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3. Methodology 

3.1. Bayesian model averaging (BMA) 

In order to develop a saltwater intrusion model, one needs to choose a proposition from the 

competing propositions of each source of uncertainty. Combination of different choices from the 

competing propositions of sources of uncertainty leads to multiple groundwater simulation models. 

Let  ( )(1) (2) (3) ( ), , ,..., ,..., mNqM M M M MM  be a set of groundwater prediction models, which 

are developed to predict the target quantity  and mN  be the number of models in the set M . 

Based on the law of total probability (Leamer 1978; Kechris1995), given the data evidence D , 

posterior probability of the prediction  is: (Draper 1995; Raftery 1995; Raftery et al. 1997): 

     ( ) ( )Pr Pr , Prq q

q
M M  D D D ,                                                                                          (1) 

where  (q)Pr ,M D  is the posterior probability of prediction quantity  , given model (q)M , and 

 (q)Pr M D  is the posterior model probability for model (q)M . In this study,   can be the chloride 

concentration, groundwater head or groundwater velocity. Assuming the models in the set M  to 

be mutually exclusive (disjoint),  ( )Pr qM D can be calculated by using the Bayes’ theorem 

(Berger 1985) as: 

(q) (q)
(q)

(q) (q)

Pr( | M )Pr(M )
Pr(M | )

Pr( | M )Pr(M )
q




D
D

D
.                                                                                                 (2) 

In equation (2), (q)Pr( | M )D is the marginal likelihood function of model (q)M that depends 

on the model ability to reproduce the observation data. The details on model likelihood calculation 

are presented in section 3.2.6. (q)Pr(M )  is the prior model probability of the model (q)M , which 
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indicates the comparative importance of the model (q)M in comparison to other models in the set

M , before visiting data.  

Using the law of total expected value (Sugiura 1978), the mean of the prediction   using 

the models in the set M  is: 

     ( ) ( )E | E | , Pr |q q

q
M M  D D D ,                                                                                   (3) 

where  E | D is the mean prediction, given the data D ,  ( )E | , qM D is the expected value of 

predictions, given the model ( )qM and data D  and  ( )Pr |qM D is the posterior probability of the 

model ( )qM , which can be calculated based on equation (2). 

 Using the law of total covariance, the covariance of the prediction   can be calculated by  

( ) ( )Cov( | ) Cov( | , ) Cov ( | , )q q

M ME M E M    D D D .                                                             (4) 

The term ( )Cov( | , )q

ME M D in equation (4) is the within-model covariance of predictions. 

Given a simulation model from the set M , the within-model covariance of predictions stems from 

the uncertainty in the estimated parameters. The term ( | , )M qE Var M D averages the prediction 

covariances of all the individual models as: 

   ( ) ( ) ( )Cov( | , ) Cov | , Pr |q q q

M q
E M C M M D D D .                                                                (5) 

The term ( )Cov ( | , )q

M E M D in equation (4) is the between-model covariance of 

predictions that accounts for the spreading of mean predicted values by different models. 

( )Cov ( | , )q

M E M D can be calculated by: 

   

     

( ) ( )

( ) ( )

Cov ( | , ) E | , E |

                                            E | , E | Pr | ,

q q

M q

T
q q

E M M

M M

     
 

   
 

D D D

D D D

                                              (6) 

where the superscript “T ” is the transpose operator.  
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 BMA is a very useful method to integrate multiple models for uncertainty analysis. 

However, more detailed information cannot be obtained by only looking into the prediction mean 

and variance of the entire models. For example, the posterior model probabilities in equation (2) 

cannot be used to assess relative importance of the propositions of each source of uncertainty. The 

impact of individual sources of uncertainty on the prediction cannot be evaluated. The contribution 

of individual source of uncertainty to the total prediction variance is not clear. The following 

section, introduces the hierarchical Bayesian model averaging (HBMA) method to address these 

issues. 

3.2. Hierarchical Bayesian model averaging (HBMA) 

3.2.1. BMA tree 

Considering p  sources of uncertainty in a hierarchical order, each of which provides a 

number of propositions. Top-down combinations of propositions form a BMA tree (Chitsazan and 

Tsai 2014) shown in Figure 3.1. Each level in the BMA tree represents a targeted source of 

uncertainty, which stacks on the top of other sources of uncertainty below it. The base level of the 

BMA tree contains base models that are simulation models developed as a result of all 

combinations of propositions. A base model is denoted as 
pM  at level p .  Increasing the number 

of sources of uncertainty increases the number of levels of the BMA tree and the number of models. 

