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SINGULAR EQUATIONS DRIVEN BY AN ADDITIVE NOISE

AND APPLICATIONS

NICOLAS MARIE

Abstract. In the pathwise stochastic calculus framework, the paper deals
with the general study of equations driven by an additive Gaussian noise, with

a drift function having an infinite limit at point zero. An ergodic theorem
and the convergence of the implicit Euler scheme are proved. The Malliavin
calculus is used to study the absolute continuity of the distribution of the

solution. An estimation procedure of the parameters of the random compo-
nent of the model is provided. The properties are transferred on a class of
singular stochastic differential equations driven by a multiplicative noise. A
fractional Heston model is introduced.

1. Introduction

Let B := (Bt)t∈R+ be a centered stochastic process with locally α-Hölder con-
tinuous paths, and consider the stochastic differential equation

Xt = x0 +

∫ t

0

b(Xs)ds+ σBt (1.1)

where α ∈]0, 1[, x0 ∈ I, I ⊂ R is an interval, σ ∈ R∗ := R− {0} and b : I → R is a
[1/α] + 1 times continuously differentiable function.

Assume that I = R and b is everywhere differentiable with bounded derivatives.
Then, Equation (1.1) has a unique (pathwise) solution defined on R+ with locally
α-Hölder continuous paths (see Friz and Victoir [9], sections 10.3 and 10.7).

If in addition B is a fractional Brownian motion (see Nualart [28], Chapter 5),
the probabilistic and statistical properties of the solution of Equation (1.1) have
been deeply studied by several authors (see Hairer [13], Tudor and Viens [31],
Neuenkirch and Tindel [26], etc.).

Throughout the paper, I =]0,∞[ and

lim
x→0+

b(x) = ∞.

The existence and the uniqueness of the solution of Equation (1.1), and the ab-
solute continuity of its distribution for a fractional Brownian signal of Hurst pa-
rameter belonging to ]1/2, 1[ have been already studied in Hu, Nualart and Song
[15].
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The current paper deals with a general study of Equation (1.1) in the pathwise
stochastic calculus framework (see Lyons [19], Lyons and Qian [20], Gubinelli and
Lejay [12], Lejay [18], Friz and Victoir [9], etc.) under the following Assumption.

Assumption 1.1. (1) The function b is [1/α] + 1 times continuously differen-
tiable on ]0,∞[ and has bounded derivatives on [ε,∞[ for every ε > 0.

(2) There exists a constant K > 0 such that :

∀x > 0, ḃ(x) < −K.

(3) There exists a constant R > 0 such that :

∀x > 0, b(x) > −Rx.

(4) For every C > 0, ∫ T

0

b(Ctα)dt = ∞ ; ∀T > 0

or

lim
T→0+

1

Tα

∫ T

0

b(Ctα)dt = ∞.

The second section is devoted to deterministic properties of Equation (1.1) :
the global existence and the uniqueness of the solution, the regularity of the Itô
map, the convergence of the implicit Euler scheme and some estimates.

The third section is devoted to probabilistic and statistical properties of the
solution X(x0) of Equation (1.1), obtained via its deterministic properties proved
at Section 2 and various additional conditions on the signal B. In order to en-
sure the integrability of estimates, B is a Gaussian process in the major part
of Section 3. Subsection 3.1 deals with the ergodicity of X(x0), studied in the
random dynamical systems framework (see Arnold [1]). By assuming that B is
a fractional Brownian motion, the existence of an attracting stationary solution
of Equation (1.1) and an ergodic theorem are proved. Subsection 3.2 deals with
applications of the Malliavin calculus (see Nualart [28]) to the absolute continu-
ity of the distribution of Xt(x0) for every t ∈]0, T ]. Via Nourdin and Viens [27],
a density with a suitable expression is provided. Subsection 3.3 deals with the
integrability and the convergence of the implicit Euler scheme. A rate of conver-
gence is provided. Subsection 3.4 deals with a relationship between X(x0) and an
Ornstein-Uhlenbeck process. By assuming that B is a fractional Brownian motion
of Hurst parameter H ∈]1/2, 1[, an estimation procedure of (H,σ) is provided by
using Melichov [24], Brouste and Iacus [3], and Berzin and León [2]. On the frac-
tional Ornstein-Uhlenbeck process, see Cheridito et al. [5] and Garrido-Atienza et
al. [10].

The fourth section is devoted to the transfer of the properties established at
sections 2 and 3 on a class of singular stochastic differential equations driven by
a multiplicative noise. In particular, it covers and completes Marie [21] on a
generalized Cox-Ingersoll-Ross model. Subsection 4.2 deals with a Heston model
(see Heston [14]) in which the volatility is modeled by a fractional Cox-Ingersoll-
Ross equation in order to take benefits of the long memory and of the regularity
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of the paths of the fractional Brownian motion as in Comte, Coutin and Renault
[6].

Notations. Let J ⊂ R be a compact interval.

• The space C0(J,R) of the continuous functions from J into R is equipped
with the uniform norm ∥.∥∞,J defined by :

∥x∥∞,J := sup
t∈J

|xt|

for every x ∈ C0(J,R). If J = [0, T ] with T > 0, the uniform norm is
denoted by ∥.∥∞,T .

• The space Cα(J,R) of the α-Hölder continuous functions from J into R is
equipped with ∥.∥∞,T , or with the α-Hölder norm ∥.∥α,J defined by :

∥x∥α,J := sup
(s,t)∈J2 : s<t

|xt − xs|
|t− s|α

for every x ∈ Cα(J,R). If J = [0, T ] with T > 0, the α-Hölder norm is
denoted by ∥.∥α,T .

• The space C0(R+,R) (resp. Cα(R+,R)) of the continuous functions from
R+ into R (resp. of the locally α-Hölder continuous functions from R+

into R) is equipped with the compact-open topology (i.e. for every se-
quence (fn)n∈N of C0(R+,R), fn → f when n→ ∞ for the compact-open
topology if and only if, for every compact subset K of R+,

lim
n→∞

∥fn − f∥∞,K = 0).

2. Deterministic Properties of the Solution

The section deals with the global existence and the uniqueness of the solution
of Equation (1.1), the regularity of the Itô map, the convergence of the implicit
Euler scheme and some estimates.

First of all, some examples of drift functions satisfying Assumption 1.1 are
provided.

Example 2.1. Consider u, v, w, γ, λ, µ > 0.

• Put b1(x) := u(vx−γ −wx) for every x > 0. If 1−α < αγ, then b1 satisfies
Assumption 1.1.

• Put b2(x) := u/(evx
γ −1)−wx for every x > 0. If 1 ≤ αγ, then b2 satisfies

Assumption 1.1.
• Put b∗1(x) := λ sin(µx) for every x > 0. If 1− α < αγ (resp. 1 ≤ αγ) and
λµ < uw (resp. λµ < w), then b1 + b∗1 (resp b2 + b∗1) satisfies Assumption
1.1.

• Put b∗2(x) := λ log(µx) for every x > 0. If 1−α < αγ (resp. 1 ≤ αγ), then
b1 + b∗2 (resp b2 + b∗2) satisfies Assumption 1.1.

2.1. Existence and uniqueness of the solution. The subsection deals with
the global existence, the uniqueness and an estimate of the solution of Equation
(1.1).
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Consider the deterministic analog of Equation (1.1) :

xt = x0 +

∫ t

0

b(xs)ds+ σwt (2.1)

with w ∈ Cα(R+,R).
By Assumption 1.1.(1), Equation (2.1) has a unique solution on [0, T0], where

T0 := inf{t > 0 : xt = 0}
with the convention inf(∅) = ∞.

Proposition 2.2. Under Assumption 1.1, Equation (2.1) has a unique ]0,∞[-
valued solution on R+.

Proof. Assume that T0 <∞ and put y := eR.x on [0, T0]. For every t ∈ [0, T0], by
the rough change of variable formula (see Gubinelli and Lejay [12], Lemma 6) :

yt = y0 +

∫ t

0

ReRsxsds+

∫ t

0

eRsdxs

= y0 +

∫ t

0

bR(s, ys)ds+ σwR
t (2.2)

where
bR(t, u) = Ru+ eRtb(e−Rtu)

for every u > 0, and

wR
t :=

∫ t

0

eRsdws.

For t ∈ [0, T0] arbitrarily chosen, by Equation (2.2) :

yt +

∫ T0

t

bR(s, ys)ds = σ(wR
t − wR

T0
).

Then, since wR is α-Hölder continuous on [0, T0] and b
R(s, u) > 0 for every (s, u) ∈

R+×]0,∞[ by Assumption 1.1.(3) :

ys ≤ |σ|∥wR∥α,T0
|s− T0|α ; ∀s ∈ [0, T0] and∫ T0

t

bR(s, ys)ds ≤ |σ|∥wR∥α,T0 |t− T0|α.

Since b is strictly decreasing on ]0,∞[ by Assumption 1.1.(2) :∫ T0

t

bR(s, ys)ds ≥
∫ T0

t

b(e−Rsys)ds

≥
∫ T0−t

0

b(∥wR∥α,T0s
α)ds.

Therefore, ∫ T0−t

0

b(∥wR∥α,T0s
α)ds ≤ |σ|∥wR∥α,T0(T0 − t)α.

However, ∫ T0−t

0

b(∥wR∥α,T0s
α)ds = ∞
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or

lim
t→T−

0

1

(T0 − t)α

∫ T0−t

0

b(∥wR∥α,T0s
α)ds = ∞

by Assumption 1.1.(4). That contradiction finishes the proof. □
Proposition 2.3. Under Assumption 1.1, the solution x of Equation (2.1) satis-
fies :

∥x∥∞,T ≤ x0 + |b(x0)|T + 2σ∥w∥∞,T

for every T > 0.

Proof. Let T > 0 and t ∈ [0, T ] be arbitrarily chosen, and put

Tx0(t) := sup{s ∈ [0, t] : xt ≤ x0}.
If Tx0(t) = t, then 0 < xt ≤ x0. Assume that Tx0(t) < t. Then,

xt = x0 +

∫ t

Tx0
(t)

b(xs)ds+ σ[wt − wTx0 (t)
].

