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Abstract—Recently, it has been widely accepted by the research
community that interactions between humans and cyber-physical
infrastructures have played a significant role in determining the
performance of the latter.

The existing paradigm for designing cyber-physical systems
for optimal performance focuses on developing models based on
historical data. The impacts of context factors driving human
system interaction are challenging and are difficult to capture
and replicate in existing design models. As a result, many existing
models do not or only partially address those context factors
of a new design owing to the lack of capabilities to capture
the context factors. This limitation in many existing models
often causes performance gaps between predicted and measured
results. We envision a new design environment, a cyber-physical
human system (CPHS) where decision-making processes for
physical infrastructures under design are intelligently connected
to distributed resources over cyberinfrastructure such as experi-
ments on design features and empirical evidence from operations
of existing instances. The framework combines existing design
models with context-aware design-specific data involving human-
infrastructure interactions in new designs, using a machine
learning approach to create augmented design models with
improved predictive powers.

Index Terms—context factors, immersive virtual reality,
human-system interaction, design, cyber-physical systems, artifi-
cial intelligence

I. INTRODUCTION

Design (including engineering) is a key component for
creating a virtuous cycle between existing and future infras-
tructure systems. Cyber-physical Infrastructure designs define
their characteristics and functions according to goals and con-
texts of a project. Cyber-physical infrastructure performance
is an important factor during design that needs significant
attention of designers and engineers. Recently, it has been
widely accepted by the research community that interac-
tions between humans and cyber-physical infrastructures have
played a significant role in determining the performance of the
latter [1]. For example, while designing an energy efficient
building, one has to take into account the behavior of the
human users [2]. However, human behavior depends on many

This research was supported by Transportation Consortium of South-Central
States (Tran-SET) Award No 18ITSLSU09/69A3551747016. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the sponsor.

context-dependent factors such as ethnic origin, gender, social
status, political alignment, social connections, type of house,
marital status, educational background, financial condition,
etc [3]. Occupants interactions with building systems such
as heating, ventilation, and air conditioning (HVAC), lighting,
blinds, windows, and electronic appliances depend on various
context factors [4]. Since each building or occupant is unique,
designing buildings, by optimizing performance with respect
to human-building interactions, seems paradoxical. However,
improved methods for building design, optimizing perfor-
mance, bears significant social, economic, and environmental
consequences. The existing paradigm of designing buildings
for optimal performance focuses on developing models based
on historical data. The impacts of context factors driving
human building interaction are challenging and are difficult
to capture and replicate in design models. As a result, many
existing models do not or only partially address those context
factors of a new design owing to the lack of capabilities to
model the context factors accurately [5]. This limitation in
many existing models often causes performance gaps between
predicted and measured results.

Similar is the case for transportation networks. Traffic
management models that include routing choice [6] form the
basis of traffic management systems. These models provide
crucial inputs towards predicting traffic volumes on differ-
ent routes and hence inform government policies for design
and construction of new transportation artifacts as well as
for designing effective traffic management mechanisms that
ensure minimum traffic delays and maximum usage of existing
transport systems. High Fidelity models that are based on
rapidly evolving contextual conditions can have a significant
impact on smart and energy efficient transportation. Currently,
existing traffic/route choice models are generic and are cal-
ibrated on static contextual conditions [7]. These models do
not consider evolving contextual factors such as the location,
failure of certain portions of the road network, the social
network structure of population inhabiting the region (socio-
cultural and economic background), route choices made by
other drivers, events, extreme conditions, etc. As a result,
the models predictions are made at an aggregate level and
for a predetermined set of contextual conditions. One needs
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to develop higher fidelity models wherein subjective and
contextual factors are captured [8] for making effective design
and management decisions for transportation systems.