A parent model is a model at a vertex of a level, which has its child models immediately one level 

below. BMA is performed to average child models to obtain their parent models. Therefore, the 

parent models are the BMA results of their child models. All models above the base level are BMA 

models. The top-most BMA model is called the hierarch model, which averages models at level 

1. The basic models of both BMA and HBMA are the base models.  
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HBMA is similar to BMA in Hoeting et al. (1999) in that it adopts the laws of total 

probability, total expectation and total covariance in order to integrate the outcomes of simulation 

models and assess their prediction uncertainty. The outcomes from the hierarch model in the 

HBMA are the same as those from the BMA model in Hoeting et al. (1999). Both HBMA and 

BMA require the base models to be mutually exclusive (Ye et al. 2005; Refsgaard et al. 2012; Tsai 

and Elshall 2013) such that they are not identical and they can be solely used for prediction. 

1st source of

uncertainty

Hierarch model

(P-2)th source

of uncertainty

(P-1)th source

of uncertainty

Pth source of

uncertainty

M
1
 models

M
(p-2)

 models

M
(p)

 models

base models

M
(p-1)

 models

Figure 3.1: A schematic of hierarchical Bayesian model averaging: a BMA tree. 

However, the outcomes that are only possible to obtain through HBMA are as follows. 

First, HBMA provides BMA trees to evaluate different competing propositions and sources of 

uncertainty in detail. Second, uncertainty prioritization through the between-model variance at 

different levels can only be provided by the HBMA. Third, the HBMA allows for the visualization 

of the impact of each source of uncertainty on predictions and remediation solutions.  
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3.2.2. Method development 

Considering p  sources of uncertainty, a base model is denoted as 
( ... )M

p

ij lm pM  at level 

p . The subscript 

p

( ... )ij lm  is an index list that locates a base model hierarchically top down from 

the first level, to the second level and so forth to reach to level p . For instance, the ith model at the 

first level of BMA tree is denoted by 1iM M , the jth model at level 2 that is a child model of 

1iM M is denoted by 
2ijM M and so forth until the level p . On this account, a BMA model

1pM  at level 1p    is the BMA of its child base models 
pM  at level p , a BMA model in 

2pM   

at level 2p    is BMA of its child BMA models 
1pM  at level 1p  , and so forth, until the hierarch 

model, is composed.  

3.2.3. Model weights 

According to the law of total probability, the posterior probability of prediction   given 

data D  for the hierarch model, given base models  

p

pi j m
M M , is  

   
1 2

Pr E E E Pr ,
p p
   
 M M M| D | D M .                                                                                  (7) 

In equation (7), 
p

EM
 is the expectation operator with respect to models 

pM  at level p . 

 Pr , p | D M  is the posterior probability of the prediction given data D  and models 
pM at 

level p . 
1 2

E E E
pM M M
 represents a series of averaging operations over models from level  up 

to level  1.  E Pr ,
p p
 
 M | D M  is the averaged posterior probability over models 

pM  at level  

p . That is  

p
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         E Pr , Pr | , Pr | ,
p p i j m i j m i j

m

M M M   
  M | D M D D ,                                (8) 

where the last index m  denotes the base models at level p  given their parents model at level 

1p  and     Pr | ,
i j m i j

M MD  is the conditional probability of child models  i j m
M  at the 

level p  given data D  and their parent models  i j
M  at level 1p  , which represents the 

conditional model weights. Therefore, in equation (8) 

    Pr | , Pr | , pi j m
M  D D M                                                                                              (9) 

and 

      1Pr | , Pr | ,p pi j m i j
M M D M D M .                                                                             (10)

Thus, equation (9) can be written as 

   1Pr , E Pr ,
pp p
   
 M| D M | D M                                                                                (11) 

According to equation (11), by operating the expectations up to level 1n  in equation (7), 

one can derive the posterior probability of prediction at level n  as:  

   
1 2

Pr , E E E Pr ,
n n pn p 

   
 M M M| D M | D M .                                                                     (12) 

For BMA in (Hoeting et al. 1999), only one level of models is considered. Then, equation (7) 

reduces to  

         
1 1Pr E Pr , Pr | , Pr |

i i
i

M M       M| D | D M D D .                                           (13) 

 This research considers three and four levels in the BMA tree for the different case studies. 