By Assumption 1.1.(2) :∫ t

Tx0 (t)

b(xs)ds ≤ b(x0)[t− Tx0(t)]

≤ |b(x0)|t.
Therefore,

0 < xt ≤ x0 + |b(x0)|T + 2σ∥w∥∞,T .

That finishes the proof. □
Notation. In the sequel, the solution of Equation (2.1) with the initial condition
x0 > 0 and the driving signal w ∈ Cα(R+,R) is denoted by x(x0, w). For every
T > 0, the restriction of the Itô map x(.) to ]0,∞[×Cα([0, T ],R) is also denoted
by x(.). Then,

x(x0, w)|[0,T ] = x(x0, w|[0,T ])

for every x0, T > 0 and w ∈ Cα(R+,R).

2.2. Regularity of the Itô map. The two following propositions deal with the
regularity of the Itô map x(.).

Proposition 2.4. Under Assumption 1.1 :

∥x(x10, w1)− x(x20, w
2)∥∞,T ≤ |x10 − x20|+ 2σ∥w1 − w2∥∞,T

for every T > 0, x10, x
2
0 > 0 and w1, w2 ∈ Cα([0, T ],R).

Proof. Consider x10, x
2
0 > 0 and w1, w2 ∈ Cα([0, T ],R) for T > 0 arbitrarily chosen.

Put x1 := x(x1, w1), x2 := x(x2, w2) and

Tc := inf{t ∈ [0, T ] : x1t = x2t}.
Assume that x10 > x20 without loss of generality. Since x1 and x2 are continuous
on R+, x

1
s > x2s for every s ∈ [0, Tc]. Since b is strictly decreasing on ]0,∞[ by

Assumption 1.1.(2) :
b(x1s)− b(x2s) ≤ 0
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for every s ∈ [0, Tc]. Then, for every t ∈ [0, Tc],

|x1t − x2t | = x1t − x2t

= x10 − x20 +

∫ t

0

[b(x1s)− b(x2s)]ds+ σ(w1
t − w2

t )

≤ |x10 − x20|+ σ∥w1 − w2∥∞,T . (2.3)

For t ∈ [Tc, T ] arbitrarily chosen, put

Tc(t) := sup{s ∈ [Tc, t] : x
1
s = x2s}.

Assume that x1t > x2t without loss of generality. Since x1 and x2 are continuous
on R+, x

1
s > x2s for every s ∈ [Tc(t), t]. Since b is strictly decreasing on ]0,∞[ by

Assumption 1.1.(2) :

b(x1s)− b(x2s) ≤ 0

for every s ∈ [Tc(t), t]. Then,

|x1t − x2t | = x1t − x2t

=

∫ t

Tc(t)

[b(x1s)− b(x2s)]ds+ σ(w1
t − w2

t )− σ[w1
Tc(t)

− w2
Tc(t)

]

≤ 2σ∥w1 − w2∥∞,T . (2.4)

In conclusion, by inequalities (2.3) and (2.4) together :

∥x1 − x2∥∞,T ≤ |x10 − x20|+ 2σ∥w1 − w2∥∞,T .

That finishes the proof. □

Remark 2.5. By Proposition 2.4, for every T > 0, the Itô map x(.) is Lipschitz
continuous from

]0,∞[×Cα([0, T ],R) into C0([0, T ], ]0,∞[),

where Cα([0, T ],R) is equipped with ∥.∥∞,T or ∥.∥α,T .

Proposition 2.6. Under Assumption 1.1, the Itô map x(.) is continuously differ-
entiable from

]0,∞[×Cα([0, T ],R) into C0([0, T ], ]0,∞[)

for every T > 0.

Proof. Consider (x0, w) ∈ E :=]0,∞[×Cα([0, T ],R) for T > 0 arbitrarily chosen,

m0 ∈
]
0, min

t∈[0,T ]
xt(x0, w)

[
and ε0 := −m0 + min

t∈[0,T ]
xt(x0, w).

Since x(.) is continuous from E into C0([0, T ], ]0,∞[) by Proposition 2.4 :

∀ε ∈]0, ε0], ∃η > 0 : ∀(ξ, h) ∈ E,

(ξ, h) ∈ BE((x0, w), η) =⇒ ∥x(ξ, h)− x(x0, w)∥∞,T < ε ≤ ε0.(2.5)

In particular, for every (ξ, h) ∈ BE((x0, w), η), the function x(ξ, h) is [m0,M0]-
valued with [m0,M0] ⊂]0,∞[ and

M0 := −m0 + min
t∈[0,T ]

xt(x0, w) + max
t∈[0,T ]

xt(x0, w).
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Then, since the function b is [1/α]+1 times continuously differentiable on ]0,∞[ and
has bounded derivatives on [m0,M0] by Assumption 1.1.(1) ; x(.) is continuously
differentiable from BE((x0, w), η) into C0([0, T ], ]0,∞[) by Friz and Victoir [9],
theorems 11.3 and 11.6.

That finishes the proof, because (x0, w) has been arbitrarily chosen. □

Remark 2.7. (1) In order to derive the Itô map with respect to the driving
signal at point w in the direction h ∈ Cβ([0, T ],Rd), β ∈]0, 1[ has to satisfy
the condition α+β > 1 to ensure the existence of the geometric 1/α-rough
path over w + εh (ε > 0) provided at Friz and Victoir [9], Theorem 9.34
when d > 1. That condition can be avoided when d = 1, because the
canonical geometric 1/α-rough path over w + εh is

t ∈ [0, T ] 7−→
(
1, wt + εht, . . . ,

(wt + εht)
[1/α]

[1/α]!

)
.

(2) The first order directional derivative of x(.) at point (x0, w) ∈ E in the
direction (ξ, h) ∈ E is denoted by D(ξ,h)x.(x0, w) and

D(ξ,h)xt(x0, w) = ξ +

∫ t

0

ḃ[xs(x0, w)]D(ξ,h)xs(x0, w)ds+ σht

for every t ∈ [0, T ]. Then,

D(ξ,h)x.(x0, w) =

∫ .

0

(ξ + σhs) exp

[∫ .

s

ḃ[xu(x0, w)]du

]
ds.

So, by Assumption 1.1.(2) :

|D(ξ,h)xt(x0, w)| ≤ T (ξ + σ∥h∥∞,T )

for every t ∈ [0, T ].

The end of the subsection is devoted to three consequences of propositions 2.4
and 2.6 on the partial Itô map x(., w) for w ∈ Cα(R+,R) arbitrarily fixed.

Corollary 2.8. Under Assumption 1.1, xt(., w) is (strictly) increasing on ]0,∞[
for every t > 0.

Proof. By Proposition 2.6 :

∂

∂x0
xt(x0, w) = D(1,0)xt(x0, w)

=

∫ t

0

exp

[∫ t

s

ḃ[xu(x0, w)]du

]
ds > 0

for every t > 0. That finishes the proof. □

Corollary 2.9. Under Assumption 1.1, there exists x(0, w) ∈ Cα(R+,R+) such
that xt(0, w) > 0 for every t > 0, and

lim
x0→0

∥x(x0, w)− x(0, w)∥∞,T = 0 ; ∀T > 0.
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Proof. The existence of the limit x(0, w) of x(., w) in C0(R+,R+) when the initial
condition x0 goes down to 0 is proved in a first step. At the second step, it is
shown that xt(0, w) > 0 for every t > 0.

Step 1. Consider a strictly positive real sequence (xn0 )n∈N such that :

lim
n→∞

xn0 = 0.

Let T > 0 be arbitrarily chosen. By Proposition 2.4 :

∥x(xn0 , w)− x(xm0 , w)∥∞,T ≤ |xn0 − xm0 | ; ∀m,n ∈ N.

Then, since C0([0, T ],R) is a Banach space, we see that x(xn0 , w)|[0,T ] converges

in C0([0, T ],R+) when n goes to infinity. Since the strictly positive real sequence
(xn0 )n∈N has been arbitrarily chosen, there exists a function x(0, w|[0,T ]) belonging

to C0([0, T ],R+) such that :

lim
x0→0

∥x(x0, w)− x(0, w|[0,T ])∥∞,T = 0.

Consider the function x(0, w) : R+ → R+ such that :

x(0, w)|[0,T ] := x(0, w|[0,T ])

for every T > 0. By construction, x(0, w) is the limit of x(., w) in C0(R+,R+)
when the initial condition x0 goes down to 0.

Step 2. For t > s ≥ 0 and x0 > 0 arbitrarily chosen :

xt(x0, w)− xs(x0, w)− σ(wt − ws) =

∫ t

s

b[xu(x0, w)]du

≥ (t− s)b

[
sup

u∈[s,t]

xu(x0, w)

]
by Assumption 1.1.(2). Assume that xu(0, w) = 0 for every u ∈ [s, t]. Then,

lim
x0→0

xt(x0, w)− xs(x0, w)− σ(wt − ws) ≥ lim
x0→0

(t− s)b

[
sup

u∈[s,t]

xu(x0, w)

]
= ∞

by Assumption 1.1.(4). However, by the first step of the proof :

lim
x0→0

xt(x0, w)− xs(x0, w)− σ(wt − ws) = xt(0, w)− xs(0, w)− σ(wt − ws)

< ∞.

Therefore, for every s > t ≥ 0, there exists u ∈ [s, t] such that xu(0, w) > 0.
In particular, there exists a strictly positive real sequence (tn)n∈N such that

tn ↓ 0 when n→ ∞, and

xtn(0, w) > 0 ; ∀n ∈ N.

Let n ∈ N be arbitrarily chosen. Since x(0, w) is continuous on R+ by construction,
xt(0, w) > 0 for every t ∈ [tn, τ0(tn)[, where

τ0(tn) := inf{t > tn : xt(0, w) = 0}.
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For every t ∈ [0, τ0(tn)− tn[, consider

τmin(n, t) := argmins∈[tn,tn+t]xs(0, w).

