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ABSTRACT 

Dredging operations have been a common remediation for contaminated sediment in 

an effort to reduce the harmful impact on the environment.  The objective of this research 

was to create models used for estimating chemical release to air from remediating the Indiana 

Harbor and Canal (IHC) as three separate dredging operations; the Dredge Site, Exposed DM 

CDF, and Ponded CDF.  The evaporative flux estimations are based on a two-resistance mass 

transport path inclusive of both the molecular diffusion in porous media and interfacial 

airside mass transport resistances.  Several chemodynamic algorithms were used in 

calculating key transport parameters.  Laboratory tests were performed to measure sediment-

to-water partitioning and Henry’s constant for IHC sediment.       

A large portion of the research effort involved investigating by experiments and 

theoretical models dedicated to the chemical emissions from exposed dredge material.  The 

study of the short term effects of exposure to these contaminants are very important because 

of the chemical flux quick release at the initial stages from filling and reworking of the 

dredged material (DM).  Data is available for PAH/PCB volatilization from laboratory and 

pilot-scale flux chamber experiments using DM.  However, larger scale or field sites data are 

required to further validate or test existing predictive mathematical models.  A wind tunnel 

enclosure (16 ft length x 4 ft height x 3 ft width) fitted atop a lysimeter (1.5 ft depth) suited 

for simulating CDF conditions was used to measure chemical flux release from the DM.  

Most algorithms previously developed for estimating the chemical release from sediment are 

based on transport through natural surface soils, which are simpler than those for DM. The 

latter undergo dramatic physical changes as consequences of water consolidation and 

evaporation.  The model flux estimates were generally lower than the measured ones.  
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Apparently the copious quantities of water and its upward movement delivered fine particles 

containing enhanced chemical concentrations onto the surface layer and this higher than bulk 

concentration was driving the measured flux.   
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CHAPTER 1 

ENVIRONMENTAL DREDGING 

1.1 Environmental Remediation 

Areas contaminated with hazardous chemicals are potential problems for an entire 

ecosystem.  Pollution is often generated from industrial discharges releasing harmful 

chemicals into water bodies, which eventually enters the air.  With the impact on air quality 

due to these toxins, risk assessments are performed to determine proper course of action.  An 

evaluation of these changes in the environment can dictate if the impact to the local or global 

community requires steps to reduce the biological exposure to the contamination.  

Remediation of contaminated areas involves efforts to reduce the levels of chemical 

concentration in the water, ground, and air.  The most common of these methods for 

sediment remediation include capping, natural recovery, and dredging; with a combination of 

dredging and capping in many cases.  Other methods of remediation are particle 

broadcasting, hydraulic modification, and dry excavation (SMWG 2005).  Dredging has 

become the most common practice for large-scale projects in the US due chiefly to the 

effectiveness of decreasing the chemical concentration by completely or partially removing 

the bottom-contaminated sediment.   

1.1.1 In-situ Capping 

Recent research interests are moving towards applications of sediment remediation 

using a capping system.  Generally, a capping system entails covering underwater sediment 

locations containing high chemical concentrations known as “hot spots” with solid materials.  

The cap consists of a stable cover using layers of clean sediment, gravel, stones, and/or 

synthetic materials for reducing chemical mobility and blocking organisms from bioturbating 
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the contaminated sediment (NFESC 2005).  The caps typically range from 30 cm and 100 cm 

in depth.  The capping material prevents the chemical in pore water from entering into the 

water column above it.  Although some materials are best suitable for reducing or eliminating 

this chemical diffusion, installation of the cap and resilience to harsh conditions can often 

produce significant limitations to the effectiveness of a capping system.  Current research 

deals with establishing caps designed to chemically react with the hazardous chemicals in 

order to reduce or eliminate the potential biological impact.  A major roadblock for this 

technology deals with the scale-up and implementation from laboratory to the large-scale 

environment. 

1.1.2 Natural Recovery 

There are some situations that permit doing nothing as the most practical solution to a 

remediation project.  This results from nature having the ability to remediate itself.  Although 

an uncommon approach, natural recovery may produce a natural reduction of chemical 

concentration in the sediment over time.  The chemical will eventually disperse to the point 

of being non-hazardous due to the environments pursuit for restoring equilibrium.  This is 

generally a case for a site with low initial levels of chemical concentration.  The cost of the 

other remediation methods and the nuisance of long periods of the mechanical activities can 

make natural recovery a better choice.  This practice is less common in most remediation 

projects due to the long period of time for the reduction to occur.  In the case of sites with 

large amounts of pollutant, a more active effort must be made to prevent long-term exposure 

to the surrounding ecosystem. 

 

 



  3  

1.1.3 Environmental Dredging 

Dredging was originally developed for navigational uses important to large vessels 

traveling on waterways.  As nature is constantly changing, so are the navigated waterways.  

Bottoms of rivers, canals, and harbors accumulate with sediment and debris over time from 

storms and natural disasters.  Often, it is necessary to remove the sediment to provide a safe 

depth for motor vessels.  The dredging may also be performed to change existing channel 

pathways and provide others in efforts of optimizing transportation period of raw materials.  

The Army Corps dredges about 250 million cubic yards of maintenance material from the US 

waterways annually (Global Security 2005).   

Its uses have been making an increasingly profound impact on environmental 

remediation efforts in the US.  This process of removing the contaminated sediment from the 

bottom of the water column can provide significant reductions in the sediment chemical 

concentration.  The two primary techniques for the removal process involve transporting the 

sediment from the water either mechanically or hydraulically.  The dredges operate by using 

an arm with a bucket attachment used to excavate a volume of sediment at the bottom and 

return to the surface.  As the importance of reducing the resuspension became essential to 

mechanical dredging, advances to the buckets designed provided significant contributions to 

mechanical dredging.  Technical modifications to the attachment were made to remove a 

section of sediment with effort to minimize the disturbance to neighboring sediment and 

reduce the resuspension of solids.  After the sediment is collected, it is transported to the 

surface by means of the mechanical arm or the suction process of the hydraulic dredge.  The 

sediment is then transported to a nearby confined disposal facility (CDF) using either 

transport trucks or hydraulic pipeline.  The sediment will either consist of ~ 50% solids 
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forming exposed mud patches with the former or ~5% solids forming a ponded CDF with 

solids depositing to the bottom with the latter.  When piped into the CDF, a treatment center 

is commonly used to remediate the water leaving.  Mechanical dredging can utilize both 

transportation methods, whereas hydraulic dredging requires a pipeline to the CDF.  Two 

situations occur once the sediment enters into the CDF.  After filling close to the top with 

solids, the CDF is capped most often using sand.  This process can require a project period 

from 10-30 years. 

The design of the dredging process requires the knowledge of cost, location, and 

biological impact.  These factors will designate particular alternatives of dredging in effort to 

find a practical method to reduce the chemical exposure to the environment.  With some 

exceptions, dredging entails several steps and parts.  A site of concentrated contaminated 

sediment is defined commonly with a silt curtain as the Dredge Operable Unit (DOU).  A 

barge containing the dredge component is positioned on the upstream side of the DOU.  As 

dredging commences, the dredge arm reaches to the bottom of the DOU and transports the 

sediment to some transport device.  The sediment is then transported by either motor vehicle 

or hydraulic pipeline to the desired disposal site.  The disposal site is a predetermined site to 

reduce both exposure to the environment and cost.   

1.2 Dredging Equipment 

The mechanics of dredging have been well developed for the purpose of transferring 

contaminated sediment from a polluted water site to a disposal site.  Since the original focus 

of dredging dealt with moving sediment for navigational purposes, modifications were 

required on the machinery to ensure more efficient capture of in-situ material.  Advances to 

the dredging technology include improving the dredge accuracy, decreasing suspended solid 
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generation, reducing spill layer, and replacing automation for manual controls (IADC 2005).  

As shown in Figure 1, the selection of devices for the remediation projects includes in either 

mechanical or hydraulic dredging.  Since the 19th century, dredge mechanics have changed 

dramatically due to the further developments of steel, computers, and satellite navigation.  

Dredges are now much larger and stronger with a high level of automated control, removing 

the manual “feel” control of the operator.   

 

Figure 1.1 Mechanical and Hydraulic Dredges 

1.2.1 Mechanical Dredge 

One of the most commonly used dredges in remediation is the mechanical dredge 

because of its versatility.  The option of reaching larger depths and operating under undesired 

weather/flow conditions make the mechanical dredge often more suitable than the other 
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dredge devices.  The mechanical or bucket dredge consists of a bucket or scoop located at the 

end of an extending arm connecting to the barge.  Most common of the mechanical dredges 

are those with either a dipper or clamshell tip.  These dredge heads can accommodate dredge 

volumes commonly of the range of 2 to 10 m3 each dredge cycle (ARCS 1994).  This 

excavation process can remove material close to in-situ.  Sediment losses from the dredging 

process occur mostly at the bottom of the water column.  However, significant amounts of 

losses can also occur from the mud coated bucket moving through the water column and 

exiting the water depending on the design of the dredge head.  The consistency of the dredge 

material (DM) upon being deposited on the barge is normally around 50% solids with the 

balance mostly water.  Operational controls include smooth hoisting of the bucket and use of 

a hoisting speed less than 2 m/s (ARCS 1994).  The sediment is transported by one of two 

ways: motor vehicle devices or hydraulic pipeline.  In the case that the sediment is 

transported hydraulically to the disposal site, sediment slurry of ~5% solids is created either 

at the barge or on the shore.     

1.2.2 Hydraulic Dredge 

In order to reduce total suspended solids (TSS) in the water column, hydraulic 

dredges prove to be the most appropriate when excavating sediment under low flows and 

limited depths.  This device is designed using a pump on the barge to create a vacuum pipe 

suction head.  Usually the sediment layer must be broken up into smaller refined particles 

able to be transported up to the barge.  Cutting blades in the suction head are used to crush 

and lift the dense and rocky sediment bottom.  These blades are either aligned horizontally 

(auger dredge) or vertically for rotation prior to the suction opening.  These dredge heads 

typically range from 0.3 to 1.0 m in across the blade opening with a swing arm up to 30 m 
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across and swing velocity of 0.5 m/s.  These dredges can often generate significant particle 

resuspension at the benthic layer, but at TSS of lower concentration since these particles 

remain at the bottom of the water column and redeposit to the surface.  The hydraulic dredge 

requires the sediment to be transported from the barge to the disposal site hydraulically due 

to the enormous volume of water transported along with the contaminated solids.  The 

hydraulic dredges are generally used in low water flow conditions due to barge platform 

stability problems.  Horizontal dredges are used to collect 50 to 120 yd3/hr and are useful for 

small projects where solid resuspension is a major concern (ARCS 1994).  Typical volume 

flowrates of sediment dredged using hydraulic dredges are around 1 to 10 m3/s. 

1.3 Dredge Material Disposal 

Sediment removal involves two parts, excavation and disposal.  After being removed 

from the bottom of the DOU, the sediment is moved from the dredge barge to the disposal 

site by two methods.  If mechanically dredging, motor vehicles (i.e., trucks, hoppers) can be 

used to continuously move the DM to the disposal site.  The standard dump truck can 

transport ~ 3.8 m3 of dredge material each run, requiring several hundred thousand loads 

made for a large scale project (GLDT).  Therefore, this method of transport can pose 

significant cost issues as well as time and resources.  In most cases, the tops to these trucks 

are open which involves the issue of chemical emissions during transport to the disposal 

facility.  The use of hydraulic pipeline transport of the DM minimizes these drawbacks of 

motor vehicle transport.  The DM requires a decrease in density by the addition of water in 

creating slurry.  By adding water to the DM, another concern develops as to the inevitable 

requirement to treat the added water.  The focus for cost will diverge to the comparison of the 

fuel and resource for vehicle transport to the treatment of the added water.  Hydraulic 
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dredges will require hydraulic pumping, thus, eliminating this comparison and focus 

attention to the reduction of the amount of water leaving the disposal facility by way of 

minimum water added and/or adding a recycle loop. 

There are two options of sediment disposal, open water and inland; both common and 

dependant on the site.  The method of discarding DM to open-water has been used when the 

site is located close to the sea.  Biological impact may be significant, for these and other 

reasons the open water disposal method is not always applicable or feasible.  When the 

dredge site is closer inland, a large landfill called a confined disposal facility (CDF) can be 

used to store the dredge material transported from the DOU.  There are two types of CDFs 

that are designed for disposing DM; near shore or upland.  The design configuration of the 

CDF can vary from one or more basins.  The size and design of each CDF is site-specific, 

depending on the location, the nature and potential amount of sediments and how it will be 

used or function once it is full and/or no longer receiving dredged material.  The CDF is 

commonly filled at one specific side of the CDF producing a slope in sediment on the floor.  

In the case of mechanical transport, the sediment is spread over the bottom maintaining a 

gradient in height to collect water in a small area where it will be pumped out of the CDF.  

The other scenario deals with the CDF being hydraulically filled and creating a pond that 

also contains a sediment sloping bottom due to the larger particles depositing at the entrance.  

CDFs are typically constructed with a liner such as clay to prevent seepage into the ground 

water.  It is also capped with a material such as clay after being filled with sediment and 

allowed to dry. 
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1.4 Indiana Harbor and Canal 

The model discussed in this report was developed for use in evaluating chemical 

emissions from the Indiana Harbor and Canal (IHC).  It is located in East Chicago, Lake 

County, Indiana.  There are ongoing plans for US Army Corps of Engineers (USACE) to 

dredge the sediment as an aid to navigation.  Figure 1.2 shows the proposed layout of the 

CDF cells.  This site was determined to require remediation in specific areas due to the high 

levels of contaminants such as PAHs, PCBs, oil & grease, chromium, and lead.  The Chicago 

District of the USACE is developing plans for the method of remediation based in part on the 

analysis and results of volatile emission predictions using the following models.   

 

Figure 1.2 IHC CDF Design Layout 
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Table 1.1 IHC Sediment Analysis 
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CHAPTER 2 

GENERAL MODEL THEORY AND BACKGROUND 

2.1 General Model Development 

In evaluating the fate of chemicals in the environment, fundamental concepts are 

presented to describe the behavior these interactions.  The mobility of a species is defined 

using a mass balance around a system of chemical gradients.  These quantity variations form 

the basis for the chemicals ability to transport themselves through medians and across 

interfacial boundaries by various mechanisms.  The transfer involves the movement of 

chemical in the environment between the atmosphere, hydrosphere, and geosphere.  The 

geosphere represents the primary focus of these models since they include both water bodies 

and soil-like surfaces 

2.1.1 Soil Models 

A literature review of chemical volatilization from sediment or dredge material was 

performed to determine current theory and transport models available for application to 

dredging.  Most of the applications for this theory are designed for use in the modeling of 

volatilization of chemicals from dry soil.  Early work on chemical volatilization surrounds 

the emissions of pesticides to the atmosphere from dry soil on farmlands.  This research 

began to unfold as scientist discovered that in the absence of appreciable mass transfer due to 

water movement, diffusion processes in the soil account for the movement of pesticides to 

the soil surface to replace that lost by volatilization (Mayer et al. 1974).  The research 

analyzed several models against volatilization data to find that indeed under negligible wind 

speeds, the surface was still renewed through diffusion in the pore space.  This matched 

closely to the experimental values compared to the models assuming that the concentration 
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goes to zero under these conditions.  This showed the process to be diffusion controlled 

instead of through interfacial resistance.  Most of the models of this time were directed 

towards specific conditions instead of general transport processes.  Further work was 

performed by scientist from University of California Riverside and USDA showing the 

critical process of gas phase molecular diffusion on the process of surface concentration 

renewal.  The research was intended to supply a general volatilization model for estimating 

pesticide emissions from soil (Jury et al. 1980; Jury et al. 1983; Jury et al. 1984(a); Jury et al. 

1984(b); Jury et al. 1984(c)).  A more complex model by Cohen et al. (1988) showed that the 

volatilization model could assume a linear isothermal diffusion neglecting natural convection 

within the soil to adequately describe the chemical flux at long times.   

The soil models previously developed are not representative of modeling 

volatilization from DM because of the difference in pore space composition and compaction.  