The posterior probability of prediction is for a BMA tree with three levels is:  
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 

 

       
1 2 3 3

( ) ( ) ( ) ( ) ( ) ( )

Pr

Pr | ,

Pr | , Pr | , Pr | , Pr |ijk ijk ij ij i i

i j k

E E E

M M M M M M



   

 

M M M

| D

D M

D D D D

                             (14) 

and the posterior probability of predictions for a BMA tree with four sources of uncertainty is  

 

 

         
1 2 3 4 4

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Pr

Pr | ,

Pr | , Pr | , Pr | , Pr | , Pr | .ijkl ijkl ijk ijk ij ij i i

i j k l

E E E E

M M M M M M M M



   

 

M M M M

| D

D M

D D D D D

 

(15) 

For a BMA tree with p  levels as shown in Figure 3.1, the posterior probability of predictions is   

                          

 
 

            
1 2

( ) ( )

Pr

Pr | ,

Pr | , Pr | , Pr | , Pr | .

p p

i ii j m i j m i j i j
i j l m

E E E

M M M M M M



  
 

  
M M M

| D

D M

D D D D

  (16) 

Based on the Bayes’ rule, given the data D , the posterior model probability for a base 

model can be calculated by 

 
     

     
( )

Pr | Pr
Pr |

Pr | Pr

i j m i j m

i j m

i j m i j m
i j m

M M
M

M M


 

D
D

D
 ,                                          (17) 

where 
  Pr |
i j m

MD
 
is the likelihood of a base model and 

  Pr
i j m

M  is the prior model 

probability of a base model. By adding up the posterior model probability from base models up to 

models at level 1n , the posterior model probability at level n  can be calculated by   

 
     

     
1

Pr | Pr

Pr |
Pr | Pr

i j m i j m
n m

n

i j m i j m
i j m

M M

M M


 

 

D

M D
D

.                                                      (18) 

The conditional posterior model probability of a base model under its parent model is  
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 
       

       
1

Pr | Pr |
Pr | ,

Pr | Pr |

i j m i j m i j

p p

i j m i j m i j
m

M M M

M M M
 



D
M D M

D
                                                     (19) 

where 
    Pr |
i j m i j

M M  is the conditional prior model probability of a base model pM  under 

the parent model 1pM . The conditional posterior model probability at level n  under their parent 

models 1nM  is  

 
       

       
1

1

1

Pr | Pr |

Pr | ,
Pr | Pr |

i j m i j m i j
n m

n n

i j m i j m i j
n n m

M M M

M M M







 

 

D

M D M
D

                                   (20) 

Therefore, each model at any level in the BMA tree has two types of model weights: (a) 

model weight given by the posterior model probability in equation (17) and (b) conditional model 

weight given by the conditional posterior model probability in equation (20) .   

In equations (17) and (20) , the prior model probabilities 
  Pr
i j m

M and conditional prior 

model probabilities
    Pr |
i j m i j

M M  reflect the comparative importance of the competing 

propositions of one level before visiting the data. In the absence of prior knowledge about the 

competing propositions of one source of uncertainty, equal conditional prior model probabilities 

can be considered for the propositions of that source of uncertainty. If this is the case for all the 

uncertainty sources, the obtained posterior model probabilities and conditional posterior model 

probabilities are solely based on the observation data. In this case, the posterior model probabilities 

(model weights) in equation (17) become  

 
  

  

Pr |
Pr |

Pr |

i j m

p

i j m
i j m

M

M


 

D
M D

D
,                                                                  (21) 
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models. This is true except for the base models, where the between model variance is zero and the 

within-model covariance is equal to the total covariance.   

 From the calculating perspective, one first needs to calculate the within-model covariance 

and the mean predictions of the base models because the base models are the basic elements of the 

HBMA analysis. Then, using equation (29), the mean predictions can be evaluated for all the BMA 

models from level 1p   to level 0 (the hierarch model). Then starting from level 1p  , the 

between model covariance of predictions can be evaluated by using equation (34) and the within-

model covariance of prediction can be evaluate by averaging the total covariance of prediction of 

the child models at level p . This process can be continued until the reach the hierarch model. 

Calculating the within-model and between model variances for all the models in the BMA tree 

lead to developing the BMA tree of predictions which shows the propagation of prediction 

variances between the different sources of uncertainty.  

3.2.6. Model likelihood estimation 

Computation of the marginal likelihood function of the simulation models is a necessary 

part of both BMA and HBMA. For BMA, (q)Pr( | M )D  in equation (2) needs to be estimated in 

order to obtain the posterior probability of the models (q)Pr(M | )D . Similarly for HBMA, one need 

to obtain the 
  Pr |
i j m

MD  in order to calculate the posterior model probabilities and conditional 

posterior model probabilities using equations (21) to (24).  