Let t ∈ [0, τ0(tn)− tn[ be arbitrarily chosen. By Assumption 1.1.(2) and Corollary
2.8 :

b[xs(x0, w)] ≤ b[xs(0, w)] ≤ b[xτmin(n,t)(0, w)] <∞
for every s ∈ [tn, tn + t] and x0 > 0. Then, by Lebesgue’s theorem :

xtn+t(0, w) = xtn(0, w) + lim
x0→0

∫ tn+t

tn

b[xs(x0, w)]ds+ σ(wtn+t − wtn)

= xtn(0, w) +

∫ t

0

b[xtn+s(0, w)]ds+ σwtn
t

with wtn := wtn+. − wtn on R+. Therefore, xtn+.(0, w) = x[xtn(0, w), w
tn ] on

[0, τ0(tn)− tn[. Since xtn(0, w) > 0 and wtn belongs to Cα(R+,R), by Proposition
2.2 :

τ0(tn) = inf{t > 0 : xtn+t(0, w) = 0}
= inf{t > 0 : xt[xtn(0, w), w

tn ] = 0}
= ∞.

So, x(0, w) is a ]0,∞[-valued function on [tn,∞[ for every n ∈ N. Since tn ↓ 0
when n→ ∞, x(0, w) is a ]0,∞[-valued function on ]0,∞[. □
Corollary 2.10. Under Assumption 1.1 :

|xt(x10, w)− xt(x
2
0, w)| ≤ |x10 − x20|e−Kt

for every x10, x
2
0, t ∈ R+.

Proof. Put x1 := x(x10, w) and x2 := x(x20, w) for x10, x
2
0 > 0 such that x10 ̸= x20.

By Proposition 2.8, x1t ̸= x2t for every t ∈ R+.
The function x1 − x2 satisfies :

x1t − x2t = x10 − x20 +

∫ t

0

[b(x1s)− b(x2s)]ds ; ∀t ∈ R+. (2.6)

Let t ∈ R+ be arbitrarily chosen. By Equation (2.6) :

(x1t − x2t )
2 = (x10 − x20)

2 + 2

∫ t

0

(x1s − x2s)d(x
1 − x2)s

= (x10 − x20)
2 + 2

∫ t

0

(x1s − x2s)[b(x
1
s)− b(x2s)]ds.

Then,
∂

∂t
(x1t − x2t )

2 = 2(x1t − x2t )
2 b(x

1
t )− b(x2t )

x1t − x2t
. (2.7)

By Assumption 1.1.(2) :

∀u > 0, ḃ(u) < −K.
Then, by the mean-value theorem, there exists ct ∈]x1t ∧ x2t , x1t ∨ x2t [ such that :

b(x1t )− b(x2t )

x1t − x2t
= ḃ(ct) < −K.
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Therefore, by Equation (2.7) :

∂

∂t
(x1t − x2t )

2 ≤ −2K(x1t − x2t )
2.

In conclusion,

|x1t − x2t | ≤ |x10 − x20|e−Kt. (2.8)

If x10 = 0, x20 = 0 or x10 = x20, Inequality (2.8) holds true. □

2.3. Existence, uniqueness, and convergence of the implicit Euler
scheme. Let T > 0 and n ∈ N∗ be arbitrarily fixed, and consider a dissection
(tn0 , t

n
1 . . . , t

n
n) of [0, T ].

The subsection deals with the global existence, the uniqueness, an estimate and
the convergence of the implicit Euler scheme associated to Equation (2.1) and to
the dissection (tn0 , t

n
1 , . . . , t

n
n) :

xnk+1 = xnk + b(xnk+1)(t
n
k+1 − tnk ) + σ(wtnk+1

− wtnk
) (2.9)

with xn0 := x0 > 0.

Proposition 2.11. Under Assumption 1.1, Equation (2.9) has a unique ]0,∞[-
valued solution on {0, . . . , n}.

Proof. Let λ > 0 and µ ∈ R be arbitrarily chosen, and put φ(x) := µ+ λb(x)− x
for every x > 0.

By Assumption 1.1.(1)-(2), the function φ is continuously differentiable on
]0,∞[, and

φ̇(x) = λḃ(x)− 1 < 0

for every x > 0. So, φ is strictly decreasing on ]0,∞[. By Assumption 1.1.(4) :

lim
x→0+

φ(x) = µ+ λ lim
x→0+

b(x) = ∞.

Let x > x∗ > 0 be arbitrarily chosen. By Assumption 1.1.(2) :

b(x) < −K(x− x∗) + b(x∗).

Then,

φ(x) < −(λK + 1)x+ µ+ λ[Kx∗ + b(x∗)].

So,

lim
x→∞

b(x) = −∞.

Therefore, the equation φ(x) = 0 has a unique solution belonging to ]0,∞[.
In conclusion, by recurrence, Equation (2.9) has a unique ]0,∞[-valued solution

on {0, . . . , n}. □

Proposition 2.12. Under Assumption 1.1, the solution xn of Equation (2.9)
satisfies :

max
k∈{0,...,n}

xnk ≤ x0 + |b(x0)|T + 2σ∥w∥∞,T .
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Proof. Let k ∈ {1, . . . , n} be arbitrarily chosen, and put

n(x0, k) := max{i ∈ {0, . . . , k} : xni ≤ x0}.

If n(x0, k) = k, then 0 < xnk ≤ x0. Assume that n(x0, k) < k. Then,

xnk − xnn(x0,k)
=

k−1∑
i=n(x0,k)

xni+1 − xni

= σ[wtnk
− wtn

n(x0,k)
] +

k−1∑
i=n(x0,k)

b(xni+1)(t
n
i+1 − tni ).

By Assumption 1.1.(2) :

k−1∑
i=n(x0,k)

b(xni+1)(t
n
i+1 − tni ) ≤ b(x0)[t

n
k − tnn(x0,k)

]

≤ |b(x0)|T.

Therefore,

0 < xnk ≤ x0 + |b(x0)|T + 2σ∥w∥∞,T .

That finishes the proof. □

Notations. Throughout the subsection, the solution of Equation (2.1) is denoted
by x instead of x(x0, w) for the sake of readability. The solution of Equation (2.9)
is denoted by xn. For every t ∈]0, T ], put

xnt :=

n−1∑
k=0

[
xnk +

xnk+1 − xnk
tnk+1 − tnk

(t− tnk )

]
1]tnk ,t

n
k+1]

(t).

The function t ∈ [0, T ] 7→ xnt is also denoted by xn and called the step-n implicit
Euler scheme associated to Equation (2.1) and to the dissection (tn0 , t

n
1 , . . . , t

n
n).

In the sequel, tnk := kT/n for every n ∈ N∗ and k ∈ {0, . . . , n}.

Theorem 2.13. Under Assumption 1.1 :

∥xn − x∥∞,T ≤ [(∥ḃ∥2∞,[x∗,x∗] + ∥ḃ∥∞,[x∗,x∗] + 1)∥x∥α,T
+∥b∥∞,[x∗,x∗] + ∥w∥α,T ](Tα ∨ Tα+2)n−α

with

x∗ := inf
t∈[0,T ]

xt and x
∗ := sup

t∈[0,T ]

xt.

Proof. Consider the vector (ξn0 , . . . , ξ
n
n) defined by ξnk := xtnk for k ∈ {0, . . . , n}.

By Equation (2.1) :

ξnk+1 = ξnk + b(ξnk+1)(t
n
k+1 − tnk ) + σ(wtnk+1

− wtnk
) + εnk

with

εnk := −
∫ tnk+1

tnk

[b(ξnk+1)− b(xt)]dt

for every k ∈ {0, . . . , n− 1}.
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Let k ∈ {1, . . . , n} and i ∈ {0, . . . , k − 1} be arbitrarily chosen. If xni+1 > ξni+1,
since b is strictly decreasing on ]0,∞[ by Assumption 1.1.(2) :

b(xni+1)− b(ξni+1) ≤ 0.

Then,

|xni+1 − ξni+1| = xni+1 − ξni+1

= xni − ξni + [b(xni+1)− b(ξni+1)](t
n
i+1 − tni )− εni

≤ |xni − ξni |+ |εni |. (2.10)

If xni+1 ≤ ξni+1, since b is strictly decreasing on ]0,∞[ by Assumption 1.1.(2) :

b(ξni+1)− b(xni+1) ≤ 0.

Then,

|xni+1 − ξni+1| = ξni+1 − xni+1

= ξni − xni + [b(ξni+1)− b(xni+1)](t
n
i+1 − tni ) + εni

≤ |xni − ξni |+ |εni |. (2.11)

So, by inequalities (2.10) and (2.11) together :

|xni+1 − ξni+1| ≤ |xni − ξni |+ |εni |.

By recurrence :

|xnk − ξnk | ≤
k−1∑
i=0

|εni |. (2.12)

By Assumption 1.1.(1), b is Lipschitz continuous on [x∗, x
∗]. Then,

|εni | ≤ ∥ḃ∥∞,[x∗,x∗]∥x∥α,T
∫ tni+1

tni

(tni+1 − t)αdt

≤ ∥ḃ∥∞,[x∗,x∗]∥x∥α,T
Tα+1

nα+1
.

So, by Equation (2.12) :

|xnk − ξnk | ≤ ∥ḃ∥∞,[x∗,x∗]∥x∥α,T
Tα+1

nα
. (2.13)

Let t ∈]0, T ] be arbitrarily chosen. There exists k ∈ {0, . . . , n − 1} such that
t ∈]tnk , tnk+1]. By Inequality (2.13) :

|xnk+1 − xnk | ≤ [|[b(xnk+1)− b(ξnk+1)|+ |b(ξnk+1)|](tnk+1 − tnk )

+∥w∥α,T (tnk+1 − tnk )
α

≤ [[∥ḃ∥∞,[x∗,x∗]|xnk+1 − ξnk+1|+ ∥b∥∞,[x∗,x∗]]T + ∥w∥α,TTα]n−α

≤ [∥ḃ∥2∞,[x∗,x∗]∥x∥α,T + ∥b∥∞,[x∗,x∗] + ∥w∥α,T ]

×(Tα ∨ Tα+2)n−α. (2.14)
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By inequalities (2.13) and (2.14) together :

|xnt − xt| ≤ |xnt − xnk |+ |xnk − ξnk |+ |ξnk − xt|
≤ |xnk+1 − xnk |+ (∥ḃ∥∞,[x∗,x∗] + 1)∥x∥α,T (Tα ∨ Tα+1)n−α

≤ [(∥ḃ∥2∞,[x∗,x∗] + ∥ḃ∥∞,[x∗,x∗] + 1)∥x∥α,T + ∥b∥∞,[x∗,x∗] + ∥w∥α,T ]

×(Tα ∨ Tα+2)n−α.

