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REGULAR TRANSFORMATION GROUPS BASED ON
FOURIER-GAUSS TRANSFORMS

MAXIMILIAN BOCK AND WOLFGANG BOCK

Abstract. We discuss different representations of the white noise test func-
tions (E)β , 0 ≤ β < 1 by introducing generalized Wick tensors. As an
application we state the following generalization of the Mehler formula for
the Ornstein-Uhlenbeck semigroup, see [7, p. 237]: Let a, b ∈ C, 0 ≤ β < 1.
Then a · ∆G + b · N is the infinitesimal generator of the following regular
differentiable one parameter transformation group

{
Pa,b,t

}
t∈R ⊂ GL((E)β):

(i) if b ̸= 0 then for all φ ∈ (E)β , t ∈ R :

Pa,b,t(φ) =

∫
E∗

φ(

√
(1−

a

b
)(1− e2bt) · x+ ebt · y) dµ(x)

(ii) if b = 0 then for all φ ∈ (E)β , t ∈ R :

Pa,0,t(φ) =

∫
E∗

φ(
√
2at · x+ y) dµ(x)

On an informal level the second case of the above theorem may be looked
upon as a special case of the first one. Note that by the rules of l’Hôpital we
have lim

b→0
(b− a) 1−e2bt

b
= 2at.

1. Introduction

In finite dimensional analysis convolution and Fourier transform appear in many
different applications. Since the Fourier transform is symmetric with respect to the
dual pairing it extends naturally to generalized functions. The Fourier transform
on (E)∗β resembles the finite dimensional Fourier transform in the sense that it is
the adjoint of a continuous linear operator from the space of test functions into
itself. This adjoint is a so called Fourier Gauss transform. In Gaussian Analysis,
the Fourier-Gauss transform Ga,b(φ) of φ ∈ (E)β is defined by

Ga,b(φ)(y) =

∫
E∗

φ(ax+ by) dµ(x), a, b ∈ C, 0 ≤ β < 1
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182 M. BOCK AND W. BOCK

see e.g. [7], [11] and [10]. The Fourier-Gauss transform is in L((E)β , (E)β) and
the operator symbol is given by

Ĝa,b(ξ, η) = exp

[
1

2

(
a2 + b2 − 1

)
⟨ξ, ξ⟩+ b ⟨ξ, η⟩

]
, for all ξ, η ∈ EC,

see [10, Theorem 11.29, p. 168-169]. Hence

Ga,b = Γ(b Id) ◦ exp(1
2
(a2 + b2 − 1)∆G), (1.1)

where Id denotes the identity operator. Considering this formula, we show that
we can find a suitable representation of the white noise test functions, such that
equation (1.1) will be just consisting of second quantization operators and is thus
comparable to the approach in [2]. This will be done by introducing generalized
Wick tensors. For m ∈ N, κ0,m ∈ (E⊗m

C )∗sym we define generalized Wick tensors
by

: x⊗n :κ0,m=

⌊ n
m⌋∑

k=0

n!

(n−mk)!k!
(−1

2
)kx⊗(n−mk) ⊗̂ κ⊗̂k

0,m.

We show that for each test function φ in the space (E)β , with max(0,m−2)
m ≤ β < 1,

we have a unique representation

φ =
∞∑

n=0

⟨
: x⊗n :κ0,m , φn

⟩
,

with φn ∈ (E⊗n
C )sym for all n ∈ N0. Indeed we can rewrite the Fourier-Gauss

transform Ga,b as a suitable second quantization operator
{
Γκ0,r (bId)

}
. Using

generalized Wick tensors it is very natural to find a larger class of one parameter
transformation groups, see 6.15. As an application we deduce explicitly the regular
one parameter groups corresponding to the infinitesimal generators a∆G + bN .

In order to classify regularity we use and extend the result from [13, Theorem
5.6, p. 671]. There it is shown, that there exists a continuous homomorphism C
from (E)∗β to L((E)β , (E)β). We show furthermore that this homomorphism is
even an isomorphism from (E)∗β onto Im(C). We use this theorem to prove easily
the differentiability of some one parameter transformation groups. Moreover we
want to show that these transformation groups regular. In particular we show
that every differentiable one-parameter subgroup of GL(X), where X is a nuclear
Fréchet space, has a regular generator, see 5.8.

The investigation of regular transformation groups in this manuscript can be
compared with [3].There the authors first construct a two-parameter transforma-
tion group G on the space of white noise test functions (E) in which the adjoints of
Kuo’s Fourier and Kuo’s Fourier-Mehler transforms are included. They show that
the group G is a two-dimensional complex Lie group whose infinitesimal generators
are the Gross Laplacian ∆G and the number operator N , and then find an explicit
description of a differentiable one-parameter subgroup of G whose infinitesimal
generator is a∆G + bN , which is identical with the one in this article.
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2. Preliminaries on White Noise Distribution Theory

Starting point of the white noise distribution theory is the Gel’fand triple

E ⊂ L2(R, dt) ⊂ E∗,

where E is a nuclear real countably Hilbert space which is densely embedded in the
Hilbert space of square integrable functions with respect to the Lebesgue measure
L2(R, dt) and E∗ its topological dual space. Via the Bochner-Minlos theorem, see
e.g. [1], we obtain the Gaussian measure µ on E∗ by its Fourier transform∫

E∗
exp(i⟨x, ξ⟩) dµ(x) = exp(−1

2
|ξ|20), ξ ∈ E

where |.|0 denotes the Hibertian norm on L2(R, dt). The topology on E is induced
by a positive self-adjoint operator A on the space of real-valued functions H =
L2(R, dt) with inf σ(A) > 1 and Hilbert-Schmidt inverse A−1 . We set ρ :=∥∥A−1

∥∥
OP

and δ :=
∥∥A−1

∥∥
HS

. Note that the complexification EC are equipped
with the norms |ξ|p := |Apξ|0 for p ∈ R. We denoteHC := L2(R,C, dt) furthermore

EC,p :=
{
ξ ∈ E∗

C| |ξ|p <∞
}

and E∗
p :=

{
ξ ∈ E∗| |ξ|p <∞

}
, for p ∈ R.

Now we consider the following Gel’fand triple of White Noise test and general-
ized functions.

(E)β ⊂ (L2) := L2(E∗, µ) ⊂ (E)∗β , 0 ≤ β < 1

By the Wiener-Itô chaos decomposition theorem, see e.g. [7, 12, 10] we have the
following unitary isomorphism between (L2) and the Boson Fock space Γ(HC):

(L2) ∋ Φ(x) =
∞∑

n=0

⟨
: x⊗n :, fn

⟩
↔ (fn) ∼ Φ ∈ Γ(HC), fn ∈ H⊗̂n

C , (2.1)

where : x⊗n : denotes the Wick ordering of x⊗n and H⊗̂n
C is the symmetric tensor

product of order n of the complexification HC of H. Moreover the (L2) - norm of
Φ ∈ (L2) is given by

∥Φ∥20 =
∞∑

n=0

n! |fn|20

The elements in (E)β are called white noise test functions, the elements in (E)∗β
are called generalized white noise functions. We denote by ⟨⟨., .⟩⟩ the canonical
C-bilinear form on (E)∗β × (E)β . For each Φ ∈ (E)∗β there exists a unique sequence
(Fn)

∞
n=0 , Fn ∈ (E⊗̂n

C )∗ such that

⟨⟨Φ, φ⟩⟩ =
∞∑

n=0

n! ⟨Fn, fn⟩ , (fn) ∼ φ ∈ (E)β (2.2)

Thus we have, see e.g. [7, 12, 10]:

(E)β ∋ Φ ∼ (fn),
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if and only if for all p ∈ R we have ∥Φ∥p,β :=

( ∞∑
n=0

(n!)1+β |fn|2p

) 1
2

< ∞. More-

over for its dual space we obtain

(E)∗β ∋ Φ ∼ (Fn), (2.3)

if and only if there exists a p ∈ R such that ∥Φ∥p,−β :=

( ∞∑
n=0

(n!)1−β |Fn|2p

) 1
2

<

∞.
For p ∈ R we define

(E)p,β :=
{
φ ∈ (E)∗β : ∥φ∥p,β <∞

}
and

(E)p,−β :=
{
φ ∈ (E)∗β : ∥φ∥p,−β <∞

}
.