For natural soil models, the pore spaces typically contain some air.  In these models, the soils 

are completely consolidated.  In consolidated soils, the solids have compacted themselves 

thru gravity settling processes to the point of a negligible to no change in pore space volume.  

The exposed DM process is dynamically changing with time with pore spaces changing from 

completely water-filled to air-filled through evaporation and consolidation occurring 

throughout this process.  This ongoing consolidation process acts to provide a driving force 

for water movement in a CDF.  Downward movement is retarded due to the floor being 

nonporous.     

A recent literature review by (Thibodeaux et al. 2002) comprised a model to simulate 

volatilization from dredge material and soils.  The purpose of this model was to define the 

process of volatilization by using a simple equation based on a Lavoisier mass balance 
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around the soil column assuming semi-infinite boundary conditions.  The equation provides 

estimates based on describing the chemical pathway of desorption from solid particles into 

the water film, desorption from being in pore water solution to pore air, gas phase molecular 

diffusion to the surface, depletion of surface concentration over time, resistance of solid/air 

interface transporting to the bulk air above.   

Modeling drying dredge material is required for estimating emissions from dredging 

operations since it transpires regardless of the method of transporting the sediment to the 

CDF.  When the sediment is truck-delivered to the CDF post mechanically dredging, the 

material arrives at the CDF as drying mud.  In the event of hydraulically transporting the DM 

to the CDF, the water layer above will eventually be removed producing exposed drying 

mud.   In all cases of dredging, the emissions from the drying DM will be of high importance 

due to the direct contact for the chemical in mud with air.  This drying mud process may 

provide significant emissions to air with an impact on the local environment. 

2.1.2 Water Models 

The following models deal with the chemical interactions between liquids and gases.  

The case of emissions from a DOU or Ponded CDF requires mass balances are conducted to 

provide aqueous chemical concentrations in the water column for estimations of the chemical 

evaporation to the air.  For both of these processes, the balance is performed under steady 

state conditions.  In representing these phenomena, the concepts of developing theory 

surround both a driving force and its resistance.  Chemicals placed into one of these mediums 

will transfer a portion of the initial concentration into the adjoining phase for equalization.  

Each phase will contain a chemical flux shown in Equation 1 that are equal and opposite 

operating as the flux of chemical from water to air. 
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nA = 1k'A2 · (ρA2 – ρA2i) =  2k'A1 · (ρA1i – ρA1)                                     (2.1) 

The chemical transport from water to air is dependant on the resistance to mass 

transfer across the interface and an overall chemical concentration gradient, ∆ρA2.  It is the 

concentration gradient that acts as the driving force for the movement of chemical from the 

water to the air.  For a given chemical concentration in air, there is an associated equilibrium 

concentration in the water, ρ*A2.  Mass transferred across the air-water interface occurs when 

the equilibrium concentration within the air is less than the water concentration.  The overall 

evaporative flux of chemical A across the interface is: 

    nA= 1K'A2 · (ρA2 – ρA2*)                                                     (2.2) 

While the concentration gradient drives the system to equilibrium, the mass transfer 

resistance controls the rate of transfer.  The overall mass transfer coefficient of chemical 

from water to air, 1K'A2, is comprised of local mass transfer coefficients (MTC) on both sides 

of the interface as dictated by the two-resistance theory.  The chemical emissions to the air 

are defined using the fundamental component material balances.   

The resistance to mass transfer is given by the two-resistant theory equation: 

        1/ 1K'A2 = 1/ (2k'A1 · Hx) + 1/ 1k'A2                                             (2.3) 

where: Hx- dimensionless Henry’s constant 

Both the airside and waterside mass transfer coefficients will determine the rate to which 

chemical emissions cross through the interface into the bulk air phase.  This theory has been 

well established in defining chemical transport resistance between two adjoining phases with 

interfacial equilibrium. 
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2.1.3 Phase Equilibrium Process 

The process critical to correctly modeling chemical volatilization is the sorption 

potential for a chemical to distribute between two phases.  This capacity will determine the 

degree to which a chemical will be released through the pathways for emissions.  In the DOU 

and CDF, the Local Equilibrium Assumption is assumed to between water and solids in the 

pore spaces and suspended solids in the water column.  A true equilibrium is never 

established, so pseudo-equilibrium is assumed to characterize the distribution of chemical 

between the aqueous phase and solid particle.  A local equilibrium subsists in the pore spaces 

of dredge material when the rate of water movement past the solids is at a slow enough 

velocity.  This Local Equilibrium Assumption (LEA) can be made to provide reasonable 

estimations for chemical concentrations (Schroeder, P. R. 2000).   

It has been established that chemicals in phase equilibrium with solid particles are 

dependant on the fraction of particle organic matter.  The partitioning between solid-water, 

KA32, is linearly dependant with the soil organic carbon-water partitioning, Koc by the 

following expression: 

KA32 = foc · Koc                                                                                       (2.4) 

where:  foc = fraction organic carbon 

This partition coefficient is used in all of the following models for determination of the water 

equilibrium concentration in pore space and in the water column from suspended solids.   

Also very important to modeling these processes are the equilibrium estimations for 

solid-air, KA31, and the Henry’s constant for air-water, Hx.  The estimation of KA31 for wet 

sediments/soils can be determined using the following relationship:   

        KA31 = KA32 / Hx                                                           (2.5) 
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The expression above is used in the estimation of equilibrium concentrations in the 

sediment modeling emissions from exposed DM.  It establishes the driving force 

concentration gradient along with the background air concentration required in the flux 

equation.  The sorption processes among solids and air/water have established much 

discussion over recent years as to the exact nature of equilibrium.  Most ongoing research has 

been focused on the providing better descriptions of the equilibrium interactions between 

chemicals in air or water and the specific type of organic matter of a solid. 

2.2 Dredging Models 

The chemical emissions from dredging operations are compromised of three sources.  

These include the dredging operable unit (DOU), the DM transport devices, and the final 

disposal site.  All may generate significant emissions to the air to possibly affect the local 

and remote environments.  In this research, focus was directed towards the estimations from 

the DOU and CDF.  The transport device model was outside the scope due to the basis of 

using hydraulic pipeline transport to the CDF.  For mechanical dredging, transporting the 

DM to the CDF can be performed hydraulically by creating slurry.  Emissions can occur at 

the input to the CDF.  The slurry source is lumped into the DOU model while the discharge 

is modeled in the CDF model.  Because of the mode of operation, the CDF may contain two 

types of scenarios exposed dredge material and ponded that require the development of two 

separate models.  The following discussion will highlight the development of three models 

developed to estimate chemical evaporation from these sources to quantify chemical 

exposure in the neighboring ecosystem.   
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2.2.1 DOU Sources 

In the case of dredging, the water from the DOU area and the barge (in the case of 

mechanical dredging) will contain solid to water desorption processes.  In the case of 

chemicals with low partition coefficients, the water will become very concentrated with 

chemical allowing high chemical fluxes to the air above.  The important factor in this process 

is the involvement of suspended solids.  For the case without dredge activity, chemical 

concentration in the water column is generally controlled by the diffusion of chemical from 

the sediment pore water at the benthic layer.  As dredging commences, the turbulence within 

the DOU produce a well mixed body of water consisting of a high concentration of 

suspended solids.  These suspended solids will act as a generation term of increasing the 

water column chemical concentration.   

Developments with the DOU model distinguish source areas with and without 

enclosures.  It further depicts dredging enclosures for a flowing river and for embayments.  

The different scenarios for the DOU models result in a total of three cases for emissions in 

the DOU area.  All of these cases involve the mass transfer resistance distinction between 

forced and natural convection due to an increased turbidity at the dredge.  The downstream 

conditions will be dependant on the use of silt curtains inhibiting both flow of water and 

solids outside the DOU.  These different design conditions require the model to 

accommodate situations with and without enclosures in flowing water bodies along with 

embayment waters.  The DOU model is based on theoretical descriptions defining steady 

state transport processes form dredging. 
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2.2.2 CDF Sources 

2.2.2.1 Hydraulic Transfer to CDF 

When hydraulically piping DM slurry into a CDF, a pond of water is formed with 

solid particles depositing based on diameter from largest to smallest from the entrance to 

discharge.  This inflow of slurry material is modeled with a constant inlet location at steady 

state conditions.  At steady state, the CDF contains a flux in of chemical from the sediment 

bottom along with a flux out from evaporation of chemical to the air.  A mass balance is 

performed over the system to estimate the concentration in the water column over the length 

of the CDF.  This concentration will change as a function of distance from the inlet and 

accommodations are made for this, but a particle mass balance is not performed.  A 

unidirectional approach in the x-direction is used in a plug-flow model instead of mixed tank 

model to estimate worst-case concentrations.   

The ponded CDF operation period ends when the water is removed to allow drying of 

the DM.  Improper drying of the sediment can lead to weak bed structure within the area and 

difficulty in providing a final cap.  The CDF normally drains opposite the inflow nearby the 

treatment facility.  As this draining occurs, sections of the CDF become exposed to air.  This 

transient process begins to emit surface chemical from the pore space as it slowly changes 

from completely water-filled to air-filled from evaporation.  The evaporation process is very 

important since diffusion through air is far greater than water.  This process will show to be 

extremely significant in estimating the release of chemical in a CDF.   

2.2.2.2 Mechanical Transport to CDF 

If mechanical transport of the sediment is performed, the process of ponding the CDF 

will not occur.  Thus, the CDF will begin with emissions directly from exposed dredge 
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material instead of going from ponded to exposed DM.  The modeling of this case will begin 

with the evaporation of water in the pore space. 
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CHAPTER 3 

DOU EMISSIONS MODEL 

3.1 Model Development 

3.1.1 DOU 

The chemical release from the dredging site is a function of factors such as dredge 

operation and process design conditions.  The operation begins with a design plan to 

determine the actual area of dredging.  This section of the water body is known as the dredge 

operable unit (DOU).  Most remediation actions occur in two primary locations: rivers and 

embayments.  This classification of DOU designs makeup three different scenarios as shown 

in the Figure 3.1.     

A common case of dredging involves enclosing a section of a flowing river as shown 

in Figure 3.1a with a silt curtain.  This curtain inhibits suspended solids from exiting the 

DOU.  Depending on the efficiency of the curtain, the water downstream of the DOU will 

produce chemical evaporation to air primarily due to chemical remaining in solution from the 

exiting DOU water flow.  The DOU area will contain higher concentrations due to the large 

area of suspended solids due to dredging.   

The DOU in Figure 3.1b is similar to the previous DOU except for the fact that it 

does not contain an enclosure around the DOU area.  The absence of the enclosure results in 

a DOU modified area because of suspended solids moving directly downstream of the forced 

zone surrounding the dredge.  Previously, suspended solids were contained within a non-

flowing zone.  This case is very similar to modeling a ponded CDF in that the forced zone 

will act as the input to the CDF with an exponential decay of suspended solids downstream.    
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Figure 3.1 Forced and Natural Zones of DOU 

The scenario depicted in Figure 3.1c, dredging is performed inside a harbor or bay.  

There is hydraulic flow inside the enclosure.  This case is handled differently from the 
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previous DOU types because of the no flow condition.  This will establish a dispersion effect 

on the chemical surrounding the dredge.  The dispersion of chemical from a point source 

occurs from chemical diffusion through water in the radial direction.  The chemical diffuses 

through water primarily due to concentration gradients, which exist from the source to the 

edges of the embayment.  The model will compensate for the chemical dispersion from the 

dredge without advection. 

3.1.2 DOU Mass Transfer Coefficients 

Both natural and forced convection processes can occur on either side of the interface 

and the magnitude of the coefficient is controlled by the degree of turbulence.  Under static 

conditions, no flow of water and wind, the chemical movement will depend on the slow rate 

of diffusion through the water and air.  With wind and water movement, the turbulence in 

both these phases increases, the turbulent eddies propels the chemical in the water to the 

interface and away from the interface in the bulk-air.  So the level of fluid convective 

turbulence heavily influences both the local waterside and airside mass transfer coefficient.   

The characterization of turbulent driven processes has been a highly researched area 

in chemodynamics over recent years and numerous correlations exist.  The natural 

convection-induced mass transfer coefficients are fairly well understood and correlations 

exist.  Thus, the natural convection mass transfer coefficient can be determined using 

appropriate equations mentioned in following sections.  Those used to determine the forced 

convection induced mass transfer coefficient will require further evaluation since mechanical 

turbulence generation is very “device” specific.  It is becoming increasingly important to 

develop better coefficients for estimating chemical emissions.  There are currently no 

empirical expressions developed specifically for estimating dredge induced mass transfer 
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coefficients.  No studies have been performed for dredge operations so that approximate 

alternatives are reviewed below that may provide reasonable estimates.  These methods, 

based on existing theories and similar mechanical devices, are expected to give only 

reasonable approximate values. 

As currently being used, it is convenient when estimating emissions to air to create so 

called “forced” or “natural” convection mass transfer coefficients area zones; see Figure 3.2 

(Springer et al. 1984).  By the separation of these two processes into different area zones, the 

estimation for emissions produces a more accurate account of the transport processes under 

the influence of mechanical disturbance (i.e., forced and natural).  In accounting for the 

different fluxes for each zone, Equation 1 becomes: 

                    nA= ((1K'A2FC · AF + 1K'A2NC · AN) / ADOU ) · (ρA2 - ρA2*)                        (3.1) 

where: AF = area of DOU with enhanced TSS from dredging activity 

 AN = area of DOU without enhanced TSS from dredging activity 

 ADOU = the total DOU area 

Figure 3.1 also illustrates these zones within each of the DOU scenarios containing for the 

respective areas.  Combining both the area in the DOU with forced convection and natural 

convection will give ADOU.  In Figure 3.2, the circular zone shown surrounding the dredge 

contain wind hydraulic and mechanical turbulence is referred to as the forced zone, AF, while 

the area beyond is influenced by wind and hydraulic turbulence only is designated as the 

natural zone, AN.  The means for estimating these two areas is given later in the report. 
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Figure 3.2 DOU Convection Zones 

3.1.2.1 Forced Convection Zone 

3.1.2.1.1 Liquid-Side MTC 

In a forced convection process, a mechanical device primarily generates the fluid bulk 

flow turbulence.  Since the transport of chemical in the bulk fluid phase can also be attributed 

to natural forces, the combination of waterside mass transfer coefficients in the forced zone 

becomes:    

                              1k'A2FC = 1k'A2NC + 1k'A2D                                                                  (3.2) 

The mechanical effect used to characterize the increase of turbulence in the water column 

may be estimated from equipment such as mechanical/hydraulic dredges, aerators, and boats.  
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In a following section, details on this forced convection liquid-side mass transfer coefficient 

induced by mechanical and hydraulic dredging will be developed. 

3.1.2.1.2 Air-Side MTC 

This aspect of mass transfer has been well-established and appropriate equations area 

available to estimate 2k'1A, the airside mass transfer coefficient.  The mechanical devices 

analyzed in the following discussion are assumed to create significant disturbance to the 

liquid-side mass transfer and not to the airside.  Chemical transport from the interface to the 

bulk airflow will occur through natural convection only by way of wind.  Details will be 

developed following a discussion of dredges. 

3.1.2.2 Dredge Characterization 

An effort is placed towards closely representing the operational aspects of both 

mechanical and hydraulic dredges and its influence on water turbulence.  The mechanical 

dredge bucket moves up and down through the entire water column to physically act upon 

the entire vertical distance from bed to surface of water column to define the forced 

convection zone.  Although not moving vertically, the cutterhead/auger of the hydraulic 

dredge can produce turbulent eddies throughout the water column with the suction activity 

and side-to-side sweeping motion of the ladder at the bottom of the water column.  The near 

bottom turbulence is likely greater.  The cutterhead/auger suction section moves water along 

with sediment from the bottom, inducing water currents up to a certain height in the water 

column that because of continuity must also have a downward direct component.  To a lesser 

degree, the hydraulic dredge arm (i.e., ladder) connecting the cutterhead/auger to the dredge 

barge stirs the entire water column; more so near the bottom than the surface.  This 

displacement of water causes yet unexposed water containing chemical to be transferred 
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upward towards the surface, elevating the concentration at the interface to provide the 

increase in emissions to air of the chemical in solution.   

