | / | W |=| T ′g | / | W |=| gWG/W ∩H ′/W | .

So (G/W,H/W,H ′/W ) forms a Gassmann triple. Therefore by Lemma 1.7 it fol-

lows that H/W and H ′/W are locally conjugate in G/W .

b) ⇒ a)

Let ψ : H/W → H ′/W be a local conjugation in G/W . Fix g ∈ G. We want

to show that | gG ∩ H |=| gG ∩ H ′ |. It is enough to show that | gG ∩ hW |=|

gG ∩ ψ(hW ) | for all h ∈ H.

Fix h ∈ H. Since ψ is a local conjugation there is αW ∈ G/W so that (αW )(hW )(α−1W ) =

ψ(hW ). Let T = gG ∩ hW . Notice αTα−1 ⊆ gG ∩ ψ(hW ) and αTα−1 ⊆ gG

with | T |=| αTα−1 |. Hence | gG ∩ hW |≤| gG ∩ ψ(hW ) |. By symmetry
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| gG ∩ hW |≥| gG ∩ ψ(hW ) | and

| gG ∩ hW |=| gG ∩ ψ(hW ) |

This holds for all h ∈ H. And since:

H =
⋃

hW∈H/W

hW and H ′ =
⋃

hW∈H/W

ψ(hW )

We have that:

| gG ∩H |=|
⋃

hW∈H/W

gG ∩ hW |=
∑

hW∈H/W

| gG ∩ hW |

and

| gG ∩H ′ |=|
⋃

hW∈H/W

gG ∩ ψ(hW ) |=
∑

hW∈H/W

| gG ∩ ψ(hW ) |

So it follows that | gG ∩ H |=| gG ∩ H ′ |. Hence (G,H,H ′) forms a Gassmann

Triple. Therefore by Lemma 1.7 it follows that H and H ′ are locally conjugate in

G. 2

We can make a similar statement about global conjugacy.

Proposition 1.9. The following are equivalent.

a) H and H ′ are globally conjugate in G

b) H/W and H ′/W are globally conjugate in G/W

c) H × V and H ′ × V are globally conjugate in G× V

d) H × 1V and H ′ × 1V are globally conjugate in G× V

Proof: Suppose (g×v) ∈ G×V . Then (g×v)(H×V )(g×v)−1 = H ′×V will imply

that (g× v)(H × 1V )(g× v)−1 = H ′ × 1V which in turn implies that gHg−1 = H ′.
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So a)⇒ c)⇒ d). If gHg−1 = H ′ then (g× 1V )(H ×V )(g× 1V )−1 = H ′×V . Thus

d) ⇒ a). We now need to check that a)⇔ b)

a)⇒ b) Suppose there is g ∈ G so that gHg = H ′. So because W �G we have

(gW )(h ·W )(g−1W ) = (ghg−1)W with ghg−1 ∈ H ′. Thus (gW )(H/W )(g−1W ) ⊂

(H ′/W ). Hence (gW )(H/W )(g−1W ) ⊃ (H ′/W ) by symmetry and (gW )(H/W )(g−1W ) =

(H ′/W ).

b) ⇒ a) Suppose (gW )(H/W )(g−1W ) = (H ′/W ) with g ∈ G. Fix h ∈ H. So

(gW )(h·W )(g−1W ) ∈ (H ′/W ). So because W�G we have that (ghg−1)W ∈ H ′/W

and gHg−1 ⊂ H ′. By symmetry g−1H ′g ⊂ H and gHg−1 = H ′ completing the

proof. 2

Remark 1.10. Suppose X and Y are subgroups of G. Then for all γ ∈ G we have

that γ(X ∩ Y ) = γX ∩ γY

Proof: Take g ∈ γ(X∩Y ). So γ−1g ∈ X∩Y ⊂ X thus g ∈ γX. Likewise g ∈ γY .

Hence g ∈ γX ∩ γY

Now take g ∈ γX ∩ γY . So g ∈ γX and γ−1g ∈ X. Likewise γ−1g ∈ Y . Hence

γ−1g ∈ X ∩ Y and g ∈ γ(X ∩ Y ). 2

This remark will apply when acting on the right or the left.

Lemma 1.11. If H and H ′ are locally conjugate in G, then B and B′ are locally

conjugate in G.

Proof: Suppose that φ : H → H ′ is a local conjugation in G. Take b ∈ B

arbitrary. Since b ∈ H there is g ∈ G such that gbg−1 = φ(b). Since b ∈ M and

M �B′ we have for some g ∈ G that φ(b) ∈ gMg−1 = M . But φ(b) ∈ H ′ and thus

φ(b) ∈ M ∩ H ′ = B′. Thus φ(B) ⊆ B′. By a symmetric argument φ−1(B′) ⊆ B.

But φ is a bijection. Hence φ(B) = B′ and B and B′ are locally conjugate in G. 2
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Lemma 1.12. If H and H ′ are globally conjugate in G, then B and B′ are globally

conjugate in G.

Proof: Suppose gHg = H ′ for g ∈ G. Thus

gBg−1 = g(H ∩M)g−1 = (gHg−1) ∩ (gMg−1) = H ′ ∩M = B′. 2

Definition 1.13. Let H be any subgroup of G. The we define the fixed point

character of H in G as follows:

χG/H = #{γH ∈ G/H | gγH = γH}.

Lemma 1.14. Assume | H | is finite. Let g ∈ G, let CG(g) denote the centralizer

of g. Then:

χG/H(g) =
| gG ∩H || CG(g) |

| H |

Proof: Notice for all g and γ in G we have that

gγH = γH iff γ−1gγH = H iff g ∈ γHγ−1.

But γH = γhiH for all hi ∈ H. Thus

χG/H(g) = #{γH | gγH = γH} = #{γH | gγ ∈ γH}

= #{γH | g ∈ γHγ−1} =
#{γ ∈ G | g ∈ γHγ−1}

| H |

So it is enough to show that

#{γ ∈ G | g ∈ γHγ−1} =| CG(g) || gG ∩H |

We have two cases:

Case 1) gG ∩H = ∅ iff ∀γ ∈ G, g 6∈ γHγ−1 and our formula holds.

Case 2) If gG∩H 6= ∅ let | gG∩H |= m with m ≥ 1. Take gG∩H = {h1, . . . , hm}.

For each hi there is γi ∈ G so that γigγ
−1
i . Let S = {γ1, . . . , γm}. Note that
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| S |= m since the γi’s are pairwise distinct. Suppose γ ∈ G with γ−1gγ ∈ H. So

γ−1i gγ = hi for some i. Thus γ−1gγ = γ−1i gγi. Now set α = γγ−1i . Then γ = αγi

and γ−1i (α−1gα)γ = γ−1gγ = γ−1gγi. By cancelation g = α−1gα and α ∈ CG(g).

Conversely take γi ∈ S and α ∈ CG(g). Thus γiα ∈ {γ ∈ G | g ∈ γHγ−1}.

Therefore

#{γ ∈ G | g ∈ γHγ−1} =| S || CG(g) |= m· | CG(g) |=

=| gG ∩H || CG(g) | =| gG ∩H || CG(g) |

completing the proof. 2

Proposition 1.15. Assume | H | is finite. The following are equivalent:

a) χG/H = χG/H′

b) (G,H,H ′) forms a Gassmann triple

c) H and H ′ are locally conjugate in G

Proof: a) ⇒ b) Suppose that χG/H(g) = χG/H′(g) for all g ∈ G. We want to

show Gassmann’s condition holds. By our formula in lemma 1.14 we need only

show that | H |=| H ′ |. Notice χG/H(1g) = χG/H′(1g) and [G : H] = [G : H ′]. So

| H |=| H ′ | and by lemma 1.14 | gG ∩H |=| gG ∩H ′ | for all g ∈ G.

b)⇒ c) Lemma 1.7.

c) ⇒ a) Suppose that ψ : H → H ′ is a local conjugation in G. Fix g in G.

With out loss of generality suppose that |gG ∩ H| ≥ |gG ∩ H ′|. If |gG ∩ H| = 0

then |gG ∩ H ′| = 0 and we are done. So take h ∈ gG ∩ H. Hence h ∼G g and

ψ(h) ∼G h thus ψ(h) ∼G g with ψ(h) ∈ H ′. So ψ induces a map from gG ∩H to

gG ∩H ′. Therefore |gG ∩H| ≤ |gG ∩H ′| and |gG ∩H| = |gG ∩H ′|. It follows that

| H |=| H ′ |. Thus by lemma 1.14 a) holds. 2

Remark 1.16. Suppose G/M is abelian. If H ∼locG H, then MH = MH ′.
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Proof: Let φ : H → H ′ be a local conjugation in G. Now suppose h ∈ H and

γ ∈ G such that φ(h) = γhγ−1. Because G/M is abelian we have:

Mφ(h) = Mγhγ−1 = (Mγ)(Mh)(Mγ−1)

= (Mγ)(Mγ−1)(Mh) = γγ−1Mh = Mh

The remark follows directly. 2

Remark 1.17. Suppose G = MH. For any m1 ∈M it follows that m1gH = gH ′ if

and only if m1mB = mB where g = mh with m ∈M and h ∈ H.

Proof of remark: Suppose m1mB = mB. Then m1gH = m1mhH = m1mH =

mbH for some b ∈ B. But B ⊂ H thus m1gH = mH = mhH = gH.

Suppose m1gH = gH, so m1gH = mhH = mH. So there is h2 ∈ H so that

mh2 = m1gh
−1 = m1m. Thus h2 = m−1m1m, but m−1m1m ∈ M . Hence h2 ∈

M ∩H and m1m ∈ m(M ∩H) = mB. Therefore m1mB = mB. This proves the

remark. 2

Proposition 1.18. Suppose H and H ′ are locally conjugate in G and G/M is

abelian.

a) B and B′ are locally conjugate in M if and only if B and B′ are locally

conjugate in MH

b) If G = MH then B and B′ are locally conjugate in M .

Proof of a): ⇒ If φ : H → H ′ is a local conjugation in M , then φ : H → H ′ is

also a local conjugation in MH.

⇐ Because G/M is ableian MH = MH ′ Because H ∼locG H ′ if follows that

| H |=| H ′ |,| B |=| B′ | and [H : B] = [H ′ : B′].
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Suppose that χMH/B = χMH′/B′ in MH = MH ′. Fix m ∈M . We want to show

that χM/B(m) = χM/B′(m). So fix mjB ∈ M/B and hiB ∈ H/B. Notice B � H

and so we have that hiB = Bhi. Thus:

m(mjB) = mjB ⇔ m(mjB)hi = mjBhi ⇔ m(mjhiB) = mjhiB

But this is true for all hiB ∈ H/B. So χMH/B(m) = [H : B]χM/B. By symmetry

χMH′/B(m) = [H ′ : B′]χM/B′ . Hence [H : B]χM/B = [H ′ : B′]χM/B′ and χM/B =

χM/B′ . Therefore B ∼locMH B′ implies that B ∼locM B′.2

Proof of b): By lemma 1.11, H ∼locG H ′ implies that B ∼locG B′. By our work in

part a), B ∼locMH B′ if and only if B ∼locM B′. By assumption MH = G. Therefore

our claim holds. 2

Remark 1.19. The group G acts on G/H by left translation. This gives the group

homomorphism π : G → Sym(G/H). Recall that this action is called faithful if

| ker(π) |= 1G.

Remark 1.20. Notice also G acts on G/H ′ by π′ : G→ Sym(G/H ′). We will see in

Proposition 1.25 if H and H ′ are local conjugate in G then that ker(π) = ker(π′).

So if H and H ′ are locally conjugate, π is faithful if and only if π′ is faithful.

For our purposes we assume that ker(π) and ker(π′) are both finite.