It follows
(E)β := proj lim

p→∞
(E)p,β

and
(E)∗β = ind lim

p→ −∞
(E)p,−β

Moreover (E)β is a nuclear (F)-space. In the following we use the abbreviation
(E) := (E)0. The exponential vector or Wick ordered exponential is defined by

Φξ(x) :=
∞∑

n=0

1

n!

⟨
: x⊗n :, ξ⊗n

⟩
for ξ ∈ EC and x ∈ E∗. (2.4)

For y ∈ E∗
C we use the same notation, which is only symbolic, and define Φy ∈ (E)∗β

by:

(E)β ∋ ψ ∼ (fn)n∈N0 : ⟨⟨Φy, ψ⟩⟩ :=
∞∑

n=0

⟨
y⊗n, fn

⟩
Since Φξ ∈ (E)β , for ξ ∈ EC and 0 ≤ β < 1, we can define the so called S-transform
of Ψ ∈ (E)∗β by

S(Ψ)(ξ) = ⟨⟨Φξ,Ψ⟩⟩ ,
Moreover we call S(Ψ)(0) the generalized expectation of Ψ ∈ (E)∗β . The Wick
product of Θ ∈ (E)∗β and Ψ ∈ (E)∗β is defined by

Ψ ⋄Θ := S−1(S(Ψ) · S(Θ)) ∈ (E)∗β ,

see e.g. [7, 10, 12].
In the following we list some basic facts about integral kernel operators.

Definition 2.1. Let l,m be nonnegative integers. For each κl,m ∈ (E
⊗(l+m)
C )∗ the

integral kernel operator Ξl,m(κl,m) ∈ L((E)β , (E)∗β) with kernel distribution κl,m
(see [12, Proposition 4.3.3, p. 82]) is defined by

Ξl,m(κl,m)(φ) =
∞∑

n=0

(n+m)!

n!

⟨
: x⊗(l+n) :, κl,m⊗mfn+m

⟩
, φ ∼ (fn) ∈ (E)β ,

(2.5)
where κl,m⊗mfn+m is the right contraction (see [12, Section 3.4, p. 53 ff]).
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Remark 2.2. Note that
⟨
: x⊗(l+n) :, κl,m⊗mfn+m

⟩
=
⟨
: x⊗(l+n) :, κl,m⊗̂mfn+m

⟩
,

because : x⊗(l+n) : is symmetric and ⊗̂m means the right symmetric contraction.
The correspondence

κl,m ↔ Ξl,m(κl,m)

is one-to-one if
κl,m ∈ (E

⊗(l+m)
C )∗sym(l,m).

Furthermore it is known (see [10, Section 10.2, p. 123 ff]):

Ξl,m(κl,m) ∈ L((E)β , (E)β) ⇔ κl,m ∈ (E⊗l
C )⊗ (E⊗m

C )∗ (2.6)

By a dual argument to [12, Theorem 4.3.9] it is known that an integral kernel
operator Ξl,m(κl,m) is extendable to on operator in L((E)∗β , (E)∗β) if and only if
κl,m ∈ (E⊗l

C )∗ ⊗ (E⊗m
C ).

The operator symbol of Ξ ∈ L((E)β , (E)∗β) is defined as Ξ̂(ξ, η) := ⟨⟨Ξ(Φξ),Φη⟩⟩
for ξ, η ∈ EC.

3. Convergence of Generalized Functions

Let X be a locally convex Hausdorff space and X∗ its dual space with respect
to the strong dual topology. Recall that L(X,X) is equipped with the topology
of bounded convergence, namely the locally convex topology is defined by the
semi-norms:

∥T∥B,p := sup
ξ∈B

|Tξ|p , T ∈ L(X,X) (3.1)

where B runs over the bounded subsets of X and |·|p is an arbitrary semi-norm on
X. The topology on L(X∗, X∗) is defined in the same way. We state the following
proposition:

Proposition 3.1. Let X be a reflexive (F)-space and X∗ its dual space with the
strong dual topology. Then the mapping ∗ : L(X,X) → L(X∗, X∗), T 7−→ T ∗

with T ∗(ξ) := ξ ◦ T is a topological vector space isomorphism.

Proof. For details see [6, 2.7 Satz, p. 84]. We present the main idea: Let M be a
bounded subset of E∗ and B be a bounded subset of X. Let T ∈ L(X,X). Since
X is reflexive, the topological isomorphism follows by

sup
ξ∈M

|T ∗(ξ)|pB◦ = sup
ξ∈M,b∈B

|⟨T ∗ξ, b⟩| = sup
b∈B

|Tb|pM◦ (3.2)

□
The following theorem can be found in e.g. [9],[7, Theorem 4.41, p. 127 f] and

[10, Theorem 8.6, p. 86f].

Theorem 3.2. Let 0 ≤ β < 1. For all n ∈ N let Ψn ∈ (E)∗β and Fn = S(Ψn),
where S denotes the S-transform. Then (Ψn)n∈N converges strongly in (E)∗β if and
only if the following conditions are satisfied:

(i) lim
n→∞

Fn(ξ) exists for each ξ ∈ EC

(ii) There exist nonnegative constants C,K, p ≥ 0, independent of n, such that

|Fn(ξ)| ≤ C exp(K|ξ|
2

1−β
p ), ∀n ∈ N, ξ ∈ EC. (3.3)
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As an example we consider the convergence of Wick exponentials.

Lemma 3.3. Let ϕ ∈ (E)∗ and ϕ ∼ (ϕ0, ϕ1, · · · , ϕm, 0, 0, 0, · · · ) be its Wiener-Itô
chaos decomposition. Then the expression

exp⋄(ϕ) :=
∞∑

n=0

1

n!
ϕ⋄n (3.4)

converges in (E)∗β, where 1 > β ≥ max(0,m−2)
m .

Proof. We show that the conditions from Theorem 3.2 are fullfilled. Without loss
of letm ≥ 1 and ϕm ̸= 0. Since ϕ ∈ (E)∗β there exists p > 0 such that ∥ϕ∥−p,β <∞.

For n ∈ N0 and ξ ∈ EC let Ψn :=
n∑

k=0

1
k!ϕ

⋄k and Fn(ξ) :=
n∑

k=0

1
k!

⟨⟨
ϕ⋄k,Φξ

⟩⟩
.

Condition (i) from Theorem 3.2 is fulfilled since

Fn(ξ) =
n∑

k=0

1

k!
(S(ϕ)(ξ))k → exp(S(ϕ)(ξ)).

It follows |Fn(ξ)| ≤ exp(|S(ϕ)(ξ)|). Since for r ≥ m we have

|S(ϕ)(ξ)| ≤ |ϕ0|+ · · ·+
∣∣⟨ϕm, ξ⊗m⟩

∣∣
≤ |ϕ0|+m · max

1≤k≤m
(|ϕk|−p) · (1 + |ξ|rp)

we obtain that condition (ii) from Theorem 3.2 is fullfilled for β ≥ 0 and r =
2

1−β . □

The following is an immediate consequence of Lemma 3.3 and comparisation of
the S-transforms.

Corollary 3.4. Let ϕ, ψ ∈ (E)∗ with corresponding chaos decompositions ϕ =
(ϕ0, ϕ1, · · · , ϕm, 0, 0, 0, ...) and ψ = (ψ0, ψ1, · · · , ψm, 0, 0, 0, ...). Then the formula

exp⋄(ϕ+ ψ) = exp⋄(ϕ) ⋄ exp⋄(ψ)
is valid in (E)∗β , for all 1 > β ≥ 1

m max(0,m− 2).