That finishes the proof. □

3. Probabilistic and Statistical Properties of the Solution

Let (Ω,A,P) be the canonical probability space associated to the stochastic
process B.

The solution of Equation (1.1) is the stochastic process X(x0) := (Xt(x0))t∈R+

such that :

Xt(x0, ω) := xt[x0, B(ω)]

for every ω ∈ Ω and t ∈ R+.

Notations :

• The expectation operator associated to the probability measure P is de-
noted by E.

• For every p > 0, the space of random variables U : Ω → R such that
E(|U |p) <∞ is denoted by Lp(Ω,P) and equipped with its usual norm ∥.∥p.

Under Assumption 1.1, if B is a centered Gaussian process with locally α-
Hölder continuous paths, by Proposition 2.3 together with Fernique’s theorem
(see Fernique [8]) :

∥X(x0)∥∞,T ∈ Lp(Ω,P)
for every p, T > 0.

The section deals with probabilistic and statistical properties ofX(x0), obtained
via its deterministic properties proved previously and various additional conditions
on the signal B.

3.1. Ergodicity of the solution. Assume that B is a two-sided fractional Brow-
nian motion of Hurst parameter H ∈]0, 1[ (α ∈]0,H[).

Let θ := (θt)t∈R be the dynamical system on (Ω,A), called Wiener shift, such
that :

θtω := ωt+. − ωt

for every ω ∈ Ω and t ∈ R. By Maslowski and Schmalfuss [23], (Ω,A,P, θ) is an
metric dynamical system (i.e.

• (t, ω) ∈ R× Ω 7−→ θtω is B(R)⊗A,A-measurable.
• For every t ∈ R, θtP = P where

(θtP)(A) := P({ω ∈ Ω : θtω ∈ A}) ; ∀A ∈ A),

which is ergodic.
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Lemma 3.1. There exists a θ-invariant set Ω∗ ∈ A satisfying P(Ω∗) = 1, such
that for every ω ∈ Ω∗,

∃C(ω) > 0 : ∀t ∈ R, |Bt(ω)| ≤ C(ω)(1 + |t|2).

For a proof, see Gess et al. [11], Lemma 3.3 generalizing Maslowski and Schmal-
fuss [23], Lemma 2.6.

Remark 3.2. (1) In the sequel, Ω∗ is equipped with the trace σ-algebra

A∗ := {A ∩ Ω∗ ; A ∈ A}.

(2) (Ω∗,A∗,P, θ) is also an ergodic metric dynamical system.
The map

X(.) : (ω, x0, t) ∈ Ω× R2
+ 7−→ Xt(x0, ω)

is a continuous random dynamical system on (R+,B(R+)) over the metric dynam-
ical systems (Ω,A,P, θ) and (Ω∗,A∗,P, θ).

The reader can refer to Arnold [1] on random dynamical systems.

Notation. Let (Wt)t∈R+ be a stochastic process on (Ω,A,P). For every ω ∈ Ω
and t, T ∈ R+,

Wt,T (ω) :=Wt(θ−Tω).

Proposition 3.3. Under Assumption 1.1, for every ω ∈ Ω∗, there exists a con-
stant C(ω) > 0 such that for every t, T, x0 ∈ R+ and ε ≥ x0,

|Xt,T (x0, ω)− ε| ≤ ε+ |b(ε)|t+ C(ω)(1 + t+ T )2.

Proof. Let ω ∈ Ω∗, t, T ∈ R+ and ε ≥ x0 > 0 be arbitrarily chosen, and put

τ−t (ε, θ−Tω) := sup{s ∈ [0, t] : Xs(x0, θ−Tω) ≤ ε}.

If τ−t (ε, θ−Tω) = t, then

|Xt,T (x0, ω)− ε| ≤ ε.

Assume that τ−t (ε, θ−Tω) < t. Then,

Xt,T (x0, ω) = Xτ−
t (ε,θ−Tω),T (x0, ω) +

∫ t

τ−
t (ε,θ−Tω)

b[Xs,T (x0, ω)]ds

+σ[Bt,T (ω)−Bτ−
t (ε,θ−Tω),T (ω)]

= ε+

∫ t

τ−
t (ε,θ−Tω)

b[Xs,T (x0, ω)]ds

+σ[Bt−T (ω)−Bτ−
t (ε,θ−Tω)−T (ω)]. (3.1)

On one hand, by Assumption 1.1.(2) :∫ t

τ−
t (ε,θ−Tω)

b[Xs,T (x0, ω)]ds ≤ b(ε)[t− τ−t (ε, θ−Tω)]

≤ |b(ε)|t. (3.2)
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On the other hand, by Lemma 3.1, there exists a constant C0(ω) > 0, not depend-
ing on t, T , x0 and ε, such that :

|Bt−T (ω)−Bτ−
t (ε,θ−Tω)−T (ω)| ≤ C0(ω)[2 + |t− T |2 + |τ−t (ε, θ−Tω)− T |2]

≤ 4C0(ω)(1 + t+ T )2. (3.3)

Therefore, by Equality (3.1) together with inequalities (3.2) and (3.3) :

0 ≤ Xt,T (x0, ω)− ε ≤ |b(ε)|t+ 4σC0(ω)(1 + t+ T )2.

In conclusion, by putting C(ω) := 4σC0(ω), for every t, T ∈ R+,

|Xt,T (x0, ω)− ε| ≤ ε+ |b(ε)|t+ C(ω)(1 + t+ T )2. (3.4)

If x0 = 0, Inequality (3.4) holds true. □
Theorem 3.4. Under Assumption 1.1, there exists a random variable X∗ : Ω →
R+ belonging to Lp(Ω,P) for every p > 0, such that for every x0 ∈ R+,

|XT (x0)−X∗ ◦ θT | −−−−→
T→∞

0

almost surely and in Lp(Ω,P) for every p > 0.

Proof. Let ω ∈ Ω∗, t, x0 ∈ R+, n ∈ N and p > 0 be arbitrarily chosen.

Almost sure convergence. By the cocycle property of the random dynamical
system X(.), Corollary 2.10 and Proposition 3.3 ; there exists a constant C(ω) > 0,
not depending on t, n and x0, such that for every ε ≥ x0,

|Xn(x0, θ−nω)−Xn+1(x0, θ−(n+1)ω)| = |Xn(x0, θ−nω)

−Xn[X1(x0, θ−(n+1)ω), θ−nω]|
≤ e−Kn|x0 −X1(x0, θ−(n+1)ω)|
≤ e−Kn[|x0 − ε|

+ |X1(x0, θ−(n+1)ω)− ε|] (3.5)

≤ e−Kn[|x0 − ε|+ ε+ |b(ε)|+ C(ω)(3 + n)2].

Since nk =n→∞ o(eKn) for every k ∈ N, (Xn(x0, θ−nω))n∈N is a Cauchy sequence,
and its limit X0(ω) is not depending on x0 because for every other initial condition
x1 > 0,

|Xn(x0, θ−nω)−Xn(x1, θ−nω)| ≤ e−Kn|x0 − x1| −−−−→
n→∞

0.

For every ε ≥ x0,

|Xt(x0, θ−tω)−X0(ω)| ≤ |Xt(x0, θ−tω)−X[t](x0, θ−[t]ω)| (3.6)

+ |X[t](x0, θ−[t]ω)−X0(ω)|
= |X[t][Xt−[t](x0, θ−tω), θ−[t]ω]−X[t](x0, θ−[t]ω)|

+ |X[t](x0, θ−[t]ω)−X0(ω)|

≤ e−K[t][|x0 − ε|+ |Xt−[t](x0, θ−tω)− ε|] (3.7)

+ |X[t](x0, θ−[t]ω)−X0(ω)|

≤ e−K[t][|x0 − ε|+ ε+ |b(ε)|+ C(ω)(2 + [t])2]

+ |X[t](x0, θ−[t]ω)−X0(ω)|.
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Therefore,

lim
t→∞

|Xt(x0, θ−tω)−X0(ω)| = 0 (3.8)

because [t]k =t→∞ o(eK[t]) for every k ∈ N. By the cocycle property of the random
dynamical system X(.) :

Xt[Xn(x0, θ−nω), ω] = Xt+n(x0, θ−nω) (3.9)

= Xt+n[x0, θ−(t+n)(θtω)].

By continuity of X(., ω) from R+ into C0(R+), Corollary 2.9 and (3.8) ; when n
goes to infinity in Equality (3.9) :

Xt[X
0(ω), ω] = X0(θtω).

Since (Ω∗,A∗,P, θ) is an ergodic metric dynamical system andX0 is a (generalized)
random fixed point of the continuous random dynamical systemX(.), (X0◦θt)t∈R+

is a stationary solution of Equation (1.1). Therefore, for every ω ∈ Ω∗,

lim
t→∞

|Xt(x0, ω)−X0(θtω)| = 0

because all solutions of Equation (1.1) converge pathwise forward to each other in
time by Corollary 2.10.

Convergence in Lp(Ω,P). Since B and (Bs−t − B−t)s∈R have the same distri-
bution P, for every U ∈ Lp(Ω,P) and s ∈ R+,

∥Xs(x0) ◦ θ−t − U∥p = ∥Xs(x0)− U ◦ θt∥p. (3.10)

By Inequality (3.5) and Equality (3.10), for every ε ≥ x0,

∥Xn(x0) ◦ θ−n −Xn+1(x0) ◦ θ−(n+1)∥p ≤ e−Kn[|x0 − ε|+ ∥X1(x0, ω)− ε∥p].

Then, since the set Lp(Ω,P) equipped with ∥.∥p is a Banach space, there exists
X∗ ∈ Lp(Ω,P) such that :

lim
n→∞

∥Xn(x0) ◦ θ−n −X∗∥p = 0

and X∗(ω) = X0(ω) for every ω ∈ Ω∗. By Inequality (3.7) and Equality (3.10),
for every ε ≥ x0,

∥Xt(x0) ◦ θ−t −X∗∥p ≤ e−K[t]

[
|x0 − ε|+ sup

s∈[0,1]

∥Xs(x0)− ε∥p

]
+ ∥X[t](x0) ◦ θ−[t] −X∗∥p.