Lemma 1.21. ker(π) =
⋂
g∈G(gHg−1)

Proof: Let γ ∈ ker(π) and g ∈ G be arbitrary. We want to show that γ ∈ gHg−1;

that is γg ∈ gH. Since γ ∈ ker(π) it follows that γgH = π(γ)(gH) = gH. But

γg ∈ γgH. Thus γg ∈ gH and γ ∈ gHg−1. Since g was arbitrary in G, it follows

that γ ∈
⋂
g∈G(gHg−1)

Now take γ ∈
⋂
g∈G(gHg−1). Let xH ∈ G/H. Notice γ ∈ xHx−1 so γx ∈ xH

thus γxH = xH. Therefore γ ∈ ker(π). 2
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Corollary 1.22. If x ∈ ker(π) and x ∼G y then y ∈ ker(π).

Proof: Let x ∈ ker(π) and x ∼G y. So there is z ∈ G such that zxz−1 ∈⋂
zg∈G(zgHg−1z−1) =

⋂
g∈G(gHg−1) = ker(π) 2

Remark 1.23. If V �G and V ≤ H then V ≤ ker(π).

Proof of remark: By definition gV g−1 = V for all g ∈ G. Thus gV g−1 = V for

all g ∈ G. Applying lemma 1.22 completes the proof. 2

We will make use of this remark in Chapter 2. For 1.24 and 1.25 we assume that

H ∼G H ′.

Lemma 1.24. ker(π) ≤ H
⋂
H ′

Proof: By lemma 1.21 ker(π) =
⋂
g∈G(gHg−1) ≤ H. So we need only check

that ker(π) ⊆ H ′. Take φ : H → H ′ a local conjugation in G. So by lemma 1.21

φ(ker(π)) ⊆ H ′. Take h′ ∈ φ(ker(π)) There is h ∈ ker(π) such that φ(h) = h′.

Hence h′ ∼G h with h ∈ ker(π).

By lemma 1.22 we have that h′ ∈ ker(π). Thus φ(ker(π)) ⊆ ker(π). Therefore

ker(π) = φ(ker(π)) ⊆ ker(π) = φ(ker(π)) ⊆ H ′. 2

Proposition 1.25. ker(π) = ker(π′)

Proof: Let a ∈ ker(π) and γ ∈ G be arbitrary. Notice γaγ−1 ∼G a. By lemma 1.22

we have that γ−1aγ ∈ ker(π). But γ ∈ G was arbitrary. Thus a ∈
⋂
γ∈G γH

′γ−1 =

ker(π′) and ker(π) ⊆ ker(π′). And by symmetry ker(π) = ker(π′). 2

Lemma 1.26. Suppose V � GV such that G ∩ V is trivial. If we fix αiH,αjH ∈

G/H and g ∈ G then

g(αiH) = αjH ⇔ gv(αiHV ) = αjHV for all v ∈ V

20



Proof:⇒ Suppose g(αiH) = αjH. Fix v ∈ V . Because V is normal in G we have

g(vαiHV ) = (gαiH)V = αjHV .

⇐ Suppose gvαiHV = αjHV for all v ∈ V . Take v = 1V and α−1j gαi ∈ HV . So

there is h ∈ H such that h−1α−1j gαi ∈ V . But h−1α−1j gαi ∈ G with G ∩ V trivial.

So h−1α−1j gαi = 1G ∈ H. Thus α−1j gαi = 1G ∈ hH = H. Therefore α−1j gαiH = H

and gαiH = αjH. 2

Remark 1.27. Suppose W = ker(π). Let H/W ∼G/W H ′/W with π : G→ (G/H ′)

be defined as above. Suppose also that [H : W ] <∞. Then (G/W , H/W , H ′/W )

is a faithful Gassmann triple.

Proof of remark: From Proposition 1.8 H/W ∼G/W H ′/W . Let G∗ = G/W ,

H∗ = H/W and H ′∗ = H ′/W .

Let π∗ : G∗ → Sym(G∗/H∗) be defined so π∗(g∗)(y∗H∗) = g∗y∗H∗ for each

g∗ ∈ G∗ and x∗H∗ ∈ G∗/H∗.

By lemma 1.21 ker(π∗) =
⋂
g∗∈G g∗H∗g

−1
∗ . So let

yW ∈
⋂
g∗∈G g∗H∗g

−1
∗ be arbitrary. Hence for each g ∈ G there is h ∈ H so that

yW = (gW )(hW )(gW )−1 = ghg−1W .

Thus y ∈
⋂
g∈G(gHg−1W ) = (ker(π))W = W and yW = W . But W = 1G∗ .

Therefore ker(π∗) = ker(π′∗) is trivial and (G/W,H/W,H ′/W ) is a faithful G.T. 2

LetWH denote the smallest normal subgroup ofG that containsH. Note that the

intersection of all normal subgroups of G containing H is again a normal subgroup

containing H. Thus WH can be consider to be this intersection. So if H ≤ W �G

then WH ≤ W .

Lemma 1.28. Suppose H ∼locG H ′. Then WH = W ′
H .
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Proof: Let W be any normal subgroup of G containing H. Let h′ ∈ H ′. So

there are h ∈ H and g ∈ G such that h′ = ghg−1. Since W is normal in G and

h ∈ H ≤ W we have that h′ = ghg−1 ∈ gWg−1 = W .

So W ′
H is a normal subgroup containing H. Thus W ′

H ≥ WH and WH = W ′
H . 2

Suppose H ≤ X ≤ Y and H ′ ≤ X. The following two statement will follow

directly from the definitions.

Remark 1.29. If H ∼X H ′ then H ∼Y H ′.

Remark 1.30. If H ∼locX H ′ then H ∼locY H ′.

Take groups Gbig and Gsmall such that Gbig ≥ Gmid ≥ Gsmall ≥ H and Gsmall ≥

H ′. Suppose H and H ′ are NTLC in Gmid. Is it possible to construct such groups

so that H ∼Gbig
H ′ but H 6∼locGsmall

H ′ ? To clarify this question observe the table

below.

TABLE 1.1: Comparing global conjugacy and local conjugacy

H and H ′ within this group are locally conjugate globally conjugate
Gbig yes ?
Gmid yes no
Gsmall ? no

So our assumption is that H ∼locGmid
H ′ while H 6∼Gmid

H ′. So in row Gmid the

entries are yes in the first column and no in the second column. By remark 1.30

and the contrapositive of 1.29 there is a yes in the upper left and a no in the lower

right. But what answers can be placed in the upper right and lower left?

Example 1.31. Let Gmid = {αaβbγc} be a finite group where the relations of α,

β and γ are defined in example ??. Now define an element δ so that:
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o(δ) = 2 δα = αδ

βδ = δβ γδ = α4δγ

Let Gbig =< α, δ, β, γ > and Gsmall =< α4, β, γ >. As in example ?? take

H =< β, γ >= {e, β, γ, βγ} and H ′ =< β, α4γ >= {e, β, α4γ, α4βγ}. So Gbig ≥

Gmid ≥ Gsmall ≥ H and Gsmall ≥ H ′. Since H and H ′ forms a NTLC in Gmid it

follows that H ∼Gbig
H ′ and that H 6∼locGsmall

H ′. Now:

δeδ = δ2e = e

δβδ = δ2β = β

δγδ = δα4δγ = δ2α4γ

δβγδ = δβα4δγ = δ2βα4γ = α4βγ

Hence H ∼Gbig
H ′. But Gsmall is an ableian group. Thus xyx−1 = y for all x,

y ∈ Gsmall. Therefore H 6∼locGsmall
H ′. Thus Gbig, Gmid, Gsmall, H and H ′ satisfy the

table below.

TABLE 1.2: Potential global conjugacy and local conjugacy

H and H ′ within this group are locally conjugate globally conjugate
Gbig yes yes
Gmid yes no
Gsmall no no

This example leads to a definition that will play an important role in subsequent

chapters.

Definition 1.32. Suppose H and H ′ are both subgroups of Gsmall. We say that

H and H ′ forms a latent triple if H and H ′ are not locally conjugate in Gsmall,

but there is some Gbig ⊇ Gsmall such that H and H ′ are locally conjugate in Gbig.
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We use the word latent, which means hidden, because there is a local conjugation

that is not realized in Gsmall. The group Gsmall does not have enough elements to

make H and H ′ locally conjugate, but Gbig does. We can now apply this definition

to example 1.31

TABLE 1.3: Latent triple

triple locally conjugate globally conjugate type
(Gbig, H,H

′) yes yes trivial
(Gmid, H,H

′) yes no reducible
(Gsmall, H,H

′) no no latent

For our purposes Gbig will be clear in context. Additionally we will be concerned

with the case when Gsmall is a normal subgroup of Gbig
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Chapter 2
Gassmann Equivalent Fields

All fields in this chapter are number fields. We let E,F,K,K ′, L,N,X and Y be

the number fields such that

• Let F ⊂ N is a normal extension

• F ⊂ E ∩ L

• F ⊂ K ∩K ′

• KK ′ ⊂ N

• X and Y are arbitrary

The following lemma is a standard result from Galois theory.

Lemma 2.1. Suppose X is normal over X ∩ Y . Then under the restriction map

Gal(XY/Y ) ∼= Gal(X/(X ∩ Y )) and this map is a canonical isomorphism.

Proof: Let [X : (X∩Y )] = n. It follows from the primitive element theorem that

there is some α ∈ X so that (X ∩ Y )[α] = X. Thus XY = Y [α]. Let f(x) be the

characteristic polynomial of α in X ∩ Y . So f is monic and irreducible in X ∩ Y .

Since X is normal in X ∩ Y we can take, {α1, α2, · · · , αn} ⊆ X to be roots of f .

By way of contradiction, suppose there exist g(x), h(x) ∈ Y [x] monic such

that 0 < deg(g) < deg(h) and f(x) = g(x)h(x). So there are αi1 , αi2 , · · · , αim ∈

{α1, α2, · · · , αn}. So that g(x) = (x − αi1) · · · (x − αim) ∈ Y [x]. Hence g(x) ∈

Z[α1, α2, · · · , αn] and the coefficients of g are in X. Thus g(x) ∈ (X ∩ Y )[x] and

g(x) is a nontrivial divisor of f(x). This is a contradiction. Therefore f is irreducible
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X ∩ Y

Y

XY

X

FIGURE 2.1: Canonical Isomorphism: Proposition 2.1

in Y . Thus Gal(XY/Y ) ∼= Gal(X/(X∩Y )) since they are determined by the same

characteristic polynomial f(x).

Now let φ : Gal(XY/Y )→ Gal(X/(X∩Y )) be the restriction map φ(σ) = σ |X .

Take σ1,σ2 ∈ Gal(XY/Y ) distinct. So there is some β ∈ XY such that σ1(β) 6=

σ2(β). Take β = Σnjaj with nj ∈ X and aj ∈ Y for all j. Then σt(β) = Σσt(nj)aj

for t ∈ 1, 2. But σ1 and σ2 both fix Y and σ1(β) 6= σ2(β), Hence there is some

ns ∈ X such that σ1(ns) 6= σ2(ns). Thus φ(σ1)(ns) 6= φ(σ2)(ns) and φ is injective.

Take φ̃ : Gal(X/(X ∩ Y )) → Gal(XY/Y ) with φ̃(σ) = σ̃ such that if α ∈ X

and β ∈ Y then σ̃(αβ) = σ(α)β. Thus σ̃(Y ) = Y and φ̃ ∈ Gal(XY/Y ). So

φ(φ̃(σ))(αβ) = φ(σ̃(αβ)) = σ̃(αβ) |X= σ(α). This shows φ is surjective and thus

bijective. Therefore Gal(XY/Y ) and Gal(X/X ∩ Y ) are canonically isomorphic.

2

We now note the relationship between global conjugacy and isomorphic subfields

of normal number field.

Lemma 2.2. Let G = Gal(N/Q). Let H = Gal(N/K). Then for any σ ∈ G we

have that σHσ−1 = Gal(N/σ(K))
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Proof: (Lemma 2.8.7 in Weintraub[16]) Let β ∈ K and τ ∈ H. Then στσ−1(σ(β)) =

στ(β) = σ(β). So all elements that fix σ(K) are also in σHσ−1. Thus σHσ−1 ≥

Gal(N/σ(K)).