4. Wick Multiplication and Convolution Operator

The Wick multiplication operator and its dual, often denoted as convolution
operator are well known objects in white noise theory, see e.g. [13]. We give a
proof, that (E)∗β with the Wick product may be considered as a commutative
sub-algebra of L((Eβ), (Eβ)). For a similar approach see also [13].

Proposition 4.1.
(i) Let φ ∈ (E)∗β. The Wick multiplication operator Mφ, defined by

Mφ(ψ) := φ ⋄ ψ
is a well defined operator in L((E)β , (E)∗β).

(ii) Let φ ∈ (E)∗β. The Wick multiplication operator M̃φ, defined by

M̃φ(ψ) := φ ⋄ ψ
is a well defined continuous extension of Mφ to an operator in L((E)∗β , (E)∗β).
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Proof. For (ii), see [10, Theorem 8.12., p. 92]. To prove (i) we know by [10,
Theorem 8.12., see Remark, p.92], that for any p ≥ 0 there exist suitable α >
0, c > 0, such that

∥φ ⋄ ψ∥−p−α,−β ≤ c · ∥φ∥−p,−β · ∥ψ∥−p,−β

≤ c · ∥φ∥−p,−β · ∥ψ∥p,β
Thus φ ⋄ (·) ∈ L((E)β , (E)∗β). □

Definition 4.2. The dual operator of the Wick operator M̃φ is called convolution
operator and denoted by Cφ.

The next proposition gives the Fock expansion of the Wick multiplication op-
erator.

Proposition 4.3. Let φ ∈ (E)∗β and φ ∼ (φ0, φ1, · · · ). Then Mφ, considered as
Mφ ∈ L((E)β , (E)∗β), has the following Fock expansion:

Mφ =
∑
n∈N0

Ξn,0(φn).

Proof. Let ξ, η ∈ EC. Then

⟨⟨MφΦξ,Φη⟩⟩ = S(φ ⋄ Φξ)(η) = S(φ)(η) · S(Φξ)(η)

= S(φ)(η) · e⟨ξ,η⟩

By [10, (10.21) p. 145] the Taylor expansion of Mφ is given by

S(φ)(η) =
∑
n∈N0

⟨
φn, η

⊗n ⊗ ξ0
⟩

completes the proof, compare also [12, Proposition 4.5.3, p.98-99]. □

Proposition 4.4. Let φ ∈ (E)∗β and φ ∼ (φ0, φ1, · · · ). The convolution operator
Cφ is in L((E)β , (E)β) and has the Fock expansion

Cφ =
∑
n∈N0

Ξ0,n(φn).

Proof. By definition we have Cφ = M̃φ

∗
∈ L((E)β , (E)β). Moreover Mφ

∗∣∣(E)β =

Cφ, since M̃φ is an extension of Mφ. Then, by Proposition 4.3 we have

Cφ =Mφ
∗ =

(∑
n∈N0

Ξn,0(φn)

)∗

=
∑
n∈N0

Ξ0,n(φn).

□

The following statement is an immediate consequence from the definition of
integral kernel operators.

Corollary 4.5. Let φ ∈ (E)∗β and φ ∼ (φ0, φ1, · · · ). Then

Cφ(Φξ) = [S(φ)(ξ)] Φξ, ξ ∈ EC :
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Lemma 4.6. Let Ξ ∈ L((E)β , (E)∗β) and Ξ =
∞∑

l,m=0

Ξl,m(κl,m) be the correspond-

ing unique representation as sum of integral kernel operators. Then:

Ξ(Φ0) =

∞∑
l=0

⟨
: x⊗l :, κl,0

⟩
(4.1)

Proof. Consider the equation

Ξl,m(κl,m)(φ) =
∞∑

n=0

(n+m)!

n!

⟨
: x⊗(l+n) :, κl,m⊗̂mfn+m

⟩
, φ ∼ (fn) ∈ (E)β ,

(4.2)
then for Φ0 ∼ (fn) with f0 = 1 and fn = 0 for all n ≥ 1:

Ξ(Φ0) =

∞∑
l=0

⟨
: x⊗l :, κl,0 ⊗̂0 1

⟩
□

Theorem 4.7. Let 0 ≤ β < 1. The mapping

C : ((E)∗β ,+, ., ⋄) to (L((E)β , (E)β),+, ., ◦) φ 7→ Cφ

is an injective continuous vector algebra homomorphism. In particular C is a
topological isomorphism from (E)∗β to Im(C).

Proof. Linearity is given by the definition of integral kernel operators. In order to
prove homomorphy, let ξ ∈ EC, φ1, φ2 ∈ (E)∗β . Then by Corollary 4.5

Cφ1 ◦ Cφ2(Φξ) = S(φ1)(ξ) · S(φ2)(ξ) · Φξ

= S(φ1 ⋄ φ2)(ξ) · Φξ = Cφ1⋄φ2(Φξ)

For injectivity let φ ∈ (E)∗β and Cφ = 0. Then Cφ
∗ = 0 and by 4.4 and 4.6

we obtain φ = Cφ
∗(Φ0) = 0. To prove continuity let φ ∈ (E)∗β and φ :=∑

n∈N0

⟨: x⊗n :, φn⟩ be the corresponding chaos decomposition. Now let p ≥ 0. More-

over let r > 0, such that
(2

1−β
2 ρr < 1),

where ρ :=
∥∥A−1

∥∥
OP

. Choose q > 0 such that ρ−q ≥ 2. Then by [10, Theorem
10.5, p. 128] we have for all ϕ ∈ (E)β and m ∈ N0

∥Ξ0,m(φm)(ϕ)∥p,β ≤ (m!2m)
1−β
2 · ∥φm∥−(p+q+r) · ∥ϕ∥(p+q+r),β

≤ m!
1−β
2 ∥φm∥−(p+q) (2

1−β
2 ρr)m · ∥ϕ∥(p+q+r),β .

Now let K := (
∑

m∈N0

(2
1−β
2 ρr)2m)

1
2 . Then by Cauchy-Schwartz we obtain

∑
m∈N0

∥Ξ0,m(φm)(ϕ)∥p,β ≤
∑

m∈N0

m!
1−β
2 ∥φm∥−(p+q) (2

1−β
2 ρr)m · ∥ϕ∥(p+q+r),β

≤ K ∥φ∥−(p+q),−β · ∥ϕ∥(p+q+r),β
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Now let M ⊂ (E)β be bounded. Then sup
ϕ∈M

|ϕ|p+q+r,β ≤ const(M,p, q, r) <∞ and

finally ∥Cφ∥M,{p,β} ≤ K const(M,p, q, r) · ∥φ∥−(p+q),−β

To prove the last claim, we use Proposition 3.1 and and represent C−1 as compo-
sition of the two continuous mappings:

C−1 : Cφ
(.)∗7−→ Cφ

∗ point7−→
evaluation

Cφ
∗(Φ0) = φ.

□
The following statement is a consequence from Lemma 3.3 and Theorem 4.7.

Corollary 4.8. Let φ ∈ (E)∗ and φ ∼ (φ0, φ1, · · · , φm, 0, 0, 0, · · · ) be it’s chaos
decomposition. Then the expression

exp(Cφ) :=

∞∑
n=0

1

n!
(Cφ)

n (4.3)

converges in L((E)β , (E)β), where 1 > β ≥ max(0, m−2
m ).

5. Regular One Parameter Groups

Let X a nuclear (F)-space over C and (|·|n)n∈N be a family of Hilbertian semi-
norms, with |·|n ≤ |·|n+1 for all n ∈ N, topologizing X, see e.g. [12, Proposition
1.2.2 and proposition 1.3.2]. For x∗ ∈ (X, |·|n)∗ we define

|x∗|−n := sup
|x|n≤1

|⟨x∗, x⟩|

By a Hahn-Banach argument, we have for all x ∈ X :

|x|n = sup
{
|⟨x∗, x⟩| : x∗ ∈ (X, |·|n)

∗ ∧ |x∗|−n ≤ 1
}

for all semi-norms |·|n , n ∈ N.