Then,

lim
t→∞

∥Xt(x0) ◦ θ−t −X∗∥p = 0.

Therefore, by Equality (3.10) :

lim
t→∞

∥Xt(x0)−X∗ ◦ θt∥p = lim
t→∞

∥Xt(x0) ◦ θ−t −X∗∥p
= 0.

□
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Corollary 3.5. Under Assumption 1.1, for every uniformly continuous function
φ : R+ → R with polynomial growth, and every x0 ∈ R+,

1

T

∫ T

0

φ[Xt(x0)]dt −−−−→
T→∞

E[φ(X∗)]

almost surely and in Lp(Ω,P) for every p > 0.

Proof. Let ω ∈ Ω∗, x0 ∈ R+ and p > 0 be arbitrarily chosen. Consider also

IT (φ, x0) :=
1

T

∫ T

0

φ[Xt(x0)]dt ; ∀T > 0

where φ : R+ → R is a uniformly continuous function such that :

∀x ∈ R+, |φ(x)| ≤ c(1 + xn) (3.11)

with c > 0 and n ∈ N∗.

Almost sure convergence. On one hand, since φ has a polynomial growth and
X∗ belongs to Lp(Ω,P) for every p > 0 by Theorem 3.4, φ(X∗) too. Moreover,
(Ω∗,A∗,P, θ) is an ergodic metric dynamical system, then by Birkhoff’s theorem :

lim
T→∞

1

T

∫ T

0

φ[X∗(θtω)]dt = E[φ(X∗)]. (3.12)

On the other hand, by Theorem 3.4 together with the uniform continuity of φ, for
every ε > 0, there exists T0 > 0 such that :

∀t > T0, |φ[Xt(x0, ω)]− φ[X∗(θtω)]| ≤
ε

2
.

Then, for every T > T0,

1

T

∫ T

T0

|φ[Xt(x0, ω)]− φ[X∗(θtω)]|dt ≤
ε

2
.

Moreover, there exists T1 > T0 such that for every T > T1,

1

T

∫ T0

0

|φ[Xt(x0, ω)]− φ[X∗(θtω)]|dt ≤
ε

2
.

So,

1

T

∣∣∣∣∣
∫ T

0

[φ[Xt(x0, ω)]− φ[X∗(θtω)]]dt

∣∣∣∣∣ ≤ ε.

Therefore, by definition :

lim
T→∞

1

T

∫ T

0

[φ[Xt(x0, ω)]− φ[X∗(θtω)]]dt = 0. (3.13)

By (3.12) and (3.13) together :

lim
T→∞

IT (φ, x0, ω) = E[φ(X∗)].

Convergence in Lp(Ω,P). For every t ∈ R+ and q > 0,

∥Xt(x0)∥q ≤ ∥Xt(x0)−X∗ ◦ θt∥q + ∥X∗ ◦ θt∥q
= ∥Xt(x0)−X∗ ◦ θt∥q + ∥X∗∥q.
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Then, since ∥Xt(x0)−X∗ ◦ θt∥q → 0 when t goes to infinity by Theorem 3.4 :

sup
t∈R+

∥Xt(x0)∥q <∞ ; ∀q > 0.

Therefore, by (3.11) :

sup
T>0

∥IT (φ, x0)∥p ≤ sup
t∈R+

∥φ[Xt(x0)]∥p

≤ c

[
1 + sup

t∈R+

E1/p[Xnp
t (x0)]

]
<∞.

In conclusion, by Vitali’s theorem :

lim
T→∞

∥IT (φ, x0)− E[φ(X∗)]∥p = 0.

□

Proposition 3.6. Under Assumption 1.1, the equation b(x) = 0 has a unique
solution xb > 0 such that for every t∗ ∈ R+,

τt∗(xb) := inf{t > t∗ : Xt(x0) = xb} <∞
almost surely.

Proof. By Assumption 1.1.(1)-(2), the equation b(x) = 0 has a unique solution
xb > 0 such that b(x) > 0 (resp. b(x) < 0) for every x ∈]0, xb[ (resp. x > xb). Let
t∗ ∈ R+ be arbitrarily chosen, and consider ω ∈ {τt∗(xb) = ∞}.

Without loss of generality, assume that σ > 0.
On one hand, assume that Xt∗(x0, ω) ≥ xb. Since X(x0, ω) is continuous,

xb < Xt(x0, ω)

= Xt∗(x0, ω) +

∫ t

t∗

b[Xs(x0, ω)]ds+ σ[Bt(ω)−Bt∗(ω)]

≤ Xt∗(x0, ω) + σ[Bt(ω)−Bt∗(ω)].

However, by Molchan [25] :

inf{t > 0 : Bt(ω) = λ} <∞
for every λ < Bt∗(ω) + 1/σ[xb −Xt∗(x0, ω)]. There is a contradiction.

On the other hand, assume that Xt∗(x0, ω) < xb. Since X(x0, ω) is continuous,
Xs(x0, ω) < xb for every s > t∗. So, for every t > t∗,

xb > Xt(x0, ω)

= Xt∗(x0, ω) +

∫ t

t∗

b[Xs(x0, ω)]ds+ σ[Bt(ω)−Bt∗(ω)]

≥ Xt∗(x0, ω) + σ[Bt(ω)−Bt∗(ω)].

However, by Molchan [25] :

inf{t > 0 : Bt(ω) = λ} <∞
for every λ > Bt∗(ω) + 1/σ[xb −Xt∗(x0, ω)]. There is a contradiction.

Therefore, P[τt∗(xb) = ∞] = 0. That finishes the proof. □
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Remark 3.7. By Proposition 3.6, at any time t∗ ∈ R+, the stochastic processX(x0)
will hit again xb on ]t∗,∞[. In particular, for almost every ω ∈ Ω, if X(x0, ω) has
a limit when t goes to infinity, it cannot be different from xb.

3.2. Absolute continuity of the distribution of the solution. Let T > 0
be arbitrarily fixed, and assume that B is a centered Gaussian process defined on
[0, T ], with α-Hölder continuous paths.

The subsection deals with applications of the Malliavin calculus to the absolute
continuity of the distribution of Xt(x0) for every t ∈]0, T ]. The reader can refer
to Nualart [28] on Malliavin calculus.

Let H be the reproducing kernel Hilbert space of B, and consider an orthonor-
mal basis (hn)n∈N of H. The Wiener integral with respect to B, defined on H,
is denoted by B. The Malliavin derivative associated to (Ω,A,P), H and B is
denoted by D.

Let H1 be the Cameron-Martin space of B. The map I : H → H1 defined by

I.(h) := E[B(h)B.] ; ∀h ∈ H,

is an isometry between H and H1 (see Marie [22], Lemma 3.4).

Notations :

• The domain of the Malliavin derivative is denoted by D1,2.
• Consider a random variable U : Ω → R and a normed vector space E
continuously embedded in Ω (E ↪→ Ω). For every ω ∈ Ω and e ∈ E,
Uω(e) := U(ω + e).

Until the end of the subsection, B satisfies the following assumption.

Assumption 3.8. B is a centered Gaussian process defined on [0, T ], with α-Hölder
continuous paths, such that :

(1) The covariance function R of B satisfies R(t, t) > 0 for every t ∈]0, T ].
(2) ⟨φ1, ψ1⟩H ≥ ⟨φ2, ψ2⟩H for every φ1, φ2, ψ1, ψ2 ∈ H such that

φ1(t) ≥ φ2(t) ≥ 0 and ψ1(t) ≥ ψ2(t) ≥ 0 ; ∀t ∈ [0, T ].

(3) The Cameron-Martin space ofB is continuously embedded in Cα([0, T ],R).

Example 3.9. A fractional Brownian motion of Hurst parameter H ∈]0, 1[ sat-
isfies Assumption 3.8 for every α ∈]0,H[ (See Friz and Victoir [9], Section 15.2.2,
and Nualart [28], Section 5.1.3).

Proposition 3.10. Under assumptions 1.1 and 3.8, Xt(x0) ∈ D1,2 and

DsXt(x0) = σ1[0,t](s) exp

[∫ t

s

ḃ[Xu(x0)]du

]
for every s, t ∈ [0, T ]. Moreover, the distribution of Xt(x0) has a density with
respect to the Lebesgue measure on (R,B(R)) for every t ∈]0, T ].

Proof. Let ω ∈ Ω and s, t ∈ [0, T ] be arbitrarily chosen. Since H1 ↪→ Cα([0, T ],R)
by Assumption 3.8.(3), by Proposition 2.6 :

h ∈ H1 7−→ Xω
t (x0, h)
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is continuously differentiable, namely, Xt(x0) is continuously H1-differentiable.
Then, by Nualart [28], Proposition 4.1.3, Xt(x0) is locally differentiable in the
sense of Malliavin, and

⟨DXt(x0)(ω), h⟩H = DI(h)X
ω
t (x0, 0)

for every h ∈ H. By Proposition 2.6 :

DsXt(x0)(ω) =
∞∑

n=0

hn(s)⟨DXt(x0)(ω), hn⟩H

=
∞∑

n=0

hn(s)DI(hn)X
ω
t (x0, 0)

=
∞∑

n=0

hn(s)

[∫ t

0

ḃ[Xu(x0, ω)]DI(hn)X
ω
u (x0, 0)du+ σIt(hn)

]

=

∫ t

0

ḃ[Xu(x0, ω)]

∞∑
n=0

hn(s)DI(hn)X
ω
u (x0, 0)du

+σ
∞∑

n=0

hn(s)DI(hn)B
ω
t (0)

=

∫ t

0

ḃ[Xu(x0, ω)]DsXu(x0)(ω)du+ σDsBt(ω).

Since DBt = 1[0,t], DsX.(x0)(ω) satisfies

DsXt(x0)(ω) = ξ +

∫ t

0

ḃ[Xu(x0, ω)]DsXu(x0)(ω)du

with ξ = 0 (resp. ξ = σ) for t ∈ [0, s[ (resp. t ∈ [s, T ]). Then,

DsXt(x0) = σ1[0,t](s) exp

[∫ t

s

ḃ[Xu(x0)]du

]
.