Now take φ ∈ Gal(N/σ(K)). Fix β ∈ K and (σ−1φσ)(β) = σ−1(φ(σ(β))). But

φ fixes σ(K). So (σ−1φσ)(β) = σ−1σ(β) = β. Thus σ−1φσ fixes K. By definition

σ−1φσ ∈ H. Therefore Gal(N/σ(K)) ≤ σ−1Hσ.

Therefore σHσ−1 = Gal(N/σ(K)). 2

Theorem 2.3. Let H = Gal(N/K) and H ′ = Gal(N/K ′). Then K ∼= K ′ if and

only if H and H ′ are globally conjugate in G = Gal(N/Q).

Proof: ⇒ Let σ : K → K ′ be an isomorphism. So by lemma 2.2 we have H ′ =

Gal(N/K ′) = Gal(N/σ(K)) = σHσ−1. Thus H and H ′ are conjugate.

⇐ Suppose H ′ = σHσ−1 for some σ ∈ G. So by lemma 2.2 we have Gal(N/K ′) =

H ′ = σHσ−1 = Gal(N/σ(K)). So σ : K → K ′ is an isomorphism. 2

Definition 2.4. We say K and K ′ are Gassmann equivalent fields in F , denoted

GE over F , if Gal(N/K) and Gal(N/K ′) are locally conjugate in Gal(N/F ).

When F = Q we call the fields arithmetically equivalent. But for our purposes

is more appropriate to use this broader definition.

Notice this is a definition with respect to our base field F and our normal

extension N is suppressed. There is no ambiguity here in light of the following

remark.

Remark 2.5. LetN1 andN2 be any finite normal extensions of base fields containing

both K and K ′. Let G1 = Gal(N1/F ) and G2 = Gal(N2/F ). Then

Gal(N1/K)∼G1

locGal(N1/K
′)⇔ Gal(N2/K)∼G2

locGal(N2/K
′)

27



Proof of remark: Take N3 to be the normal closure of N1N2 with respect to F .

Let G = Gal(N3/F ),W1 = Gal(N3/N1),W2 = Gal(N3/N2). So G1 = G/W1 and

G2 = G/W2. Let H = Gal(N2/K) and H ′ = Gal(N2/K
′). So by proposition 1.8

the remark follows. 2

Proposition 2.6. Let G = Gal(N/F ) and H = Gal(N/K). Take π : G →

Sym(G/H) defined in remark 1.19 and let Ñ be the field fixed by ker(π). Then Ñ

is a normal closure of K with respect to F .

Proof: Take N1 a field such that K ⊆ N1 ⊆ Ñ and N1 is normal with respect

to F . So notice N1 ⊆ Ñ ⊆ N both normal. Thus Gal(N/Ñ) and Gal(N/N1) are

both normal in G. So by remark 1.23 we have Gal(N/N1) ≤ ker(π) = Gal(N/Ñ).

Thus Ñ ⊆ N1 but N1 ⊆ Ñ and Ñ = N1. Therefore Ñ is a normal closure of K

with respect to F . 2

Corollary 2.7. If K and K ′ are GE over F then they share a normal closure .

Proof: By Lemma 1.22 ker(π) = ker(π′). So the field Ñ fixed by ker(π) contains

both K and K ′. But by prop 2.6 Ñ is a shared normal closure of both K and K ′.

2

Proposition 2.8. a)If K and K ′ are GE over F then KE and K ′E are GE over

F .

b)Suppose that E and NL are both normal over L so that E ∩ NL = L. The

following are equivalent

i) KL and K ′L are GE over L

ii) KE and K ′E are GE over L

iii) KE and K ′E are GE over E

28



NE

KE

K

E

F

K ′E

K ′

B

H/B

H
M

G/M

G

B′

H ′/B′

H ′

FIGURE 2.2: Gassmann equivalent fields: Proposition 2.8 part a)
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K
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K’

H ′ × V

H

V
H × V

G

V

G× V

H ′

V

FIGURE 2.3: Gassmann equivalent fields: Proposition 2.8 part b)

Proof of a): Let G = Gal(NE/F ), H = Gal(NE/K), H = Gal(NE/K ′)

and M = Gal(NE/E). So B = H ∩ M = Gal(NE/KE), B′ = H ′ ∩ M =

Gal(NE/K ′E). Part a) follows from lemma 1.11.

Proof of b): Let G = Gal(NE/E), H = Gal(NE/KE),H ′ = Gal(NE/K ′E)

and V = Gal(E/L). So G × V = Gal(NE/L). By lemma 2.1 Gal(K ′E/K ′L) ∼=

Gal(KE/KL) ∼= Gal(NE/NL) = V and the fixed fields of H × V and H ′ ×

V are KL and K ′L respectively. So H × 1V = Gal(NE/KE) and H ′ × 1V =

Gal(NE/K ′E). Thus by 1.8 part b) follows. 2
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Definition 2.9. We say K and K ′ are isomorphic fields over F denoted K ∼=F

K ′ if Gal(N/K) and Gal(N/K ′) are globally conjugate in Gal(N/F ).

Notice K ∼=F K ′ ⇒ K ∼=Q K ′ ⇔ K ∼= K ′. We use this definition to clarify the

Galios groups in which Gal(N/K) and Gal(N/K ′) are conjugate.

Proposition 2.10. a)If K and K ′ are isomorphic over F then KE and K ′E are

isomorphic over F .

b)Suppose that E and NL are both normal over L so that E ∩ NL = L. The

following are equivalent

i) KL and K ′L are isomorphic over L

ii) KE and K ′E are isomorphic over L

iii) KE and K ′E isomorphic over E

Proof: The Galois groups are constructed as in Proposition 2.8. Part a) follows

from 1.12 and part b) follows from 1.9.

Proposition 2.11. Suppose L ⊆ N . Then KE ∼=F K
′E if and only if KL ∼=F K

′L

Proof: Take G = Gal(NE/F ), H = Gal(NE/KL),H ′ = Gal(NE/K ′L) and

W = Gal(NE/NL). So H/W = Gal(NL/KL) and H ′/W = Gal(NL/K ′L).

Thus by Proposition 1.9 KE ∼=F K
′E if and only if KL ∼=F K

′L.

Remark 2.12. If KE = K then NE = N .

Proof of remark: If KE = K then NE = (NK)E = N(KE) = NK = N 2

The following proposition is similar to Theorem 1.6 of Chapter 3 in Klingen ??.

Proposition 2.13. Let E be a normal extension of F such that Gal(E/F ) is

abelian and let K and K ′ be GE over F . Then

a) K ∩ E = K ′ ∩ E

b)KE = K iff K ′E = K ′
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FIGURE 2.4: Isomorphic fields over K and K ′

Proof of a): Let N be the common normal closure of K and K ′. If NE 6= N

then then by remark 2.12 above KE 6= K and K ′E 6= K ′. So suppose NE = N .

Thus E ⊆ N . Take G = Gal(N/F ), H = Gal(N/K) and H ′ = Gal(N/K ′). So by

remark 1.16, MH = MH ′. Thus:

Gal(N/(K ∩ E)) = Gal(N/K)Gal(N/E) = MH

= MH ′ = Gal(N/K ′)Gal(N/E) = Gal(N/(K ′ ∩ E))

and part a) holds. 2

Proof of b): Note that KE = K iff K ∩ E = K and K ′E = K iff K ∩ E = K ′.

Thus part b) follows directly from part a). 2

Proposition 2.14. Let E be a normal extension of F such that [E : F ] = p a

prime and let K and K ′ be GE over F . Then KE and K ′E are G.E. over F .

Proof: Let G = Gal(NE/F ), H = Gal(NE/K),H ′ = Gal(NE/K ′) and M =

Gal(NE/E). So M � G with H ∩ M = B = Gal(NE/KE) and H ′ ∩ M =

B′ = Gal(NE/K ′E). Thus by Lemma 1.11, Gal(NE/KE) and Gal(NE/KE) are

locally conjugate in Gal(NE/F ) and our claim holds. 2
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Chapter 3
Zp Towers

We assume that N is common normal closure of K and K ′ over F

Definition 3.1. Let p be a prime. A Zp tower over F denoted F∞/F is a sequence

of fields

{F = F0 ⊂ F1 ⊂ · · · ⊂ F∞ = ∪Fn} = F∞/F

for which Gal(Fn/F ) ' Z/pnZ for each n.

Proposition 3.2. Let F∞/F be a Zp tower. Let pen be the exact power dividing

the p part of the class group of Fn the nth step of the Zp tower with F0 = F . Then

there are integers λ ≥ 0, µ ≥ 0,ν and n0 all independent of n such that

en = λn+ µpn + ν ∀n ≥ n0

Proof: by Iwasawa[15]

Proposition 3.3. Let F∞/F be a Zp tower. Fix an i ≥ 0. Take E = E0 = Fi, set

Ej = Fi+j and E∞ = ∪Ej = F∞ . If λF ,µF and νF are the Iwasawa invariants of

F and λE,µE and νE are the Iwasawa invariants of E then,

λE = λF ,µE = µFp
i and νE = νF + λF i.

Proof:

e(n+i) = λ(n+ i) + µp(n+i) + ν

= λn+ µp(n+i) + (ν + λi)

= λn+ µpnpi + (ν + λi)

= (λ)n+ (µpi)pn + (ν + λi)
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N∞

K ′∞

FIGURE 3.1: Towers over K and K ′

Thus λE = λF ,µE = µFp
i and νE = νF + λF i. 2

Proposition 3.4. Let F∞/F be a Zp tower. Let c, c′ and d be the integers such

that c = max{i | Fi ⊆ K},c′ = max{i | Fi ⊆ K ′} and d = max{i | Fi ⊆ N}.

Then:

a) c ≤ d

b) If K and K ′ are GE over F then c = c′.

Proof: For part a), note by remark 2.12 if Fn ⊆ K then Fn ⊆ N . Thus c ≤ d. As

for part b), note that Gal(N/Fn) is cyclic and thus abelain. So by Theorem 2.13

Fn ⊆ K iff Fn ⊆ K ′. Thus c = c′ completing the proof. 2

We now define a third integer value b related to c and d.
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Definition 3.5. Let b ≤ c be maximal such that Kd and Kd are GE over Fb. Then

d will be the lag of the tower and c− b will be obstruction of the tower. We call

c the quasi-obstruction.

Notice when c = 0, our obstruction is zero. The converse might not hold. This is

why we call c the quasi-obstruction. The next two lemmas will clarify the names

lags and obstruction

Lemma 3.6. For all i ≥ d there is a canonical isomorphism under which

a) Gal(Ni/Fi) ∼= Gal(Nd/Fd)

b) Gal(Ni/Ki) ∼= Gal(Nd/Kd)

c) Gal(Ni/K
′
i)
∼= Gal(Nd/K

′
d)

Proof: Part a) follows from lemma 2.1 with X = Nd and Y = Fi. Part b) follows

from lemma 2.1 with X = Nd and Y = Ki. Part c) follows from lemma 2.1 with

X = Nd and Y = K ′i. 2

Lemma 3.7. a) Kd and Kd are GE over Fc if and only if Kd and Kd are GE over

Fd.

b) If c = 0 then Kd and Kd are GE over Fd.

Proof: Let M = Gal(N/Fd), H = Gal(N/K), H = Gal(N/K) and G =

Gal(N/F ). So H ∼locG H ′ and G/M is abelian. Thus by lemma 1.18 part a) holds.

Now suppose c = 0. Hence Fc = F0. But Fd ∩ K = Fd ∩ Kc = Fc = F0. So

G = Gal(N/F ) = Gal(N/(Fd ∩ K)) = Gal(N/Fd)Gal(N/K) = MH. Thus from

part b) follows from proposition 1.18. 2

We notice if i < d then [Ni : Fi] = [N : Fi] = [N : Fd][Fd : Fi] = [Nd : Fd][Fd :

Fi]. So Gal(Ni/Ki) 6∼= Gal(Nd/Kd) because the indices are different. So the lag d

is the finite number of steps until we have this canonical isomorphism in lemma 6.
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If b 6= c then by assumption Kd and K ′d are not GE over Kc. But if b = c then

Kd and K ′d are GE over Kc and by lemma 3.7 Kd and K ′d are not GE over Kd. So

the obstruction is zero if and only if there is a Gassmann triple at level d. And by

lemma 6 this triple is canonically isomorphic to the triple at level i for all i ≥ d.