Definition 5.1. A family {Ωθ}θ∈R ⊂ L(X) is called differentiable in θ0 ∈ R, if

lim
θ→θ0

Ωθϕ− Ωθ0ϕ

θ − θ0

converges in X for any ϕ ∈ X. In that case a linear operator Ω′
θ0

from X into
itself is defined by

Ω′
θ0ϕ := lim

θ→θ0

Ωθϕ− Ωθ0ϕ

θ − θ0
{Ωθ}θ∈R is called differentiable if it is differentiable at each θ ∈ R. In the following
we use the abbreviation:

Ω′ := Ω′
0

Proposition 5.2. Let θ0 ∈ R and {Ωθ}θ∈R ⊂ L(X) be a family of operators which
is differentiable in θ0. Then Ω′

θ0
is continuous, i.e. Ω′

θ0
∈ L(X). Moreover we

have uniformly convergence on every compact (or equivalently, bounded) subset of
X, i.e.:

lim
θ→θ0

sup
ϕ∈K

∣∣∣∣Ωθϕ− Ωθ0ϕ

θ − θ0
− Ω′

θ0ϕ

∣∣∣∣
n

= 0

for any n ∈ N and any compact (or bounded) subset K ⊂ X.
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Proof. First note that a subset of the nuclear space X is compact if and only if
it is closed and bounded. The assertion follows by an application of the Banach-
Steinhaus theorem. (For the uniform convergence on compact subsets see e.g. [14,
4.6 Theorem, p. 86]. ) □

Definition 5.3. A family {Ωθ}θ∈R ⊂ L(X) is called regularily differentiable in
θ0 ∈ R, if there exists Ω′

θ0
∈ L(X) such that for any n ∈ N there exists m ∈ N

such that

lim
θ→θ0

sup
|ϕ|m≤1

∣∣∣∣Ωθϕ− Ωθ0ϕ

θ − θ0
− Ω′

θ0ϕ

∣∣∣∣
n

= 0.

{Ωθ}θ∈R is called regular if it is regularily differentiable at each θ ∈ R.

Definition 5.4. Let {Ωθ}θ∈R be a family of operators in L(X) with

∀θ1, θ2 ∈ R : Ωθ1+θ2 = Ωθ1 ◦ Ωθ2 , Ω0 = Id

Then, as easily seen, {Ωθ}θ∈R is a subgroup ofGL(X) and is called a one-parameter
subgroup of GL(X).

In the following we collect facts about one-parameter subgroups, for details see
e.g. [12, Section 5.2].

Lemma 5.5. Let {Ωθ}θ∈R be a one-parameter subgroup of GL(X).
(i) Then {Ωθ}θ∈R is differentiable at each θ ∈ R if and only if {Ωθ}θ∈R is dif-

ferentiable at 0, i.e. there exists Ω′ ∈ L(X) such that

lim
θ→0

∣∣∣∣Ωθϕ− ϕ

θ
− Ω′ϕ

∣∣∣∣
n

= 0.

for all ϕ ∈ X and n ∈ N.
(ii) Let {Ωθ}θ∈R be a differentiable subgroup of GL(X). Then we have

a) Ω′ is an element of L(X), further unique and is called the infinitesimal
generator of the differentiable one parameter subgroup {Ωθ}θ∈R of GL(X).
Conversely a differentiable one parameter subgroup {Ωθ}θ∈R of GL(X) is
uniquely defined by it’s infinitesimal generator, see [12, Proposition 5.2.2,
p. 119]. If {Ωθ}θ∈R is regular the infinitesimal generator Ω′ is called a
regular generator.

b) {Ωθ}θ∈R is infinitely many differentiable at each θ ∈ R and

∀n ∈ N :
dn

dθn
Ωθ = (Ω′)n ◦ Ωθ = Ωθ ◦ (Ω′)n

c) R → L(X), θ 7→ Ωθ is continuous. Note that L(X) is equipped with the
topology of bounded convergence, compare [12, Section 5.2, Eq. (5.27), p.
119].

Lemma 5.6. Let T : R → L(X) be a continuous mapping. If K is a compact
subset of R, then T (K) is equicontinuous.

Proof. T (K) is compact, hence bounded, especially pointwisely bounded, by the
definition of the topology of bounded convergence. The theorem of Banach and
Steinhaus then completes the proof. □
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Proposition 5.7. Let {Ωθ}θ∈R be a differentiable one parameter subgroup of
GL(X).

(i) {Ωθ}θ∈R is regular if and only if for any n ∈ N there exists m ∈ N such that

lim
θ→0

sup
|ϕ|m≤1

∣∣∣∣Ωθϕ− ϕ

θ
− Ω′ϕ

∣∣∣∣
n

= 0.

(ii) For any compact(or bounded) subset K ⊂ X we have

lim
θ→0

sup
ϕ∈K

∣∣∣∣Ωθϕ− ϕ

θ
− Ω′ϕ

∣∣∣∣
n

= 0.

(iii) Let θ0 > 0. Then for any n ∈ N there exists m ∈ N and K(n,m) > 0, such
that for all ϕ ∈ X

sup
|θ|≤θ0,θ ̸=0

∣∣∣∣Ωθϕ− ϕ

θ

∣∣∣∣
n

≤ K(n,m) |ϕ|m

Proof. The statement (i) is easily verified, moreover (ii) is an immediate conse-
quence of Proposition 5.2. To prove statement (iii) we have by (ii) and Proposition
5.5 (ii) a), that the mapping

R −→ L(X), θ 7−→
{

Ωθ−Id
θ , θ ̸= 0

Ω′ , θ = 0

is continuous. Then the claim is obtained by Lemma 5.6. □
Theorem 5.8 (Regularity). Let {Ωθ}θ∈R be a differentiable one-parameter sub-
group of GL(X). Then {Ωθ}θ∈R is regular.

Proof. Let n ∈ N and ξ ∈ X, η ∈ (X, |·|n)∗. We define for all t ∈ R :

f(t) := ⟨η,Ωtξ⟩
Then we have by Proposition 5.5

f ′(t) = ⟨η,Ω′Ωtξ⟩
f ′′(t) =

⟨
η, (Ω′)2Ωtξ

⟩
Now let θ0 > 0 be fixed. Then by Proposition 5.5 (ii) c) and Lemma 5.6,{
(Ω′)2Ωt

}
|t|≤θ0

is equicontinuous. Thus there exists K = K(θ0, n,m,Ω
′) > 0

with m ∈ N0 and such that

max
|t|≤θ0

|f ′′(t)| ≤ K |ξ|n+m |η|−n

Let θ ∈ R with |θ| ≤ θ0. By Taylor expansion we have

|f(θ)− f(0)− θ · f ′(0)| ≤ |θ|2

2
max
|t|≤θ0

|f ′′(t)|

≤|θ|2

2
K |ξ|n+m |η|−n

and for θ ̸= 0

sup
|ξ|n+m≤1

sup
|η|−n≤1

∣∣∣∣ ⟨η,Ωθξ⟩ − ⟨η, ξ⟩
θ

− ⟨η,Ω′ξ⟩
∣∣∣∣ ≤|θ|

2
K.
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Hence

sup
|ξ|n+m≤1

∣∣∣∣Ωθξ − ξ

θ
− Ω′ξ

∣∣∣∣
n

≤ |θ|
2
K

such that

lim
θ→0

sup
|ξ|n+m≤1

∣∣∣∣Ωθξ − ξ

θ
− Ω′ξ

∣∣∣∣
n

= 0.

□

Proposition 5.9. Let {Sθ}θ∈R be a differentiable one parameter subgroup of
GL(X) and {Tθ}θ∈R be a family of operators in L(X) which is differentiable in
zero with lim

θ→0
Tθϕ = ϕ for all ϕ ∈ X. Then

d

dθ

∣∣
θ=0

Sθ ◦ Tθ = S′ + T ′

If {Tθ}θ∈R is regularily differentiable in zero, then

{Sθ ◦ Tθ}θ∈R

is also regularily differentiable in zero.