A. Context-Aware Design: The Case for Future Data

Imagine you are the head of the State of Louisiana, Depart-
ment of Transportation. You are considering the creation of a
light rail system between French Quarter, New Orleans and
the Garden district to reduce the average travel time between
these two places. The project will cost more than a hundred
million dollars. The money will be well-spent and the project
will be successful if there is a considerable user-base for the
system and it reduces the average travel time. How do you
predict if people will use the system or whether it will reduce
the average travel time? Of course, the only way of reliable
prediction is based on data. How do you collect such data? The
light-rail system does not even exist so that you can let people
use it to collect data. Creating even a rudimentary system to
collect data will cost millions of dollars (that can possibly be
wasted if the system doesn’t find enough usage). Of course,
there are similar systems elsewhere in the country (Norfolk,
VA, Philadelphia, PA, etc.). Data can certainly be collected
from these. However, ridership depends on context; in general
any phenomenon where human behavior is involved depends
on context. The context in New Orleans may be different from
those in places like Norfolk, Philadelphia and others. As a
result, predictions based on data collected at other places may
not closely reflect the ground truth at New Orleans.

The above scenario happens in many endeavors. Consider
the case of designing an energy efficient building as discussed
above. You have to take into account the behavior of the
human users. Or suppose that you are designing the disaster
evacuation policy for your city [9]. In both these cases, data
about human interaction with the system under design will
only be available in the future after the system has been
implemented. Also in both cases, the design of the system
needs to take into account the human system interaction that
affects the performance.

Traditional AI techniques tend towards an “average” that
minimizes a loss function [10]. However, human behavior
depends on many context-dependent factors such as race,
gender, social status, political alignment, social connections,
marital status, educational background, financial condition,
etc. Both energy usage and evacuation, as mentioned above,
depend strongly on human behavior. So an AI-based decision
that ignores context (as for example a special occupational
background) will be a poor predictor. Similarly, traditional
game theory considers agents to be perfectly rational and
therefore are not able to predict accurately in context depen-
dent situations. However, collecting data on how these context
dependent factors influence human behavior requires creating
the building in the former case while in the latter case it
requires creating disasters; both extremely expensive.

Traditional AI has in the recent years focused on Bigdata.
The assumption is that a large volume of labeled data is

Fig. 1: A CPHS to Support Human-Centered Design

available. But in the situations shown above, acquiring such
data at design time may be expensive and infeasible.

B. The CPHS Framework

We envision a new design environment, a cyber-physical
human system (CPHS) where decision-making processes for
physical infrastructures under design are intelligently con-
nected to distributed resources over cyberinfrastructure such
as experiments on design features and empirical evidence
from operations of existing instances. With such a system,
design for performance (such as energy efficiency in buildings)
is no longer an isolated process heavily dependent upon
designers and engineers experience and interpretation of how
humans possibly interact with systems under design. Rather,
design becomes an inclusive process wherein designers and
engineers can dynamically sample existing infrastructures for
performance benchmarks and test their design features using
collaborative experiment facilities (Fig. 1). Therefore, the
CPHS involves different types of human, such as designers
who set performance criteria for infrastructures under design
and make decisions, users of existing infrastructures of the
same type where empirical operational data and performance
benchmarks are obtained, and participants of stated choice
experiments from whom designers and engineers can better
understand how design features impact human infrastructure
interactions in different contexts; the physical components of
the CPHS include experiment facilities and existing infrastruc-
tures; and the cyber component is a computational framework
to integrate empirical data (from existing infrastructures) and
experimental data (from experiments) in order to enhance
performance predictions and support decision-making during
design. A feedback loop exists among those components. First,
the designers and engineers set design criteria and initial per-
formance metrics. Then, the computation framework suggests
comparable infrastructures to search for. With the approval of
designers and engineers, initial performance benchmarks and



operational data can be derived. With input from designers
and engineers, a list of experiment variables and associated
contextual conditions for experiments are suggested by the
computational framework. After experiments, data specific to
design contexts are used by the computational framework to
optimize predictions of performance. After examining the pre-
dictions, designers and engineers can adjust the performance
metrics and design criteria to repeat the entire process, or a
partial process (i.e., between the cyber component and the
experiment facilities or the cyber component and existing
infrastructure).

In essence, our framework extends existing cyber-physical-
human system models by including future data to support
prediction and decision-making. This capability is essential
to design, although the framework uses performance design
as a focal point. A traditional CPHS deals with actual phys-
ical component to provide feedback to decision-making or
optimize its operations. In design, we often deal with con-
ditions where the physical component does not exist. Instead,
experiment facilities where virtual proxies of physical systems
under design are used to acquire targeted data (which serve
as proxies for the future data) to improve predictive models
developed based on data from existing systems. Therefore,
new AI techniques are needed to combine data from the
experiment cycle and the knowledge cycle. Human interactions
with selected design features are studied to understand its
potential to influence design decision-making.