The marginal likelihood of a model 
pM  is calculated by integrating over all the plausible 

parameters that are embedded in the model (parameter space) as: 

     Pr | Pr | , Pr |p p p p p pd


 D M D M β β M β  ,                                                                          (36) 
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to increase the size of the Occam’s acceptance window. In equation (42), 1s  is the  
BIC

i j m


value corresponding to the significance level in Occam’s window and 
1s is the size of the variance 

window in the unit of 2d n  . The scaling factor   can take values between 0 and 1, where 

1   derives Occam’s window and 0   assign equal weights to all the models. Decreasing   

value to less than 1 increases the size of the acceptance window to consider more models in the 

model averaging.   

Table 3.1, based on Tsai and Li (2008b), shows the values of scaling factor   for 

different variance window sizes and different significance level. Substituting the scaling factor 

  from Table 3.1 to equation (41), allows to estimate the posterior probability of the base models 

in the BMA tree as: 

 
  

  

1
2

1
2

exp BIC
Pr |

exp BIC

i j m

p

i j m
i j m





  
 


  
  

M D .                                                                    (43) 

With the same procedure, one can calculate the posterior model probabilities and conditional 

posterior probabilities of all the models in the BMA tree.  

Table 3.1: values of scaling factor  based on different variance window sizes and significance 

levels for data size n  (Tsai and Li 2008b). 

 𝜎𝐷 2𝜎𝐷 4𝜎𝐷 

    

Significance level 5% 
4.24

n
  

2.12

n
 

1.06

n
 

Significance level 1% 
6.51

n
 

3.26

n
 

1.63

n
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  At this point, formulating the HBMA method with variance window and BIC for 

likelihood estimation is finished. The provided framework is a learning tool that can provide an 

insight to the uncertainty analysis procedure by segregating the sources of uncertainty in the BMA 

trees of posterior model probability, prediction mean, within-model variance, between model 

variance and total variance. This partially addresses the concern of Gupta et al. (2012) that the 

current BMA framework lumps all errors in a single misfit without providing an insights into 

model structure adequacy. Similar to other model averaging methods, HBMA can be also used to 

integrate the outcomes of several prediction models and assess the uncertainty of the predictions. 

In addition, HBMA also enables to learn more about the uncertain model components and sources 

of uncertainty in the system. The following section, formulates the chance-constrained (CC) 

programming in conjunction to the HBMA method and propose the HBMA-CC framework for 

groundwater remediation design under uncertainty.  

3.3. Chance-constrained programming 

3.3.1. Hydraulic barrier design 

This section introduces the chance-constrained programming method to consider the 

quantified mean and variance of the predictions in the remediation design. The CC programming 

determines the optimal decision variables that ensure maintaining the management constraints at a 

prescribed level of probability. Figure 3.2 shows a schematic of a hydraulic barrier design that aims 

to protect the pumping wells by injecting freshwater along the hydraulic barrier AB  such that 

contaminated groundwater will not cross the barrier. Let -x y  be the global coordinates for the 

groundwater model and -x y   be the local coordinates for the hydraulic barrier. If the flow 

prediction has no uncertainty, the design that makes the velocity 0yV    for the entire AB  will 



36 

 

guarantee the success of the barrier. However, precise prediction is practically impossible due to 

uncertainty in the simulation models. Using the probability to characterize the velocity predictions, 

a certain level of desired reliability is required that forms a chance constraint (Guo et al. 2013; He 

et al. 2008): 

 Pr 0yV    , (44) 

where  Pr 0yV    is the probability of the constraint 0yV    and [0,1]  is the desired 

reliability level. Given F  as the cumulative distribution function of 
yV  , equation (44) is 

equivalent to its deterministic form  

  1

1( ; ... ) 0y y nV F V  

   , (45) 

where 1F 
 is the inverse cumulative distribution function of F  and 1,..., n 

 
are the statistical 

moments of the probability density function. Considering that the velocity field follows the normal 

distribution (Ballio and Guadagnini 2004; Meyer and Brill 1988; Peters et al. 2013), equation (45) 

can be simplified by its deterministic equivalent form (Cooper et al. 2004) (Chitsazan et al 

submitted) as: 

   1 0y y yV E V F Var V 

           , (46) 

where only the first and the second statistical moments are required to describe the distribution of 

yV  . In equation (46), 
yE V 

    
is the expectation of 

yV  , yVar V 
    is the variance of 

yV  , and 1F   

is the inverse cumulative distribution function of the standard normal distribution, which is a 

function of  . Equation (46) is based on the velocity in the local coordinate system. Given a 

rotation angle , equation (46) can be rewritten for the global coordinate system as: 
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       

       1 2 2                                    0,

y y x

y x

V cos E V sin E V

F cos Var V sin Var V

  

  





   

    

 (47) 

where xV  and 
yV  are the velocity components along the x axis and y axis, respectively. 