Proof. Let n ∈ N, ϕ ∈ X. Then {Sθ| |θ| ≤ 1} is equicontinuous by Proposition
5.5, (ii) c). Then there exist a semi-norm |·|m, with m ∈ N and m ≥ n, and a
constant K > 0 such that |Sθ(ϕ)|n ≤ K · |ϕ|m for all ϕ ∈ X and θ ∈ R with |θ| ≤ 1.
Now let ϕ ∈ X be arbitrarily chosen. For θ ∈ R with |θ| ≤ 1 we have:∣∣∣∣Sθ ◦ Tθ(ϕ)− ϕ

θ
− S′ϕ− T ′ϕ

∣∣∣∣
n

=

∣∣∣∣Sθ ◦ (Tθ(ϕ)− ϕ)

θ
+
Sθ(ϕ)− ϕ

θ
− S′ϕ− T ′ϕ

∣∣∣∣
n

≤
∣∣∣∣Sθ ◦ (Tθ(ϕ)− ϕ)

θ
− T ′ϕ

∣∣∣∣
n

+

∣∣∣∣Sθ(ϕ)− ϕ

θ
− S′ϕ

∣∣∣∣
n

≤ K ·
∣∣∣∣ (Tθ(ϕ)− ϕ)

θ
− S−θT

′ϕ

∣∣∣∣
m

+

∣∣∣∣Sθ(ϕ)− ϕ

θ
− S′ϕ

∣∣∣∣
n

≤ K ·
∣∣∣∣ (Tθ(ϕ)− ϕ)

θ
− T ′ϕ

∣∣∣∣
m

+K · |S−θ(T
′ϕ)− (T ′ϕ)|m +

∣∣∣∣Sθ(ϕ)− ϕ

θ
− S′ϕ

∣∣∣∣
n

,

where last inequalilty follows by Theorem 5.8 and the continuity of T ′. □

We use the following notation, due to [12, Eq. (4.66), p. 106]

Definition 5.10. γn(T ) :=
n−1∑
k=0

Id⊗k ⊗ T ⊗ Id⊗(n−1−k), n ≥ 1

γ0(T ) := 0

Now let T ∈ L(EC). We recall the definition of the second quantization operator
of T , denoted by Γ(T ) and dΓ(T ), the differential second quantization operator.
Suppose ϕ ∈ (E)β is given as

ϕ(x) =
∞∑

n=0

⟨
: x⊗n :, fn

⟩
, x ∈ E∗, fn ∈ (E⊗n

C )sym
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as usual. We put

Γ(T )ϕ(x) :=

∞∑
n=0

⟨
: x⊗n :, T⊗nfn

⟩
and

dΓ(T )ϕ(x) :=
∞∑

n=0

⟨
: x⊗n :, γn(T )fn

⟩
We have Γ(T ), dΓ(T ) ∈ L((E)β), for all 0 ≤ β < 1.

Lemma 5.11. Let {Ωθ}θ∈R be a differentiable one parameter subgroup of GL(X)

with infinitesimal generaor Ω′. Then, for all n ∈ N,
{
Ω⊗n

θ

}
θ∈R is a differentiable

one parameter subgroup of GL(X⊗n) with

d

dθ

∣∣
θ=0

Ω⊗n
θ = γn(Ω

′)

Proof. We show the case n = 2. The general case is similar. It holds

Ωθ ⊗ Ωθ = (Ωθ ⊗ Id) ◦ (Id⊗ Ωθ)

Now apply Proposition 5.9 □

Proposition 5.12. Let 0 ≤ β < 1. Further let {Ωθ}θ∈R be a differentiable one
parameter subgroup of GL(EC) with infinitesimal generator Ω′. Then Γ(Ωθ)θ∈R is
a differentiable one-parameter subgroup of GL((E)β) with infinitesimal generator
dΓ(Ω′).

Proof. Note that for 0 ≤ β < 1, the sequence (α(n))n∈N0 with α(n) := n!β fullfills
the conditions of [5, Theorem 4.2, p.696], where a detailed proof, based on the
characterization theorem, is given. On the other hand the expected result is easily
seen by Lemma 5.11. □

For a similar statement like Proposition 5.12, see [12, 5.4.5, p. 130-131].

Proposition 5.13. Let {Ωθ}θ∈R be a differentiable one parameter subgroup of
GL(EC). Furthermore let r ∈ N, 1 > β ≥ max(0,r−2)

r and κ0,r ∈ (E⊗r
C )∗sym.

Then
{
exp(Ξ0,r((Ω

⊗r
θ )∗κ0,r))

}
θ∈R ⊂ GL((E)β) is an in zero differentiable fam-

ily of operators with

d

dθ

∣∣
θ=0

exp(Ξ0,r((Ω
⊗r
θ )∗κ0,r)) = Ξ0,r((γr(Ω

′))∗κ0,r) ◦ exp(Ξ0,r((κ0,r)).

Proof. First, because R is a metric space, it is enough to consider sequential
convergence, i.e. the limit process for any arbitrary sequence (θn)n∈N in R with
lim

n→∞
θn = 0. Consider the sequence

{
exp⋄

⟨
: x⊗r :, (Ω⊗r

θn
)∗κ0,r

⟩}
n∈N. Then the

limit process will be transferred to L((E)β , ((E)β)) by continuity, using Theorem
4.7. Now let (θn)n∈N be an arbitrary sequence in R with lim

n→∞
θn = 0 and θn ̸= 0

for all n ∈ N. Further define

φn :=
exp⋄(

⟨
: x⊗r :, (Ω⊗r

θn
)∗κ0,r

⟩
)− exp⋄(⟨: x⊗r :, κ0,r⟩)

θn
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for all n ∈ N. Then, by Lemma 3.3, we have φn ∈ (E)∗β for all n ∈ N. We verify
the conditions of Theorem 3.2.

Let ξ ∈ EC. Then for all n ∈ N

S(φn)(ξ) =
exp(

⟨
κ0,r, (Ω

⊗r
θn

)ξ⊗r
⟩
)− exp(⟨κ0,r, ξ⊗r⟩)

θn

First note that for all n ∈ N the S-transform S(φn) is entire holomorphic. By
Lemma 5.11 and Proposition 5.5 we obtain

{
Ω⊗r

θ

}
θ∈R as a regular one-parameter

subgroup of (E⊗r
C )sym with

d

dθ
Ω⊗r

θ = γr(Ω
′)Ω⊗r

θ .

Hence the function θ 7→
⟨
κ0,r, (Ω

⊗r
θ )ξ⊗r

⟩
is infinitely often differentiable on R

and the same holds for θ 7→ exp(
⟨
κ0,r, (Ω

⊗r
θ )ξ⊗r

⟩
) as composition of two infinitely

many differentiable functions with
d

dθ
exp(

⟨
κ0,r, (Ω

⊗r
θ )ξ⊗r

⟩
) =

⟨
κ0,r, γr(Ω

′)Ω⊗r
θ ξ⊗r

⟩
· exp(

⟨
κ0,r, (Ω

⊗r
θ )ξ⊗r

⟩
)

Hence lim
n→∞

(S(φn)(ξ)) exists and we have:

lim
n→∞

S(φn)(ξ) =
⟨
κ0,r, γr(Ω

′)ξ⊗r
⟩
· exp(

⟨
κ0,r, ξ

⊗r
⟩
)

by the chain rule and Proposition 5.12.
For the growth estimate let p ≥ 0. Without loss of generality let |θn| < 1 for all

n ∈ N. Then, since {Ωθ}|θ|≤1 and {Ω′Ωθ}|θ|≤1 are compact by 5.6, there exists a
q ≥ 0 such that, ∀θ ∈ R, |θ| ≤ 1 we have |Ωθ(ξ)|p ≤ |ξ|p+q and |Ω′Ωθ(ξ)|p ≤ |ξ|p+q.
Then, by the mean value theorem and by Proposition 5.5 (ii) b), it follows for each
n ∈ N:

|S(φn)(ξ)| ≤ sup
|θ|≤1

∣∣⟨κ0,r, γr(Ω′)Ω⊗r
θ ξ⊗r

⟩
· exp(

⟨
κ0,r, (Ω

⊗r
θ )ξ⊗r)

⟩∣∣
≤ |κ0,r|−p · r |ξ|

r
p+q · exp(|κ0,r|−p · |ξ|

r
p+q))

≤ |κ0,r|−p · r(r!) · exp((1 + |κ0,r|−p) · |ξ|
r
p+q))

≤ |κ0,r|−p · r(r!) · exp((1 + |κ0,r|−p) · (1 + |ξ|
2

1−β

p+q )),

for all 1 > β ≥ max(0,r−2)
r . The claim is a consequence of Theorem 4.7. □

The same idea as in the proof of Proposition 5.13 combined with Theorem 5.8
leads to the following result.