II. MATHEMATICAL UNDERPINNINGS OF CPHS

A CPHS design is a set of design (random) vari-
ables {X1, . . . , Xn} assuming values in respective domains
D1, . . . , Dn, and a set of probability distributions π1, . . . , πn,
such that, for 1 ≤ i ≤ n, Xi ∼ πi, where the support of πi is
Di. Let Des be the class of CPHS designs. A CPHS design
specification is a mapping s : Des → R. In a buidling design,
for example, such a mapping can indicate energy savings
for a particular design. The CPHS design problem is: for
d ∈ Des with set of design (random) variables {X1, . . . , Xn}
assuming values in respective domains D1, . . . , Dn, such that
s(d) = c ∈ R and a (historical) data set Dat , estimate d.

To understand the mathematical underpinnings behind the
computational framework underlying future data CPHS, we
first start with the theoretical foundations of existing machine
learning paradigms.

A. The Two Existing Paradigms of Machine Learning

Consider a classification problem. Suppose that you have a
random variable X that takes values over an an infinite set X .
Let Y be another random variable that takes values over the
set {0, 1}. We assume that the probability distribution µ that
X follows is known (for example, it can be estimated through
a survey). Of course, there exists a target joint probability
distribution of (X,Y ). We are asked to design a function g : X
→ {0, 1}. The test error produced by the function is given
by err = P (g(X) 6= Y ) (P represents the unknown target
probability) where (X,Y ) follows the target joint distribution

of (X,Y ) [11]. The goal of machine learning is to synthesize
a function g∗ that minimizes this error. Mathematically, g∗ =
argming∈2X P (g(X) 6= Y ) [11]. Traditional machine learning
considers two cases.

B. Bayesian Case: Known Joint Distribution

The test error P (g(X) 6= Y ) depends on the target
distribution on (X,Y ). Let us first assume that this target
distribution is known. In this case, we call the test error,
Bayesian error [11]. Let η(x) = P (Y = 1 | X = x)
[11] where x ∈ X . Since the target distribution on (X,Y )
is known, the function η is known as well. In this case,
the test error for a function g ∈ 2X can be calculated as
1−E((Ig(X)=1η(X)+Ig(X)=0(1−η(X))) [11] where Ig(x)=1

is the indicator function for the set {x ∈ X | g(x) = 1}
and E is expectation [11]. In Bayesian machine learning, one
determines the optimal g∗ by minimizing this expression, i.e.,
by minimizing the Bayesian error. Rather than searching over
the infinite set 2X for an optimal g∗, one can show that the
following g∗ minimizes the Bayesian error [11].

g∗(x) = 1 if η(x) > 1/2
= 0 otherwise

[11].

C. Unknown Joint Distribution

The second paradigm of traditional AI considers the case
where the target distribution on (X,Y ) is unknown; but one
can efficiently draw random samples from this distribution.
In this case, one draws N random iid samples from this
distribution. Let S be the set of samples drawn. We call this set
S the training dataset. Since the target distribution on (X,Y )
is unknown, η is unknown as well. So we cannot determine
the error. However, we can determine the error restricted to
the training data. For a function g ∈ 2X , the training error is
given by trerr = |{x ∈ S | g(x) 6= y}|/|S|. Now Hoeffding’s
inequality states that for any ε > 0, P (|err − trerr | >
ε) ≤ 2exp(−2Nε2). So if the size of the training data is
sufficiently large, the training error closely tracks the test error
[10]. One can determine g∗ in this case by minimizing the
training error for a sufficiently large training dataset [10]. Thus
g∗ = argming∈2X |{x ∈ S | g(x) 6= y}|/|S|. This serves as
the foundation for supervised learning [10].

D. The New Machine Learning Paradigm for “Future Data”

As one can see, none of the two existing paradigms cover
the scenarios described in the Introduction. In the Bayesian
case, we assume that the target distribution on (X,Y ) is
known. In the second case, we assume that the target dis-
tribution on (X,Y ) is unknown but one can efficiently draw
random samples from it. The test error depends on the size of
the training dataset. In the scenarios described in the Introduc-
tion, the artifact about which we are predicting does not even
exist. Thus neither it is possible to know the target distribution
nor it is possible to efficiently draw random samples from
that distribution. Now we try to formalize the new paradigm.