Figure 3.2: A schematic hydraulic barrier. 

3.3.2.  Remediation design using scavenger wells 

Consider a remediation design that extracts least amount of contaminated groundwater 

using scavenger wells in order to lower contaminant concentration at production wells below a 

required standard. Let C  be the predicted concentration and MPLC  be the maximum permissible 

level (MPL). Similar to the hydraulic barrier design, if there is no error in simulation models, then 

the design that meets MPLC C  is guaranteed to be successful. However, similar to the 

groundwater flow models, predictions of the transport models are also subjected to uncertainty. 

Using the equivalent form in equation (46), the chance constrain for the scavenger well design can 

be formulated as (Chitsazan and Tsai accepted):  

     1E Var MPLC C F C C    , (48) 
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where  is the desired reliability level,  E C  is the expectation of C ,  Var C  is the variance of 

C , and 1F   is the inverse cumulative standard normal distribution function, which is a function 

of  . The term C
 is the  confidence bound for C . In other words, the value of C  will be less 

than C
 with   probability.   

A great deal of difficulty in the chance constrained programming using equations (47) and  

(48) is to obtain the spatial-temporal expectation and variance of the predictive V and C , 

respectively, as they are the results of uncertainty propagation from model parameters and model 

structure. This study uses the proposed BMA and HBMA methods to integrate multiple models 

created by different sources of uncertainty and derive expectation and variance of V and C .  

3.3.3. HBMA-CC programming  

Combination of the proposed HBMA method and the chance-constrained programming 

forms the HBMA-CC framework. Based on the BMA tree, an analyst can evaluate the remediation 

design using base models and BMA models in the chance-constrained programming. If the 

posterior probability distribution of the concentration after the model averaging approximately 

follows a normal distribution, the deterministic equivalent can be used for the chance constraint 

for a model 
nM  at level n  as: 

       

       1 2 2

| , | ,

              | , | , 0

y y n x n

y n x n

V cos E V sin E V

F cos Var V sin Var V

  

  





    

    

D M D M

D M D M
                                         (49) 

for hydraulic barrier design and  

     1 = E , Var ,n n MPLC C F C C  | D M | D M ,   (50) 
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for remediation design using scavenger wells. In equations (49) and (50), the expected value and 

variance of predictions can be evaluated based on equations (29) and (34), respectively. Here 

formulating the HBMA-CC frame work is finished. Considering one source of uncertainty 

available in predicting the chloride concentration or groundwater velocity, the HBMA-CC 

framework reduces to the BMA-CC framework, where the predictive expectation and variances 

can be evaluated by using equations (3) and (4).  

Both HBMA-CC and BMA-CC frameworks can handle the remediation design under 

model structure and model parameter uncertainty. However, when more than one source of 

uncertainty is available in the model structure, HBMA-CC provides some additional information 

about the competing proposition of different sources of uncertainty in the remediation design.  
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4. Uncertainty Segregation and Comparative Evaluation: A Hierarchical 

Bayesian Model Averaging (HBMA) Method for Groundwater Prediction 

under Uncertainty* 

The process of developing groundwater simulation models is always subject to uncertainty 

due to the incomplete knowledge about the underlying groundwater system. The incomplete 

knowledge is regarding to the model parameters, model structure and the observation data. The 

uncertainty in these model components may propagates to the predictions from the groundwater 

simulation models, which are very important in the management of groundwater resources. The 

uncertainty in developing the conceptual groundwater models renders to multiple competing 

propositions for different model elements e.g. boundary condition and fault characterization, to describe 

the current abstract knowledge about the model elements. The multiple propositions for each model 

element lead to several simulation models that can be used for the groundwater prediction. 

A common practice to handle the uncertainty in the groundwater models is through 

statistical treatment of the incomplete knowledge. Since the uncertainty in the groundwater models 

is an epistemic (knowledge based) uncertainty, the Bayesian epistemology is the most suitable way 

for analyzing the uncertainty of simulation models. The Bayesian epistemology is a theory about 

degree of belief that is founded over three main axioms. They are: (1) probability, which means 

that there should be a probability function that measures the degree of belief to each model, given 

the evidence of data, (2) Calibration, which means that the simulation models should be calibrated 

based on the observation data, and (3) Equivocation which means that the models should not more 

complex than is demanded by the data evidence.  

 

* This chapter is reproduced with modifications from Chitsazan and Tsai (2014). The chapter is 

reproduced with permission from the publisher.  
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Using the axioms of Bayesian epistemology, the posterior probability of different 

groundwater models may be estimated based on the data evidence, where the estimated posterior 

probabilities may be updated in the light of a new evidence (data).  