Proposition 5.14. Let r ∈ N, 1 > β ≥ 1
r max(0, r − 2). Further let φ ∈ (E)∗β

with φ ∼ (φ0, · · · , φr, 0, 0, 0, · · · ). Define Ξθ := exp(θ Cφ) for θ ∈ R. Then
{Ξθ : θ ∈ R} is a regular one parameter subgroup of GL((E)β) with infinitesimal
generator Cφ.

Example 5.15. Let y ∈ E∗. As simple example consider the operator Ξ0,1(y).
Recall that Dy = Ξ0,1(y) and the translation operator Ty = exp(Dy).

Let z ∈ C. From z∆G = Ξ0,2(zτ), where τ is the trace operator, we conclude
that exp(z∆G) ∈ L((E)β , (E)β), for all 0 ≤ β < 1.
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6. Generalized Wick Tensors and an Application

Our goal in this section is to rewrite Fourier-Gauss transforms as second quan-
tization operators. This will be accomplished by suitable basis-transformations
which will be explicitly calculated. For this purpose we introduce generalized
Wick tensors. In this context Fourier-Gauss transforms appear as second quanti-
zation operators of the form

{
Γκ0,r (Ωθ)

}
. As an application we deduce explicitly

the regular one parameter groups corresponding to the infinitesimal generators
a∆G + bN .

First we repeat some definitions. Let a, b ∈ C, 0 ≤ β < 1. The Fourier-Gauss
transform Ga,b(φ) of φ ∈ (E)β is defined to be the function

Ga,b(φ)(y) =

∫
E∗

φ(ax+ by) dµ(x)

The Fourier-Gauss transform is in L((E)β , (E)β) and the operator symbol is given
by

Ĝa,b(ξ, η) = exp

[
1

2

(
a2 + b2 − 1

)
⟨ξ, ξ⟩+ b ⟨ξ, η⟩

]
, for all ξ, η ∈ EC

see e.g. [10, Theorem 11.29, p. 168-169]. Hence

Ga,b = Γ(b Id) ◦ exp(1
2
(a2 + b2 − 1)∆G)

By [10, Lemma 11.22, p. 163] the operator symbol of the Fourier transform is
given by

F̂(ξ, η) = exp(−i ⟨ξ, η⟩ − 1

2
⟨η, η⟩), for all ξ, η ∈ EC.

Consequently

F = exp(−1

2
∆G)

∗ ◦ Γ(−i Id)

Moreover the operator symbol of the Fourier-Mehler transform is given by

F̂θ(ξ, η) = exp(eiθ ⟨ξ, η⟩+ i

2
eiθ sin θ ⟨η, η⟩), for all ξ, η ∈ EC, θ ∈ R,

see e.g. [10, 11., p. 180]. Thus the Fourier-Mehler transform is given by the formula

Fθ =

[
exp(

i

2
eiθ sin θ ∆G)

]∗
◦ Γ(eiθ Id).

In the following let Gθ denote the adjoint of the Fourier-Mehler transform Fθ.
Finally by [12, Proposition 4.6.9, p. 105] the operator symbol of the scaling

operator is given by

Ŝλ(ξ, η) = exp
(
(λ2 − 1) ⟨ξ, ξ⟩ /2 + λ ⟨ξ, η⟩

)
, for all ξ, η ∈ EC, λ ∈ C.

and consequently

Sλ = Γ(λ Id) ◦ exp
(
λ2 − 1

2
∆G

)
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Definition 6.1. Let m ∈ N and κ0,m ∈ ((EC)
⊗m)∗sym. For x ∈ E∗ we define the

renormalized tensor power : x⊗n :κ0,m as follows:

: x⊗n :κ0,m=

⌊ n
m⌋∑

k=0

n!

(n−mk)!k!
·
(
−1

2

)k

· x⊗(n−mk) ⊗̂ (κ0,m)
⊗̂k

For the usual tensor power x⊗n, x ∈ E∗ it holds the following relation:, see [12,
Corollary 2.2.4, p. 25]

x⊗n =

⌊n
2 ⌋∑

k=0

n!

(n− 2k)!k!
·
(
1

2

)k

· : x⊗(n−2k) :τ ⊗̂ (τ)
⊗̂k

As a simple example we have for x ∈ E the relation : x⊗n : = : x⊗n :τ . More
usually is the abbreviation : x⊗n :σ2

def
= : x⊗n :σ2τ .

Note that κ0,m = 0 is permitted, e.g. : x⊗n :0= x⊗n. But we don’t permit
m = 0.

There exists Θ in L((E), (E)) defined by Θ(exp(⟨., ξ⟩)) := Φξ, see e.g. [10,
Theorem 6.2]. Since

∫
E∗

Φξ dµ = 1 we call Θ the renormalization operator.

Proposition 6.2. (i) Θ = exp(− 1
2∆G)

(ii) For all fm ∈ (E⊗m
C )sym we have:

Θ(
⟨
x⊗m, fm

⟩
) =

⟨
: x⊗m :, fm

⟩
Proof. By Corollary 4.5 we have for all ξ ∈ EC:

exp(
1

2
∆G)Φξ = exp(

1

2
⟨ξ, ξ⟩)Φξ

= exp(
1

2
⟨ξ, ξ⟩) exp(−1

2
⟨ξ, ξ⟩)e⟨.,ξ⟩

= e⟨.,ξ⟩

By Proposition 5.14 Θ is invertible and the first statement is proved. To proof the
second, let m ∈ N0. Note that for m < 2n we have

Ξ0,2n(τ
⊗n)(

⟨
: x⊗m :, fm

⟩
) = 0,

further Θ−1 = exp( 12∆G) =
∞∑

n=0

1
2nn!Ξ0,2n(τ

⊗n). Let m ≥ 2n and δi,j be the

Kronecker symbol. Then by [12, Proposition 4.3.3, Eq. (4.23), p. 82] it holds:

Ξ0,2n(τ
⊗n)(

⟨
: x⊗m :, fm

⟩
) =

∞∑
k=0

(k + 2n)!

k!
(
⟨
: x⊗k :, τ⊗n ⊗2n δk+2n,m · fm

⟩
)

=
m!

(m− 2n)!

⟨
: x⊗m−2n :, τ⊗n ⊗2n fm

⟩
=

m!

(m− 2n)!

⟨
: x⊗m−2n : ⊗ τ⊗n, fm

⟩
=

m!

(m− 2n)!

⟨
: x⊗m−2n : ⊗̂ τ ⊗̂n, fm

⟩
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where the last equation is due to the symmetricity of fm. Then

exp(
1

2
∆G)(

⟨
: x⊗m :, fm

⟩
) =

⟨⌊m
2 ⌋∑

n=0

m!

(m− 2n)!n!2n
: x⊗m−2n : ⊗̂ τ ⊗̂n, fm

⟩
=
⟨
x⊗m, fm

⟩
,

compare also[12, Corollary 2.2.4]. □

Note that e⟨·,ξ⟩ ∈ (E) since Φξ ∈ (E).