Theorem 3.8. Let p to be any prime and F∞/F be a Zp tower over F . For each

n ≥ 0 take Kn = KFn and K ′n = K ′Fn.

a) If i ≥ 0 then K and K ′ are G.E. over F iff Ki and K ′i are G.E. over F

b) Suppose j ≥ i ≥ d. Then the following are equivalent

i)Ki and K ′i are G.E. over Fi

ii)Kj and K ′j are G.E. over Fi

iii)Kj and K ′j are G.E over Fj

Proof of a): Take E = Fi. Part a) follows from Proposition 2.8 part a). 2

Proof of b): Take E = Fj and take L = Fi. Notice E and NL is a normal

extension of L and E ∩ NL = Fj ∩ NFi = Fj ∩ Ni = Fi = L. Thus by part b)

follows from Theorem 2.8 part b). 2

Corollary 3.9. The following are equivalent

a) Kd and K ′d are G.E. over Fd

b) There are j ≥ i ≥ d for which Kj and K ′j are G.E. over Fi

c) For all j ≥ i ≥ d it follows that Kj and K ′j are G.E. over Fi

Proof: c) ⇒ a) Take i = j = d.

a) ⇒ b) Take i = j = d.

b) ⇒ c) Suppose there exist j1 ≥ i1 ≥ d such that Kj1 and Kj1 are G.E. over

Fi1 . Fix j2 and i2 so that j2 ≥ i2 ≥ d. So by theorem 3.8 part b) we have that:

Kj1 and Kj1 are G.E. over Fi1 .

which implies
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Ki1 and Ki1 are G.E. over Fi1 (from ii⇒i)

which implies

Ki2 and Ki2 are G.E. over Fi2 (from i⇒iii or iii⇒i)

which implies

Kj2 and Kj2 are G.E. over Fi2 (from i⇒ii).

Since i2 and j2 were arbitrary, part c) holds 2

Remark 3.10. If Ki
∼= K ′i for some i then for any j ≥ i we have that Kj

∼= K ′j.

Proof of remark: Note that for any j ≥ i we have thatKj = KiFj andK ′j = K ′iFj.

The remark follows directly. 2

Theorem 3.11. Let p to be any prime and F∞/F be a Zp tower over F . For each

n ≥ 0 take Kn = KFn and K ′n = K ′Fn.

a) If i ≥ 0 then K and K ′ are isomorphic over F iff Ki and K ′i are isomorphic

over F

b) Suppose j ≥ i ≥ d. Then the following are equivalent

i)Ki and K ′i are isomorphic over Fi

ii)Kj and K ′j are isomorphic over Fi

iii)Kj and K ′j are isomorphic over Fj

Proof of a): Take E = Fi. Part a) follows from Proposition 2.10 part a). 2

Proof of b): Take E = Fj and take L = Fi. Notice E and NL is a normal

extension of L and E ∩ NL = Fj ∩ NFi = Fj ∩ Ni = Fi = L. Thus by part b)

follows from Theorem 2.10 part b). 2

We now have the tools in place to state Greenberg’s Question. Take p prime and

let K∞/K and K ′∞/K
′ be Zp towers. These towers are parallel towers if there is

a Zp tower F∞/F so that for each i we set Ki = KFi and K ′i = K ′Fi.
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FIGURE 3.2: Galois groups over Kd and K ′d

Greenberg’s Question: Do parallel towers over G.E. fields share the same

Iwasawa invariants?

For Greenberg’s question to be interesting we need to make two assumptions:

• Assumption A) K 6∼= K ′

• Assumption B) K and K ′ are not G.E. over F

We break Greenberg’s question into four cases using the definitions of global

conjugation, local conjugation and latent triples, along with the value d. We set

M = Gal(N/Fd). Thus B = Gal(N/Kd) and B′ = Gal(N/K ′d). By lemma 3.7,

B ∼locM B if and only if b = c.

Observing table 3.1, we will have one of four different case which we will call

our tower types.

TABLE 3.1: The four types of towers

d = 0 d 6= 0
B ∼M B′ violates assumption A) 1) trivial tower

B 6∼M B′ But B ∼locM B′ 2) simple tower 3) reducible tower
B 6∼locM B′ violates assumption B) 4) latent tower

Tower type 1: trivial tower We define a tower to be a trivial tower if

B ∼M B′. Notice this in this the case in remark 3.10. So for all j ≥ d we have
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FIGURE 3.3: Trivial tower

that Kj
∼= K ′j. This would imply the Iwasawa invariants of K and K ′ would be

the same. So for any trivial tower the answer to Greenberg’s question is yes.

Tower type 2: simple tower Suppose that d = 0. Notice that Gal(N/Fd) will

be a normal subgroup of Gal(N/F0). If d = 0 these groups are equal. And when

Gal(N/F0) is a simple group d = 0 necessarily. Thus we define a tower to be a

simple tower if d = 0. Also B ∼M B′ will violate Assumption A) and B 6∼locM B′

will violate Assumption B). A simple parent group must have a simple tower. How-

ever a simple tower need not have simple parent group .

Tower type 3: reducible tower We define a tower to be a reducible tower

if (M,B,B′) is a nontrivial Gassmann triple. Notice since d is not zero we have

that | M |is a proper divisor of | G | and [G : B] is a proper divisor of [G : H].

Thus we can consider the question for reducible towers in the following way.

Consider a list of ordered pairs [a, b] where a is the index of a nontrivial Gassman

triple and b is the order of the parent group of the corresponding triple. We list

all possible Gassman triples in order first by the index and then by the parent

group order. If it is know that a certain entry on our list will have a reducible
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A simple tower
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For all i, Ki and K ′i
are G.E. over Fi

FIGURE 3.4: Simple tower

tower and it is know that all towers with lesser index or group order are known to

have an affirmative answer to Greenberg’s question, then for the reducible tower

in question the answer to Greenberg is yes.

We give a hypothetical example. The index values and parent group orders for

the first 7 Gassman triples are as follows:

[7, 168], [8, 32], [8, 48], [11, 660], [12, 48], [12, 72], [12, 96]

We will go into more details on these values in the next chapter. Suppose there

was a reducible tower of index 12 and order 96. We do not claim at this point to

know what all towers corresponding to these triples look like, let alone the answer

to Greenberg’s question. But hypothetically suppose it is known that all towers

corresponding to the first six triples will an affirmative answer to Greenberg’s

question. Then it would follow that for any reducible tower with index 12 and

order 96 the answer to Greenberg’s question will be yes.
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FIGURE 3.5: Reducible tower
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FIGURE 3.6: Latent tower

We can even go one step further. Since 7 and 8 do not divide 12 and 72 does not

divide 96. We need only check whether the towers corresponding to the pair[12,48]

will have an affirmative answer to Greenberg’s question. This will simplify the

question for this particular case. But this method describes a rigorous way to

search for counterexamples to the statement of Greenberg’s question.

Tower type 4: latent tower We define a tower to be a latent tower if

(M,B,B′) is a latent triple. Note that by lemma 1.11 (G,B,B′) is a Gassman

triple and M ⊂ G. So if (M,B,B′) is not a Gassman triple then it will be a latent

triple.
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It follows from 3.8 part a) that Ki and K ′i will be G.E. over F . But notice in

the latent case Kd and Kd will not be G.E. over Fd. It follows from Corollary 3.9

that for all j ≥ i ≥ d we have Kj and K ′j will not be G.E. over Fi. All towers

will fall into one of these four categories. Note in each category the tower type is

determined by the triple (M,B,B′) which are the three Galois groups at the level

d. This is because d is the level that the lag ends.
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Chapter 4
Categorization of Galois Groups with
Low Index

In this chapter we will refer to the “Gap4” numbers of finite groups with low degree

by a pair [a, b] where a indicates the order and b indicates the entry in the Gap4

library. For example [4, 1] is the cyclic group of order 4 and [4, 2] is the Klein 4

group. Note that most groups of order greater than 1000 are not listed in the Gap

library and will not have a Gap number.

Let K, K ′ be Gassman Equivalent over base field F with common normal closure

N over F . If G = Gal(N/F ),H = Gal(N/K) and H ′ = Gal(N/K ′) then (G,H,H ′)

forms a Gassman triple. By de Smit we know there are 19 faithful Gassman triples

with index less than 16. We fix a prime p and choose a Zp-tower F∞/F . We now

want to find the values of c and d as in Proposition 3.4.

Let M = Gal(N/Fd), B = Gal(N/Kd) and B′ = Gal(N/K ′d). What properties

will these groups have? There are two necessary conditions.

1) [G : M ] is the power of a prime

2) G/M is cyclic

Note pd = [G : M ] so the value d will be completely determined by G and M . If

c > 0 then gcd(|H|, [G : M ]) > 0. The value pc will be a divisor of gcd(| H |, [G :

M ]). For our purposes we call the pair (pd, gcd(pd, | H |)) our lag type. For the 19

triples there will only be 5 possible cases for these values, 4 of which correspond

to non-simple towers. These values are listed in table 4.1.

The first two values in this table will be the lag type, that is (1, 1), (2, 2), (3, 1), (3, 3)

or (4, 4). The pair (1, 1) indicates a simple tower.
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TABLE 4.1: Lag types

[G : M ] = pd gcd(pd, | H |) p d possible values for c
1 1 - 0 0
2 2 2 1 0 or 1
3 1 3 1 0
3 3 3 1 0 or 1
4 4 2 2 0,1 or 2

Notice if M = G then pd = 1 and d = 0. This would mean there is no lag.

Likewise if M =< e > then G/M = G won’t be cyclic. As we mentioned in the

previous chapter this indicates when the parent group G is simple there will be

no lag. This will yield a simple tower. Six of de Smit’s 19 triples will fall into this

category which are listed in table 4.2.

TABLE 4.2: Simple towers of low index

G H H ′ [G : H] M B B′ tower type lag type b=c=d
[168,42] [24,12] [24,12] 7 −− −− −− simple (1, 1) 0
[660,13] [60,5] [60,5] 11 −− −− −− simple (1, 1) 0
[5616,?] [432,732] [432,732] 13 −− −− −− simple (1, 1) 0
[168,42] [12,3] [12,3] 13 −− −− −− simple (1, 1) 0
[2520,?] [168,42] [168,42] 14 −− −− −− simple (1, 1) 0
[20160,?] [1344,?] [1344,?] 15 −− −− −− simple (1, 1) 0

In the 12 non-simple triples we may still have a simple tower. But if M�G is not

trivial, this will indicate we have the trivial, reducible or latent case. According to

de Smit there are two distinct triples with [G : H] = [G : H] = 14 and |G| = 336.

Although the parent groups are isomorphic the triples themselves are not. Thus we

are left with 12 possible parent groups that yeild a lag in our tower. The following

table determines all possible M ’s for a lag in a Zp tower over a triple with one of

the 12 non-simple parent groups

There are two non-isomorphic parent groups with order 96 and index 12. Since

there are two non-isomorphic triples with isomorphic parent groups of order 336.
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TABLE 4.3: Lag types of low index

Gap number for G [G : H] (pd, gcd(pd, | H |) # of Ms Gap number for M(s)
[32,43] 8 (2,2) 7 see chapter 5
[48,29] 8 (2,2) 1 [24,3]
[48,49] 12 (2,2) 1 [24,13]
[48.49] 12 (3,1) 1 [16,14]
[72,23] 12 (2,2) 3 [36,12][36,13][36,3]
[96,195] 12 (2,2) 3 [48,30][48,48][48,49]
[96,3] 12 (3,1) 1 [32,2]

[192,194] 12 (2,2) 1 [96,3]
[192,194] 12 (3,1) 1 [64,73]
[240,91] 12 (2,2) 1 [120,35]
[240,91] 12 (4,4) 1 [60,5]
[336,209] 14 (2,2) 1 [168,42]
[56448,?] 14 (2,2) 1 [28224,?]
[180,19] 15 (3,3) 1 [60,5]
[360,120] 15 (2,2) 1 [180,19]

Since d is determined by the parent groups and there normal subgroups, this group

of order 336 only occurs in table 4.3.