Bayesian model averaging (BMA) is a robust method for combining the results of several 

simulation models, which uses the Bayesian epistemology to estimate the posterior probability of 

each groundwater model. The BMA method uses estimated posterior probabilities together with 

statistical laws of total expectation and total covariance to evaluate the mean and covariance of the 

predictions. Although BMA is a rigorous approach multimodel method, because it considers all 

the simulation models in one level, it does not provide a comparative evaluation for different 

proposition of each model element. BMA also does not show the contribution of each model 

component to the total prediction variance.  

To address these shortcomings of the BMA method, this study introduces the hierarchical 

Bayesian model averaging (HBMA) method (see section 3.2) to segregate and prioritize sources 

of uncertainty in a hierarchical structure and conduct BMA for concentration prediction. A BMA 

tree of models is developed to understand the impact of individual sources of uncertainty and 

uncertainty propagation on model predictions. HBMA evaluates the relative importance of 

different modeling propositions at each level in the BMA tree of model weights. This study applied 

the HBMA method to predict the chloride concentration for the “1,500-foot” sand of the Baton 

Rouge area, Louisiana from 2005 to 2029. The groundwater head data from 1990 to 2004 is used 

for model calibration. Four sources of uncertainty are considered and resulted in 180 flow and 

transport models for concentration prediction. The results show that the prediction variances 

dramatically increase by increasing the number of uncertainty sources. The prediction variances 

of concentration from uncertain model elements are much higher than the prediction variance from 
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uncertain model parameters. The HBMA method is able to quantify the contributions of individual 

sources of uncertainty to the total uncertainty. It is shown that the contribution of the uncertainty 

sources to the total prediction variances depends on the location and time of the prediction.  

4.1.  Two-dimensional saltwater intrusion model development for the “1,500-foot” sand of 

Baton Rouge aquifer system 

This study develops two-dimensional groundwater flow and mass transport models with 

for the “1,500-foot” sand of Baton Rouge aquifer system, which is an important source of 

groundwater for public usages. The initial and the boundary conditions of the model are based on 

Tsai (2010). The simulation period is from 1/1/1990 to 12/31/2029, which is divided into the 

calibration period from 1/1/1990 to 12/31/2004 and the prediction period from 1/1/2005 to 

12/31/2029. The initial chloride concentration on 1/1/1990 is shown in Figure 4.1. The fault 

permeability is characterized by the hydraulic characteristic (HC), which is hydraulic conductivity 

per unit width (Hsieh et al. 1993). The groundwater model uses the time-varied constant-head 

boundary condition for all boundaries. For developing the hydraulic conductivity field, first the 

available porosity data is used to estimate the point-wise hydraulic conductivities. Then, the 

Kriging interpolation is used to estimate the distribution of hydraulic conductivity in the modeling 

domain. The major production wells are Lula pump station and Government Street pump station 

that are located in north of the Baton Rouge fault. The Lula pump includes six pumping wells, 

which averagely extract 7.03 million gallons per day. The Government St. pump station includes 

two active pumping wells, which averagely extract 1.59 million gallons per day. In this study, the 

pumping rates are assumed to be held constant in the prediction period. This study uses 

MODFLOW (Harbaugh 2005) and MT3DMS (Zheng and Wang 1999) to simulate groundwater 

flow and chloride transport from 1/1/1990 to 12/31/2029. 706 head observations from 1/1/1990 to 
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12/31/2004 at the USGS water wells shown in Figure 4.1 are used to calibrate the models. Then, 

the prediction models are develop to predict saltwater intrusion from 1/1/2005 to 12/31/2029.  

 
Figure 4.1: The map of study area and chloride concentration (mg/L) distribution on January 1, 

1990 (Tsai 2011). The leading edge is 250 mg/L chloride concentration. Circles are groundwater 

pumping wells and triangles are the USGS observation wells. All of the wells in the figure are 

screened at the “1500-feet” sand.  
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4.2. Sources of uncertainty 

Due to the limited hydrogeological data and knowledge, many sources of uncertainty exist 

in developing different elements of the model structure, which result in many possible saltwater 

intrusion models. This study specifically analyzes four sources of uncertainty. They are (1) 

groundwater head uncertainty in the boundary condition, (2) grain-size method uncertainty in 

determining point-wise hydraulic conductivity, (3) variogram model uncertainty in kriging 

hydraulic conductivity distribution, and (4) fault permeability architecture uncertainty. 