Corollary 6.3. Let ξ ∈ EC. Then the series e⟨·,ξ⟩ =
∞∑

n=0

1
n! ⟨., ξ⟩

n converges in

(E).

Proof. Let ξ ∈ EC. Since

Φξ =

∞∑
n=0

1

n!

⟨
: x⊗n :, ξ⊗n

⟩
converges in (E) also

exp(
1

2
∆G)Φξ =

∞∑
n=0

1

n!

⟨
x⊗n, ξ⊗n

⟩
converges in (E). □

The following proposition generalizes Proposition 6.2.

Proposition 6.4. Let r ∈ N and κ0,r ∈ ((EC)
⊗r)∗sym. For all fm ∈ (E⊗m

C )sym we
have:

exp(−1

2
Ξ0,r(κ0,r))(

⟨
x⊗m, fm

⟩
) =

⟨
: x⊗m :κ0,r , fm

⟩
Proof. Let m ∈ N0. Note that for m < rn we have

Ξ0,rn(κ
⊗n
0,r )(

⟨
: x⊗m :, fm

⟩
) = 0,

further exp(− 1
2Ξ0,r(κ0,r)) =

∞∑
n=0

1
n! (−

1
2 )

nΞ0,rn(κ
⊗n
0,r ). Let m ≥ rn and δi,j be

the Kronecker symbol. Then by Theorem 4.7 and Proposition 6.2, using [12,
Proposition 4.3.3, Eq. (4.23), p. 82], we have:

Ξ0,rn(κ
⊗n
0,r )(

⟨
x⊗m, fm

⟩
) = exp(

1

2
∆G) ◦ Ξ0,rn(κ

⊗n
0,r )(

⟨
: x⊗m :, fm

⟩
)

= exp(
1

2
∆G)

∞∑
k=0

(k + rn)!

k!
(
⟨
: x⊗k :, κ⊗n

0,r ⊗rn δk+rn,m · fm
⟩
)

=
m!

(m− rn)!

⟨
x⊗m−rn, κ⊗n

0,r ⊗rn fm
⟩

=
m!

(m− rn)!

⟨
x⊗m−rn ⊗ κ⊗n

0,r , fm
⟩
=

m!

(m− rn)!

⟨
x⊗m−rn ⊗̂ κ⊗̂n

0,r , fm

⟩
where the last equation follows because fm is symmetric.
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Then by the above definition we have:

exp(−1

2
Ξ0,r(κ0,r))(

⟨
x⊗m, fm

⟩
) =

⟨⌊m
r ⌋∑

n=0

m!

(m− rn)!n!
(−1

2
)nx⊗m−rn ⊗̂ κ⊗̂n

0,r , fm

⟩
=
⟨
: x⊗m :κ0,r , fm

⟩
□

Notation 6.5. In the following we use 0 · τ in order to express that we consider
0 ∈ (E⊗2)∗.

Theorem 6.6 (Representation theorem). Let r ∈ N, 1 > β ≥ max(0,r−2)
r and

κ0,r ∈ ((EC)
⊗r)∗sym. Then each (φn)n∈N0 ∼ φ ∈ (E)β has a unique decomposition

φ(x) =
∞∑

n=0

⟨
: x⊗n :κ0,r , (ψn)κ0,r

⟩
, for all x ∈ E∗

with (ψn)κ0,r ∈ (E⊗n
C )sym, which we denote as κ0,r - representation of φ.

Proof. First note that φ has a unique Wiener-Itô chaos decomposition (φn)n∈N0 ,
see e.g. [12, Theorem 3.1.5]. Then the existence and uniqueness of the above
representation follows by the bijectivity of exp(− 1

2∆G) ◦ exp( 12Ξ0,r(κ0,r)). Recall
Corollary 4.8 and the following chain of mappings:⟨

: x⊗n :κ0,r , φn

⟩ exp( 1
2Ξ0,r(κ0,r))7−→

⟨
x⊗n, φn

⟩ exp(− 1
2∆G)

7−→
⟨
: x⊗n :, φn

⟩
□

Remark 6.7. The S-transform of φ ∈ (E) is a restriction of the 0τ - representation
of exp( 12∆G)φ from E∗ to E.

Note that we do not claim that the above decomposition is an orthogonal de-
composition with respect to the measure µ, like the chaos decomposition. We
claim only the uniqueness.

Definition 6.8. Let r ∈ N, 1 > β ≥ max(0,r−2)
r , κ0,r ∈ (E⊗r

C )∗sym. For T ∈
L((E)β , (E)β), we define:

Tκ0,r := exp(
1

2
(∆G − Ξ0,r(κ0,r)) ◦ T ◦ exp(−1

2
(∆G − Ξ0,r(κ0,r)))

Tκ0,r is called the renormalization of T corresponding to κ0,r. Obviously Tκ0,r ∈
L((E)β , (E)β). For Ω ∈ L((E)β) we abbreviate

Γκ0,r (Ω) := (Γ(Ω))κ0,r ,

dΓκ0,r (Ω) := (dΓ(Ω))κ0,r .

Remark 6.9. It is clear, that Tκ0,r acts formally on white noise test functions in κ0,r
- representation like T on white noise test functions in the standard representation
as Boson Fock space. We precise this statement by the following proposition.
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Proposition 6.10. Let r ∈ N, 1 > β ≥ max(0,r−2)
r , κ0,r ∈ (E⊗r

C )∗sym. For

T ∈ L((E)β , (E)β) and φ ∈ (E)β with φ =
∞∑

n=0
⟨: x⊗n :, fn⟩, we use the notation

T (φ) =
∞∑

n=0
⟨: x⊗n :, (fn)T ⟩. Then it follows:

Tκ0,r (

∞∑
n=0

⟨
: x⊗n :κ0,r , fn

⟩
=

∞∑
n=0

⟨
: x⊗n :κ0,r , (fn)T

⟩
Proof. The expression

∞∑
n=0

⟨
: x⊗n :κ0,r , fn

⟩
is well defined because

∞∑
n=0

⟨
: x⊗n :κ0,r , fn

⟩
= exp(−1

2
Ξ0,r(κ0,r)) ◦ exp(

1

2
∆G)(

∞∑
n=0

⟨
: x⊗n :, fn

⟩
).

By Corollary 3.4 and Theorem 4.7 we have

exp(−1

2
(∆G − Ξ0,r(κ0,r))) = exp(−1

2
∆G) ◦ exp(

1

2
Ξ0,r(κ0,r)).

Then using Proposition 6.2 and Proposition 6.4, the claim follows with the same
idea as in the proof of Theorem 6.6. □

The following formula is suitable for the calculation of renormalized second
quantization operators. Recall that for all T ∈ L(EC, EC), we have Γ(T ) ∈
L((E)β , (E)β), where 0 ≤ β < 1.

Corollary 6.11. Let r ∈ N, 1 > β ≥ max(0,r−2)
r , κ0,r ∈ (E⊗r

C )∗sym. Then for all
T ∈ L(EC, EC) we have

Γκ0,r (T ) = Γ(T ) ◦ exp(1
2
Ξ0,2((T

⊗2 − Id⊗2)∗(τ)))

◦ exp(−1

2
Ξ0,r((T

⊗r − Id⊗r)∗(κ0,r))).