Also within these 12 parent groups there are other possible M � G. We may

have lag type (4, 2) with G/M not cyclic. Also lag type (6, 2) with G/M cyclic will

occur, but 6 is not a prime power. These will never be the lag in a Zp tower.

We now want to determine the tower types of these normal groups. Note there

may or may not be a tower of number fields with Gal(N/F ) = G and Gal(N/Fd) =

M . But if there is such a tower, it will have the properties listed.

In table 4.4 we are only concerned with isomorphic copies of a particular normal

subgroup M . So for an example in the parent group with gap number [32,43] there

are two normal subgroups with gap number [16,6] in both cases B and B′ are cyclic

of order 2. Thus M = [16, 6] is only listed once.
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TABLE 4.4: Non-simple towers of low index

G H ∼= H ′ [G : H] M B ∼= B′ tower type lag type d c c− b
[32,43] [4,2] 8 [16,6] [2,1] trivial (2, 2) 1 0 0
[32,43] [4,2] 8 [16,7] [2,1] trivial (2, 2) 1 0 0
[32,43] [4,2] 8 [16,8] [2,1] trivial (2, 2) 1 0 0
[32,43] [4,2] 8 [16,13] [2,1] trivial (2, 2) 1 0 0
[32,43] [4,2] 8 [16,11] [4,2] latent (2, 2) 1 1 1
[48,29] [6,1] 8 [24,3] [3,1] trivial (2, 2) 1 0 0
[48,49] [4,2] 12 [24,13] [2,1] trivial (2, 2) 1 0 0
[72,23] [6,1] 12 [36,12] [3,1] trivial (2, 2) 1 0 0
[72,23] [6,1] 12 [36,16] [6,1] latent (2, 2) 1 1 1
[96,3] [8,2] 12 [32,2] [8,2] latent (3, 1) 1 1 1

[96,195] [8,3] 12 [48,30] [4,1] trivial (2, 2) 1 0 0
[96,195] [8,3] 12 [48,48] [4,2] trivial (2, 2) 1 0 0
[96,195] [8,3] 12 [48,49] [4,2] reducible (2, 2) 1 0 0
[192,194] [16,11] 12 [64,73] [16,11] latent (3, 1) 1 1 1
[192,194] [16,11] 12 [96,3] [8,2] reducible (2, 2) 1 0 0
[240,91] [20,3] 12 [120,35] [10,1] trivial (2, 2) 1 0 0
[240,91] [20,3] 12 [60,5] [5,1] trivial (4, 4) 2 0 0
[336,209] [24,12] 14 [168,42] [12,3] reducible (2, 2) 1 0 0
[336,209] [24,12] 14 [168,42] [24,12] reducible (2, 2) 1 1 0
[56448,?] [4032,?] 14 [28224,?] [4032,?] reducible∗ (2, 2) 1 1 0
[180,9] [12,3] 15 [60,5] [4,2] trivial (3, 3) 1 0 0

[360,120] [24,12] 15 [180,9] [12,3] reducible (2, 2) 1 0 0

* Note that in the group of order 56448, (M,B,B) represents the Gassman triple
of index 7. But the triple has a nontrivial kernel which is isomorphic to the simple
group of order 168.
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Chapter 5
Result for Fields of Degree 8

In this chapter we focus on the group (C8 o V4) with order 32 from example 1.4.

Set:

α = (1, 2, 3, 4, 5, 6, 7, 8) β = (2, 4)(3, 7)(6, 8)

γ = (2, 6)(4, 8)

So G = 〈α, β, γ〉,H = 〈β, γ〉 and H ′ = 〈β, α4γ〉. We want to determine all

possible M /G. We list the number of such M ’s in table 5.1.

TABLE 5.1: Normal subgroups of C8 o V4

[G:M] # of M’s
32 1
16 1
8 3
4 7
2 7
1 1

If [G : M ] is either 32 or 16 then G/M will not be cyclic. Otherwise G would

contain an element of order at least 16. This is not possible since G can be con-

sidered as a subgroup of S8. So M = 〈e〉 or M = 〈α4〉 will not represent the lag of

an Iwasawa tower.

For [G : M ] = 4 we have the 3 cases, which are listed in table 5.2. In all three

cases G/M is not cyclic.

For [G : M ] = 8 we have the seve cases, which are listed in table 5.2. In all seven

cases G/M ∼= V4 is not cyclic.
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TABLE 5.2: Quotient groups when M has index 4

M Gap # cosets Gap # of G/M
〈α2γ〉 [4,1] C4 M,αM,α2M,α3M,βM,αβM,α2βM,α3βM [8,3] D8
〈α4, γ〉 [4,2] V 4 M,αM,α2M,α3M,βM,αβM,α2βM,α3βM [8,3] D8
〈α2〉 [4,1] C4 M,αM, γM,αγM, βM,αβM, βγM,αβγM [8,5] C2× C2× C2

TABLE 5.3: Quotient groups when M has index 8

M Gap # cosets
〈α2, αβ〉 [8,4] Q8 M,βM, γM, βγM
〈α2, β〉 [8,3] D8 M,αM, γM,αγM

〈α2, αβγ〉 [8,3] D8 M,βM, γM, βγM
〈α2, βγ〉 [8,4] Q8 M,αM, γM,αγM

〈αγ〉 [8,1] C8 M,αM, βM,αβM
〈α2, γ〉 [8,2] C4× C2 M,αM, βM,αβM
〈α〉 [8,1] C8 M,βM, γM, βγM

Finally when [G : M ] = 16 we have seven cases, six trivial cases and one latent

case. These cases are listed in table 5.4. This verifies our table from Section 4 and

leads to the following result.

Theorem 5.1. Let K and K ′ be Gassman equivalent over base field F . Suppose

K = F (θ), K ′ = F (θη) with θ and η algebraic and [K : F ] = [K ′ : F ] = 8.

Suppose also that F∞/F is a Z2-tower with F0 = F and F1 = F (η). Suppose also

that [N : F ] = 32.Then with respect to K and K ′ and our tower F∞/F we have

the following:

a) d ≥ 1 (that is to say there is a lag)

b) If K0 6∼= K ′0 then c = 0.

c) K1
∼= K ′1.

d) K and K ′ will share the same Iwasawa invariants.

Proof: a) Recall d ≥ 1 iff F1 ⊆ N . But KK ′ ⊆ N , so θ ∈ N and ηθ ∈ N . Since

θ−1θη = η ∈ N we have that F (η) = F1 ⊆ N and d ≥ 1.
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TABLE 5.4: Quotient groups when M has index 16

M Gap # cosets #(M ∩H) type
〈αβ, αγ〉 [16,8] M,αM 2 trivial
〈α2, αβ, γ〉 [16,13] M,αM 2 trivial
〈β, αγ〉 [16,7] M,αM 2 trivial
〈α, β〉 [16,8] M,γM 2 trivial
〈α, γ〉 [16,6] M,βM 2 trivial
〈α, βγ〉 [16,7] M,γM 2 trivial
〈α2, β, γ〉 [16,11] M,αM 4 latent

b) By way of contradiction suppose that c ≥ 1. Thus F1 ⊆ K0 and F1 ⊆ K ′0.

So η ∈ K and η ∈ K ′. Hence ηθ ∈ K and (η)−1(ηθ) = θ ∈ K ′. This implies that

K = K ′. But K 6∼= K ′ by assumption. This is a contradiction. Therefore c = 0

c) If K ∼= K ′ then by construction K1
∼= K1. So suppose K 6∼= K ′. By part b)

c = 0. But by part a) there is a lag. By our table the only possible lag in a tower

that is not trivial will be when c = d = 1. So we have trivial case with Kd
∼= K ′d

and since d = 1, K1
∼= K ′1.

d) In light of remark 3.10, for all i ≥ 1 we have that Ki
∼= K ′i. Thus after the

first step all invariants will be the same. 2

Theorem 5.2. Let K = Q( 8
√
t) and K ′ = Q( 8

√
16t) where t ∈ Z with the absolute

value of the square free part of t strictly greater than 2. Then K and K ′ will share

the same Iwasawa invariants.

Proof: Let θ = 8
√
t and η =

√
2. We notice that K = Q(θ), K = Q(θη), F = Q

and F1 = Q(η) where F∞/F is a Z2-tower. By theorem 5.1 our claim holds. 2
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Chapter 6
G-action on Cosets and Matrix Entries

All groups and fields will have the same properties as in previous chapters. We add

a few assumptions.

• [G : H] = [G : H ′] <∞

• α, β ∈ G arbitrary and γ = α−1β

• R will be an arbitrary ring

Let gX denote gXg−1 for any X ≤ G and g ∈ G.

Lemma 6.1. Fix y, z ∈ G then

Stab(yH)(zH
′) = Stab(zH′)(yH) = (yH) ∩ (

z
H ′)

Proof: By symmetry it is enough to show that Stab(yH)(zH
′) = (yH)∩(zH ′). Take

x ∈ Stab(yH)(zH
′). So x ∈ yH and xzH ′ = zH ′. Thus xz ∈ zH ′ and x ∈ zH ′z−1.

Therefore x ∈ (yH) ∩ (zH ′).

Now take x ∈ (yH) ∩ (zH ′). Since x ∈ zH ′, x = zh′z−1 for some h′ ∈ H ′.

Hence xzH ′ = zh′z−1zH ′ = zh′H ′ = zH ′. But x ∈ (yH) ∩ (zH ′) ⊂ yH.Therefore

x ∈ Stab(yH)(zH
′). 2

Corollary 6.2. If (αH, βH ′) is an element of G/H × G/H ′ and g ∈ G acts on

(αH, βH ′) component wise then αH ∩ βH ′ = {g ∈ G | g(αH, βH ′) = (αH, βH ′)}

Proof: Note αH∩βH ′ ⊂ {g ∈ G | g(αH, βH ′) = (αH, βH ′)} follows directly from

lemma 6.1. So suppose that g ∈ G so that g(αH, βH ′) = (αH, βH ′). Hence gα ∈
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αH and g ∈ αHα−1 = αH. Likewise gβ ∈ βH ′. Thus g ∈ βH ′ and g(αH, βH ′) =

(αH, βH ′). Therefore g ∈ αH ∩ βH ′. 2

Remark 6.3. For all g ∈ G, if Y ≤ X ≤ G then [X : Y ] = [gX : gY ]

Proof: Note gY ⊃ gX, | X |=| gX | and | Y |=| gY |. The remark follows directly.

2

Theorem 6.4. The following sets have the same order

a) the αH-orbit of βH ′ in G/H ′.

b) the βH ′-orbit of αH in G/H

c) the H-orbit of γH ′ in G/H ′

d) the H ′-orbit of γ−1H in G/H

Proof: Take S = H∩γH ′. Notice by lemma 6.1 the αH-stablizer of βH is equal to

the βH-stablizer of αH. The order of the orbit is the index of the stabilizer. So by

lemma 6.1 a) and b) have order [αH : αS], the order of set c) is [H : S] and the order

of set d) is [γ
−1

H : γ
−1

S] . In light of remark 6.3 [H : S] = [γ
−1

H : γ
−1

S] = [αH : αS]

and the theorem follows. 2

We now apply these G-actions to entries a matrix. Let ρ1, · · · , ρn and ρ′1, · · · , ρ′n

be representatives for the left cosets in G of H and H ′ respectively with ρ1 = ρ′1 =

1G. We define homomorphisms π and π′ from G into Sn in the following way:

πg(i) = j where gρiH = ρjH and π′g(i) = j where gρ′iH = ρ′jH

for all g ∈ G.
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Let A be the set of all invertible n by n matrices with integral entries such that

if (aij) = A ∈ A then aij = aπg(i)π′g(j) for all g ∈ G.