In the development of the mass transfer coefficient for mechanical and hydraulic 

dredges, the understanding of the increase turbulent eddies creating additional movement and 

displacement of water at the surface enables estimations using similar representations of this 

process.  Such processes will be discussed in following sections with the fundamental idea to 

represent the increased rate of water transport and turbulence to and from the interface.  

These processes enact both the ideas from a theoretical or fundamental perspective.  Each of 

these processes is characterized for mechanical bucket dredging only, hydraulic dredging 

only, or for both. 

3.1.2.3 Surface Renewal Model 

The theory of surface renewal was first developed by Dankwerts in 1951 to describe 

the resistance at the air-water interface for a general mass transfer process.  Originally, the 

penetration theory was developed for surface water existing up to some age and then cycling 

through turbulence to replace the surface waters.  In developing the surface renewal theory, 

Dankwerts purposed the correlation of the rate of renewal parameter, s, to describe the age of 

exposure.  He chose an exponential distribution function for s with the adjoining phase 

renewal rate for a realistic approach to the process.  By the determination of s, a measure of 

fluid turbulence induced by mechanical devices could be made to determine the resistance to 

mass transfer across a phase boundary.  As the renewal rate increases, the fluid will begin to 

change from being solely controlled by diffusion through a fluid.  The transport processes 

will then include a convection and diffusion operation resulting in the chemical emissions 

increasing.  Using the exponential function to describe the distribution of surface water ages, 
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the mass transfer coefficient, 1k'A2, of chemical A is related to the diffusivity of chemical A 

in water, DA2, and, surface renewal parameter, s, by: 

                                                                    1k'A2 = (DA2 · s) ½                         (3.3) 

where surface renewal rate, s, contains the units, sec -1, and the diffusivity coefficient in 

water, DA2, with cm2/sec.  If the diffusivity of the chemical A in water is assumed constant, 

the mass transfer coefficient will vary directly with the square root function. 

The renewal rate describes the increase chemical emissions when mechanical 

dredging as a constant representing the idea of an exchange of surface water in periods.  The 

mechanical dredge can be represented using this theory because of the bucket motion up and 

down through the interface roughly mimics the renewal rate concept.  The s should be closely 

related and proportional to the cycle time upward and downward of the bucket through the 

water column.  As the bucket passes through the interface either up or down, the turbulence 

will dissipate much like the waves from a pebble thrown into water.  In representing s as the 

cycle time of the bucket (τbucket), the relationship between the two variables is as follows: 

                                                             s = k / τbucket                                                              (3.4) 

where k is some proportionality constant.  Adding the cycle time the bucket travels both 

downward and upward through the water column can be used in estimating τbucket.  The 

variable k is unknown in this basic approach; alternative approaches must be considered.   

3.1.2.4 Surface Aerator Model 

Representing the dredge as a surface aerator makes a more convenient and practical 

characterization of determining the mass transfer coefficient for forced convection of the 

dredge.  The surface aerator generated MTC was studied vigorously in the mid 1900’s in 

order to increase the oxygen concentration in the water.  Over the past few decades, the 
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concepts have been optimized and are now well understood.  A surface aerator is designed to 

sit at the surface of a water body with about half of the device under water.  The mid section 

contains a set of rotating paddles or blades that stir the surface of the water column.  This 

action produces a great deal of reaeration to the water column by providing a larger amount 

of bulk water exposure to the interface.  The process of air strippers involves displacing the 

surface water laterally from the center of the aerator so that bulk water from below will rise 

up and emit the chemical in solution.  A turbulent water column is then developed while the 

surface water will move out to the sides to get moved down by continuity to replace the bulk 

water moving up to the surface.  It essentially is the practical idea for surface renewal and 

roughly mimics the up and down movement of the dredge bucket.  Both operations 

constantly displace the chemical diluted surface water that has emitted some quantity of 

chemical to the air with chemical concentrated bulk water.  This water turnover device 

produces a continuous cycle of renewal. 

Although the ideas of how the surface aerator increases emissions to the air, the 

developing equations for estimating the forced convection mass transfer coefficient can entail 

more complexity.  The primary reason for being able to represent a bucket dredge with the 

surface aerator is that the development of the aerator was done so by using the power of the 

mechanical device as the primary and essential variable in the equations.  The plan is to 

develop a correlation between these equations using aerator power input to that for the 

dredge.  Conceptually, the bucket dredge will not produce quite the disturbance found from 

an aerator.  Instead of remaining at the surface to vigorously renew the surface, the bucket 

dredge moves up and down the water column producing high energy turbulent eddies that 

causes a trailing water flow behind the dredge while side bulk water moves to the surface for 
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replacement.  Once the bucket dredge moves past the interface, the renewing of the surface 

with chemical concentrated water will decrease exponentially until the dredge reaches some 

depth where the water does not impact the surface. 

For estimating the mechanical dredge contributions to the overall waterside mass 

transfer coefficient, correlations were defined using the concepts mentioned above.  The 

following equation modified and generalized from the original oxygen form is (Thibodeaux 

1996): 

                            
1k'A2 = 3140 · (DA2 / DB2) 1/2 · (n´BO · E · α) · (AF/ADOU) · (1.024) (T-24ºC)             (3.5) 

where B- oxygen; n´BO- the oxygen delivery, 2 to 4 lb O2/hr · hp; E- specific power delivery 

efficiency of 0.65 to 0.9, dimensionless; α− dirty water to clean ratio, 0.8 to 0.85, 

dimensionless; P- the nameplate horsepower, hp; T- the water temperature, ºC.   

3.1.2.5 Motor Vessels Model 

A third alternative transport process using the similar fundamental ideas from the 

above models have been developed from motorized vessels on water.  The research of re-

aeration from motorized boats originally came about to evaluate the re-aeration impact from 

high volume of traffic through a particular water body.  This re-aeration process of motor 

vessels may be a rough estimate of a hydraulic dredge motor mixing process particularly in 

mixing water at the bottom of the water column.  When hydraulic dredging occurs, the ladder 

stirring the bottom waters primarily makes the turbulent movement of water.  It forms large 

turbulent eddies similar to those surrounding a large vessel. 

As a boat moves through shallow waters, the surface and bottom waters are displaced.  

This creates a flow-like movement of water along the sides and bottom of the boat.  In this 

regard, the action is very similar to the cutterhead/auger dredge in its displacement of water 
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by the swing motion of the ladder through the water.  A slow turnover is less noticeable at 

the surface, especially at larger depths, due to the turbulent force dissipating near the bottom; 

high flows occur in shallow waters.  However, eddies on a large scale slowly reach the 

surface to create a continuous turnover of chemically depleted water and replacement with 

concentrated-bulk waters.   

Estimates for the mass transfer coefficients of large and small motor vessels have 

been made through both laboratory and field studies.  A set of experiments was designed to 

test the effects of both small and large vessels on the reaeration coefficient based on the 

number of passes through the water (Thibodeaux et al. 1994).  Approximate values can be 

estimated by relating the number of passes of the vessel to the passing of the hydraulic 

dredge arm swing motion through the surface waters.  In the case of small vessels, 1 to 2 

cm/hr values were found to cover a range of 1 to 20 passes per hour with a variation in vessel 

motor power from 14 W to nearly 300 W.  For larger vessels with a range of power from 50 

W to 1000 W, the MTC was found to remain similar to the small vessels with a range of 1.3 

to 2.8 cm/hr. 

3.1.3 Chemical Flux 

3.1.3.1 Enclosed Flowing Stream 

3.1.3.1.1 DOU 

Dredging of rivers or streams is often performed using some form of enclosure 

mechanism such as a silt curtain.  They reduce the particle concentration downstream from 

the dredge site minimizing losses by evaporation.  For the case of modeling an enclosed 

section of a river, the assumption is made that a negligible number of suspended solids exited 

the DOU.  This condition results in downstream emissions primarily from chemical in 
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solution leaving the DOU area.  The MTCs are broken down into two zones: forced 

convection and natural convection.  For the natural zone within in the enclosed area of a 

flowing river, the emissions are not enhanced by dredging activities.  Outside the enclosed 

area, the downstream plume concentration is influenced only by natural convective mass 

transfer.  The forced convection zone refers to the emission area surrounding the dredge, 

which is enhanced by dredge-generated turbulence.  These two zones are shown in detail in 

Figure 3.2.  The descriptions of these zones are detailed in Section 3.1.2.   

The forced zone has an increased TSS concentration level relative to the natural zone.  

Outside of this region, the second zone has significantly lower TSS levels.  Both zones in the 

DOU are assumed well-mixed sections.  Personally communicated suggested TSS levels by 

Paul Schroeder (Feb. 05) are listed in Table 3.1.  Beyond the DOU area, water exits with a 

finite concentration of chemical in solution.  This downstream area is assumed to have even 

smaller TSS concentration with a negligible result on emissions of this zone.  Natural 

convection processes including the wind and the hydraulic flow effects on the interfacial 

resistance govern the emissions from the downstream section from the DOU.  It is assumed 

that primary source of chemical concentration for emissions are the chemical in solution.  

Although the most common containment mechanism is by silt curtains, sheet pilings can also 

be constructed for containment walls to the DOU.  In the case of metal sheet piling, no 

chemical flow occurs past the boundary and chemical flux downstream is excluded from the 

evaluation of emissions.   

Table 3.1 Convective Zone TSS Concentration Levels 
Location TSS Concentraiton (gm/L)

DOU Forced Convective Zone ~500
DOU Natural Convective Zone ~50
DS Natural Convective Zone ~0  
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Using the mass transport descriptions and equations of Section 3.1.2, the application 

to estimating the chemical flux from the dredge site will involve using a mixed tank mass 

balance on the DOU with a plug flow balance for the exponential concentration decay 

downstream of the DOU.  The in-solution concentration in the forced convection (FC) zone 

is: 

                  

ρ A2FC
wa

KA32
1

ρ 32FC
+

                                              (3.6) 

where: wa = chemical loading concentration on bed sediment 

ρ32FC = suspended solid concentration 

KA32 = sediment-to-water partition coefficient 

Similarly for the natural convection (NC) zone: 

                                       

ρ A2NC
wa

KA32
1

ρ 32NC
+

                                                    (3.7) 

These concentrations are used in the following equations for estimating the flux from the two 

zones by: 

    nADOUNC = 1K'A2NC ( ρA2NC - ρ*A2 )                                        (3.8) 

and 

   nADOUFC = 1K'A2FC ( ρA2FC - ρ*A2 )                                         (3.9) 

where: ρA2` = background chemical concentration in air 

1K'A2 = overall water-to-air mass transfer coefficient 
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In determining the separate flux estimations for the DOU, the overall flux can be 

determined based on the area of the forced convective zone (AFC) and overall area of the 

DOU (ADOU).   
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                   (3.10) 

After estimating the overall flux from the DOU, the estimation for the downstream 

chemical concentration, ρ'A2NC, is made using the following equation: 

                  

ρ 'A2NC ρ A2NC ρ 'A2−( ) exp
'K'A2NC− τ⋅

h








⋅ ρ 'A2+

                  (3.11)  

As shown in the above equation, the parameters used in these equations are based on that at 

the exit DOU boundary.  Since this section by the DOU exit is primarily natural convection 

and well mixed, these parameters are used in calculating the downstream chemical 

concentration.  This discussion is further explained in Section 3.2.   

The variables on the RHS of Equation 3.11 are designated for the natural convective 

zone inside the DOU.  The chemical emissions are estimated by using the MTC for the 

natural convective zone along with the concentration evaluated using Equation 3.11.   

             nADS = 1K'A2NC (ρ'A2NC  - ρ*A2)                                              (3.12) 

where the background concentration, ρ*A2, over the entire river is assumed to be zero. 

3.1.3.1.2 Barge 

On calculating this flux, an additional source term incorporating the emissions from 

the barge usually located just outside the DOU must be added into the calculation to the 

forced convective flux.  This is added into the forced convective flux since the dredged 

material on the barge will be comprised of a layer of standing water with high concentrations 
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of TSS and a contaminated source sediment bottom which is representative with the 

conditions in the forced convective zone.   In assuming these two zones are equivalent, the 

area of forced convective emissions will be increased by the surface area of the barge.    

3.1.3.2 Flowing River Without Enclosure 

The case of dredging commencing in a river without an enclosure can be modeled 

similarly as the case of an enclosed unit of the river.  This model essentially involves 

emissions from a DOU area comprised solely of the forced zone convection and a 

downstream plume of emissions.  The chemical flux for the forced convective zone will be 

handled identically the same as in the enclosed river using Equations 3.6 and 3.9.  The 

downstream plume must be handled differently from the enclosed river model because of 

suspended solids in the natural convective zone moving downstream of the forced zone will 

have an effect on the overall emissions.  It will be comparable to the ponded CDF model to 

be discussed in Chapter 5.  The natural convective zone will use the methods developed for 

the ponded scenario to estimate the chemical concentration moving downstream.  This 

concentration will be used to calculate the flux from the natural convective zone using 

Equation 3.8.  Once the natural zone flux as a function of distance is determined, it must be 

integrated and divided by the ANC to estimate the average flux from the downstream plume.  

The downstream flux can then be added to the DOU flux for an overall estimate of the 

chemical flux to air. 

3.1.3.3 Enclosed Embayment 

The chemical flux from a DOU within an embayment involves a modification to the 

concentration term since the chemical is undergoing diffusion from turbulent waters 

generated by wind rather than hydraulic flow.  The area inside the radius of the forced 
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convection zone, ro, is comprised of a uniform chemical concentration in solution, ρA2.  The 

dispersion process is modeled as occurring in a radial direction from the center-forced zone 

as shown in Figure 3.3.   

   

 

Figure 3.3 Radial Chemical Dispersion in Embayment Waters 

 A steady state mass balance was developed to describe the chemical dispersion in the 

x and y direction including a generation and loss term from sediment and evaporative flux, 

respectively.  The concentration used in the volatilization flux equation is determined 

through the superposition of the concentration from dispersion and evaporation from the 

dredge forced zone onto the steady state chemical concentration, ρA2SS, generated from the 
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bed.  In developing an expression for the chemical concentration, the mass balance of 

chemical A around the dredge involves the sediment flux being incorporated into ρA2SS. 
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The background concentration is approximated as zero in order to approximate this 

concentration.  This resulting chemical concentration is:   
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The forced convective concentration can be determined as expressed in Equation 3.6.  The 

horizontal diffusivity of the chemical, DA2y (ft2/s), can be estimated by the following equation 

from Thibodeaux L. J. (1996):  

                                           DA2y = 0.0125 r 4/3                                                        (3.15) 

where: r = radial distance of the plume/embayment from the forced zone (m). 

3.1.4 Estimating Areas within the DOU 

The area of the DOU, ADOU, is broken into two parts; the forced convective area, AF, 

and natural convective area, AN.  Evaluating the total and convective area is required for the 

calculations of mass transfer coefficients and mass evaporative rates.  The AF is impacted 

directly by the mechanical device.  Estimates of the forced convective area can be 

determined by: 

                                          AF = (17 ft2/hp) · P                                                       (3.16) 

where: P is the delivered power (hp) for >13.5 hp 
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The natural convective area is determined by taking the difference between ADOU and 

AF.  For this computation, the ADOU is case dependant.   

                                          AN = ADOU + AF                                                       (3.16) 

The total enclosed stream for case area is determined by silt curtain or containment area 

design conditions if known or by estimating the size.  For the Non-Enclosed Flowing Stream 

case, the DOU area consists of only of the forced convection zone.   

For the case of Embayment Waters, the area for evaluation of chemical emissions can 

be estimated by back solving for the area using the following approach.  By gathering the 

concentration terms to the LHS, a fraction of decreased concentration from the source, f, can 

define the ratio of the modified Bessel function of the second kind (Ko).   