 First, the head value uncertainty in the determined boundary condition due to the lack of 

groundwater head data is assessed.  5 sets of head values for the boundaries by changing the current 

boundary head values for 0%, 10% and 20%   changes are proposed. Second,  three grain-size 

based empirical methods (Slitcher, Terzaghi and Zamarin methods) are used to estimate hydraulic 

conductivity at locations where porosity data are available. Table 4.1 lists the formula of the 

employed grain-size methods. 

Table 4.1: Empirical grain-size methods for hydraulic conductivity estimation, given the porosity 

data. 
2( ) e

g
K b f d


 , where 2 7 2g = 9.81 m/s ,  8.007 10 m/s  and 0.2 mm.ed     

 

 Third, three variogram models (Exponential, Gaussian and Spherical models) are used to 

krige hydraulic conductivity distribution based on point-wise estimated hydraulic conductivity 

Grain-size method b  f 
 

Domain of applicability 

Kozeny-Carman 35.56 10  

3

2(1 )



  

fine to large grain sands 

Slitcher 21.0 10  
3.287  fine to large grain sands 

Terzaghi 36.1 10  

2

3

0.13

1





 
     

large grain sands 
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obtained from the previous step. Figure 4.2 compares the three variogram models that are used for 

Kriging the hydraulic conductivity in comparison to the experimental variogram. The figure 

clearly indicates that none of the variogram models have superior fit to the experimental variogram 

points. Fourth, fault permeability architecture is modeled in segments along the fault line (zonation 

in one dimension). Each segment has a constant permeability. Fault permeability heterogeneity 

increases by increasing the number of segments up to four. The detail of fault permeability 

identification is explained in section 4.3.1.  

 
Figure 4.2: Comparison between different variogram models. 

Using the HBMA method, the four aforementioned sources of uncertainty form a BMA 

tree of models as shown in Figure 4.3. In this study, In order to locate a model in the BMA tree, 

this study uses the letter B subscribed with percentage of change in the determined boundary 

condition (B-20, B-10, B0, B+10, B+20,), the first letter of the grain-size methods (S,K,T), the first 
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letter of the variogram models (E, G, S), and the number of fault permeability segments (1,2,3,4). 

For example “B0KG3” denotes a base model at level 4 that considers no change in the determined 

boundary condition, Kozeny-Carman method, Gaussian variogram and three-segment fault 

permeability architecture. “B0KG” is a BMA model at level 3 that averages all the models at level 

4 with “B0” boundary condition, “K” grain-size method and “G” variogram. “B0K” is a BMA 

model at level 2 that averages all the models at level 3 with “B0” boundary condition and “K” 

grain-size method. “B0” is a BMA model at level 1 that averages all the models at level 2 with 

“B0” boundary condition. The hierarch model averages all BMA models at level 1. In the BMA 

tree (Figure 4.3), a parent model is a model at a vertex of a level with respect to their child models 

immediately one level below. For example B0KG is a parent model at the third level, where its 

child models are B0KG1, B0KG2, B0KG3 and B0KG4. BMA is performed to average the child 

models one level below to obtain their parent models at the current level. In other words, the parent 

models are the BMA results of their child models.  

 

Figure 4.3: The BMA tree for the four sources of uncertainty in this study. At the first level, 

“B−20,” “B−10,” “B0,” “B+10,” and “B+20” show the different propositions for the boundary 

conditions. At the second level, “S,” “K,” and “T” refer to Slitcher, Kozeny-Carman, and 

Terzaghi methods, respectively. At the third level “E,” “G,” and “S” refer to the exponential, 

Gaussian, and spherical variogram models, respectively. At the fourth level, “1,” “2,” “3,” and 

“4” refer to the models with one, two, three, and four fault segments, respectively. 



47 

 

4.3. Results and discussion 

4.3.1. Fault permeability architecture identification 

In order to model the heterogeneity of the Baton Rouge fault permeability, this study uses 

different number of permeability segments along the fault line (zonation in one dimension), where 

each segment has a constant HC value. Increasing the number of segments leads to higher 

heterogeneity in the fault architecture. This study follows the stepwise approach (Sun et al. 1998; 

Tsai et al. 2003 a, b) to define the length and the HC value of the fault segments. The stepwise 

approach uses basis points as the borders between the fault segments. In order to determine the 

permeability architectures with 2, 3 and 4 segments, 1, 2 and 3 basis points are required, 

respectively. By optimizing the location of the basis points one can find the optimum length of the 

fault segments. In this study the location of the basis points and hydraulic characteristic (HC) value 

of the fault segments are optimized by using the improved harmony search algorithm (Mahdavi et 

al. 2007).  