So, by Assumption 1.1.(2) :

σ1[0,t](s) exp

[∫ T

0

ḃ[Xu(x0)]du

]
≤ DsXt(x0) ≤ σ1[0,t](s). (3.14)

Put Γt := ∥DXt(x0)∥2H. By Assumption 3.8.(1)-(2) and Inequality (3.14) :

0 < σ2R(t, t) exp

[
2

∫ T

0

ḃ[Xu(x0)]du

]
≤ Γt ≤ σ2R(t, t). (3.15)

On one hand, by Inequality (3.15), Γt ∈ Lp(Ω,P) for every p > 0. So, Xt(x0) ∈
D1,2 by Nualart [28], Lemma 4.1.2. On the other hand, by Inequality (3.15),
Γt > 0. So, the distribution of Xt(x0) has a density with respect to the Lebesgue
measure on (R,B(R)) by Bouleau-Hirsch’s criterion (see Nualart [28], Theorem
2.1.3). □

Notation. The Ornstein-Uhlenbeck semigroup (resp. operator) is denoted by
T := (Tt)t∈R+ (resp. L). See Nualart [28], Section 1.4.
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Remark 3.11. (1) Let t ∈ R+ be arbitrarily chosen. By Nualart [28], Property
(i) page 55 :

∀U ∈ L2(Ω,P), U ≥ 0 =⇒ Tt(U) ≥ 0. (3.16)

Since Tt is a linear map, (3.16) implies that :

∀U1, U2 ∈ L2(Ω,P), U1 ≥ U2 =⇒ Tt(U1) ≥ Tt(U2).

(2) Let t ∈]0, T ] be arbitrarily chosen. Bouleau-Hirsch’s criterion is sufficient
to prove the absolute continuity of the distribution of Xt(x0) with respect
to the Lebesgue measure on (R,B(R)), but not to provide an explicit
density. Via the main result of Nourdin and Viens [27], the following
proposition provides a density with a suitable expression.

Proposition 3.12. Under assumptions 1.1 and 3.8, for every t ∈]0, T ],

PXt(x0)(dx) =
E[|X∗

t (x0)|]
2gXt(x0)(x)

exp

[
−
∫ x

E[Xt(x0)]

y − E[Xt(x0)]

gXt(x0)(y)
dy

]
dx

where X∗
t (x0) := Xt(x0)− E[Xt(x0)] and

gXt(x0)(x) := E[⟨DXt(x0),−DL−1Xt(x0)⟩H|Xt(x0) = x]

for every x > 0.

Proof. Let t ∈]0, T ] and s ∈ [0, T ] be arbitrarily chosen. By Nourdin and Viens
[27], Proposition 3.7, Inequality (3.14) and (3.16) :

−DsL
−1Xt(x0) =

∫ ∞

0

e−uTu[DsXt(x0)]du

≥ σ1[0,t](s)

∫ ∞

0

e−uTu

[
exp

[∫ T

0

ḃ[Xv(x0)]dv

]]
du.

Then, by Assumption 3.8.(1)-(2) together with Inequality (3.14) :

⟨DXt(x0),−DL−1Xt(x0)⟩H ≥ σ2R(t, t) exp

[∫ T

0

ḃ[Xv(x0)]dv

]
×

∫ ∞

0

e−uTu

[
exp

[∫ T

0

ḃ[Xv(x0)]dv

]]
du > 0.

So,

gX∗
t (x0)[X

∗
t (x0)] := E[⟨DX∗

t (x0),−DL−1X∗
t (x0)⟩H|X∗

t (x0)]

= E[⟨DXt(x0),−DL−1Xt(x0)⟩H|X∗
t (x0)] > 0.

Therefore, by Nourdin and Viens [27], Theorem 3.1 :

PX∗
t (x0)(dx) =

E[|X∗
t (x0)|]

2gX∗
t (x0)(x)

exp

[
−
∫ x

0

y

gX∗
t (x0)(y)

dy

]
dx.

Together with a straightforward application of the transfer theorem, that finishes
the proof. □
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3.3. Integrability and convergence of the implicit Euler scheme. Let T >
0 be arbitrarily fixed, and assume that B is a centered Gaussian process defined
on [0, T ], with α-Hölder continuous paths.

Let n ∈ N∗ be arbitrarily chosen, and consider the dissection (tn0 , t
n
1 , . . . , t

n
n) of

[0, T ] such that tnk := kT/n for every k ∈ {0, . . . , n}. Consider also the stochastic
process Xn(x0) := (Xn

t (x0))t∈[0,T ] such that for every ω ∈ Ω, Xn(x0, ω) is the
step-n implicit Euler scheme associated to Equation (2.1) driven by B(ω) and to
the dissection (tn0 , t

n
1 , . . . , t

n
n).

Proposition 3.13. Under Assumption 1.1 :

∥Xn(x0)−X(x0)∥∞,T
a.s.−−−−→

n→∞
0

with rate of convergence O(n−α). Moreover, for every p > 0,

sup
n∈N∗

∥Xn(x0)∥∞,T ∈ Lp(Ω,P)

and
lim
n→∞

E[∥Xn(x0)−X(x0)∥p∞,T ] = 0.

Proof. By Theorem 2.13, for every ω ∈ Ω,

∥Xn(x0, ω)−X(x0, ω)∥∞,T
a.s.−−−−→

n→∞
0

with rate of convergence O(n−α).
Let p > 0 be arbitrarily chosen. By Proposition 2.12 together with Fernique’s

theorem :
sup
n∈N∗

∥Xn(x0)∥∞,T ∈ Lp(Ω,P).

So, by Vitali’s theorem :

lim
n→∞

E[∥Xn(x0)−X(x0)∥p∞,T ] = 0.

□

3.4. Estimation of parameters. The subsection deals with the estimation of
the Hurst parameter and of the volatility constant of Equation (1.1) by using a
transformation of the observations of X(x0) and already known estimators of the
Hurst parameter and of the volatility constant of the fractional Ornstein-Uhlenbeck
process.

Under Assumption 1.1, for every y0 ∈ R, let Y (y0) := (Yt(y0))t∈R+ be the
solution of the following Langevin equation :

Yt = y0 −R

∫ t

0

Ysds+ σBt. (3.17)

On the fractional Ornstein-Uhlenbeck process, see Cheridito et al. [5].

Proposition 3.14. Under Assumption 1.1, for every x0 > 0, y0 ∈ R and t ∈ R+,

Yt(y0) = Xt(x0)− (x0 − y0)e
−Rt −

∫ t

0

e−R(t−s)bR[Xs(x0)]ds

where bR(x) := b(x) +Rx for every x > 0.
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Proof. Let t ∈ R+, x0 > 0 and y0 ∈ R be arbitrarily chosen. The stochastic
process ∆(x0, y0) := X(x0)− Y (y0) satisfies :

∆t(x0, y0) = x0 − y0 +

∫ t

0

[b[Xs(x0)] +RYs(y0)]ds

= x0 − y0 −R

∫ t

0

∆s(x0, y0)ds+

∫ t

0

bR[Xs(x0)]ds.

Then,

∆t(x0, y0) = (x0 − y0)e
−Rt +

∫ t

0

e−R(t−s)bR[Xs(x0)]ds.

That finishes the proof. □

Until the end of the subsection, B is a fractional Brownian motion of Hurst
parameter H ∈]0, 1[ (α ∈]0,H[). The values of all the parameters involving in the
expression of the drift function b are known.

Consider the map Θ from C0(R+, ]0,∞[) into C0(R+,R) such that :

Θ(φ)(t) := φ(t)−
∫ t

0

e−R(t−s)bR[φ(s)]ds ; ∀t ∈ R+,

for every φ ∈ C0(R+, ]0,∞[). By Proposition 3.14 :

Y (x0) = Θ[X(x0)].

Since the parameter (H,σ) doesn’t involve in the expression of the map Θ, an
observation x(x0) of X(x0) provides an observation of Y (x0) by applying the
transformation Θ to x(x0). So, since Equation (1.1) has the same additive noise σB
than Equation (3.17), a consistent estimator of (H,σ) for the fractional Ornstein-
Uhlenbeck process Y (x0) provides an estimation of the real value of (H,σ) from
the observation y(x0) := Θ[x(x0)].

For H ∈]1/2, 1[, there are several papers dealing with the estimation of the
Hurst parameter and of the volatility constant of the fractional Ornstein-Uhlenbeck
process. Some estimators use the whole path of Y (x0) (see Berzin and León
[2]), and some estimators use discrete observations of Y (x0) (see Melichov [24] or
Brouste and Iacus [3]).

In order to get an observation of Y (x0) at the time t ∈ R+ from y(x0), the
whole path x(x0) has to be known until the time t by construction of the map Θ.
In practice, only discrete observations of X(x0) are available. So, with the same
arguments, the end of the subsection deals with a consistent estimator of H for
Xn(x0) instead of X(x0).

Under Assumption 1.1, let Y n(x0) be the step-n implicit Euler scheme associ-
ated to Equation (3.17) and to the dissection (tn0 , t

n
1 , . . . , t

n
n) of [0, T ] :

Y n
k+1 = Y n

k −RY n
k+1(t

n
k+1 − tnk ) + σ(Btnk+1

−Btnk
) (3.18)

with Y n
0 (x0) := x0. On the implicit Euler schemes associated to the fractional

Langevin equation, see Garrido-Atienza et al. [10].
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Proposition 3.15. Under Assumption 1.1, for every k ∈ {1, . . . , n},

Y n
k (x0) = Xn

k (x0)− Tn−1
k∑

i=1

(1 +RTn−1)i−1−kbR[X
n
i (x0)].

Proof. For any k ∈ {1, . . . , n}, the stochastic process ∆n(x0) := Xn(x0)− Y n(x0)
satisfies :

∆n
k+1(x0) = Xn

k (x0)− Y n
k (x0) + Tn−1[b[Xn

k+1(x0)] +RY n
k+1(x0)]

= ∆n
k (x0) + Tn−1[bR[X

n
k+1(x0)]−R∆n

k+1(x0)].