                              [(ρA2(r) - ρA2SS) / (ρA2FC - ρA2SS)] = f                                        (3.17) 

This fraction is used in estimating the area of the DOU.  The ADOU is estimated as the area 

within the radius of ρA2(r)/ρA2(ro) = 10%, where this point marks the radius, r, outside the 

forced area which contains a soluble chemical concentration which is 10% of that 

concentration in the forced convective zone.  This evaluation can be made by setting f = 0.1 

and then back-calculating the radius.  The concentration fraction can be changed to a desired 

value depending on the requirements on the model.   

       f =  Ko((1K'A2 r2 / h DA2y)1/2) / Ko((1K'A2 ro
2 / h DA2y)1/2)                                 (3.18) 

This radius can then be determined numerically and used in estimating the area of emissions, 

ADOU.  Numerical solutions for the modified Bessel function of the second kind are given in 

Table 3.2 (MathCAD generated results).  
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Table 3.2 Numerical Values for Modified Bessel Function of the Second Kind 

 

3.2 Model Applications 

The focus of this section is to verify whether the model produces reasonable estimates 

using sample input parameters.  The following section is not designed to provide actual 

results.  These input values were estimated to evaluate the profile output of the model.  The 

variables listed as the inputs along with the output figures were developed for modeling 

emissions from a DOU along with the downstream section.  The results appear in Figure 3.4. 

The input values were estimated to evaluate the profile output of the model.  Listed in 

the Appendix are the inputs values for the DOU emissions model for an enclosed river.  

These chemical properties were based on Naphthalene being the selected chemical.  Some of 

the DOU parameters include a wind velocity of 9.26 mph, water flow-through of 0.5 m3/s, 

surface area 1569 m2, and a 300 hp dredge.  Some of the concentrations include suspended 

solids in the forced zone set at 500 gm/L and 50 gm/L in the natural.  The above equilibrium 

air concentration is assumed to be negligible.   
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Figure 3.4 Chemical flux from DOU and Downstream of Enclosed River 

Shown in the figure above is a typical emission profile from a DOU and downstream 

area of an enclosed river dredging process.  The figure shows three sections of emissions as 

mentioned in the model discussion in previous sections; forced convective zone of DOU, 

natural convective zone of DOU, and natural convective zone of DS.  The forced zone 

contains the highest level of emissions due to the increased suspended solids in this zone and 

the increase in mass transfer coefficient from the dredge.  The next emission zone is the 

DOU natural convective area which is far lower primarily due to the decrease in mass 

transfer coefficient.  The last emission zone contains those from the downstream area where 

chemical is released from the water column containing chemical in solution only due to 

elimination of solids from the containment device.  This profile will change based on the 

settings used in the model.  These results were used to provide a schematic of the model. 
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CHAPTER 4 

EXPOSED DREDGE MATERIAL CDF EMISSIONS MODEL 

This chapter consists of a self-contained report submitted to ERDC.  The report was entitled: 

“PAH Volatilization From Dredged Material Under IHC/CDF-Like Conditions: Wind 

Tunnel Flux Measurements and Modeling” with authors Fountain, Thibodeaux, Valsaraj, 

2005. 1769p. 

4.1 Executive Summary 

Volatilization rates of Naphthalene (NAPH), 2-Methylnaphthalene (M-NAPH) and 

Phenanthrene (PHEN) from Indiana Harbor Canal dredged materials (DM) were obtained 

from air samples taken in a large-scale (120 cm width x 460 cm length) soil lysimeter wind 

tunnel apparatus.  For average loadings of 2.7, 1.2 and 4.3 mg/kg (dry soil) the maximum 

fluxes of 50, 25 and 2.0 ng/cm2-h were observed for NAPH, M-NAPH and PHEN, 

respectively.  These maximum values were observed at soil surface “drying times” of 425, 

125 and 100 hours during three experiments conducted with a 1.2 m/s (2.6 mph) wind speed 

with air temperatures and relative humidity ranging from 3 to 25oC and 50 to 90%, 

respectively.  The experimental run times were 28, 15 and 40 days for experiments 1, 2 and 

4, respectively.  Data obtained from these experiments revealed some key features about 

chemical volatilization process from drying DM soil that are unique and contrast the process 

from normal and agricultural surface soils.  Initially DM soils have very large water-to-solids 

ratios.  Once placed in a Confined Disposal Facility (CDF) the mechanically dredged DM 

undergoes the combined processes of bed consolidation, water run-off and evaporation as the 

water content is reduced.  These processes control the behavior patterns of the chemical flux 
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from the surface.  Three chemical flux regimes were identified and used with traditional 

water and chemical evaporation theories to develop a chemodynamic emission model.  

Traditionally the solids drying process has a constant water evaporation rate (i.e., 

flux) period followed by a falling rate.  This pattern was not observed for the three-

polyaromatic hydrocarbons (PAHs).  Initially in Regime-0 the chemical flux is low to zero 

and controlled by a water layer covering the DM solids.  Regime-I commences after the 

water layer is gone and the DM solids become progressively free of liquid water.  The 

chemical flux progressively increases with time during this apparent constant rate water 

evaporation process.  The maximum chemical flux is reached when the surface of the DM 

bed is completely dry.  In Regime-II the chemical flux decreases with increasing time as its 

mass in the surface layers becomes depleted.  Sampling of the DM surface solids showed the 

water content decreased and the air-filled pore space increased with time during Regimes-I 

and II.  A depletion driven, falling chemical flux is a typical behavior pattern observed with 

normal and agricultural surface soils and this process has undergone much theoretical and 

laboratory study.  As a result theory-based algorithms are available for quantifying the flux to 

air based on soil characteristics and chemical properties and atmospheric boundary layer 

transport parameters.  This flux equation is the basic algorithm used in the “dry patches” 

model developed for chemical volatilization from the drying DM bed.  

The dry patches model developed in this study applies to Regimes-I and II.  Although 

relevant to other aspects of the overall CDF chemical emission inventory analysis, the 

Regime-0, or water ponded model, is the subject of a separate report.  Once the water 

covering is gone Regime-I commences and water evaporation originates from the bed surface 

to produce areas of dry patches on the surface of the DM soil.  Initially water-filled these 
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areas progressively become air-filled source areas for chemical volatilization.  A linear 

increase in dry patch area growth with time was the relationship that best described the 

observed chemical flux vs. time behavior.  Model drying time, tD , established the completion 

time for the formation of new dry patch areas; in other words it marks the end of Regime-I.  

During Regime-II the recently formed and older surface patches increase in age with 

increasing time.  Each patch undergoes chemical depletion as described above.  The net 

chemical flux is the sum of the fluxes of the individual patches; it falls with increasing time 

and mimics the flux patterns observed for NAPH, M-NAPH and PHEN.  The dry patch 

model appears to describe both the rising chemical flux in Regime-I and the falling flux in 

Regime-II along with the position of the maximum flux that defines the transition point.  In 

essence the “dry patch” model contains two parameters, which quantifies the chemical flux 

vs. time behavior from drying DM solids placed in a CDF or similar setting.  The two 

parameters are a linear time-patch growth relationship and the Regime-I drying time tD .   

Two artifacts of the lysimeter-wind tunnel (L/WT) studies were unique to its 

operation and do not directly translate to DM field operations.  Both stem from the Regime-0 

water layer formation and disappearance.  First, the bed mixing and consolidation process 

forces water upward for pond creation and increased moisture on the DM surface.  This 

prolongs the drying time of Regime-I.  Second, the development of a “dirty” water layer on 

the DM followed by its evaporation, deposits a thin solid layer with elevated chemical 

concentrations on the bed surface. This surface deposit produces enhanced chemical fluxes 

so that the model generated fluxes required correction factors to account for the observed 

ones.  In the field, water produced by bed consolidation is allowed to run-off without the 

formation of localized ponded areas so that both artifacts do not materialize. In the field 
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much shorter surface drying times and no elevated surface concentrations are expected.  Such 

drying actions were found to differ in the discussed model experiments compared to the 

ERDC Vicksburg/IHC DM “field” experiment (Ravikrishna et al., 2001).  The experiments 

in creating the discussed model closely matched that of the “field” experiment except for the 

drying process found in the sediment bed.  This process differed due to the field study 

apparatus was designed to drain water through the bottom of the flux chamber.  With the 

runoff and drainage of the water in the chamber along with evaporation, the bed pore space 

volume quickly changed from air-filled to water-filled.  This bed drying action is critical to 

this model in that it regulates how quickly pore space becomes filled with air and allows 

quick transport to the surface for emissions.  The results from this field experiment showed a 

sharp decline in chemical flux before as it exponentially decayed.  These results differed 

from that in the wind tunnel by making the dry time insignificant as the surface sediment 

driving emissions became dry instantaneously.  Notwithstanding these artifacts, the L/WT 

experiments provide new insights into the chemical volatilization process from DM and a 

focus for the development of a simple model, which captures both the qualitative and 

quantitative aspects of the chemodynamics.  The report contains a discussion of these 

artifacts and presents other guidelines for translating and applying the dry patches model in 

the field 

4.2 Introduction 

The objectives of the investigations were to obtain data and develop a science-based 

volatilization process model for soil-to-air chemical emissions from dredged materials (DM).  

Wind tunnel volatilization experiments using Indiana Harbor Canal DM were conducted to 

produce data for modeling efforts.  Most chemical evaporation data (i.e., flux to air) is 
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derived from soil-like sources and is based on laboratory experiments (Thibodeaux et al., 

2002).  Typically the equipment employed used small mass quantities, small evaporative 

surface areas, and contained soils not of dredged material origin. With one exception, all 

were laboratory scale evaporation experiments.  The experiments in creating the discussed 

model closely matched that of the “field” experiment except for the drying process found in 

the sediment bed.  Large-scale lysimeter/wind tunnel (L/WT) experiments appear to be the 

best compromise between the laboratory scale simulations and field scale measurements. The 

large evaporative surface areas and DM mass contained within the wind tunnel allowed close 

1-to-1 mimicking of the drying/consolidation/cracking/etc. processes that occur in the field.  

In addition the L/WT apparatus has the advantages over the field in the ability to control the 

wind conditions and the air sampling to make precise measurements of water content, water 

losses, surface area of cracking and other tactics of the chemical flux measurements.  

Employing the IHC DM as the contaminant source material will provide critical data needed 

for estimating emissions at this particular site.  This in turn will provide the understanding 

and the parameter quantification key to developing a more realistic chemical flux model.  

The two key objectives of this research are to: 1) obtain field-like chemical flux 

measurements for IHC/CDF dredged material and 2) update the existing USACE 

commissioned emission flux model (Thibodeaux, 1989) which was recently re-revised. 

4.3 Background 

As established in a recent literature review of models and data considerable 

information is available discussing the evaporative chemical release process from soils 

(Thibodeaux, et al., 2002).  The fundamental theory of the process is well established and 

generally verified by numerous sets of data.  Essentially it is a process that begins within the 
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chemical sorbed to the solid phase of the DM.  Here chemicals desorb into the adjoining air-

filled pores characterized by the air equilibrium desorption partition coefficient (Hρ/KA32); 

this is Step 1.  The effective chemical diffusion coefficient in the vapor-phase of the porous 

media, quantified by De, moves the chemical to the air-soil interface; this is Step 2.  The last 

transport step (Step 3) is the chemical species moving through a thin boundary film on the 

airside of the interface before being mixed with bulk air currents in the atmospheric boundary 

layer.  An equation based on the Lavoisier mass-balance principle connects the flux, n, and 

the average chemical concentration, Cs, in the soil column.    The major remaining 

uncertainty appears to reside with Step 2, diffusion of chemical vapor molecules through the 

open pores of the soil. 

It is well known that the fraction of air porosity, ε1, is a key variable in regulating the 

effective diffusion coefficient, De.  The Millington-Quirk correction, which is De
 4/3, is 

commonly used to modify the molecular diffusivity for the presence of the solid particle 

blocking and tortuous pathways.  Typical agricultural soils behave ideally because they 

maintain rather uniform ε1 values so that a constant De can be used for predicting pesticide 

and volatile hydrocarbon emissions.  Due to the high initial water contents and large clay 

fractions DM soils appear to behave very non-ideal.  One field-scale test using IHC DM 

displayed an emission-to-air behavior that could not be quantified by a constant De as 

typically used in these models (Ravikrishna et al., 2001).  Post experiment analysis suggested 

that a complex behavior of ε1 with time was the likely factor.  It was hypothesized that the 

observed flux behavior was the result of water evaporation and the simultaneous volume 

shrinkage of the DM column (i.e., consolidation).  Surface cracks were noted to appear early 
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on in the evaporation process.   A critical review of this first field test appears elsewhere 

(Thibodeaux L. J. 2003). 

4.4 Experimental Procedure 

4.4.1 Wind Tunnel Design 

A wind tunnel constructed at ERDC Vicksburg, MS was designed based on one used 

to measure selenium volatilization from soils (Dungan, et al. 2000).  A lysimeter of 

dimensions height 0.46 m (1.5 ft) x width 1.22 m (4 ft) x length 4.57m (15 ft) designed to 

simulate surface water runoff (Price et al. 1996) was used as the base of the wind tunnel.  A 

rectangular tunnel of height 0.91 m (3 ft) x width 1.22 m (4 ft) x length 4.57m (15 ft) open at 

each end was placed on top the lysimeter.  It contained window panels along one side and 

topside in order to gain access and to view the inside of the tunnel.  The soil-filled lysimeter 

served as the bottom-side of the wind tunnel.  A schematic of the tunnel is shown in Figure 

4.1. 

An 11.2W (15hp) blower was used to draw outside air into the WT, which enters via 

an aluminum duct located outside the building with the opening at a height 4.57m (15 ft) 

above the ground.  Once in the entrance zone the air stream is straightened and the flow 

evenly distributed using a 3-part section consisting of a honeycomb, a baffle, and screens.  

The baffle was made of sheet plywood with teardrop shaped holes to better distribute the 

inlet airflow arriving in the duct.  A thin aluminum sheet of honeycomb cells 1.27 cm (½ in) 

X 15.2 cm (6 in) length was added to further straighten the flow.  A stack of four wire 

screens were placed last to further assist in shaping the velocity profile over the lysimeter.  

Velocity profiles within the tunnel were measured using hotwire and impellor anemometers 

at locations of 1.22 m (4 ft), 2.44 m (8 ft), and 3.66 m (12 ft) from the entrance screen.   
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Air sample collection apparatuses were located both within the tunnel section and in 

the exit section outside of the tunnel. A thin circular metal disk angled at 45 degrees to the 

wind and placed 30 cm upstream the sample device was the “mixing body” used to 

homogenize the air stream (Ruscheweyh, 1984) prior to sampling. This gas mixing system 

has been shown to be very effective in producing uniform concentrations in converging gas 

streams.  The blower unit is located a few feet beyond the air sample port.  The air exits at a 

height of 9.14m (30 ft) above the ground.  

4.4.2 Wind Speed and Profile 

The stack of devices installed in the L/WT inlet section, consisting of baffles, 

honeycombs, and screens shaped the airflow above the soil surface in an attempt to conform 

it to field like conditions.  Measurements taken in the 30 cm region above to soil displayed 

the turbulent boundary layer profile shape with friction velocities and surface roughness 

heights commonly found at field sites.  These results gave evidence that the chemical 

transport processes in the air boundary layer above the soil were realistic simulations of field 

conditions.   

4.4.3 Dredge Material Source 

Sediment samples from five separate reaches of the IHC were collected in July of 

2003.  The objective of sample collection was to obtain sediment samples representative of 

the material to be dredged in regards to location, quantity, and amount of contamination.  A 

total of 15 55-gallon (200 L) metal drums were filled with sediment and shipped to ERDC 

Vicksburg in a refrigerated truck (Saichek, 2003).  All containers were stored in a 

refrigerated trailer (4oC) until ready to be mixed.   
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4.4.4 Sediment Handling and Analysis 

The DM solids had consolidated during transportation and storage time and 

significant amounts of water accumulated at the top of each container.  Motorized propeller 

mixers were used to homogenize the drum contents before the material was transferred to the 

lysimeter where further mixing was conducted to homogenize all 15 drums. One 55-gallon 

drum was removed for use in plant up-take studies. Once filled, the sediment was raked 

evenly to form a uniform (3 to 4 cm) surface. 

Five separate samples were taken from the homogenized dredged material in the 

lysimeter and analyzed for physical and chemical parameters (Table 4.1).  Initial sediment 

contaminant concentrations for PAHs and PCBs were determined by GC/MS analysis (EPA 

method 8270) and GC analysis (EPA method 8082), respectively (Appendix II).  Once 

mixed, the lysimeter was moved into a temperature-controlled building housing the wind 

tunnel (~23-25oC).  The sediment was covered with a thick layer of black plastic and the 

wind tunnel was lowered onto the lysimeter and sealed using gasket material and numerous 

bolts. 