Assume that we have a specification distribution π on X × Y
(specified by a specification function s) for which we know
the mean µ and the variance σ2. We are not allowed to draw
samples from π since that is either impossible or prohibitively
expensive. While we may not be able to draw random samples
from π, it may be possible to draw random samples from
unknown distributions that are close to π. More formally, let
π1, . . . , πk be k unknown auxiliary probability distributions
over (X,Y ) that are known to be within a distance α from
π (these distributions can arise from empirical operational
data or experimental data from stated choice experiments).
Here α is based on a suitable distance metric on probability
distributions such as Wasserstein distance, Prokhorov-Levy
distance, etc. Suppose that it is possible to efficiently draw
random samples from each πi where 1 ≤ i ≤ k (based
on virtual models of the original artifact, for example). Let
H ⊆ Y X be a hypothesis set of bounded continuous functions.
For a distribution f define the hypothesis loss function

L(f, π) = suph∈H|Ef (h(x))− Eπ(h(x))|.

From [12], it is known that L(f, π) = 0 iff π = f . We assume
that the hypothesis loss function is efficiently computable. For
simplicity, if we assume Y = X and H = {id}, where id is
the identity function, the loss function L(f, π) = |µf − µ|.

The following is an approximate CPHS design problem in
this new machine learning paradigm:

1) Let D be the class of all probability distributions over
X × Y . Given k auxiliary distributions f1, . . . , fk ∈ D,
that are within a distance α from a specification distribu-
tion π ∈ D with mean µ and variance σ2, with samples
available only from the auxiliary distributions, generate
a distribution π̂ such that L(π̂, π) < ε and the distance
between π̂ and π is bounded by a parameter β.

E. Learning from Contexts

Contexts can be described by predicates. Suppose we know
that the test data will come from a particular context. For
example, in case of the light rail system of New Orleans,
the possible users have a particular context. Let the predicate
ϕ(x) denote that context on the set X . The context-sensitive
test error for g ∈ 2X can then be defined by teerrcon =
P (g(X) 6= Y | (X,Y )Xϕ

) where we abuse notation to denote
by (X,Y )Xϕ

to denote the restriction of X to vary on the set
Xϕ = {x ∈ X | ϕ(x)}. Suppose that it is easy to draw random
samples from (X,Y ) but it is hard to extract samples from
the probability distribution (X,Y )Xϕ . How can we synthesize
a function g∗ that minimizes the context-sensitive test error?
One idea would be to approximate ϕ by a predicate ϕ′ such
that it is easy to draw random samples from (X,Y )Xϕ′ . Such a
predicate can for example be created in a virtual environment.

III. A PRACTICAL FRAMEWORK FOR CONTEXT-AWARE
DESIGN OF CPHS

Fig 2 shows the architecture of our CPHS framework. Ow-
ing to the lack of ability to accurately model human interaction
in existing design models for new designs, we present the

Fig. 2: Architecture of the CPHS Framework

CPHS framework to enhance the predictive power of designs
by appropriately combining existing designs (obtained from
historical performance data) with contextual knowledge of hu-
man interactions in a new design obtained from IVE (Immer-
sive Virtual Reality Environment) experiments [13]–[15]. Gen-
erative Adversarial Networks (GANs) [16] are used to generate
mixture models, that allow appropriate fusion of existing
designs and knowledge of human interactions as obtained from
stated choice IVE experiments, with performance targets as
guides. Experiments are conducted based on the mixture model
obtained in physical experiment facilities and the feedback
obtained is used for narrowing down/expanding/modifying the
set of highly specific influent contextual factors that should be
considered to improve predictions of the performance of the
system under design in the next iteration.

A. Identifying the contextual factors in human system interac-
tions

Context-aware design-specific data capture contextual fac-
tors [14] affecting a specific collection of events in a new
design. A designer may, for example, consider the way occu-
pants interact with light switches on arriving inside a building
in summer mornings to be of crucial importance to a design
purpose. In this case, the relevant contextual factor, namely,
summer mornings, should be explicitly present in a design
to record occupant interactions. The knowledge underlying
context-aware design-specific data helps augment an existing
design for better customization with respect to a new building
design context. To acquire context-aware design-specific data,
An IVE provides a mechanism for conducting stated choice
experiments for acquiring context-aware design-specific data,
e.g., occupants use of artificial lighting on a clear summer day.