Definition 6.5. Let (aij) = A be an n by n matrix with entries in R. We say that

A is a G-action matrix on the pair H and H ′ over R if aij = aπg(i)π′g(j) for all

g ∈ G.

We will let A denote the family of all such G-action matrices .

Set ν = gcd{det(A)|A ∈ A }. Note that A, A and the value ν depend on

G,H,H ′ and our ring R. We want to look at these matrices in general form.

Definition 6.6. Let A = (aij) be a G-action matrix on H and H ′ over R. Sup-

pose the G-action on (G/H,G/H ′) has exactly k distinct orbits. Let Y = yij be

a G-action matrix on H and H ′ over the polynomial ring R[x1, · · · , xk] where

{x1, · · · , xk} are distinct indeterminants. Then Y is called a general form of A

if the following three conditions hold:

1) For each pair i, j, yi,j = 1Rxt for some xt ∈ {x1, · · · , xk}

2) yij = yst if an only if there is g ∈ G such that s = πg(i) and t = π′g(j).

3) There is a map ψA : {x1, · · · , xk} → R such that for each pair i, j ψA(yij = aij

We will now borrow a definition from probability

Definition 6.7. In probability a square matrix is doubly stochastic if every

entry of the matrix is nonnegative, the sum of every row is the same and the sum

of every column is the same.

For our purposes we will need to relax the specifications of this definition.

Definition 6.8. (definition 6.7 revised)Let A be a square matrix with entries in

a ring with unity R. Then A is doubly stochastic if there is some α ∈ R such

that the sum of each row in A and the sum of each column in A is equal to α.
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Notice this revised definition can apply to a ring that has no order relation (such

as C) where the terms positive and negative won’t apply.

Definition 6.9. Let (aij) = A be a G-action matrix off H and H ′ with entries in

R. Then A is a general doubly stochastic matrix if A has some general form

matrix Y that is double stochastic in the ring R[xi, · · · , xk]

Theorem 6.10. Let Y = (yij) be a general form of matrix A Fix the pair i, j and

suppose yi,j = xt ∈ {x1, · · ·xk}. Then the following sets have the same order:

a) the set of entries in row i equal to xt.

b) the set of entries in column j equal to xt.

c) the set of entries in row 1 equal to xt.

d) the set of entries in column 1 equal to xt.

Proof: Take α = ρi, and β = ρ′j. Thus γ = α−1β = ρ−1i ρ′j. Entry yij corresponds

to the element (ρiH, ρ
′
jH
′) = (αH, βH ′).The entries of row i equal to xt will

correspond to all elements of (G/H,G/H ′) in the orbit of (αH, βH ′) that fix the

first element αH. By lemma 6.1 this is the αH-orbit of βH ′ in G/H ′ which is set

a) in Theorem 6.4,

By similar arguments the sets b) , c) and d) will have the same order as sets b),

c) and d) of Theorem 6.4. This completes the proof. 2

Corollary 6.11. The matrix A is general doubly stochastic matrix.

Proof: The sum of row t is Σtixi and the sum of column s is Σsixi where ti is the

number of xi’s in row t and si is the number of xi’s in column s. But by Theorem

6.10 si = ti for any fixed i and any row s and t. Thus Σsixi = Σtixi and our claim

holds. 2
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Take 0 ≤ i ≤ j. LetGji = Gal(Nj/Fi),Hji = Gal(Nj/Ki) andH ′ji = Gal(Nj/K
′
j).

We let Aij denote the family of all Gji-action matrices over Hji and H ′ji.

We let νji = gcd{det(A) | A ∈ Aij}.

Proposition 6.12. This construction of νji with respect to Kj and K ′j over Fi is

independent of the normal subfield we choose for constructing our Galois groups.

Proof: Suppose j ≤ j1 ≤ j2. It is enough to show show that when our construction

in Nj1 and Nj2 will both yield the same value νji

Take V = Gal(Nj2/Nj1), G = Gal(Nj1/F0), H = Gal(Nj1/K
′
i) and H ′ =

Gal(Nj1/Ki). Define π̃ and π̃′ so that π̃gv(i) = j where gvρiHV = ρjHV and

π′gv(i) = j where gvρ′iHV = ρ′jHV for all gv ∈ GV and all cosets ρiHV, ρj ∈

GV/HV and ρ′iH
′V, ρ′jHV ∈ GV/H ′V .

Notice V � G and G ∩ V = (Gal(Nj1/F0)) ∩ (Gal(Nj2/Nj1)) So if σ ∈ (G ∩ V )

then σ(Nj1) = Nj1 with σ ∈ G. Thus σ = 1G.

Because V is a normal subgroup, V acts trivially on GV/HV . So by proposition

1.26, for any aij in our matrix and for any g ∈ G, we have that aij = aπg(i)π′g(j) =

aπ̃g(i)π̃′g(j), completing our proof. 2

Proposition 6.13. Let A be the family of all G-action matrices on H and H ′

and let ν = gcd{det(A) | A ∈ A }. Let G = Gal(N/F ),H = Gal(N/K) and

H ′ = Gal(N/K ′) for some common normal closure N of fields K and K ′. For any

prime p

a) p - ν if and only if Zp(G/H) ∼=Zp(G) Zp(G/H ′)

b) If p - ν then Clp(K) ∼= Clp(K
′).

c) H ∼locG H ′ if and only if ν 6= 0

Proof: Part a) is Lemma 3 in Perlis [14] and part b) is Theorem 3 Perlis [14] and

part c) is Lemma 2 in Perlis [14]. 2
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In Perlis’ paper the Galios groups are assumed to be over the base field Q.

However there in nothing about the base field itself that enters into the proof

apart from the Galois groups themselves. Thus by assuming an arbitrary base F0

these results will still apply.

Proposition 6.14. For all j ≥ d we have νdd = νjj.

Proof: By lemma , Gdd
∼= Gjj, Hdd

∼= Hjj and H ′dd
∼= H ′jj canonically. Hence

Gdd/Hdd
∼= Gjj/Hjj and Gdd/H

′
dd
∼= Gjj/H

′
jj canonically. Thus νdd = νjj follows

by definition. 2

Lemma 6.15. If Zp(G/(B×V )) ∼=Zp(G) Zp(G/(B′×V )) then Zp(G/(B×1V )) ∼=Zp(G)

Zp(G/(B′ × 1V ))

Proof: Notice (B × V )/(B × 1V ) ∼= V ∼= (B′ × V )/(B′ × 1V ). So if Zp(G/(B ×

V )) ∼=Zp(G) Zp(G/(B′ × V )) then

Zp(G/(B × 1V )) ∼=Zp(G) Zp(G/(B × V ))⊗ Zp(V ) ∼=Zp(G)

Zp(G/(B′ × V ))⊗ Zp(V ) ∼=Zp(G) Zp(G/(B′ × 1V )).2

Proposition 6.16. If Zp(Gj0/Hjd) ∼=Zp(Gj0) Zp(Gj0/H
′
jd)

then Zp(Gj0/Hjj) ∼=Zp(Gj0) Zp(Gj0/H
′
jj).

Proof: Take G = Gj0 = Gal(Nj/Fi), V = Gal(Nj/Nd), B = Gal(Nd/Kd) and

B′ = Gal(Nd/K
′
d).

Thus B × V = Gal(Nd/Kd) × Gal(Nj/Nd) = Gal(Nj/Kd) = Hjd, B
′ × V =

Ga(Nj/K
′
d) × Gal(Nj/Nd) = Gal(Nj/K

′
d) = H ′jd, B × 1V = Gal(Nd/Kd) ×

Gal(Nj/Nj) = Gal(Nj/Kd) = Hjj and B × 1V = Gal(Nd/Kd) × Gal(Nj/Nj) =

Gal(Nj/Kd) = H ′jj. Hence by Proposition 6.15 our claim follows. 2
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Definition 6.17. The support of an integer α, denoted supp(α) is the set of all

primes p ∈ Z such that p | α.

Proposition 6.18. For all j ≥ d, we have supp(νj0) ⊂ supp(νd0)

Proof: Applying proposition 6.13 to proposition 6.12 we have

Zp(Gj0/Hjd) ∼=Zp(Gj0) Zp(Gj0/H
′
jd)⇔ Zp(Gd0/Hdd) ∼=Zp(Gd0) Zp(Gd0/H

′
dd)

By proposition 6.13 applied to proposition 6.16, we have p - νd0 ⇒ p - νj0.

Therefore supp(νj0) ⊂ supp(νd0). 2

We can now formulate an algorithm for answering Greenberg’s question. Suppose

that K and K ′ are Gassmann equivalent over F . Compute our values b, c and d:

Step 1) If Kd and Kd are Isomorphic then the answer to Greenberg’s question

is yes. Note that it is sufficient to check for the trivial case at level d since from

Theorem 3.11 Kd
∼=F K

′
d if and only if Kj

∼=F K
′
j for some j ≥ d.

Step 2) Suppose that b = c. Then we have either the simple or reducible case.

Either way applying lemma 6.13 part c), we have νdd is nonzero. By Proposition

6.16 it follows that νdd = νjj for all j ≥ d. So if p - νdd then the answer to

Greenberg’s question is yes. Otherwise our algorithm will not yield an answer to

Greenberg’s question.

Step 3) Suppose that b 6= c. Thus we have the latent case. So νii = 0 for all

i ≥ d. However νi0 = 0 for all i ≥ 0. And by lemma 6.18, supp(νjj) ⊂ supp(νdd) for

all j ≥ d. Thus if p - νd0 then p - νj0. So if p - νd0 then the answer to Greenberg’s

question is yes. Otherwise our algorithm will not yield an answer to Greenberg’s

question.
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In light of proposition 6.13 to check that ClpK ∼= (Cl)pK
′ it is sufficient to show

that p - ν00. According to Bosma and de Smit [1]for each of the 19, the support

of ν00 contains exactly one prime. In the appendix we construct matrices verifying

that supp(ν00) contains at most one prime. In each case the prime is the prime

stated by by Bosma and de Smit
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Chapter 7
Geometric Constructions and Gassmann
Equivalence

In this chapter we have the following:

• (G,H,H ′) will be a Gassmann triple

• [G : H] = [G : H ′] = n <∞

As we have seen the parent group G of Gassmann triple acts on G/H and

G/H ′ by left composition. This action determines the structure of our matrices in

chapter 6. The purpose of this chapter is to attempt to generate these matrices

from geometric constructions. Because this action transitively permutes the row

and columns of an n×n matrix we hope to realize our parent groups as transitive

subgroups of Sn. We will only focus on the four cases when [G,H] ≤ 11. So there

is one triple with index 7, two triples with index 8 and one triple with index 11.

The first triple has as its parent group the unique simple group of order 168. It

is well known that this group is the automorphism group of Fano plane.

v1
v2

v3

v4

v5

v6
v7

FIGURE 7.1: Fano Plane
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Recall the order of the orbit is the index of the stabilizer. So the stabilizer of

vertex v1 has index 7. This stabilizer is actually the subgroup H. But how do we

construct the other subgroup H ′? We define a block to be a subset of the vertices

on which G is acting. If we can construct a block in such a way that this block has

an orbit of n distinct blocks, then the stabilizer of this block will have index n in

G. This subgroup is H ′

If we were to take this construction to be a matroid we could consider this block

to be either a circuit or a hyperplane. However a matroid has more structure than

we actually need. So using the language of vertices and block will be enough for

our purposes.

The blocks we need are the lines of the Fano plane. Six of these are the collinear

triples of vertices. The seventh line will be the three points lying on the constructed

circle, {v2, v6, v7}. The following is the list of the 7 transitive blocks.