4.4.5 Experimental Methodology 

A series of four experimental runs were initiated the following day.  The plastic was 

removed from the sediment surface and the sediment was raked again to a uniform 

consistency.  A soil temperature probe (Campbell Scientific, Logan, Utah) was inserted into 

the dredged material approximately 1 inch in depth from the sediment surface.  Soil water 

content reflectometers (Model CS616) (Campbell Scientific) were inserted in the middle 

section of the wind tunnel 12 inches, 6 inches, and 1 inch below the sediment surface.  Soil 

temperature and moisture were collected on a CR200 data logger (Campbell Scientific) 
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during the course of each experimental run.  Wind speed, air temperature, and relative air 

humidity in the wind tunnel were monitored during each run using sensors obtained from 

Texas Instruments, Dallas, TX.  Data was collected and recorded on a Solus data logger 

(Texas Instruments).  All probes and sensors were removed prior to each new run to enable 

water addition and sediment remixing and replaced in the same location in the wind tunnel. 

 

Figure 4.1 Wind Tunnel Schematic 

In the first experimental run a representative air sample of the main air stream was 

collected on contaminant specific air sampling tubes (Orbo 44, Supelco, Inc.,) located in a 

separate chamber outside the wind tunnel (Figure 4.1).  Air was pulled through the sampling 

tubes at a rate of 1.7 L/min using a GAST vacuum pump.  This rate was selected based upon 

trap capacity specifications.  Samples were collected continuously and removed at sample 

times of 6 hours, 3 days, 7 days, 13 days, 21 days, and 28 days after air was supplied across 

the sediment surface.   Inlet air concentrations were periodically measured and determined to 
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be free of the contaminants of interest.  The traps were solvent extracted and analysis for 

PAHs and PCBs were preformed according to EPA method 8270 and 8081.   

Prior to the beginning of experimental Run 2, 30 liters of water were added to the 

sediment in the wind tunnel and mixed to approximately 1 foot in depth.  The sediment 

surface was again smoothed and measurements were taken to determine unevenness of the 

material throughout the tunnel.  In order to increase trapping capacity and raise sample 

detection limits, larger traps were constructed of the same material as the Orbo 44 traps 

(Supelpak-2).  Air was pulled through these larger traps at 10 L/min.  Samples were collected 

both outside and inside the wind tunnel to draw a comparison between sampling techniques 

in both locations.  Samples were collected 2 days, 5 days, 9 days, and 15 days after air was 

supplied across the sediment surface.  Traps were extracted and analyzed as stated 

previously. 

A third run was initiated after adding 279 liters of water to the dredged material.  

Sediment was mixed to approximately one foot in depth.  The run was discontinued after a 

sampling error was detected; all analytical results were below detection limits. 

A fourth and final run using the larger traps as described in run 2 was initiated 

immediately following run 3.  A total of 242 liters of water was added and mixed into the 

sediment.  The sediment had consolidated and mixing was conducted to approximately 8 to 

12 inches in depth.  The sediment surface was again smoothed to prevent as much 

unevenness in the surface as possible.  Samples were collected 2, 5, 9, 13, 19, 26, 33 and 40 

days after air was supplied across the sediment. 
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4.5 Experimental Results 

The primary observable from the L/WT apparatus was the chemical flux to air from 

the DM mass. From measured mass (ng) quantities collected onto adsorbent traps the exit 

concentrations in air, CA (ng/m3), of selected chemical species were obtained.  The 

volumetric airflow rate, Q1 (m3/s), was measured as well.  From these measured quantities 

the chemical flux to air, NA (ng/m2.h) was obtained from  

                                                      NA= Q1CA/A                                                       (4.1) 

The measured fluxes for the three chemicals appear in Figures 4.2-4.4.   

Due to the low chemical loading levels in the collected IHC DM, only naphthalene, 2-

methylnaphthanlene, and phenanthrene fluxes were quantifiable.  Collected mass quantities 

for other PAHs were too low or too few in number to be useful.  Three successive 

experimental runs were performed in order to capture the variations of the flux  

 
Figure 4.2 Naphthalene Measured Flux Data vs. Model Estimated Fluxes 
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Figure 4.3 2-Methylnaphthalene Measured Flux Data vs. Model Estimated Fluxes 

 

 
Figure 4.4 Phenanthrene Measured Flux Data vs. Model Estimated Fluxes 

FIGURE 4-  PHENANTHRENE FLUX
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FIGURE 3-  2-METHYLNAPHTHALENE FLUX
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measurements.  The experimental run-times were 670 hours (28 days), 360 hours (15 days), 

and 959 hours (40 days) for Runs 1, 2, and 4 respectively.  The flux data for NAPH, M-

NAPH, and PHEN displayed the same general trends with time.  Fluxes for NAPH varied 

between 0 and 50, those for M-NAPH varied between 0 and 25 and PHEN fluxes ranged 

from 0 to 2 ng/m2.h.  Sample time intervals varied for each run; early-on six hours was used.  

However, as air concentrations decreased the sample collection time intervals were extended 

to 48 hours and 96 hours with some requiring 194 hours (8 days) in order to obtain 

measurable quantities on the adsorbent traps.  In addition to NAPH, M-NAPH and PHEN, 

small quantities of acenaphthalene were observed.  Occasionally, even smaller quantities of 

pyrene and fluorene near the detection limit of < 0.10 µg/ml were noted.  However, the data 

associated with these low levels were judged to be unreliable for flux interpretation purposes. 

The data on these and other PAHs appear in Appendix II.  The following paragraphs provide 

an explanation for the time-behavior patterns for the observed NAPH, M-NAPH, and PHEN 

fluxes; focusing on NAPH due to the higher chemical fluxes. 

4.5.1 Run 1 

As Run 1 commenced, 2.6 m3 of DM was placed in the lysimeter. The air velocity 

was adjusted to an average of 1.16 m/s (2.60 mph).  A ponded/soupy water layer existed on 

the surface of the DM initially.  After a few days the ponded water was visibly absent. 

During this time period the NAPH flux was initially 21 ng/m2.h, but decreased rapidly and 

values were below detection limits (<0.10 ug/ml) were observed after 72 hours (3 days), 

which marked the end of Regime-0. 

Regime-I commences when the chemical flux resumes. It is assumed that the 

reappearance of the chemical flux is due to the formation of dry patches on the surface of the 
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DM.  This process proceeds slowly because the bed solids continue to consolidate and free 

water is forced upward.  Since water evaporation is faster than that forced-up ponded water 

does not develop on the surface. The majority of consolidation-produced water appeared to 

end on Day 7; it was reported that the overall surface was “beginning to dry”.  On Day 11, 

cracks on the surface of the DM became apparent.  The chemical flux increased as water-free 

porous surface areas (i.e., patches) increased with time.  The increasing chemical flux period 

is defined as Regime-I.  Some water was observed at depth in the soil cracks indicating 

consolidation was still occurring on Day 15.  The surface of the DM had receded from 2.5 to 

3.8 cm below the top of the lysimeter.  On Day 20, the sediment level had decreased 5.1 cm.  

This amounts to 228 liters of water evaporated from the lysimeter.  The surface cracks were 1 

to 1.2 cm in width and 2.5 cm in depth on Day 20 while 2 cm in width and 6-8 cm in depth 

on Day 26.  On Day 21, the NAPH flux reached a maximum value of 49 ng/m2-h.  This 

marked the end of Regime-I. 

The falling chemical flux period is defined as Regime-II.  On Day 28, the final NAPH 

flux measurement was 28 ng/m2-h.  Soil moisture content measured on composite samples 

for Days 0, 12, 15, and 21 fell from 94 to 79, 62, and 55% respectively. In general these 

correspond to the observed water evaporation losses.  Clearly, the solids consolidation 

process produces water, which travels upward since the bottom of the lysimeter is sealed; no 

leachate was collected or withdrawn.  This water production process opens the soil pore 

spaces and affects the chemical flux to air.  As introduced, these three regimes will be used to 

characterize the chemical and water behavior in the lysimeter: Regime-0 is the ponded 

period, Regime-I is the surface patches formation period and Regime-II is the dry surface 

period. 
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These water regimes influence the NAPH flux rate.  The Regime-0 occurs early on 

after filling the lysimeter with DM; rapid solids consolidation produces ponded water on the 

surface.  The second water regime, Regime-I, is characterized by less rapid consolidation, 

high water contents with continuing water evaporation.  Relative dry soil surface patches and 

numerous cracks appeared on Day 14.  Between Days 7 and 14 (approximately) the soil pore 

spaces increasingly contain air rather than water.  At 25˚C, the chemical diffusivity for 

NAPH in air is 185 cm2/h, where it is only 0.02 cm2/h in water.  Since the air-filled pores 

dominate the chemical transport within the soil the flux gradually increases over the period as 

shown in Figure 4.2 for Run –1.  Soil temperature varied from 15˚C to 25˚C and % RH 65 to 

90 over the period.  Dry surface patch areas with air-filled soil pore spaces begin to appear at 

the end of Regime-0.  In effect Regime-I is characterized by surface drying that converts a 

porous but water-filled DM soil surface to containing air filled surface patches.  When the 

patches cover the entire surface the maximum chemical flux occurs and defines the time, tD .  

This marks the end of Regime-I and the start of Regime-II. 

High water fluxes cannot be maintained once the surface is dry.  This initiates the 

next water regime, Regime-II.  Water depletion occurs from the upper soil layers but the 

diffusion path length increases with time.  Since the quantities needed for evaporation 

originated well below the interface, the flux decreases.  A dramatic decrease in flux occurred 

between Days 21 and 28.  In summary, Regime-0 contains free-water on the surface, in 

Regime-I air-filled pore spaces gradually replace water-filled ones, and Regime-II represents 

full air-filled soil pore spaces and a cracked surface.  The chemical flux pattern responds to 

the three water dominated regimes.  Considerable bed consolidation occurs throughout 

Regimes I and II. 
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The flux vs. time behavior of M-NAPH and PHEN shown in Figure 4.3 & 4.4 are 

very similar to that of NAPH for Run-1.  The three water regimes affect it as well.  It is low 

when a ponded condition exists and increases as the water evaporation opens soil pores to 

achieve a maximum flux value.  Upon reaching a maximum flux, chemical depletion from 

the dry upper layers precedes producing progressively lower fluxes to a low value on Day 28.  

The dramatic effect of chemical depletion with time is better appreciated in viewing the Run-

4 data, which is also shown in Figures 4.2 and 4.3. 

4.5.2 Run 2 

At the end of Run-1, the airflow was stopped and approximately 30 liters of water 

was added and mixed into the surface soil to produce a uniform mud layer without a 

significant water layer.  The wind speed was again set at 1.16 m/s (2.60 mph) while the soil 

temperature and relative humidity ranged as that in Run-1.  On Day 6, the surface was still 

moist and cracks developed on Day 7.  This cracking continued and by Day 15 several cracks 

had appeared (1-2 cm in width and 5 to 8 cm in depth).  The experiment ended on Day 15.  

Four large cracks 2 cm wide by 8 to 11 cm in depth existed on the surface soil.  The 30L of 

water did not replace the 228L lost during Run-1.  A Regime-0 with ponded water never 

truly developed. Regime-1 characterized by dry surface patch formation was short lived.  The 

maximum flux occurred at tD = 7 days.  It took 16 days in Run 1.  Figures 4.2-4.4 show data 

for NAPH, M-NAPH, and PHEN with increasing fluxes during this period as air replaced 

water in the pores.  As time increased beyond tD  the flux decreased; a value of 5 ng/m2-h 

occurred on Day 11 for NAPH.   

Replicate samples, n=3, at each sample time were performed on Run 2.  The 

measured flux range appears in Figures 4.2-4.4 as a vertical bar at each time.  The peak 



  57  

fluxes were lower than those in Run-1 by approximately 70%.  This occurrence of lower 

fluxes has no definite explanation at this time.  Mixing in of the chemical depleted surface 

layers may have produced a lower soil concentration and in-turn lower fluxes are manifested.  

Because insufficient water was added, the peak flux value may have been missed during 

sampling.  The maximum may have occurred between Day 5 and Day 9.  Nevertheless, this 

short time-period experiment displayed some of the same patterns observed with Run-1.  The 

turnaround time between Run 1 and 2 occurred in a single 24-hour period, 23-24 October 

2003. The DM mass in the lysimeter was not returned to its initial water content.  Soils at 

depth in the lysimeter were well consolidated during the twenty-nine days of Run-1; and not 

re-mixed with the surface layers.  The top surface of the DM level in the lysimeter was down 

13 cm when Run-2 started.  In combination, these factors may have somehow produced the 

low fluxes. 

4.5.3 Run 4 

At the conclusion of Run 2, a more aggressive procedure was adopted for mixing-in 

water in an effort to return the DM mass to its initial water content and uniform consistency. 

Before Run-4 commenced another sediment re-wetting and re-working activity occurred.  A 

total of 520 liters (0.52 m3) of water was added in five batches and mixed into the soil.  Some 

ponded water appeared on the surface after the mixing.  This run was the longest of the three 

lasting forty days.  Seven flux observations were made for NAPH, M-NAPH, and six for 

PHEN over the period; these appear in Figures 4.2-4.4 respectively.  Although a full 

restoration of the DM to initial water conditions did not occur, it was sufficiently 

reconstituted that it displayed the three water regimes observed during Run-1. 
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At the start, the surface was wet and the average level was 10 cm below the top of the 

lysimeter.  The DM had been in the lysimeter for four months (120 days) and the layers near 

the bottom of the 45 cm soil column were well consolidated and resisted break-up/re-wetting 

with the implements used for mixing.  More aggressive water-soil mixing equipment may 

have damaged the bottom liner and resulted in water leakages.  Initially, low fluxes were 

observed from the wet surface. Air temps ranged from 3.0o to 12oC and RH ranged 50% to 

90%.  Within two days, small cracks appeared on the surface.  On Day 9, the cracks were 1-2 

cm in width and extended 6-8 cm in depth.  Air porosity was dominant in this now dry soil 

and the same magnitude of maximum chemical fluxes observed in Run-1 reappeared, but 

occurred much earlier in time.  The maximum flux occurred on Day 9 for Run-4 whereas it 

occurred on Day 21 for Run-1.  Soil drying occurred more rapidly in Run 4 because the DM 

mass commenced with less water than in Run 1. 

The chemical flux vs. time behavior for Run-4 displayed an outstanding feature not 

previously observed.  The flux dropped rapidly from the maximum and after approximately 

10 days leveled off to what appeared to be near constant fluxes.  These persisted for 

approximately 15 to 20 days.  The final average soil surface level was 11.5 cm below the top 

of the lysimeter, down 1.5 cm from the start and displayed some degree of continuing 

consolidation.  Soil cracks at the finish were 2.5 to 4 cm wide at the surface and extended 18 

to 29 cm deep, however, the consolidation likely occurred in the top 10 to 15 cm reworked 

zone rather than at depth in the soil column.   

The above discussion was dominated by the observations on NAPH and M-NAPH.  

In the opinion of the investigators, the flux measurements for NAPH and M-NAPH were 

more reliable than those for PHEN, which appear in Figure 4.4.   The fluxes for PHEN were 
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roughly 10X lower than those for M-NAPH and 20 times lower than those observed for 

NAPH.  Due to its low Henry’s constant the measured fluxes for PHEN were low as 

expected even though it is present in the DM at the highest loading; see the CS values in 

Table 4.1.   

Table 4.1 Soil Parameters for IHC DM at 25C 

 
Small mass quantities were collected during air sampling and this challenged the 

detection limits of the chemical analysis.  Because of these factors the flux data for PHEN 

was devalued and not used to adjust key model parameters.  The final model was applied to 

PHEN and the data used in comparison because it represents chemicals with vastly lower 

Henry’s constants.  Figure 4.4 shows the model vs. data results for PHEN.   