B. Incorporate the identified contextual knowledge into exist-
ing design models for improved performance

A computational framework [17] based on generative ad-
versarial networks (GANs) [16] is yused to reduce the dis-



crepancy between design-time predictions of system perfor-
mance and that obtained during actual system operation by
fusing knowledge about human interactions with contextual
and design-specific factors of new systems under design with
that of existing instances. IVEs are used as platforms for
performing stated choice behavioral experiments to acquire
human-interaction data. The use of Generative Adversarial
Networks (GANs) enables learning to generate mixture models
that appropriately fuse existing design models with knowledge
of human interactions obtained from the stated choice exper-
iments on the IVE to create augmented design models with
enhanced predictive power. Performance targets and design
criteria, specified by a designer, are used as guides to achieve
appropriate combination. Performance targets can be obtained
from benchmarks in literature or can be based on standards
mandated by the Department of Energy or similar agencies
[18]. They can provide benchmarks for energy savings or
comfort levels and similar other metrics. A GAN consists
of two neural networks: a generator and a discriminator.
In our framework, the generator is provided as input two
data sets: a data set sampled from an existing design model
(called existing dataset) and that obtained from stated choice
human experiments from the IVE (called the IVE dataset). It
outputs a mixture probability distribution (called augmented
model; see Fig 2). The performance predictions obtained
from the augmented should be as close as possible to the
performance targets provided. The discriminator tries to dis-
criminate between the performance predictions obtained from
the augmented model produced by the generator and the per-
formance targets. The GAN is trained through a minimax game
between the generator and the discriminator, during which the
generator attempts to generate an augmented model whose
predictions are in conformance with the performance targets.
The discriminator attempts to determine if the predictions of
the augmented model conforms with the performance targets.
The training continues until a defined stopping criterion (max-
imum number of epochs or discrepancy measured between
the predictions of the augmented model and the targets is
below a threshold) is reached. Once training converges, the
distribution of the resulting generator is the augmented model.
The generator G using the existing dataset x and the IVE
dataset z as input learns to generate an appropriate mixture
of the two to meet the performance target. To learn a gen-
erator distribution πg , the generator learns a mapping func-
tion from product space the existing dataset (with empirical
probability distribution πx) and the IVE dataset (with the
empirical probability distribution piz) to the generator data
space G(x, z; θg) (where θg constitutes the parameters of G).
The discriminator D(G(x, z; θg); θd) (where θd represents the
parameters of the discriminator) will output a single scalar that
determines whether the performance targets are met or not. We
partially adapt the concept of conditional GANs [19] by using
information of input features of the generator as additional
inputs to the discriminator model.

C. A closed loop framework for improving building design
that uses feedback from physical experiments to identify high-
fidelity contextual factors to improve future design models

Contextual factors (e.g., occupancy status, short term leav-
ing, and work area illuminance, in case of light switching
predictions) have a different level of causal impact on pre-
dictions. Thus, it is important to consider feedback from
physical experiments to determine the relative importance, in
terms of causality [20], [21], of such factors. In addition, the
set of contextual variables considered may be incomplete or
inappropriate. Feedback from physical experiments can guide
the choice of high-fidelity contextual variables. To generate
feedback from physical experiments, we use causal analysis.
To the best of our knowledge, not much research has been
performed in applying Causal Analysis methods to understand
the influence of context factors on the performance of a
CPHS under design. Causal Analysis techniques enable us to
identify the contextual factors that influence a design and it
subsequently allows us to enhance design models that better
forecast the performance of a CPHS under design and also
to better understand human interactions. The main objective
is to conduct Causal Analysis of human interactions using
data collected from Stated Choice Experiments based on the
augmented model in a physical experiment facility. In causal
inference, we need to formally represent our assumptions
about causal relationship within data. This is achieved through
Graphical Models [20], [22]–[24]. Directed Acyclic Graphs
(DAGS) can model probability distributions underlying a data
set and provide the foundations of causal graphical models.
Causal assumptions are expressed using an iterative procedure
following three steps [25]. We use the contextual variables
from the augmented model and construct our pilot causal graph
based on that model. In the second step, since a causal graph
models testable implications, we can test our assumptions to
some extent using graphical criteria on the data collected from
the stated choice experiments in a physical experiment facility.
In the final step, we evaluate the pilot model. We modify our
graph according to the results obtained by testing the model
against data collected from Stated Choice Experiments in a
physical experiment facility. This modification involves intro-
ducing new context variables, removing redundant variables,
or modifying the relationship between variables by adding or
eliminating nodes and edges. After proper adjustments, we fi-
nalize the causal model for further causal inference procedure.
We can test the pilot causal model stated above by applying
the criterion of d-separation [20]. This enables checking if the
model conforms to the data. The basic idea of d-separation is
to identify the common causes and common effects that are
the sources of confounding and selection bias, and if present,
to block (or separate) their association flow in the path so that
we can estimate the actual causal effect. Average causal effects
can be determined from the difference of the values of counter-
factual outcomes [26], [27]. For counter-factual outcomes, we
use the contextual variables (for example occupancy status in
case of predicting light switching) in the augmented model