Then,

∆n
k+1(x0) = (1 +RTn−1)−1∆n

k (x0) + (1 +RTn−1)−1bR[X
n
k (x0)].

So,

∆n
k (x0) = Tn−1

k∑
i=1

(1 +RTn−1)i−1−kbR[X
n
i (x0)].

That finishes the proof. □

Consider the map Θn from ]0,∞[N into RN such that :

Θn
k (u) :=


u0, if k = 0

uk − Tn−1
k∑

i=1

(1 +RTn−1)i−1−kbR(ui), if k ∈ {1, . . . , n}

for every u ∈]0,∞[N. By Proposition 3.15 :

Y n(x0) = Θn[Xn(x0)].

As for the continuous time models, the transformation Θn provides an observation
of Y n(x0) from an observation of Xn(x0).

Definition 3.16. Consider a stochastic process W := (Wt)t∈R+ on (Ω,A,P),
In ⊂ {0, . . . , n}, and k ∈ N such that k +max In ≤ n. The k-quadratic variation
of W with respect to the dissection (tn0 , t

n
1 , . . . , t

n
n) and to the index set In is

VIn,k(W ) :=
∑
i∈In

(∆kW )2i

with (∆kW )i :=Wtni+k
−Wtni

for every i ∈ In.

Proposition 3.17. Consider In ⊂ {0, . . . , n}, and k ∈ N such that k+max In ≤ n.

|VIn,k[Y
n(x0)]−VIn,k[Y (x0)]| −−−−→

n→∞
0

almost surely and in Lp(Ω,P) for every p > 0.
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Proof. Let i ∈ In and p > 0 be arbitrarily chosen.

|[∆kY
n(x0)]

2
i − [∆kY (x0)]

2
i | ≤ 2Y ∗

×
k∑

j=1

|Y n
i+j(x0)− Y n

i+j−1(x0)− [Yi+j(x0)− Yi+j−1(x0)]|

≤ 2RY ∗
k∑

j=1

∣∣∣∣∣Y n
i+j(x0)Tn

−1 −
∫ tni+j

tni+j−1

Yt(x0)dt

∣∣∣∣∣
≤ 2RY ∗

k∑
j=1

∫ tni+j

tni+j−1

|Y n
i+j(x0)− Yt(x0)|dt

≤ 2RY ∗

[
Tn−1

k∑
j=1

|Y n
i+j(x0)− Ytni+j

(x0)| (3.19)

+

k∑
j=1

∫ tni+j

tni+j−1

|Ytni+j
(x0)− Yt(x0)|dt

]

with

Y ∗ := ∥Y (x0)∥∞,T + sup
n∈N∗

∥Y n(x0)∥∞,T

∈ Lp(Ω,P).

On one hand, by Garrido-Atienza et al. [10], Theorem 1 ; there exists C(α,H, T ) ∈
Lp(Ω,P) such that :

∥Y n(x0)− Y (x0)∥∞,T ≤ C(α,H, T )Tαn−α.

So,

Tn−1
k∑

j=1

|Y n
i+j(x0)− Ytni+j

(x0)| ≤ C(α,H, T )Tα+1n−α. (3.20)

On the other hand, the paths of Y (x0) are α-Hölder continuous on [0, T ] with
∥Y (x0)∥α,T ∈ Lp(Ω,P). So,

k∑
j=1

∫ tni+j

tni+j−1

|Ytni+j
(x0)− Yt(x0)|dt ≤ ∥Y (x0)∥α,T

k∑
j=1

∫ tni+j

tni+j−1

(tni+j − t)αdt

≤ ∥Y (x0)∥α,TTα+1n−α. (3.21)

By Inequality (3.19) together with inequalities (3.20) and (3.21) :

|VIn,k[Y
n(x0)]−VIn,k[Y (x0)]| ≤ 2RY ∗[C(α,H, T ) + ∥Y (x0)∥α,T ]Tα+1n−α.

That finishes the proof. □

Consider I1n := {0, . . . , n}, I2n := {2i ; i ∈ {0, . . . , [n/2]},

Ĥn :=
1

2
− 1

2 log(2)
log

[
VI1n,1[Y (x0)]

VI2n,2[Y (x0)]

]
and ĥn :=

1

2
− 1

2 log(2)
log

[
VI1n,1[Y

n(x0)]

VI2n,2[Y n(x0)]

]
.

Proposition 3.18. ĥn is a strongly consistent estimator of H.
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Proof. By Proposition 3.17 together with the uniform continuity of log on ]0,∞[ :

|ĥn − Ĥn| ≤ 1

2 log(2)
[| log[VI1n,1

[Y (x0)]]− log[VI1n,1
[Y n(x0)]]|

+ | log[VI2n,2
[Y (x0)]]− log[VI2n,2

[Y n(x0)]]|]
a.s.−−−−→

n→∞
0.

Moreover, by Melichov [24], Section 3.2.1 ; Ĥn is a strongly consistent estimator
of H. So,

|ĥn −H| ≤ |ĥn − Ĥn|+ |Ĥn −H|
a.s.−−−−→

n→∞
0.

□

4. Application to Singular Equations Driven by a Multiplicative Noise

Let F :]0,∞[→ R be a function satisfying the following assumption.

Assumption 4.1. (1) The function F is [1/α] + 2 times continuously differen-
tiable on ]0,∞[.

(2) The function F is strictly monotonic on ]0,∞[.

Under Assumption 1.1, Equation (1.1) with the initial condition x0 > 0 has
a unique ]0,∞[-valued solution X(x0) on R+ by Proposition 2.2. Then, under
Assumption 4.1, by the rough change of variable formula :

F [Xt(x0)] = F (x0) +

∫ t

0

Ḟ [Xs(x0)]dXs(x0)

= F (x0) +

∫ t

0

Ḟ [Xs(x0)]b[Xs(x0)]ds+ σ

∫ t

0

Ḟ [Xs(x0)]dBs

for every t ∈ R+. Therefore, by putting I := F (]0,∞[), with the initial condition
z0 ∈ I, the following equation has a unique I-valued solution Z(z0) := (Zt(z0))t∈R+

on R+ :

Zt = z0 +

∫ t

0

G(Zs)H(Zs)ds+ σ

∫ t

0

H(Zs)dBs (4.1)

with G := b ◦ F−1 and H := Ḟ ◦ F−1.

Example 4.2. Consider κ ∈ R∗ and u, v, w, γ > 0 such that 1 − α < αγ. Put
b(x) := u(vx−γ −wx) and Fκ(x) := xκ for every x > 0. The function b (resp. Fκ)
satisfies Assumption 1.1 (resp. Assumption 4.1). Then, Equation (4.1) becomes :

Zt = z0 + κu

∫ t

0

[vZ1−(γ+1)/κ
s − wZs]ds+ κσ

∫ t

0

Z1−1/κ
s dBs.

On one hand, assume that κ = γ + 1, u = 1/(γ + 1) and σ = ζ/(γ + 1) with
ζ ∈ R∗. Then, by putting β := 1− 1/(γ + 1), Equation (4.1) becomes

Zt = y0 +

∫ t

0

(v − wZs)ds+ ζ

∫ t

0

Zβ
s dBs

and β ∈]1−α, 1[. So, in that case, Equation (4.1) is the generalized Cox-Ingersoll-
Ross model partially studied in Marie [21].
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On the other hand, assume that κ = −(γ+1), u = 1/(γ+1) and σ = −ζ∗/(γ+1)
with ζ∗ ∈ R∗. Then, by putting β∗ := 1/(γ + 1), Equation (4.1) becomes

Zt = z0 +

∫ t

0

Zs(w − vZs)ds+ ζ∗
∫ t

0

Z1+β∗

s dBs

and β∗ ∈]0, α[. So, in that case, Equation (4.1) is a generalized Verhulst’s model,
studied for β∗ = 0 and a fractional Brownian signal in Huy and Nguyen [16].

The section deals with how to transfer the probabilistic and statistical properties
established at Section 3 on the solution of Equation (1.1) to the stochastic process
Z(z0). A fractional Heston model is also introduced.

Proposition 4.3. Under assumptions 1.1 and 4.1, the Itô map associated to the
deterministic analog of Equation (4.1) is continuously differentiable from

I× Cα([0, T ],R) into C0([0, T ], I)

for every T > 0.

Proof. Let T > 0 be arbitrarily chosen. By Proposition 2.6, x(.) is continuously
differentiable from

]0,∞[×Cα([0, T ],R) into C0([0, T ], ]0,∞[).

Moreover, by Assumption 4.1, F and F−1 are [1/α] + 2 times continuously differ-
entiable on ]0,∞[ and I respectively. So, the map

(z0, w) 7−→ F ◦ x[F−1(z0), w]

is continuously differentiable from

I× Cα([0, T ],R) into C0([0, T ], I).

□

4.1. Probabilistic and statistical properties of the solution. Assume that
B is a centered Gaussian process with locally α-Hölder continuous paths.

The subsection deals with how to transfer probabilistic properties established
at Section 3 on the solution of Equation (1.1) to the stochastic process Z(z0).

In the sequel, the function F satisfies the following assumption.

Assumption 4.4. The function F is defined and uniformly continuous on R+, sat-
isfies Assumption 4.1, and

∀x ∈ R+, |F (x)| ≤ C(1 + xk)

with C > 0 and k ∈ N∗.

Example 4.5. The function Fκ with κ > 0 satisfies Assumption 4.4.

Proposition 4.6. For every T > 0, under assumptions 1.1 and 4.4 :

∥Z(z0)∥∞,T ∈ Lp(Ω,P)

for every p > 0.
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Proof. Let T > 0 and t ∈ [0, T ] be arbitrarily chosen. By Proposition 2.3 :

0 < Xt[F
−1(z0)] ≤ F−1(z0) + |b[F−1(z0)]|T + 2σ∥B∥∞,T .