4.5.4 Summary Of Wind Tunnel-Lysimeter PAH Emission Data 

     A complex series of chemodynamic processes control and influence the chemical 

release and the flux of semi-volatile PAHs to air from the IHC DM.  Solids consolidation and 

water expressed from the bed are major factors.  The presence of ponded water provided a 

diffusion barrier on the surface keeping the fluxes low at the start of the volatilization 

process.  During drying as un-saturated soil is produced, air-filled pore spaces encourage 

increased volatilization rates.  This occurs because as noted previously chemical diffusivities 
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in air are more than 5000 times larger than those in water.  The gradual drying process delays 

the onset of the maximum observed flux.  During this period, dry soil patches appear on the 

surface and grow in number as time progresses.  The maximum fluxes were manifest after 7 

to 20 days depending on the initial DM water content.  Beyond these maximums, the 

observed chemical fluxes decrease with increasing time.  The rate of decrease was non-linear 

with increasing time and measured fluxes remained relatively elevated for upwards to 40 

days.  Additional discussions concerning the flux vs. time behavior patterns appear in the 

theoretical analysis section.   

4.6 Model Development 

The soil-to-air chemical volatilization modeling is based on observations made within 

a L/WT designed and operated using conditions similar to those found in the outside 

environment.  Each of the experimental runs displayed chemical flux events classified into 

three water regimes.  A conceptual graphical description of the three regimes is shown in 

Figure 4.5 in order to clearly identify the key aspects of each in the combined water-chemical 

evaporation-emission process. 

4.6.1 Regime-0 

After the dredged material was transferred from the drums into the lysimeter, it was 

nearly completely submerged under a layer of water.  Only two chemical phases, liquid and 

solid, exists during this regime leaving the bed pore spaces between the solid particles 

saturated with water.  The depth of this water layer was controlled by the topological 

variations of the DM surface.  Regime-0 ends at time tb when the water layer is effectively 

absent from the DM surface.  Emissions of the contaminants during this time occurred by the 

chemicals diffusing from the water to the bulk air above.  Fluxes from this regime were 
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generally very low.  Volatile emissions for the ponded scenario are not within the scope of 

this study.  However, the ponded scenario is important for hydraulic dredge generated DM 

and it will be addressed in a subsequent report.  Regime-0 is therefore not modeled and is 

further considered only to the extent it initiates Regime-I.   

4.6.2   Regime-I 

At the end of Regime – 0 free standing water is absent; a wet DM remains.  As the 

water consolidation-evaporation process continues Regime–I commences with dry patches 

being formed on the surface of the DM.  These continue to be formed and completely cover 

the surface at time, tD.   Throughout this period, the air-filled pore-space patch areas increase 

from 0% to 100% as shown in Figure 4.6.   

 

Figure 4.5 Exposed Dredge Sediment Regimes 
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Figure 4.6 Linear Patch Age Distributions on DM Surface  

These patch areas appear as the water-filled pore spaces are converted to gas-filled 

ones.  The surface drying time, is t′d = td - tb, the time period at the end of Regime-0 until the 

time the entire surface layer is covered with dry patches.  It is an empirical parameter 

controlled by the combined consolidation and evaporation processes that drives liquid from 

the surface layer.  The above equation defines the relationship between the run time t and the 

model time t′. 
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At the end of Regime – 1 a linear decreasing age distribution of equal size dry patches 

is assumed to exist.  Figure 4.6 illustrates the size and age distribution for a hypothetical 10-

patch surface. The first patch formed has an age of t′d.  After time interval ∆t, the second 

patch was formed; its age at time t′D will be t′D-∆t.  Rather than 10 patches the drying time 

period t′D may be divided so as to produce n patches.  For example, if one hour is a 

convenient value for the time interval ∆t then the number of patches in the model is n= t′D 

/∆t.  For n time periods, the last patch formed has age equal t′D- (n-1)∆t.   

4.6.3 Regime-II 

Regime-II commences after the last dry patch is formed.  At the beginning of this 

regime air-filled pores are present throughout the entire surface of the DM bed. The chemical 

contaminant desorbs from the damp solid phase and diffuses through the porous, air-filled 

soil layers and into the bulk air above.  The maximum chemical flux results at time t′D.  The 

evaporation/consolidation process continues, but at a slower rate.  As it does, further pore 

openings widen in the present air-filled pore spaces and more are created at depth.  Surface 

cracks form and widen as well.  Chemical movement from the DM surface layer causes 

depletion.  Deeper residing chemical quantities have a longer and more torturous diffusion 

path to traverse to get to the interface and this lowers the flux.  This chemical depletion 

process was demonstrated in the laboratory for porous soils (Valsaraj, et al., 1999).  The flux 

continues to decrease with increasing time.  The next section contains a mathematical model 

developed to quantify these described flux behavior patterns. 

4.6.4 Flux Equation 

The basic flux equation used in this study has been shown to provide reasonable 

estimates of chemical volatilization from natural and agricultural soils to air (Thibodeaux, L. 
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J., et al. 2002).  A Lavoisier’s species mass balance was used in developing the equation for 

the case of a soil column of infinite depth containing an air interface at the top.  A total of 

three phases (soil, air, and water) are assumed to be present.  The model also assumes a 

uniform chemical loading concentration, CS, throughout the soil column.  The following 

algorithm describes the instantaneous flux for a chemical species through the air-filled pore-

spaces, then through the air boundary layer and finally entering the bulk air above: 
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The above equation was incorporated in modeling algorithms developed for Regimes 

I and II.  A model simulation using beds of finite thickness and infinite thickness indicates 

that identical fluxes are achieved for bed thicknesses of 3 cm or greater.  Laboratory 

experiments with three PAHs for 35 days of evaporation showed chemical losses occurred 

only in the top 2cm of the sediment (Valsaraj, et al., 1999.)  As illustrated in Figure 4.5, the 

chemical flux to air from the surface of the DM consists of two-regimes.  The two-regime 

conceptual structure described previously forms the basis upon which to formulate the 

chemical emission process model. 

4.6.5 Chemical Flux In Regime-I 

The time-period t′D (hr) will be divided into a number, n, of equal time-intervals ∆t as 

noted above.  Each time interval will have an average flux dependent on the age of the patch.  

The number of dry patches is also n and their rate of appearance (i.e., n/t′D) will be assumed 

to be constant with time.  For the first time interval (i=1) one patch exists; its area is A1/A = 

∆t/t′D; where A is the total surface area of the DM emission source and A1 is the surface area 
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of a dry patch.  The patch flux is computed as the average of that at t′=0 and t′=1∆t by 

applying Equation 4.2: this flux is denoted by N(1).  This newly formed patch has the highest 

flux since t′ is small.  The average flux for the entire emission source is denoted by 

NA(1)=N(1) . A1/A.  For the second time interval, i=2, patch 1 has increased in age; its flux is 

the average of that at t′=1∆t and t′=2∆t; it is termed N(2).  It has a slightly smaller flux now 

since it has aged.  Equation 4.2 accounts for the decrease in flux at its new age. The flux of 

Patch 2 is N(1) which was the previous value for Patch 1.  The average flux for the emission 

source consisting of two patches is: NA(2)=[N(1)+N(2)] . A1/A.  In general for the ith patches 

the emission source flux is: 
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The ratio A1/A is a constant and t′=i∆t.  This equation relates the flux for each time 

interval t′= t′D.  As total patch size increases so does NA(i).  The general shape of the function 

reflecting the increasing fluxes of Regime-I as expressed by Equation 4.3 is NA(t′) vs. t′.  For 

numerical computation of the flux using Equation 4.3, a time interval, ∆t, for patch formation 

must be selected.  Realistic values are one-half to one hour.  Large time intervals such as 

eight hours will not realistically capture the time varying flux early in the patch formation 

process.  Time intervals of minutes or less increases the number of patches and the number of 

intervals but may not necessarily increase computational accuracy.  Numerical computations 

performed have shown that the N(i) function remains unchanged in magnitude as ∆t takes on 

values less than 1 hour.  At time t′D, the flux N(t′D) is at its maximum value.  Up until that 
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time, new patches were being formed.  As time progresses beyond t′D, Regime-II commences 

and no new patches are formed.   

4.6.6 Chemical Flux In Regime-II 

At the start of Regime-II, the surface of the emission source is covered with a mosaic 

of j patches of equal size and a linear decreasing age distribution ranging from ∆t to t′D.  The 

oldest patch has age tD′ and the youngest has age ∆t.  As time progresses, all the patches 

become older.  For example, the emission source flux for the sum of all n patches at t′=t′D+∆t 

is: 

                             
NA t'D ∆t+( )

A1
A

N ∆t( ) N ∆t( )+ ....+ N t'D ∆t+( )+( )⋅             (4.4) 

Where N is the average of the individual patch fluxes across each age interval.  Each 

patch is ∆t older.  The oldest patch has age t′D+∆t.  Since the number of patches remains 

constant at n and as time progresses their individual fluxes decrease, the sum decrease as 

well.  In general the emission source area flux for the time t′=t′D+j∆t starting with j=1can be 

expressed as: 

                                           

                                  (4.5)                  

 

The functional behavior of this equation is illustrated in Figure 4.5.  As with Eqn. 4.4 

the individual patch average fluxes, N, are computed from Equation 4.2.  As j increases so do 

t′ and the NA function of Eqn. 4.5.  It displays a decreasing flux with increasing time since 

the flux from individual patches decreases with increasing age (i.e., t′ becomes large in Eqn. 

4.2).  Figure 4.5 shows the patch times corresponding to the fluxes NA
I and NA

II. 
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4.6.7 Model Applications To Wind Tunnel Data 

The structure of the emission model and the associated flux algorithms were 

presented above.  A two-regime emission structure defined by t′D, the surface drying time, 

along with Equations 4.3 and 4.5 constitute the quantitative process model.  Equation 4.2 is 

embedded and used to compute the chemical fluxes needed at the appropriate times and patch 

ages.  The model was fitted to the measured fluxes obtained in Runs 1, 2, and 4.  The model 

calculated and the measured fluxes appear in Figures 4.2, 4.3, 4.4 for NAPH, M-NAPH and 

PHEN, respectively.   

Several transport, thermodynamic, and soil parameters are needed for Equation 4.2.  

These include the chemical molecular diffusivities in air, Henry’s constants and the soil-to-

water partition coefficients.  These numerical values used appear in Table 4.2 in addition to 

the chemical loading and the air-filled soil porosities.  Direct measurements were available 

for the IHC DM for all the parameters except the diffusivities.  These were estimated based 

on the Fuller, Schettler and Gidding’s algorithm (Fuller, et al. 1966).  The following 

procedure was used in fitting the two-regime soil-drying model to the flux measurements. 

Table 4.2 Transport and Thermodynamic Parameters of IHC DM at 25C 

 
 

The calibration process commenced with a visual inspection of the graphical 

representations of the measured fluxes vs. runtime for each chemical.  These appear in 

Figures 4.2, 4.3 and 4.4.  First the ponded flux time-period, tb, of Regime-0 was estimated for 

each run and the time positions, t, readjusted by subtracting tb from the run time so that 

Regime-I begins at the origin (i.e., t′=0).  These adjustments are reflected in the data points 
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re-plotted with the new times as shown in Figure 4.2, 4.3 and 4.4.  The tb’s appear in Table 

4.1.   

Again, based on a visual inspection, the drying time, t′D, was determined.  The 

conceptual schematic shown in Figure 4.5 is used as a guide; based on the data in Figures 4.2 

and 4.3 for each run the t′D values are chosen.  It is somewhat a “judgment call” to establish 

at what time the maximum flux occurs faced with sparse data sets such as those appearing in 

Figures 4.2 and 4.3.  This t′D is a key adjustable parameter in the two-regime drying model.  

Nevertheless, reasonable values can be obtained and these appear in Table 4.2 for each run; 

the same values were used for each chemical.   

In order for the model to mimic the measured flux vs. time data for each chemical 

unique values of KG, the air-side MTC were needed.  This is a the parameter which controls 

the rate of the flux rise with increasing time, its maximum value and it also influences its rate 

of flux decrease for times beyond time t′D.  The numerical values of KG appear in Table 4.2.  

A “flux calibration factor”, Cf, was needed to scale the absolute magnitude of the model-

computed fluxes.  Positive Cf values were needed to adjust the computed fluxes to the 

measured ones.  These Cf values appear in Table 4.2.  Figures 4.2, 4.3 and 4.4 contain the 

Regime-I and II measured fluxes and the model predicted fluxes based on the above 

calibration procedure for NAPH, M-NAPH, and PHEN respectively.   

4.7 Discussion Of Results 

The traditional approach to the subject of drying beds of solids employs the concept 

of the constant-rate period and the falling rate period (Perry, 1950).  Moisture (i.e. water) is 

the “drying” chemical of primary focus in this traditional field where uniform granular solids 

particles typically constitute the beds.  Water is present in DM in copious amounts and likely 
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undergoes both a constant rate and a falling rate-drying period.  The data shown in Figures 

4.2, 4.3 and 4.4 clearly demonstrate that this traditional approach does not apply to NAPH, 

M-NAPH and PHEN evaporation (i.e., drying) since there is no constant rate period.  

Nevertheless, the presence and behavior of water in the DM is a significant process factor.  

The published literature on traditional, non-consolidating solids drying by water evaporation 

is voluminous.  Because the combined processes of water consolidation, ponding, run-off, 

and evaporation are exceedingly complex in the case of DM drying an empirical approach 

containing some theoretical aspects of the traditional drying process was adopted.  This 

approach was used for Regime-I as was developed previously.  The essence of the approach 

is the idea that “dry surface” patch areas of air-filled soil pore-spaces is assumed to appear 

linear with time and to occupy the entire emission surface at time t′D.  A linear function is 

consistent with the concept of moisture evaporating from the surface of the bed at a constant 

rate.   Once the surface becomes dry the water evaporation rate falls.  It is assumed that the 

constant water evaporation rate period ends at the drying time, t′D.  A chemical flux to air 

process was superimposed onto the constant rate period and is consistent with the dry patch 

formation process.   This interpretation allowed the development of a simple computation 

procedure for the chemical emission flux behavior during Regime-I.  The ability of the model 

to mimic the observed increasing chemical fluxes (i.e. zero to maximum) is apparent in 

Figures 4.2 and 4.3. 

Since the water behavior controls t′D it should be chemically independent, 

theoretically.  This appears to be so for the NAPH, M-NAPH and PHEN flux data; the t′D  

values appear in Table 4.2.  However, t′D, the drying time, is different for each experiment.  

Rewetting the DM solids to its original water content after Run 1 was unsuccessful.  Only a 
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fraction of the original water was reintroduced and as a consequence, the drying times for 

Runs 2 and 4 were shorter.  The t′D values of 125 hours and 100 were needed for Runs 2 and 

4 compared to 425 hours for Run 1.  Nevertheless, based on this limited data set it appears 

that the semi-theoretical dry patches model is consistent with traditional solids-water drying 

concepts.   

The highest chemical fluxes occur from the individual patches when they are first 

formed.  Setting t=0 in Eqn. 4.2 yields the highest flux which occurs when the airside MTC, 

KG, controls the process.  High fluxes are seen as each new patch is formed. The numerical 

value of KG therefore plays a dominant role in the magnitude and shape of the rising fluxes 

characteristic of Regime I.  The chemical flux from a patch quickly diminishes as time 

increases, according to the t -1/2 relationship in Equation 4.2.  Therefore, the numerical value 

of KG is an important adjustable parameter in Equation 4.2 for mimicking the flux behavior 

in Regime I.  The KG values of NAPH, M-NAPH and PHEN appear in Table 4.3 and are 

based on a visual fitting of the model fluxes to the data.   

Table 4.3 Emission Model Calibration Parameters 

 
 

Theoretically for a constant wind speed, the effective KG in the wind tunnel should be 

constant and therefore independent of experimental run.  This is the case, apparently, because 

the wind speed was kept constant for all three runs and same numerical values of KG resulted.  

The KG values are chemical dependent and a function of its molecular diffusivity in air D.  

The calibrated KG values were correlated with Dn where n ≅ O.64.   This result is consistent 

with boundary layer theory where KG ≅ D0.67.   In addition numerical values of KG’s for 
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organic chemicals similar in size have been reported in the range 100 to 1000 cm/h and 

depend on windspeed (Thibodeaux, L. J., et al. 1985).  Therefore the 600 to 700 cm/h range 

for the effective KG’s observed in the L/WT tunnel are very consistent with this range of 

values. 