as treatments. To calculate the causal effect, we use inverse
probability (IP) weighting method [27]. The purpose of using
Inverse probability weight is to break the association between
the covariates and treatment. To determine the causal effect,
we create a logistic regression model, and then use its esti-
mated probability values as weights for further analysis. We
determine each variable’s causal effect on outcome, e.g., the
effect of occupancy status on light switching. To determine
the confounding variables, we pair every independent variable
with the outcome variable, separate non-causal paths between
them and select the confounding variables using graph surgery
techniques [28]. Results obtained from the causal analysis
described above (in particular the final causal graph and the
causal effect analysis) are sent back as feedback to the IVE
and will be used to design the IVE experiments in the next
iteration. The iterations continue until the difference between
the pilot causal model (from the augmented design model) and
the final causal model (after causal validation on the stated
choice experiment data from physical experiment facility) is
minimal or the designer is satisfied with the performance of
the augmented model.

D. Performance Targets

During design, designers take into account and trade-off
multiple factors (e.g., code compliance, comfort, cost, energy,
function, operation, occupancy characteristic, and sustainabil-
ity) to establish the goals and objectives of a system. In
fact, constructing performance targets depends on design goals
and objectives of the system. An alternative to constructing
performance targets is that designers may gather information
of important factors and estimate system performance with
respect to its goals and objectives. Designers or researchers
correlate such factors using statistical analysis such as regres-
sion models and use these models as performance targets.
For instance, to create a performance target of lighting us-
ages, designers or researchers collect information regarding to
building lighting designs, which may include historical human-
building lighting interaction in existing buildings, that have
similar characteristics as the building under design.

IV. A CASE STUDY OF CPHS: ENERGY-EFFICIENT
BUILDING DESIGN

A small case study describing the design of the lighting sys-
tem of an energy-efficient building using the CPHS framework
is presented below 1.

A. IVE Design

The IVE has been developed using the STED model [29].
The STED model consists of two structures, an event structure
and a spatial-temporal structure. The event structure organizes
critical events of a building lifecycle into a hierarchical struc-
ture according to research needs. For example, using lighting
as a case, a year can be divided into four seasons; each season
may be modeled using three scenarios, no artificial lighting,

1The case study received approval from the Institutional Review Board at
Louisiana State University

possible artificial lighting, and artificial lighting (i.e., based
on outdoor daylighting and the ASHREA standards 90.1 to
determine if indoor artificial lighting is necessary). A scenario
refers to a time point from 00:00 to 24:00. At each time point,
an office space configuration may be modeled according to
research needs. For example, we may consider two factors,
ceiling lights and blinds. Regardless of outdoor daylighting
conditions, there are four indoor configurations based on the
on/off status of the ceiling lights and the up/down status of
the blinds. On a bright spring morning, when indoor artificial
lighting may not be needed, the office space configuration
may have the ceiling lights off and blinds up, or ceiling
lights on and blinds up, or any other combinations. Since
the combination of daylighting scenarios and configurations
result in different levels of visual comfort inside the space,
it is expected that a subject will operate the lighting switch
differently. In this example, outdoor lighting conditions, occu-
pancy, and status of lighting and blinds are contextual factors
with respect to the Hunts model which only considers work
area illuminance level. If for a new design, some of those
contextual factors may potentially be significant, a method
to identify them and include them in a design evaluation is
critical.