Block 1 = {v3, v4, v6}

Block 2 = {v2, v3, v5}

Block 3 = {v1, v2, v4}

Block 4 = {v1, v3, v7}

Block 5 = {v2, v6, v7}

Block 6 = {v1, v2, v6}

Block 7 = {v4, v5, v5}

In our matrix, rows will correspond to vertices and the columns will correspond

to blocks. The value is A whenever the row vertex is in the column block and

B otherwise. This will yield the general doubly stochastic matrix for our triple

(G,H,H ′). We have chosen our vertices and blocks so that the matrix is diagonally

symmetric, which highlights the doubly stochastic property.
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

B B A A B A B

B A A B A B B

A A B A B B B

A B A B B B A

B A B B B A A

A B B B A A B

B B B A A B A


The second triple has index 8 and as its parent group C8 o V4 which has order

32. In this construction instead of taking lines in two space we are taking planes

in three space. We take the 8 vertices of a cube. Then we rotate the top face 45

degrees. From above, the vertices will appear as in figure 7.2.

Blocks will be four vertex sets that are coplanar and the parent group G will

take coplanar blocks to coplanar blocks. There are ten such blocks. Two are the

top face {v1, v3, v5, v7} and the bottom face {v2, v4, v6, v8} which are in one orbit.

The remaining eight blocks are in another orbit. These blocks are:

Block 1 = {v1, v2, v4, v5}

Block 2 = {v1, v3, v4, v8}

Block 3 = {v2, v3, v7, v8}

Block 4 = {v1, v2, v6, v7}

Block 5 = {v1, v5, v6, v8}

Block 6 = {v4, v5, v7, v8}

Block 7 = {v3, v4, v6, v7}

Block 8 = {v2, v3, v5, v6}

Each block contains two points from the top face and two points from the bottom

face. So in the case of block 1 notice that the line through vertices v1 and v5 will
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v1 v2

v3

v4v5v6

v7

v8

FIGURE 7.2: Construction of C8 o V4

block 1

v1 = A

v2 = B

v3 = C

v4 = B

v5 = Av6 = D

v7 = C

v8 = D

FIGURE 7.3: Block construction in C8 o V4

be parallel to the line through vertices v2 and v4. Thus these four points will be

coplanar. As in the previous case, H will fix vertex v1 and H ′ will fix block 1.

• A = in the block, opposing vertices

• B = in the block, not opposing vertices

• C = not in the block, opposing vertices

• D = not in the block, not opposing vertices

Within block 1 the points v1 and v5 will be on opposite corners of the top face,

but v2 and v4 are not on opposite corners of the bottom face. Thus H ′ will not act

transitively on the points of block 1. There are two H ′-orbits within block 1 which
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we label A and B. There will be two H ′-orbits outside block 1 which we label C

and D. This yeilds our general doubly stochastic matrix:



A B C B A D C D

B C B A D C D A

C B A D C D A B

B A D C D A B C

A D C D A B C B

D C D A B C B A

C D A B C B A D

D A B C B A D C

A B C B A D C D


The third triple has index 8 and as it’s parent group GL(3, 2) which has order

48. As in the Fano plane we take lines in two space. We take the affine plane of

order 3 which has 9 points and 12 line. By omitting a single point we have 8 points

and 8 lines.

The eight blocks will be:

Block 1 = {v1, v2, v7}

Block 2 = {v1, v6, v8}

Block 3 = {v5, v7, v8}

Block 4 = {v4, v6, v7}

Block 5 = {v3, v5, v6}

Block 6 = {v2, v4, v5}

Block 7 = {v1, v3, v4}

Block 8 = {v2, v3, v8}
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v1v5

v8

v4

v2

v6 v7

v3

FIGURE 7.4: Construction of GL(3, 2)

block 1

= A= B

block 5

v1

v5

v8 = C

v4 = C

v2

v6 v7

v3

FIGURE 7.5: Block construction in GL(3, 2)

Subgroup H will fix vertex v1 and H ′ will fix block 1. But notice block 1 has a

vertex in common with every block except block 5. Thus any group element of H ′

must fix the block 1 and it must fix block 5. Since there are two remaining vertices

which are in the same H ′-orbit it follows that there are three orbits in H ′. These

orbits are constructed as follows:

• A = in the block

• B = in the opposing block

• C = in neither block

This yields our generally doubly stochastic matrix:
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

A A B C B B A C

A B C B B A C A

B C B B A C A A

C B B A C A A B

B B A C A A B C

B A C A A B C B

A C A A B C B B

C A A B C B B A


The fourth triple has index 11 and as it’s parent group is the unique simple

group of order 660. Both H and H ′ will be isomorphic to the automorphism group

of the Bucky-ball (or soccer ball). The construction is by E. Brown [2].

The blocks have order 5. Thus to construct this as a matroid using either circuits

or hyper planes would require more than three dimensions. Here are the blocks:

Block 1 = {v3, v7, v8, v9, v11}

Block 2 = {v2, v6, v7, v8, v10}

Block 3 = {v1, v5, v6, v7, v9}

Block 4 = {v4, v5, v6, v8, v11}

Block 5 = {v3, v4, v5, v7, v10}

Block 6 = {v2, v3, v4, v6, v9}

Block 7 = {v1, v2, v3, v5, v8}

Block 8 = {v1, v2, v4, v7, v11}

Block 9 = {v1, v3, v6, v10, v11}

Block 10 = {v2, v5, v9, v10, v11}

Block 11 = {v1, v4, v8, v9, v10}
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v1

v9

v11

v8 v7

v3

v2

v5

v6v10

v4

FIGURE 7.6: Construction of the (11, 5, 2)-biplane

Under this construction there are 3 types of blocks with order 5. Block 1 is of

the first type, which is the outer ring of 5 vertices. Block 1 is the only block of this

type. Block 9 is of the second type which will contain two vertices in the outer ring,

two vertices in the inner ring and the center vertex. Five blocks have this type and

rotating this block about the center will yield the remaining four blocks. Block 2

is of the third type and will contain three vertices from the inner ring and two

vertices from the outer ring. Again five blocks have this third type and rotating

this block about the center will yield the remaining four blocks.
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v9

v11

v8 v7

v3

FIGURE 7.7: Block 1

v1

v11 v3
v6v10

FIGURE 7.8: Block 9

v8 v7

v2

v6v10

FIGURE 7.9: Block 2
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The group H will fix v1 and the group H ′ will fix block 1. This will yield the

following matrix: 

B B A B B B A A A B A

B A B B B A A A B A B

A B B B A A A B A B B

B B B A A A B A B B A

B B A A A B A B B A B

B A A A B A B B A B B

A A A B A B B A B B B

A A B A B B A B B B A

A B A B B A B B B A A

B A B B A B B B A A A

A B B A B B B A A A B


This last construction is also known as the (11, 5, 2)-biplane. The first value

indicates the total number of vertices. The second number is the number of vertices

in each block. The third value indicates the number of vertices contained in the

intersection of any two distinct blocks. The Fano plane is also known as the (7, 3, 1)-

biplane. Can the other two constructions be considered as biplanes? The answer

is no. In our triple with G ∼= C8 o V4, block 1 intersect block 2 will contain two

vertices but block 1 intersect block 3 will contain one vertex. In our triple with

G ∼= GL(3, 2), block 1 intersect block 5 will be empty, but block 1 intersect any

other block will contain one vertex.
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Appendix: Matrices

We construct matrices verifying the support of ν00 as defined in section 6. Matrix
M(n,t) will indicate a matrix for triple with index n and parent group of order t.
There are two distinct triples of index 12, order 96, and two distinct triples of index
14, order 336. In each case we construct matrix MA and MB for the two triples.
We also construct two matrices MA and MB for the triple of index 12 and order
72. There is only one such triple. The reason we construct two matrices is that
two distinct primes divide the determinant of each matrix. Both 3 and 19 divide
det(MA), and both 2 and 3 divide det(MB). Since no other primes divide the
determinants of either matrix, the support will contain at most one prime, namely
3. The results here coincide with the results of Bosma and de Smit [1].

M(7,168) =



1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 1
−1 −1 1 −1 1 1 1
−1 1 −1 1 1 1 −1
1 −1 1 1 1 −1 −1
−1 1 1 1 −1 −1 1
1 1 1 −1 −1 1 −1


det(M(7,168)) = −512 = −1 ∗ 29

M(8,32) =



2 2 3 2 2 1 3 1
2 3 2 2 1 3 1 2
3 2 2 1 3 1 2 2
2 2 1 3 1 2 2 3
2 1 3 1 2 2 3 2
1 3 1 2 2 3 2 2
3 1 2 2 3 2 2 1
1 2 2 3 2 2 1 3


det(M(8,32)) = 1024 = 210

M(8,48) =



0 0 1 −1 1 1 0 −1
0 1 −1 1 1 0 −1 0
1 −1 1 1 0 −1 0 0
−1 1 1 0 −1 0 0 1
1 1 0 −1 0 0 1 −1
1 0 −1 0 0 1 −1 1
0 −1 0 0 1 −1 1 1
−1 0 0 1 −1 1 1 0


det(M(8,48)) = 243 = 35
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M(11,660) =



2 2 3 2 2 2 3 3 3 2 3
2 3 2 2 2 3 3 3 2 3 2
3 2 2 2 3 3 3 2 3 2 2
3 2 2 3 3 3 2 3 2 2 3
2 2 3 3 3 2 3 2 2 3 2
2 3 3 3 2 3 2 2 3 2 2
3 3 3 2 3 2 2 3 2 2 2
3 3 2 3 2 2 3 2 2 2 3
3 2 3 2 2 3 2 2 2 3 3
2 3 2 2 3 2 2 2 3 3 3
3 2 2 3 2 2 2 3 3 3 2


det(M(11,660)) = 6561 = 38

M(12,48) =



−1 1 1 −1 1 3 1 3 3 1 3 1
1 −1 −1 1 1 3 1 3 1 3 1 3
1 −1 −1 1 3 1 3 1 3 1 3 1
−1 1 1 −1 3 1 3 1 1 3 1 3
3 3 1 1 −1 1 1 −1 1 1 3 3
1 1 3 3 1 −1 −1 1 1 1 3 3
1 3 1 3 1 1 3 3 −1 1 1 −1
3 1 3 1 1 1 3 3 1 −1 −1 1
1 3 1 3 3 3 1 1 1 −1 −1 1
3 1 3 1 3 3 1 1 −1 1 1 −1
3 3 1 1 1 −1 −1 1 3 3 1 1
1 1 3 3 −1 1 1 −1 3 3 1 1


det(M(12,48)) = 268435456 = 228

MA(12,72) =



1 2 1 2 1 2 1 1 2 2 2 2
2 1 2 1 2 1 1 2 1 2 2 2
1 1 2 2 2 2 1 2 2 1 1 2
2 2 1 2 2 1 1 2 2 1 1 2
2 2 2 1 1 2 1 2 2 1 1 2
1 2 1 2 1 2 2 2 1 1 2 2
2 1 2 1 2 1 2 1 2 2 1 2
1 2 2 2 2 1 2 1 1 2 2 1
2 1 2 2 1 2 2 1 1 2 2 1
2 2 1 1 2 2 2 1 1 2 2 1
1 2 1 2 1 2 2 2 2 2 1 1
2 1 2 1 2 1 2 2 2 1 2 1


det(MA(12,72)) = 1539 = 34 ∗ 19
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MB(12,72) =