The two adjustable parameters needed for this two-regime emission model, t′D and 

KG, have a good theoretical basis and are well constrained as to their numerical magnitudes.  

They cannot be arbitrarily adjusted in order to force model vs. data congruence.  A flux 

calibration factor, Cf, was created as a multiplier to Equation 4.2 because its use with 

appropriate t′D and KG values consistently underestimated measured fluxes.  Nine values of 

Cf were needed; these appear in Table 4.3 and range from a +5 to +50.  The Cf’s for M-

NAPH are larger than those for NAPH; the averages being 31 and 10, respectively.  PHEN 

displayed the lowest Cf   values with an average of 8.  Such model vs. data flux deviations 

have been observed in laboratory experiments with soils, which behave very unlike DM 

(Thibodeaux, L. J., et al., 2002).  However, in the case of soils the model predications were 

typically higher, numerically, than the measurements.  Soils typically do not undergo the 

particle consolidation process like DM.  At this time the causes of the direction and 

magnitudes of Cf are unknown.  The following provides a plausible reason for the Cf 

magnitudes being larger than unity. 

Bed consolidation with water expressed in the upward direction followed by 

evaporation may have contributed in a significant way to the measured fluxes being larger 

than the model predictions.  A single batch of DM was used in the three separate 

experiments.  The mud level decreased 5.1 cm (2 in) at the end of Run 1.  Each inch is 

equivalent to 140 L of H2O.  Thirty liters of water was added and the bed surface re-mixed 
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prior to performing Run 2.  Compared to those measured in Run 1, the maximum fluxes of 

both chemicals were lower in Run 2 by a factor of three.  520 L of water was added after run 

2 and the bed remixed prior to Run 4.  The maximum fluxes returned to the levels of those 

observed in Run 1.  It appears that when massive quantities of water were being mobilized 

from the bed, as happened in Runs 1 and 4, high chemical fluxes were observed.  Much 

lower fluxes occurred in Run 2; where little water was present to mobilize through the 

combined consolidation/evaporation process.  No water was lost downward or collected as 

leachate.  The upward moving water may be transporting fine particles to the surface of the 

bed at which time they are deposited. 

The solids-water mixing and homogenization process that occurred in the lysimeter 

prior to each run may have contributed to the placement of a thin soil layer containing 

elevated chemical concentrations on the DM surface.  The solids-mixing process produces a 

supernate rich in fine particles since the sand and silt fractions settle rapidly.  In effect this 

combined mixing-settling event is a crude fractionation process that produces a “raffinate” 

phase consisting primarily of large particles and some water.  This phase is overlaid by a 

“supernate” phase consisting of fine particles in suspension.  As the water evaporates in 

Regime – 0 these fines are deposited on the surface.  These fines, which include the clays and 

organic colloids, typically contain higher chemical loadings (i.e., CS in mg/kg) per unit mass 

than the average. Pilot-scale and laboratory derived evidence was found that supports the 

surface layer enrichment process. 

A pilot-scale demonstration of Saginaw River, MI sediment washing treatment was 

performed using individual equipment modules roughly the size of the L/WT apparatus 

(EPA, 1994).  DM daily feed quantities of 8 to 20 m3 were “washed” through a series of 
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devices consisting of hydrocyclone separators, dense media separators, attrition scrubbers, 

sand recovery and dewatering screens and final clarifiers.  Eight-grain particle size classes 

were used to assess the effectiveness of the washing.  The largest was 430µm sand and the 

smallest was 30µm fines.  Since contaminant concentration/volume reduction is simply an 

artifact of the partitioning for the contaminants among these grain sizes an extensive effort 

was made to monitor these as they moved through the soil washing system.  Approximately 

19% of the feed was in the < 30µm range.  The total organic carbon (TOC) enrichment factor 

(i.e., concentration in discharge stream to the feed concentration) was nearly 20 for the 

particulate organic fraction (size > 109µm).  Polychlorinated biphenyls (PCBs) with mean a 

feed concentration of 1.2 mg/Kg as total Arochlors, displayed a mean enrichment factor of 

3.8 with a maximum of 9.4 in the clarifier solids.  Separate laboratory, bench-scale test, 

enrichment factors of 6.2 were observed for the PCBs in the Saginaw sediments.    In another 

laboratory study, PAHs in NJ/NY Harbor sediments were separated into size fractions and 

further separated into low and high density fractions in an effort to better understand the 

factors controlling sequestrations and desorption in the field (Rockne, et al., 2002).  The PAH 

concentrations were found to be greatly increased in the low-density fraction and not 

predictable by equilibrium partitioning theory.   For the Piles Creek (PC) sediment the low 

density-to-bulk concentration total PAH ratio was 19 while that for Newton Creek (NC) was 

3.2.  In addition it was found that the PAH partition coefficients (i.e., Koc) were nearly 10 

times larger for the low-density fraction. 

The above studies illustrate that elevated chemical concentrations appear in the fines 

and/or low-density particle fractions.   Generally the enrichment factors ranged from 3 to 20.   

The evaporation of a standing water layer above a DM solid bed will deposit fines particles 
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with elevated chemical concentrations on the bed surface.   Chemical volatilization may be 

driven by the enriched interface concentration producing higher fluxes than represented by 

the average concentration in the DM.  Run 2 had too little water moving upward so the 

surface received little or no concentration enhancement; therefore the maximum fluxes for 

NAPH and M-NAPH were 3 times lower compared to Runs 1 and 4.  Since the average 

concentration was used in the model rate equation to compute the fluxes, the predicted results 

should be lower and they were.  The flux calibration factors for Run 2 were correspondingly 

lower than those required for Runs 1 and 4.  It appears that the upward particle-bound 

chemical mobilization process that results from bed consolidation and evaporation may 

contribute to the high measured fluxes.  The chemical emission algorithm, Equation 4.2, 

employed in the predictive model originates from theories and laboratory testing of chemical 

transport in surface soils that do not consolidate and therefore water is not expressed upward.  

Although this is a logical explanation for the model vs. data mismatch, and the need for the 

Cf corrections there may be other factors or processes involved. 

4.7.1 Model Field Application 

Freshly applied DM from mechanical dredging will likely behave differently from 

that used in the L/WT.  If the DM retains the low in-situ water content of the sediment bed 

when deposited upon the CDF surface only limited consolidation will occur.  The small 

quantities of expressed water will run-off to a designated ponded basin prepared for its 

collection.  Evaporation of water from the surface of the exposed DM solids will commence 

immediately and dry surface patches will likely appear fairly rapidly.  In the L/WT the DM 

was homogenized and water mixed in to produce uniform chemical concentrations, which 

was necessary for making consistent measurements needed for flux model comparison.  The 
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L/WT was not designed for runoff applications so water had to move upward then evaporate 

to depart the DM mass.  This kept the DM surface supplied with moisture and prevented it 

from drying quickly.  Two model parameters, t′D and Cf, must be addressed in translating the 

L/WT results to the field. 

Drying times were very long, these being 4 to 18 days.  In this regard the L/WT 

experiments did not simulate the field drying solids conditions.  Drying times in the field will 

depend primarily upon the local wind speed, temperature and the air relative humidity.  

Except for extended rain periods the field drying times will be rapid and are better 

represented by the low-end of the L/WT values.  Times much less than 4 days and in the 8 to 

24 hour range may be reasonable under excellent soil drying conditions.  The value selected 

for t′D is left to the judgment of the user.  The tipping and spreading of DM “lifts” deposited 

from trucks, for example, produces a complex geometric footprint surface containing a range 

of drying times.  In reality t′D   for a particular tip may not be attainable.  A default value of 

24 hours takes into account the dominance of the solar factor in drying.   

Without the occurrence of Regime-0 the use of a model flux enhancement factors, Cf 

greater than unity are not necessary.  In the field rapid water runoff will allow little 

opportunity for a continuous layer to develop on the DM surface.  Without its presence and 

subsequent evaporation no surface deposit with enhanced chemical concentrations can be 

formed.  For a CDF receiving solid dredged material such as typically derived from 

mechanical dredging operations a Cf =1 is recommended.  

Normally during hydraulic dredging the CDF contains ponded water and appropriate 

models are available for estimating these emissions.  However, exposed surfaces containing 

solids do occur during the life cycle of a ponded CDF.  Deltas are formed in the vicinity of 
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the pipeline slurry entering the CDF.  Also a drying solids bed is formed during the latter 

days of filling when the ponded water is drained away prior to closure.  The use of the drying 

solids emission model is appropriate in both these cases. 

The two primary parameters mentioned as being key parameters are tD and Cf.  In 

applying this model to a dredging site, weathered conditions must be accounted for when 

calculating the emissions from exposed dredge material that has already consolidated.  The 

results from the experimental runs showed that any attempt to incorporate water back into the 

sediment is a failure.  This can correlate well with rain and weathering to the sediment.  Once 

the sediment undergoes the initial consolidation, the sediment cannot regain the pore space 

volume.  This is useful for designating a dry time for weathered sediment.  The Runs 2 and 4 

show the same tD even after trying the incorporate water back into the bulk sediment.  This 

allows the model to contain some percentage of the initial tD for tDweathered.  As shown from 

experimental results, the tD post Run 1, tDweathered, are consistent at ~25% of tD.  The 

correction factor did however become affected in Run 4 compared to Run 2 by the addition 

of water.  This demonstrates that the weathering will impact the correction factor.  This 

Cfweathered is some fraction up to 100% of Cf.  These topics discussed above are to provide the 

user with some type of approach to dealing with modeling long time emissions.   

Further guidance in applying the model to the field appears in the report entitled: 

“Volatilization rates from dredged materials and soils – A literature review” (Thibodeaux, et 

al., 2002).  
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CHAPTER 5 

PONDED CDF EMISSION MODEL 

5.1 Model Overview 

In the case of hydraulic dredging, the dredge facility consisting of the extraction 

machine and the DM slurry operation is intimately connected to the CDF.  These connections 

are illustrated in Figure 5.1.  At the dredge, the dredge material is extracted with partial 

solids and the balance of water combined to form Qds, which is the calculated flow of solids 

and water from the DOU.  The DM is mixed with water to create as solid-to-water ratio 

slurry that can be easily pumped to the CDF through a pipeline.  From experience such ratios 

are well established.  Make-up water, QM, from the stream or embayment may be used to 

create the appropriate ratios.  However, this stream eventually emerges from the discharge of 

the CDF and must be treated prior to entering the waterway.  Since water treatment is costly 

during steady-state operations the CDF discharge can be wholly eliminated by using recycle 

water as shown in Figure 5.1.  Only during dewatering the CDF at the end of the dredging 

season is water discharge treatment required.   

 During dredging from the DOU, the slurry exit stream flows into the CDF entrance.  

Within the CDF, suspended solids are removed from the water column by settling to the 

bottom.  Sand separates first followed by the silt size particles and finally the clay fraction 

settlers.  A shallow sloping sediment-water surface develops along the length of the CDF 

from the entrance to discharge.  This process is illustrated in Figure 5.2.  As shown below, a 

water column exists within the CDF.  The surface in contact with the air is the source of the 

volatile chemical emissions. 

Weirs or other level control devices maintain a fixed water elevation.  As time 
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progresses during the dredging season, solid material slowly replaces the water mass and the 

average water column depth decreases.  Upon reaching its design capacity the remaining 

water column is drained.  After draining, the DM is allowed to consolidate and stabilize 

before final closure. 

 

Figure 5.1 Conceptual Illustration Dredge and CDF Operations 

 From a daily operation perspective and for the seasonal one as well, many aspects of 

the CDF operation are transient.  Concentrations of chemical and suspended solids are 

constant changing with position within the unit as well.  Most of these fluctuations are 

unknowable and therefore unpredictable.  The approach in the modeling effort will be to 

assume a steady state operation and to accommodate variable changes that capture the most 

conservative emission predications.  For example, the hydraulic flow model for the water 

through the CDF will be assumed to be plug flow.  This maximizes the chemical 

concentrations in the water column, which in turn maximizes the emissions to air.  Since the 

water depth column is known to change slowly over time.  At least two depths, one deep and 
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another shallow, operated at steady state will bracket the hydraulic retention times that are 

known to affect the emission rates. 

 

Figure 5.2 Ponded CDF Profile View 

 The following section contains the details of the model for emissions from a ponded 

CDF.  In the development, additional assumptions will be needed.  In all cases, they have 

been chosen so as to maximize the model predicted fluxes.  The model consists of three 

simultaneous mass balances; solids, water, and chemical.  Once single final algorithm is 

produced that represents the chemical flux for a CDF operating with water recycle.  

However, it can be used for the so-called conventional CDF operation that has once-through 

or one-pass water use.  This case is simulated by setting the recycle stream flow rate to zero.   

5.1.1 Solids Balance 

The dredge extracts material, solids and water, from the bed at a constant volumetric 

rate of Qds (m3/s).  This volumetric flow consists of a fraction of pore water that can be 

defined by QP (m3/s).  The remainder is dry solids of rate mP (kg/s).  In order to meet the 
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slurry pumping requirements of solids in water concentration of ρ32o (kg/m3), the solids mass 

balance around the balance around the dredge facility shown in Figure 5.1 is: 

      mP + mM + mR = QI ρ32o                                                 (5.1) 

where QI is the volumetric water rate entering the CDF (m3/s) and the recycle water QR 

(m3/s).  This result can be solved for QI since the solids in the make-up and recycle water is 

insignificant in comparison to the dredged solids.  A typical value for ρ32o is 170 kg/m3. 

5.1.2 Water Balance 

For the dredge facility, the steady state water volumetric balance is: 

QP + QM + QR = QI                                                   (5.2) 

where if there is no recycle used QR = 0.  As shown in Figure 5.1, the recycle stream 

connects the dredged facility with the CDF.  The water flow from the DOU can be evaluated 

as follows: 

     QP = Qds ε2                                                           (5.3) 

where ε2 is the water volume fraction.  The Qds can be determined for a mechanical dredge by 

an estimated volume of sediment excavated and cycle time of dredge arm.  Other water flows 

include precipitation inputs as rain or snow and outputs such as evaporation.  It is assumed 

that these are approximately equal so they balance each other and don’t appear in the figure. 

 The CDF water balance is slightly more complex.  Some internal flows are important; 

see Figure 5.2.  As the slurry enters the CDF, the solid particles quickly settle forming a mud 

layer on bottom consisting of high solids to water ratio or initial bed water porosity εI.  This 

results in the temporary capture of much water at a rate of QS (m3/s) between the settling 

solids.  This flow is considered an outlet flow since the volume under evaluation is 

considered the changing newly deposited solid surface.  As time proceeds, bed consolidation 
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occurs where the particles pack together gravity acting on the solids and the water column 

force acting on the surface of the bed thus eliminating pore water.  Final bed water porosity 

of εF results in as return flow of pore water upward occurs.  This rate of expressed water flow 

to the water column from the bed contraction process is QX (m3/s).  The difference between is 

the called the “bulking losses” water rate QB which has a net downward flow.  In effect, this 

portion of the slurry water remains in the CDF bottom sediment as pore water.  The CDF 

water steady state balance is: 

QI = QR + (QS - QX)                                                  (5.5) 

where   

QB QS QX−
QI ρ 32o⋅ εI⋅ 1 εI εF−( )− ⋅

ρ b 1 εI−( )⋅                           (5.4) 

and ρb is the bulk density (kg/m3).  The other terms have been previously defined.   

The consequences of the bulking loss with the QS and QX flows become important to 

the chemical mass balance.  They represent a chemical accumulation mass and advection 

exchanges across the sediment-water interface which impacts the effective water column 

chemical concentration and the volatile emission rate.  These flows enter the chemical mass 

balance discussed next. 