So, by Jensen’s inequality :

|Zt(z0)| = |F [Xt[F
−1(z0)]]|

≤ C[1 +Xk
t [F

−1(z0)]]

≤ C(T )(1 + ∥B∥k∞,T )

with C(T ) > 0 (deterministic). Therefore, by Fernique’s theorem :

∥Z(z0)∥∞,T ∈ Lp(Ω,P)
for every p > 0. □
Proposition 4.7. Assume that B is a two-sided fractional Brownian motion of
Hurst parameter H ∈]0, 1[. Under assumptions 1.1 and 4.4, for every uniformly
continuous function ψ : I → R with polynomial growth, and every z0 ∈ I,

1

T

∫ T

0

ψ[Zt(z0)]dt −−−−→
T→∞

E[ψ[F (X∗)]]

almost surely and in Lp(Ω,P) for every p > 0.

Proof. Let an uniformly continuous function ψ : I → R with polynomial growth be
arbitrarily chosen. Since F : R+ → I is also uniformly continuous with polynomial
growth, the function φ := ψ ◦ F satisfies the conditions of Corollary 3.5. Then,
for every z0 ∈ I,

1

T

∫ T

0

ψ[Zt(z0)]dt =
1

T

∫ T

0

φ[Xt[F
−1(z0)]]dt

−−−−→
T→∞

E[φ(X∗)]

almost surely and in Lp(Ω,P) for every p > 0. That finishes the proof. □
Proposition 4.8. Let T > 0 be arbitrarily fixed. Under assumptions 1.1, 3.8 and
4.4 with F−1 ∈ C1(I,R+), the distribution of Zt(z0) has a density with respect to
the Lebesgue measure on (R,B(R)) for every t ∈]0, T ].

Proof. Let t ∈]0, T ] be arbitrarily chosen. By Proposition 3.10 ; the distribution of
Xt[F

−1(z0)] has a density ft with respect to the Lebesgue measure on (R,B(R)).
So, by a straightforward application of the transfer theorem :

PZt(z0)(dz) =
ft[F

−1(z)]

Ḟ [F−1(z)]
dz. (4.2)

Therefore, the distribution of Zt(z0) has a density with respect to the Lebesgue
measure on (R,B(R)). □
Example 4.9. The function Fκ with κ ∈]0, 1] satisfies Assumption 4.4 with F−1

κ ∈
C1(I,R+).

Remark 4.10. Let t ∈]0, T ] be arbitrarily chosen. The density ft can be the one
provided at Proposition 3.12. So, Equality (4.2) together with Proposition 3.12
provide a density, with a suitable expression, of the distribution of Zt(z0).
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Proposition 4.11. Consider T > 0 and assume that B is a centered Gaussian
process defined on [0, T ], with α-Hölder continuous paths. Put

Zn
t (z0) := F [Xn

t [F
−1(z0)]]

for every t ∈ [0, T ] and n ∈ N∗.

(1) Under assumptions 1.1 and 4.1 :

∥Zn(z0)− Z(z0)∥∞,T
a.s.−−−−→

n→∞
0

with rate of convergence O(n−α).
(2) Under assumptions 1.1 and 4.4, for every p > 0,

sup
n∈N∗

∥Zn(x0)∥∞,T ∈ Lp(Ω,P)

and

lim
n→∞

E[∥Zn(z0)− Z(z0)∥p∞,T ] = 0.

Proof. Let p > 0 be arbitrarily chosen. Put

X∗ := inf
n∈N∗

inf
t∈[0,T ]

Xt[F
−1(z0)] ∧Xn

t [F
−1(z0)]

and

X∗ := sup
n∈N∗

sup
t∈[0,T ]

Xt[F
−1(z0)] ∨Xn

t [F
−1(z0)].

Under Assumption 4.1, the function F is Lipschitz continuous on [X∗, X
∗]. So,

∥Zn(z0)− Z(z0)∥∞,T ≤ ∥Ḟ∥∞,[X∗,X∗]∥Xn[F−1(z0)]−X[F−1(z0)]∥∞,T

a.s.−−−−→
n→∞

0

with rate of convergence O(n−α), by Proposition 3.13. Under Assumption 4.4, for
every t ∈ [0, T ],

0 < Zn
t (z0) ≤ C[1 + |Xn

t [F
−1(z0)]|k].

Then, by Proposition 3.13 :

sup
n∈N∗

∥Zn(z0)∥∞,T ∈ Lp(Ω,P)

for every p > 0. So, by Vitali’s theorem :

lim
n→∞

E[∥Zn(z0)− Z(z0)∥p∞,T ] = 0.

□

Assume that B is a fractional Brownian motion of Hurst parameter H ∈]0, 1[.
The values of all the parameters involving in the expressions of b and F are sup-
posed to be known.

As established at Subsection 3.3, Y (x0) = Θ[X(x0)] for every x0 > 0. So,

Y [F−1(z0)] = Ξ[Z(z0)]

with Ξ := Θ ◦ F−1. Since the parameter (H,σ) doesn’t involve in the expression
of the map Ξ, an observation z(z0) of Z(z0) provides an observation of Y [F−1(z0)]
by applying the transformation Ξ to z(z0). Therefore, a consistent estimator of
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(H,σ) for the Ornstein-Uhlenbeck process Y [F−1(z0)] provides an estimation of
the real value of (H,σ) from the observation y[F−1(z0)] := Ξ[z(z0)].

The same arguments work on Ξn := Θn ◦ F−1 applied to Zn(z0) instead of Ξ
applied to Z(z0).

4.2. A fractional Heston model. Financial market models with a fractional
stochastic volatility have been already studied in several papers. For instance, the
volatility in the Heston model (see Heston [14]) has been replaced by a fractional
process in Comte, Coutin and Renault [6], taking benefits of its long memory. The
subsection deals with another fractional Heston model.

On fractional financial market models, see also Rogers [30] and Cheridito [4].
Let T > 0 be arbitrarily fixed, and assume that B is a fractional Brownian

motion of Hurst parameter H ∈]0, 1[, defined on [0, T ]. The filtration generated
by B is denoted by F := (Ft)t∈[0,T ]. By Decreusefond and Ustünel [7] or Nualart
[28], Section 5.1.3 ; there exists a unique Brownian motion B∗, generating the
same filtration F than B, such that :

Bt :=

∫ t

0

KH(t, s)dB∗
s ; ∀t ∈ [0, T ]

where

KH(t, s) :=
(t− s)H−1/2

Γ(H + 1/2)
F(1/2−H,H − 1/2,H + 1/2, 1− t/s)1[0,t[(s)

for every (s, t) ∈ R2
+, and F is the Gauss hyper-geometric function (see Lebedev

[17]).
Let H2 be the space consisting of F-progressively measurable stochastic pro-

cesses (Ht)t∈[0,T ] such that

E

(∫ T

0

H2
t dt

)
<∞.

Since F is the filtration generated by both B and B∗, stochastic processes of H2

are integrable with respect to B∗ in the sense of Itô.

Notation. For every H ∈ H2, the Itô stochastic integral of H with respect to B∗

is denoted by (∫ t

0

HsdB
∗
s

)
t∈[0,T ]

.

Consider the following generalization of the Heston model :

St = S0 +

∫ t

0

µuSudu+

∫ t

0

φ(Zu)SudB
∗
u ; S0 > 0 (4.3)

Zt = z0 +

∫ t

0

(v − wZu)du+ ζ

∫ t

0

Zβ
udBu ; z0 > 0 (4.4)

where µ ∈ C0([0, T ],R), v, w > 0, ζ ∈ R∗, β ∈]1 − H, 1[ and φ : R+ → R is a
continuous function such that :

∀x ∈ R+, |φ(x)| ≤ c(1 + xn) (4.5)
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with c > 0 and n ∈ N∗.

Proposition 4.12. Equation (4.4) has a unique pathwise solution Z(z0) such that
Zφ(z0) := φ ◦ Z(z0) ∈ H2, and Equation (4.3) has a unique solution S(z0) in the
sense of Itô such that :

St(z0) := S0 exp

[∫ t

0

[
µs −

1

2
φ2[Zs(z0)]

]
ds+

∫ t

0

φ[Zs(z0)]dB
∗
s

]
for every t ∈ [0, T ].

Proof. Put x0 := z1−β
0 , σ := ζ(1− β) and

b(x) := (1− β)(vx−γ − wx) ; ∀x > 0

where γ := β/(1 − β). By Proposition 2.2 together with the rough change of
variable formula, the stochastic process Z(z0) defined by

Zt(z0) := Xγ+1
t (x0) ; ∀t ∈ [0, T ],

is the unique pathwise solution of Equation (4.4).
Let α ∈]0,H[ be arbitrarily chosen. For every ω ∈ Ω and t ∈ [0, T ], Zφ

t (z0, ω)
is the image of (Bs(ω))s∈[0,t] by the map

φ ◦ xγ+1
t (x0, .),

which is continuous from Cα([0, t],R) into R by Proposition 2.4. So, Zφ
t (z0) is

Ft-measurable for every t ∈ [0, T ]. In other words, the stochastic process Zφ(z0)
is F-adapted, and even F-progressively measurable because the paths of X(x0) are
continuous. By Proposition 4.6 together with (4.5), Zφ(z0) belongs to H2.

Therefore, Zφ(z0) is integrable with respect to B∗ in the sense of Itô, and
by Itô’s formula (see Revuz and Yor [29], Theorem IV.3.3), the stochastic process
S(z0) defined above is the unique solution, in the sense of Itô, of Equation (4.3). □

According to the usual definition of the Heston model, put φ(x) :=
√
x for every

x ∈ R+.
Consider a financial market consisting of one risky asset of prices process S(z0)

and one risk-free asset of prices function S0, which is the solution of the following
ordinary differential equation :

S0
t = S0

0 +

∫ t

0

ruS
0
udu (4.6)

where r ∈ C0([0, T ],R). Since S(z0) is the solution of Equation (4.3) in the
sense of Itô and S0 is the solution of Equation (4.6), by the integration by part
formula (see Revuz and Yor [29], Proposition IV.3.1), the actualized prices process

S̃(z0) := S(z0)/S
0 is the solution, in the sense of Itô, of the following stochastic

differential equation :

S̃t = S̃0 +

∫ t

0

√
Zs(z0)S̃sdB

∗
s (z0)

with

B∗
t (z0) :=

∫ t

0

µs − rs√
Zs(z0)

ds+B∗
t , t ∈ [0, T ]
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