Figure 4.4 shows the first 60 out of the 180 calibrated saltwater intrusion models ranked 

from the lowest to the highest BIC values. Each super-column in Figure 4.4 consists of two sub-

columns from the bottom to the top showing qQ and ln 2 lnqN m N  (the model complexity 

term) in equation (39). The super-column shows the BIC value.  

The model complexity term depends on the number of observed data ( N ) and the number 

of estimated parameters, qm , which in this study is the sum of the number of basis points and the 

number of unknown HC values. 706 head observations are used to calibrate the saltwater intrusion 

models. Therefore, N  is constant for all the saltwater intrusion models, thus the model complexity 

term only depends on the number of fault permeability segments. For saltwater intrusion models 



48 

 

with 1, 2, 3 and 4 fault permeability segments, the model complexity term is 1303.74, 1316.86, 

1329.98 and 1343.10, respectively. Table 4.2 shows the sum of weighted squared errors ( qQ ) for 

the 18 saltwater intrusion models under B0 and B+10 propositions. 

Figure 4.4: Comparison of complexity term, pQ  , BIC, and model weights using Occam’s 

window and the variance windows for the best 60 saltwater intrusion models. 

The 
qQ for the best saltwater intrusion model, B0KG3, is 1038.01, which gradually 

increases to 2385.02 for the 60th saltwater intrusion model, B-20SE3. Consider the same boundary 

condition, grain-size method and variogram model; 
qQ  always decreases by increasing the number 

of fault permeability segments. For example, the 
qQ  value for B0KG1, B0KG2, B0KG3 and B0KG4 

are 3153.65, 1571.96, 1038.01 and 1037.90, respectively.  
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Increasing the number of segments from one to three significantly reduces 
qQ  that results 

in significant reduction of the BIC. However, by increasing the number of fault segments from 

three to four the fitting error qQ does not reduce enough such that BIC increases by the model 

complexity term, ln 2 lnqN m N  . For instance, qQ of the model B0KG4 is less than that of 

model B0KG3. However, the BIC of the model B0KG4 is 2381.00 and is higher than the BIC of 

B0KG3 that is 2367.99. The parsimony principle (Stone 1981) indicates that saltwater intrusion 

models with four-segment fault permeability architecture are more complex, but do not provide a 

better understanding of the system than the simpler models with three-segment fault permeability 

architecture. Therefore, there is no need to consider more than four segments for modeling fault 

permeability. 

Table 4.2: Sum of weighted squared errors (
qQ ) for the 18 saltwater intrusion models under B0 

and B+10 proportions. 

Number of fault permeability 

segments 
2 3 4 

B0KE 1712.65 1151.21 1150.86 

B0KG 1571.96 1038.01 1037.90 

B0KS 1689.15 1110.59 1110.39 

B+10KE 1419.50 1412.44 1411.38 

B+10KG 1269.15 1250.16 1249.74 

B+10KS 1389.84 1369.35 1369.07 
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4.3.2. Model calibration 

All the 108 simulation models are calibrated based on the 706 head observations data 

collected from the USGS observation wells. The model calibration is to minimize the sum of errors 

of the calculated groundwater head cal

ih  to the observed groundwater head obs

ih  as follows: 

 
2

min cal obs

i ii
h h . (51) 

The model parameters to be estimated are the length and the HC values of the fault 

segments. The length of the fault segments are discrete variables due to the discrete grid. The HC 

values of the fault segments are continues real variable between 10-1 day-1 to 10-6 day-1. The 

objective function is minimized by the improved harmony search algorithm (Fesanghary et al. 

2008; Mahdavi et al. 2007).  

4.3.3. Model weights of the base models 

Figure 4.4 shows the model weights for the saltwater intrusion models using Occam’s 

window and three variance windows with scaling factors 0.16  , 0.08   and 0.04  . They 

represent one, two and four error standard deviations for window size with 5% significant level 

(Tsai and Li 2008a). The rapid decline of the model weights using Occam’s window results in only 

the best model B0KG2 and the second best model B0KG3 with model weights 99.85% and 0.15%, 

respectively. Other good models are virtually ignored. However, the BIC values of other 15 best 

models are not significantly higher than the first two best models. Ignoring good models due to 

Occam’s narrow acceptance window may lead to biased estimation (Hoeting et al. 1999; Tsai and 

Li 2008b). Instead, three variance window sizes shown in  Figure 4.4 take into account the factor 

of the data size. Increasing the variance window size will reduce emphasis on very first models 

and include more influence from other good models. This study considers 0.04  case for the 