5.1.3 Chemical Balance 

In Figure 5.2, the CDF includes a control volume element as a portion of the water 

column.  It is of length (∆x), height or water depth (h), width (w), all in meters.  Performing a 

steady state chemical balance on this CV allows for a desorption quantitative of the 

concentration in the water.  The hydraulic flow is from left-to-right and the retention time is: 

     
τ

∆xhw
QR                                                                (5.5) 
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The use of QR as Q even though QI is larger maximizes the model chemical residence time 

and the emission flux as well.  Conceptually, the mass balance for volatile chemical A is: 

Aaaa3aS∆xxaRaaa2aXxaR ∆xhwr*]Aρ[ρK''ρQρQ]Aρ**[ρK'**ρQρQ +−++=−++
+

  (5.6) 

where the individual rates represent: advective inflow at position x, inflow of expressed pore 

water from the bed, diffusion-type mass transfer from bed surface, advective outflow, settling 

solids captured water outflow, evaporation to air and reaction degradation in the water 

column.  Each term has units of kg-A/s.  The concentration in the water column is ρa.  The 

equilibrium chemical concentration that is expressed from pore water is **ρa  and that in air 

is *ρa .  The 
''
KA3 is the sediment-water mass transfer coefficient (m/s) and 

'
KA2 the 

volatilization mass transfer coefficient (m/s). 

 Conceptually, Eqn 5.6 represents the chemical fate in the CDF.  Convenient 

assumptions that maximize the flux are to assume no degradation/reaction (rA = 0) and no 

chemical in the atmosphere **ρa  = 0.  It is also assumed that chemical A is partitioned onto 

the suspended solids in the water column.  Equilibrium partition between the solid and 

soluble phase is assumed here as well as in the pore water of the bed.  With this included, 

Eqn. 5.5 is in the reality just slightly more complex in its derivation.  The resulting 

differential equation is integrated from the inlet slurry flow concentration at x = 0 to the 

discharge position x = L where the water concentration is ρa at x = L.  This result is:  

ρ a2 ρ ao2 exp
As− ''Ka3 'Ka2+ vs+( )⋅

QI 1 ρ 32 K'a32⋅+( )⋅









⋅
''Ka3 ρ '''a2⋅ 'Ka2 ρ 'a2⋅+ vx ρ '''a2⋅+( )

''Ka3 'Ka2+ vs+( ) 1 exp
As− ''Ka3 'Ka2+ vs+( )⋅

QI 1 ρ 32 K'a32⋅+( )⋅









+








⋅+

(5.7) 

where the inlet concentration is: 
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ρ ao2

ε2 ρ 32o⋅

ρ b 1 ε2−( )⋅

wa
K'a32

⋅
QR ''Ka3 ρ '''a2⋅ 'Ka2 ρ 'a2⋅+ vx ρ '''a2⋅+( )⋅

Qds ρ b 1 ε2−( )⋅ ⋅ ''Ka3 'Ka2+ vs+( )⋅
1 exp

As− ''Ka3 'Ka2+ vs+( )⋅

QI 1 ρ 32 K'a32⋅+( )⋅
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−
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The chemical flux to air is obtained by the product of 
'
KA2 and ρa.  Since ρa varies from inlet 

to CDF outlet, the flux must be summed at each point along the length (i.e. integrated) and 

multiplied by the CDF width to obtain the mass emission rate: 

*]*ρ-ρlw[K  w aaa2
'=                                              (5.9) 

where aρ is the average concentration, L is the CDF length and w its width.  The emission 

rate, w, is in kg/s. 

The next section contains a presentation of the relationships needed to obtain the 

various MTCs in Eqn. 5.7.  As noted above, the solid associated chemical was included in the 

mass balance.  However, a solids balance model as such was not performed.  Field data based 

on observed TSS concentration were used instead as a substitute for the solids balance 

process model.  The concentration of solid particles at the exit of the PCDF is assumed to be 

negligible because of the hydraulic retention time of the liquid generally being quite large 

which allows efficient particle settling (Personal conversation with Paul Schroeder, USACE, 

ERDC. Feb 2005).  The focus on the exit waters deals with the chemical in solution for either 

treatment or for recycle. 

5.1.4 MTC Correlations 

With these process conditions within the PCDF, the chemical concentration in the 

water column can then be estimated for use in calculating the evaporative flux of chemical.  

The mass balance detailed above was used to determine the water column aqueous chemical 

concentration by developing the expressions for the flux terms and initial concentration.  The 
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sediment flux acts as an input source for maintaining higher water column concentrations.  In 

determining the sediment flux, the mass transport coefficient is estimated by the following 

expression.   

   

Ka32

b CD⋅ ρ 1⋅

ρ 2
v1

2
⋅ h1.25

⋅

l Ma
0.5

⋅                                                  (5.4) 

where b is the empirical constant 18.9 and the drag coefficient, CD, is 0.00166.  The velocity 

of wind (m/s), density of air (ρ1, g/cm3) and water (ρ2, g/cm3), height (m), length of PCDF (l, 

m), and molecular weight of the chemical (Ma) are used to estimate the mass transfer 

coefficient in units of m/s (Thibodeaux L. J. et al. 1982).   

The individual MTC for the water/air interface is estimated using the local air-side 

and water-side mass transfer coefficients.  The respective water-side and air-side MTCs are 

combined with the well known two-resistance theory.  An existing correlation for ethyl ether 

is used for the liquid-side MTC.  Graham’s Law may be used to convert to other soluble 

chemicals. 

                                         
'ka21ethylether 0.094 v1

2
⋅

                                                (5.5) 

An existing correlation for water evaporation from reservoirs is used to estimate the air-side 

MTC: 

                                    
''ka12watervapor 358 v'1⋅ As

0.05−
⋅

                                           (5.6) 

The MTC is estimated in cm/hr for a known wind velocity, v1 (m/s) or v`1 (mph), and PCDF 

surface area, As.   
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5.1.5 Model Application 

The focus of this section is to verify whether the model produces reasonable estimates 

using sample input parameters.  The following section is not designed to provide actual 

results.  These input values shown in Appendix B were estimated to evaluate the profile 

output of the model.  The variables listed as the inputs along with the output figures were 

developed for modeling a ponded CDF with the inlet location fixed and a recycle loop 

modification.  The results appear in Figure 5.5. 
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Figure 5.3 Chemical Emissions Profile for PCDF with Recycle 

The results show the depletion of chemical in the water column over the length of the 

ponded CDF.  At the beginning of the simulation estimates, the chemical concentration in the 

water column is driven by the incoming chemical in solution, suspended solids, and flux 
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from the bed sediment.  After particle deposition process results in the water column 

becoming depleted of suspended solids, the driving force becomes the flux from the sediment 

bed.  The slope of the concentration line decreases in the same manner as the sloping bed 

layer.  This chemical concentration resulting primarily from the sediment chemical flux is the 

steady state CDF water chemical concentration, ρA2SS.  The results will change as the 

parameters such as CDF area, dredge rate, and recycle flow change. 
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CHAPTER 6 

MODEL CONCLUSIONS 

The models provided in this document have been developed to aid in the planning of 

dredging operations by demonstrating methods used to determine chemical emissions to the 

air.  In dredging, source of significant emissions can be found in two places; the dredge 

operable unit (DOU) and the confined disposal facility (CDF).  In creating versatile models, 

these locales were expanded even further.  The DOU model was broken down into three 

main scenarios.  These include emissions from dredging enclosed rivers, rivers without 

enclosures, and embayments with enclosure.  In each of these models, the chemical 

emissions consisted of an area producing a constant source of volatile emissions and another 

producing a plume of chemical either downstream in the case of the river or radial dispersion 

of chemical.  In order to perform these calculations, these areas of chemical release were 

categorized into two zones.  The forced convectional zone entails the area of the dredging 

operations that has mass transfer influenced by the disturbance in the water column and at the 

benthic layer by the dredge head.  This zone is comprised of mass transfer coefficients for 

wind, hydraulic flow, and dredge disturbance.  The natural convectional zone consists of the 

areas of the dredging which do not have enhancements due to the dredge disturbances in the 

water.  Techniques were provided in order to estimate these mass transfer coefficients 

primarily for the dredge interaction with the chemical release.  Methods for evaluating the 

area of the convective zones as well as the area of the DOU were provided for using the 

equations in calculating the chemical flux. 

In the case of DM being exposed to air post draining the PCDF or transporting 

mechanically, a detailed model in Chapter 4 has been developed and verified using measured 
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data.  The Army Corps of Engineers at WES developed a lab-scale wind tunnel with 

dimensions 16 ft in length, 4 ft in width, and 3 ft in height using a lysimeter as the base for 

the unit.  DM from the IHC was transported to the lab to be used in measuring chemical 

fluxes.  The model used was developed originally for modeling soils, but found to be useful 

in modeling sediment emissions by introducing the water changing patch formation concept.  

When chemical is released in soils, the chemical flux can be represented as a spike with a 

slow decay.  This is primarily due to the soil containing air-filled pore spaces.  These events 

changed for sediments after analyzing the measure results from the wind tunnel.  The flux 

was found to steadily increase over time until reaching a point when it began to decrease 

rapidly.  Through much understanding of the process of which the sediment incurred, a 

theory developed that the emissions from the surface were being released at a steady rate due 

to the drying undergoing in the surface layers.  The idea of patch formation was developed to 

explain the drying of a surface in which chemical could then diffuse much faster through air 

instead of water.  As patches formed, small burst-like spikes of chemicals occurred and then 

began to age.  The aging process is critical in this understanding since it is essentially 

explains the slow steady rise of the chemical flux.  After the dry patches cover the entire 

surface, the emissions are solely based on aging patches releasing less and less chemical as 

time passes.  In developing this idea, the situation of exposed DM can be accurately defined 

with the models produced in Chapter 4 as long as the dry time can be estimated.   

The disposal of DM can be performed by hydraulic transport in which the CDF fills 

with water to form a pond with solids in suspension.  These solids are slowly being deposited 

over the length of the CDF depending on size.  Large particles such as sand fall out close to 

the entry point as smaller particles float and deposit at some distance away from the entrance.  
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A sloping bottom sediment/mud layer forms in the CDF due to this deposition process.  The 

emissions will closely match this type of profile as the model uses a plug-flow solution to 

determine maximum chemical emissions to the air.  The model details the development of 

the chemical concentration in solution in the water column of the CDF.  Modifications can be 

added to the conventional model to provide a recycle flow.  The purpose of the recycle flow 

is primarily to decrease the amount of water requiring treatment.  In adding the recycle term, 

the model compensates for the added aqueous chemical concentrating the incoming slurry.   
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APPENDIX A 

INPUT TO DOU MODEL SAMPLE CALCULATIONS (P 39) 

Chemical Properties

wA 3380
mg
kg

⋅:= "Sediment loading concentration in DOU (mg/kg)"

ρ Astar 0
kg
L

:= "Chemical concentration in air above DOU (mg/L)"

KA32 260
L
kg

:= "Sediment/Water partition coefficient for chemical A (L/kg)"

DA2 7.5 10 6−
⋅

cm2

s
:= "Diffusivity of chemical A in water (cm^2/s)"

Hx 0.01980:= "Henry's constant for chemical A (unitless)"  

Mass Transfer Coefficients

kA1 3.476 103
×

cm
hr

:= "Air-side at air/water interface MTC of chemical A (cm/hr)"

kdredge 3
cm
hr

:= "Liquid-side at air/water  interface MTC of chemical A from dredge (cm/hr)"

kflow 0.046
cm
hr

⋅:= "Liquid-side at air/water  interface MTC of chemical A from water flow (cm/hr)"

kwind 1.611
cm
hr

⋅:= "Liquid-side at air/water  interface MTC of chemical A from wind flow (cm/hr)"

'K'A2 1.618
cm
hr

:= "Overall natural surface liquid-side at air water interface MTC of chemical A (cm/hr)"

'KA2 4.362
cm
hr

:= "Overall forced surface liquid-side at air water interface MTC of chemical A (cm/hr)"
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"Residence time for flow in natural zone of DOU (hr)"τNDOU 9.127hr:=

τFDOU 3.948hr:=
"Residence time for flow in foced zone of DOU (hr)"

"Area of natural convective zone in DOU (m^2)"ANDOU 1095.2m2
⋅:=

"Area of forced convective zone in DOU (m^2)"AFDOU 473.8m2
:=

"Power of dredge (hp)"PD 300hp:=

"Residence time for flow in DOU (hr)"τDOU 13.075hr:=

"Area of DOU (m^2)"ADOU 1569m2
:=

"Velocity of water into DOU (m/s)"vwater 7.456 10 4−
× mph⋅:=

"Height of water column in DOU (m)"h 15m:=

"Width of DOU (m)"w 100m:=

"Wind velocity (mph-no units for input)"vwind 9.261mph:=

Qw 0.5
m3

s
:=

"Total river water volumetric flowrate (m^3/s)"

"TSS in forced zone of DOU (gm/L)"ρ 32FC 500
gm
L

:=

"TSS in natural zone of DOU (gm/L)"ρ 32NC 50
gm
L

:=

DOU Specification
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APPENDIX B 

INPUT TO PCDF MODEL SAMPLE CALCULATIONS (P 85) 

Chemical Properties

K'a32 260
L
kg

:= "Chemical partition coefficient from sediment to water (L/kg)"

Hρ 0.0198:= "Henry's constant for chemical (dimensionless)"

wa 2.65
mg
kg

⋅:= "Dredge area sediment loading concentration (mg/kg)"
 

Mass Transfer Coefficient

'ka21ee 1.878
cm
hr

:= "Liquid-side local mass transfer coefficient for ethyl ether (cm/hr)"

'ka21 1.395
cm
hr

:= "Liquid-side local mass transfer coefficient for chemical A (cm/hr)"

''ka12wv 2996.5
cm
hr

:= "Gas-side local mass transfer coefficient for water vapor (cm/hr)"

''ka12 1.341 103
×

cm
hr

:= "Gas-side local mass transfer coefficient for chemical A (cm/hr)"

'Ka2 1.325
cm
hr

:= "Mass transfer coefficient from water to air (cm/hr)"

''Ka3 3.095
cm
hr

:= "Mass transfer coefficient from sediment to water (cm/hr)"
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mP 38421.1
gm
s

:= "Dredge site solid mass flowrate (gm/s)"

ρ 32o 170
gm
L

:= "Suspended solids concentration in influent (gm/L)"

QI 7.981
ft3

s
⋅:= "CDF water volumetric flowrate (ft^3/s)"

QS 2.878
ft3

s
⋅:= "Water volumetric flowrate to CDF sediment (ft^3/s)"

QX 1.151
ft3

s
:= "Water volumetric flowrate to water column from consolidation (ft^3/s)"

QB 1.727
ft3

s
:= "Water volumetric flowrate to water column from consolidation (ft^3/s)"

QR 6.254
ft3

s
:= "Recycle water volumetric flowrate (gm/s)"

QM 0.415
ft3

s
:= "Makeup water volumetric flowrate (ft^3/s)"

mM 0
gm
s

:= "Makeup water solid mass flowrate (gm/s)"

mD 38.421
kg
s

:= "Total dredge solids flowrate (gm/s)"

DOU Specification

ρ 3 2.41
gm

cm3
:= "Particle density of dredged material (gm/ml)"

ρ b 1.1
gm

cm3
:= "Bulk density of dredged material (gm/ml)"

Qds 250
yd3

hr
:= "Dredge rate (yd^3/hr)"

"DOU water porosity of dredged sediment (dimensionless)"
ε2 0.7:=

"Initial CDF water porosity of dredged sediment (dimensionless)"
εI 0.7:=

"Final CDF water porosity of dredged sediment (dimensionless)"
εF 0.3:=

Astot 35.1acre:= "CDF total surface area (acre)"

As 1acre 2acre, Astot..:= "CDF surface area interval and range for final mass evaporation rate (acre)"

v1 10mph:= "Wind velocity in the x-direction (mph)"

QP 1.312
ft3

s
⋅:= "Dredge site pore water volumetric flowrate (ft^3/s)"
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vx 0.083
cm
hr

:= "Water velocity in the x-direction (m/s)"

vs 0.207
cm
hr

:= "Water velocity in the x-direction (m/s)"

ρ ''a2 0
mg
L

:= "Chemical concentration in air above CDF (mg/L)"

ρ a2P 10.192
ngm

cm3
⋅:= "Chemical concentration in sediment pore water at dredge site (ngm/cm^3)"

ρ 32 8.764 103
×

ngm

cm3
⋅:= "Suspended solids concentration in basin (mg/L)"
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