Proof. On the one hand we calculate

Γ(T ) ◦ exp(1
2
Ξ0,2((T

⊗2 − Id⊗2)∗(τ))) ◦ exp(−1

2
Ξ0,r((T

⊗r − Id⊗r)∗(κ0,r)))Φξ

= (exp(
1

2

⟨
τ, (T⊗2 − 1)ξ⊗2

⟩
)) · (exp(−1

2

⟨
(κ0,r), (T

⊗r − 1)ξ⊗r
⟩
))ΦTξ

On the other hand by Definition 6.8

Γκ0,r (T )(Φξ)

= exp(
1

2
(∆G − Ξ0,r(κ0,r))) ◦ Γ(T ) ◦ exp(−

1

2
(∆G − Ξ0,r(κ0,r)))(Φξ)

= exp(−1

2
(
⟨
ξ, ξ > − < κ0,r, ξ

⊗r
⟩
)) · exp(1

2
(∆G − Ξ0,r(κ0,r)))(ΦTξ)

= exp(−1

2
(
⟨
ξ, ξ > − < κ0,r, ξ

⊗r
⟩
)) · exp(1

2
(⟨Tξ, Tξ⟩ −

⟨
κ0,r, (Tξ)

⊗r
⟩
))ΦTξ

= (exp(
1

2

⟨
τ, (T⊗2 − 1)ξ⊗2

⟩
)) · (exp(−1

2

⟨
(κ0,r), (T

⊗r − 1)ξ⊗r
⟩
))ΦTξ

□
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We consider some concrete examples to Corollary 6.11.

Example 6.12. Let b ∈ C, θ ∈ R and κ0,2 ∈ (E⊗2
C )sym. Then

(i)

Γκ0,2(b Id) = Γ(b Id) exp(
1

2
(b2 − 1)Ξ0,2(τ − κ0,2))

(ii)
Γκ0,2(e

iθ Id) = Γ(eiθ Id) ◦ exp
(
i · eiθ sin θ Ξ0,2(τ − κ0,2)

)
(iii)

Γ 1
2 τ
(eiθId) = Γ(eiθId) ◦ exp

(
i

2
eiθ sin θ∆G

)
By [12, Lemma 5.6.1, p.140] we conclude that Γ 1

2 τ
(eiθ Id) is the adjoint operator

of the Fourier-Mehler transform Fθ.

The next example gives conditions under which the Fourier-Gauss transforms
are renormalized second quantization operators.

Example 6.13. Let a, b ∈ C and b /∈ {−1, 1}. Choose σ with σ2 = a2

1−b2 . Then

Γσ2τ (b Id) = Ga,b

Which follows immediately by Example 6.12(i) with κ0,2 = σ2τ .

Remark 6.14. In the special case a = 0, we have for the scaling operator Sb :=
G0,b = Γ0τ (b Id), i.e. Sb(⟨x⊗n, fn⟩) = ⟨x⊗n, bn · fn⟩ for all n ∈ N0, fn ∈ (E⊗n

C )sym.
With a, b ∈ C, b /∈ {−1, 1} and σ2 = a2

1−b2 , we have

Γσ2κ0,2
(b Id) = Γ(b Id) ◦ exp(1

2

[
a2Ξ0,2(κ0,2) + (b2 − 1) ∆G

]
)

Theorem 6.15. Let {Tθ}θ∈R be a differentiable one parameter subgroup of GL(EC)

with infinitesimal generator T ′. Further let r ∈ N, 1 > β ≥ max(0,r−2)
r and

κ0,r ∈ (E⊗r
C )∗sym. Then

{
Γκ0,r

(Tθ)
}
θ∈R is a regular one parameter subgroup of

GL((E)β) with

dΓκ0,r (T
′) =

d

dθ

∣∣
θ=0

Γκ0,r (Tθ) = dΓ(T ′) +
1

2
Ξ0,2(γ2(T

′)∗τ)− 1

2
Ξ0,r(γr(T

′)∗κ0,r)

Proof. By Corollary 6.11 we have

Γκ0,r (Tθ) = Γ(Tθ) ◦ exp(
1

2
Ξ0,2((T

⊗2
θ − Id⊗2)∗(τ)))

◦ exp(−1

2
Ξ0,r((T

⊗r
θ − Id⊗r)∗(κ0,r))).

First note that (G◦Γ(Tθ)◦G−1)θ∈R is obviously a regular one-parameter subgroup
of GL((E)β) for all G ∈ GL((E)β).

Consequently (Γ0τ (Tθ))θ∈R, with

Γ0τ (Tθ) = Γ(Tθ) ◦ exp(
1

2
Ξ0,2((T

⊗2
θ − Id⊗2)∗(τ))),

is a regular one-parameter subgroup of GL((E)β). Because
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Γκ0,r (Tθ) =

[
Γ(Tθ) ◦ exp(

1

2
Ξ0,2((T

⊗2
θ − Id⊗2)∗(τ)))

]
◦ exp(−1

2
Ξ0,r((T

⊗r
θ − Id⊗r)∗(κ0,r))),

the claim follows by Proposition 5.9, then Proposition 5.12 and Proposition 5.13.
□

Corollary 6.16. Let a, b ∈ C and b ̸= 0. Then

bN(1− a
b )τ

=
d

dθ

∣∣
θ=0

Γ(1− a
b )τ

(ebθ Id) = a∆G + bN.

Proof. By [12, Proposition 4.6.13., p.107] we have N := Ξ1,1(τ) = dΓ(Id). Because
bId is the infinitesimal generator of

{
ebθId

}
θ∈R, it follows by Proposition 5.12 that

d

dθ

∣∣
θ=0

(Γ(ebθ Id)) = dΓ(b Id) = Ξ1,1(bτ) = bN,

for b ∈ C.
On the other hand, in the general case r ∈ N, 1 > β ≥ max(0,r−2)

r and κ0,r ∈
(E⊗r

C )∗sym, it holds from Theorem 6.15, with T ′ = Id, that

Nκ0,r =
d

dθ

∣∣
θ=0

Γκ0,r (e
θId) = N +∆G − r

2
Ξ0,r(κ0,r). (6.1)

Multiplicating both sides with b, the claim is immediate with κ0,r = (1− a
b )τ . □

Remark 6.17. Let b ̸= 0. The regular one-parameter subgroup{
Γ(1− a

b )τ
(ebθ Id)

}
θ∈R

⊂ GL((E)β), 0 ≤ β < 1

can, Example 6.13, be identified as the Fourier-Gauss transforms
{
Gx,ebθ

}
, where

x2 = (1− a
b )(1− e2bθ).

The case b = 0 is solved by 5.14. We get
{
G√

2aθ,1

}
as solution.

Note, that the special choice of x from x2 has no influence, because
{
Gx,ebθ

}
only depends on x2 and ebθ.

We summarize this discussion using the definition of the Fourier-Gauss trans-
form in [10, Definition 11.24, p. 164]. The following theorem is a generalization
of the Mehler formula for the Ornstein-Uhlenbeck semigroup, see e.g. [7, p. 237]

Theorem 6.18. Let a, b ∈ C, 0 ≤ β < 1. Then a ·∆G + b ·N is the infinitesimal
generator of the following regular transformation group {Pa,b,t}t∈R ⊂ GL((E)β):

(i) if b ̸= 0 then for all φ ∈ (E)β , t ∈ R:

Pa,b,t(φ) =

∫
E∗

φ(

√
(1− a

b
)(1− e2bt) · x+ ebt · y) dµ(x)

(ii) if b = 0 then φ ∈ (E)β , t ∈ R:

Pa,0,t(φ) =

∫
E∗

φ(
√
2at · x+ y) dµ(x)
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On an informal level the second case of the above theorem may be considered
as a special case of the first one. Note that by the rules of l’Hôpital we have
lim
b→0

(b− a) 1−e2bt

b = 2at.

7. Summary and Bibligraphical Notes

The investigation of regular transformation groups in this manuscript can be
compared with [3], where t a two-parameter transformation group G on the space
of white noise test functions (E) was conctructed, which includes the adjoints
of Kuo’s Fourier and Kuo’s Fourier-Mehler transforms. Their description of a
differentiable one-parameter subgroup of G whose infinitesimal generator is a∆G+
bN is identical with our findings. However using the unique representation of white
noise test functions via generalized Wick tensors and corresponding renormalized
operators we have presented a different way which leads to a more general result
for the spaces (E)β . Using convolution operators and the fact that differentiable
one parameter transformation groups on nuclear Fréchet spaces are always regular,
convergence problems could be solved.
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