−1 1 −1 1 −1 1 1 1 1 2 1 2
1 −1 1 −1 1 −1 1 1 1 1 2 2
1 1 2 2 1 1 −1 1 1 −1 −1 1
1 2 1 1 2 1 −1 1 1 −1 −1 1
2 1 1 1 1 2 −1 1 1 −1 −1 1
−1 1 −1 1 −1 1 1 2 1 1 2 1
1 −1 1 −1 1 −1 1 1 2 2 1 1
1 1 1 2 2 1 1 −1 −1 1 1 −1
1 1 2 1 1 2 1 −1 −1 1 1 −1
2 2 1 1 1 1 1 −1 −1 1 1 −1
−1 1 −1 1 −1 1 2 1 2 1 1 1
1 −1 1 −1 1 −1 2 2 1 1 1 1


det(MB(12,72)) = 20736 = 28 ∗ 34

gcd(1539, 20736) = 81 = 34

MA(12,96) =



2 2 1 1 1 1 0 0 0 0 0 0
1 0 2 1 0 0 2 1 0 0 1 0
0 1 1 2 0 0 0 0 2 1 1 0
1 0 1 0 2 0 0 2 0 1 0 1
0 1 0 1 0 2 0 1 0 2 0 1
1 0 0 0 1 2 0 0 1 2 1 0
0 1 2 0 1 0 2 0 1 0 0 1
0 1 0 0 2 1 1 2 0 0 1 0
1 0 0 2 0 1 1 0 2 0 0 1
0 0 0 1 1 0 1 0 0 1 2 2
0 0 1 0 0 1 0 1 1 0 2 2
2 2 0 0 0 0 1 1 1 1 0 0


det(MA(12,96)) = 131072 = 226

M(12,192) =



−1 −1 1 1 1 1 1 1 2 2 0 0
1 1 −1 −1 1 1 1 1 2 0 2 0
1 1 −1 −1 1 1 1 1 0 2 0 2
2 0 2 0 −1 1 1 −1 1 1 1 1
0 2 0 2 −1 1 1 −1 1 1 1 1
0 2 2 0 1 −1 −1 1 1 1 1 1
2 0 0 2 1 −1 −1 1 1 1 1 1
1 1 1 1 2 0 2 0 −1 1 1 −1
1 1 1 1 0 2 0 2 −1 1 1 −1
1 1 1 1 2 2 0 0 1 −1 −1 1
1 1 1 1 0 0 2 2 1 −1 −1 1
−1 −1 1 1 1 1 1 1 0 0 2 2


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det(M(12,192)) = 4194304 = 222

M(12,240) =



0 0 1 1 1 1 1 0 0 0 0 0
1 0 0 1 1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 1 1 0 0 0
0 1 0 1 0 0 1 1 0 1 0 0
1 0 0 0 1 0 1 1 0 0 1 0
1 0 0 1 0 1 0 1 0 0 0 1
1 0 1 0 0 1 0 0 1 0 1 0
1 0 1 0 0 0 1 0 0 1 0 1
0 1 1 0 1 0 0 0 0 1 1 0
0 1 1 1 0 0 0 0 1 0 0 1
0 1 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1



det(M(12,240)) = −625 = −1 ∗ 54

M(13,5616) =



0 1 1 1 1 1 1 1 1 1 0 0 0
1 0 0 0 1 1 1 1 1 1 1 1 0
1 1 1 1 0 1 0 1 0 1 1 1 0
1 1 1 1 1 0 1 0 1 0 1 1 0
0 0 1 1 0 0 1 1 1 1 1 1 1
0 1 0 1 1 1 1 0 0 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1 1
1 0 1 1 1 1 0 0 1 1 0 1 1
1 0 1 1 1 1 1 1 0 0 1 0 1
1 1 0 1 0 1 1 1 1 0 0 1 1
1 1 1 0 1 0 1 1 0 1 0 1 1
1 1 1 0 0 1 1 0 1 1 1 0 1
1 1 0 1 1 0 0 1 1 1 1 0 1



det(M(13,5616)) = −6615 = −38
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M(14,168) =



−1 −1 −1 −1 −1 −1 2 2 2 2 0 0 0 0
2 −1 0 −1 0 2 −1 2 0 −1 −1 2 −1 0
2 2 −1 0 0 −1 −1 0 −1 2 0 −1 −1 2
2 −1 2 −1 0 0 2 −1 −1 0 2 −1 0 −1
0 0 −1 2 2 −1 −1 2 −1 0 2 −1 −1 0
−1 0 0 2 −1 2 2 0 −1 −1 −1 −1 0 2
−1 2 2 0 −1 0 0 2 −1 −1 −1 −1 2 0
0 −1 2 −1 2 0 −1 0 2 −1 −1 0 −1 2
0 2 −1 0 2 −1 2 −1 0 −1 −1 2 0 −1
0 −1 0 −1 2 2 0 −1 −1 2 0 −1 2 −1
2 0 −1 2 0 −1 0 −1 2 −1 −1 0 2 −1
−1 0 2 2 −1 0 −1 −1 0 2 0 2 −1 −1
−1 2 0 0 −1 2 −1 −1 2 0 2 0 −1 −1
−1 −1 −1 −1 −1 −1 0 0 0 0 2 2 2 2



det(M(14,168)) = 1073741824 = 230

MA(14,336) =



−1 −1 −1 −1 −1 −1 2 2 2 2 0 0 0 0
2 2 −1 −1 0 0 −1 −1 2 0 −1 −1 2 0
−1 2 2 0 0 −1 2 −1 0 −1 0 −1 −1 2
2 −1 0 2 −1 0 −1 2 0 −1 −1 0 −1 2
2 0 −1 −1 2 0 2 0 −1 −1 0 2 −1 −1
0 2 −1 −1 0 2 0 2 −1 −1 2 0 −1 −1
0 −1 2 0 −1 2 −1 0 2 −1 −1 2 −1 0
−1 0 0 2 2 −1 0 −1 2 −1 2 −1 −1 0
0 0 −1 −1 2 2 −1 −1 0 2 −1 −1 0 2
−1 0 2 0 2 −1 −1 2 −1 0 −1 0 2 −1
0 −1 0 2 −1 2 2 −1 −1 0 0 −1 2 −1
−1 2 0 2 0 −1 −1 0 −1 2 −1 2 0 −1
2 −1 2 0 −1 0 0 −1 −1 2 2 −1 0 −1
−1 −1 −1 −1 −1 −1 0 0 0 0 2 2 2 2



det(MA(14,336)) = 1073741824 = 230
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MB(14,336) =



2 2 2 2 2 2 2 2 3 3 3 3 2 2
2 2 2 2 2 2 2 3 3 3 2 2 3 2
2 2 2 2 2 2 2 3 2 2 3 3 3 2
2 2 3 3 3 3 2 2 2 2 2 2 2 2
3 3 3 3 2 2 2 2 2 2 2 2 2 2
3 3 2 2 3 3 2 2 2 2 2 2 2 2
2 2 2 2 2 2 3 3 2 3 2 3 2 2
2 2 2 2 2 2 3 3 3 2 3 2 2 2
2 2 2 2 2 2 3 2 2 3 3 2 3 2
2 2 2 2 2 2 3 2 3 2 2 3 3 2
2 3 3 2 2 3 2 2 2 2 2 2 2 3
2 3 2 3 3 2 2 2 2 2 2 2 2 3
3 2 2 3 2 3 2 2 2 2 2 2 2 3
3 2 3 2 3 2 2 2 2 2 2 2 2 3



det(MB(14,336)) = −8192 = −1 ∗ 213

M(14,56448) =



−1 1 1 1 1 −1 0 0 0 0 0 0 0 −1
1 −1 −1 1 1 1 0 0 0 0 0 0 0 −1
1 1 1 −1 −1 1 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 1 1 1 1 −1 −1 0
0 0 0 0 0 0 1 −1 −1 1 1 1 −1 0
0 0 0 0 0 0 1 1 1 −1 −1 1 −1 0
0 0 0 0 0 0 −1 −1 1 −1 1 1 1 0
0 0 0 0 0 0 −1 1 −1 1 −1 1 1 0
0 0 0 0 0 0 1 −1 1 1 −1 −1 1 0
0 0 0 0 0 0 1 1 −1 −1 1 −1 1 0
−1 −1 1 −1 1 1 0 0 0 0 0 0 0 1
−1 1 −1 1 −1 1 0 0 0 0 0 0 0 1
1 −1 1 1 −1 −1 0 0 0 0 0 0 0 1
1 1 −1 −1 1 −1 0 0 0 0 0 0 0 1



det(M(14,56448)) = −262144 = −1 ∗ 218
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M(15,180) =



−1 1 0 0 0 1 0 1 0 1 0 0 0 −1 −1
−1 0 0 0 1 0 0 0 1 0 1 0 1 −1 −1
−1 0 1 1 0 0 1 0 0 0 0 1 0 −1 −1
1 −1 0 0 −1 0 −1 0 0 1 1 1 0 0 0
1 0 −1 1 1 1 0 −1 0 0 −1 0 0 0 0
1 1 1 −1 0 0 0 0 −1 −1 0 0 1 0 0
1 0 0 0 0 −1 1 1 1 0 0 −1 −1 0 0
0 −1 1 0 −1 1 −1 0 1 0 0 0 0 1 0
0 1 0 1 0 −1 0 0 0 0 1 −1 −1 1 0
0 0 0 −1 1 0 0 1 −1 −1 0 1 0 1 0
0 0 −1 0 0 0 1 −1 0 1 −1 0 1 1 0
0 −1 0 1 −1 0 −1 1 0 0 0 0 1 0 1
0 1 −1 0 0 0 0 −1 1 0 −1 1 0 0 1
0 0 1 0 1 −1 0 0 0 1 0 −1 −1 0 1
0 0 0 −1 0 1 1 0 −1 −1 1 0 0 0 1



det(M(15,180)) = −262144 = −1 ∗ 218

M(15,360) =



−1 1 0 0 0 0 0 0 1 1 1 0 0 −1 −1
−1 0 1 0 0 1 1 0 0 0 0 1 0 −1 −1
−1 0 0 1 1 0 0 1 0 0 0 0 1 −1 −1
1 −1 0 0 0 0 −1 −1 0 0 1 1 1 0 0
1 0 −1 0 0 1 0 1 −1 1 0 0 −1 0 0
1 0 0 −1 1 0 1 0 1 −1 0 −1 0 0 0
1 1 1 1 −1 −1 0 0 0 0 −1 0 0 0 0
0 −1 1 0 1 0 −1 −1 0 1 0 0 0 1 0
0 −1 0 1 0 1 −1 −1 1 0 0 0 0 0 1
0 1 −1 0 1 0 0 0 −1 0 0 1 −1 0 1
0 1 0 −1 0 1 0 0 0 −1 0 −1 1 1 0
0 0 0 0 −1 −1 1 0 0 1 −1 0 1 0 1
0 0 0 0 −1 −1 0 1 1 0 −1 1 0 1 0
0 0 −1 1 0 0 1 0 −1 0 1 0 −1 1 0
0 0 1 −1 0 0 0 1 0 −1 1 −1 0 0 1



det(M(15,360)) = −262144 = −1 ∗ 218
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M(15,2520) =



−1 −1 −1 −1 1 1 −1 1 1 −1 1 1 1 −1 1
1 −1 1 1 1 −1 −1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 1 1 −1 1 1 −1 −1 1 −1 1
−1 1 1 1 −1 −1 1 −1 −1 −1 1 1 1 −1 1
1 1 −1 1 −1 −1 −1 1 1 −1 −1 1 −1 1 1
−1 1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1
1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 1 1
−1 −1 −1 1 1 −1 1 −1 1 1 1 −1 −1 1 1
−1 −1 −1 1 −1 1 1 1 −1 1 −1 1 1 1 −1
−1 1 1 −1 1 −1 −1 −1 1 1 −1 1 1 1 −1
1 −1 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 −1
1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 1 1 −1
−1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 −1 1 1 −1 1 −1 −1 1 1 1 1 −1 −1 −1
1 1 −1 −1 1 −1 1 1 −1 1 1 1 −1 −1 −1


det(M(15,2520)) = 268435456 = 228

M(15,20160) =



−1 1 1 −1 1 −1 −1 −1 1 1 −1 −1 1 −1 1
−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 −1 1 −1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 −1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 −1 1 1 −1 1 −1 1 −1
−1 1 1 −1 1 −1 −1 1 −1 −1 1 1 −1 1 −1
−1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 1 −1 −1 1 1 −1 −1
−1 −1 1 1 −1 −1 1 −1 −1 1 1 1 1 −1 −1
−1 −1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 1
−1 −1 −1 −1 1 1 1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1


det(M(15,20160)) = 268435456 = 228
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