The setup of the actual IVE experiments [17] were guided
by critical events in the data acquired from the physical
environment (e.g., arrival at the office, intermediate leaving,
coming back from intermediate leaving, and departure). Each
event corresponds to a tuple of values for the contextual factor
variables (e.g., indoor and outdoor illuminance, intermediate
leaving status, and occupancy status) in new-design buildings.
Occupants were presented with the contextual factors in event
based experiments. The occupants interactions with the light
switch were recorded. For example, the occupant turned on
the light when both indoor and outdoor were dark.

B. Data from IVE Experiments

A total of 180 data points [17] relating to occupant pref-
erences (lighting) and values of contextual factor variables
(indoor and outdoor illuminance, intermediate leaving status,
and occupancy status) were acquired from the IVE experi-
ments; 36 initial events before arrival at the office, 36 events
of arrival at the office, 18 events of intermediate short leave,
18 events of returning from the intermediate short leave, 18
events of intermediate long leave, 18 events of returning from
the intermediate long leave, and 36 events of departure.

C. Combining Existing Design Model with Data from IVE
experiments

We used the Hunt’s model [30] as the existing design
model based on historical data. The GAN-based computational
framework of CPHS combined this model with the knowledge
obtained from the data from IVE experiments with a perfor-
mance target as a guide to obtain an augmented model. For
the performance target, we use the probabilities of switching
on as provided by a probit model described in [31].
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Fig. 3: Result of Experiments. [17]

D. Experimental Results

Fig 3 [17] shows the experimental results from our case
study. It can be seen that the predictions of the augmented
design model are much closer to the performance target than
that of the existing design model (Hunt’s model).

V. RELATED WORK

Generative Adversarial Networks (GANs) were introduced
in [16]. GANs have applications in various areas especially
image optimization and generation [32]–[34]. The main pur-
pose of our research is to create augmented design models
whose predictions are close to the performance targets from
the mixture of existing predictive models supporting the design
process and the knowledge of human interactions with new
designs in response to contextual factors. GANs can be used
for generating mixture models to serve the purposes of our
research in the computational framework [17]. Deep learning
methods [35]–[41] can be used to enhance CPHS frameworks
by extracting information about physical contexts such as
terrain, outside environmental conditions, etc.

Causal inference has been used in the social and behavioral
sciences for developing and updating theories as well as
public policies [42], [43]. In [25], we used causal reasoning
for understanding drivers route choice behavior in context-
aware transportation systems. In the present framework, we
use causal models to assess the impact of contextual factors
on system performance. Based on this assessment, feedback
is generated that will be used in the next iteration to develop
design models with improved predictive powers. There has
been some work on understanding user preference behavior
in the context of human-robot interaction [44]. In previous
work [45], we used knowledge distillation to improve existing
route choice models in transportation systems by incorporating
context factors.

To acquire data specific to a design, the CPHS framework
provides an approach to study and record human-system
interaction during designs through a combination of immersive

virtual environments (IVEs) and machine learning. Stated
choice IVE experiments are appropriate for acquiring data
human-infrastructure interactions at design time due to several
factors. For instance, IVEs enable users to control confounding
and isolating variables of interest, to be immersed in their
settings, and to continually maintain variables of interest
during conducting experiments [46]. Heydarian et al. [47],
[48] and Saeidi et al. [49] used IVEs to study occupant
behaviors related to lighting and shade usages in buildings.
Chokwitthaya et al. [14], [15] explored using machine learning
to improve the prediction of artificial lighting usage during
design by combining an existing model with data from IVE
experiments. The examples show that IVEs have the potential
of replicating experiences in physical environments, acquiring
design specific data, and improving the prediction of human
interactions during design.

VI. CONCLUSIONS AND DISCUSSION

Even though the results of the study are promising, IVE-
based SCEs have their inherent limitations. Due to limitations
of IVE technologies, it is difficult to continuously collect
data on interaction of humans with cyber-physical systems.
Our current work is exploring the use of Shannon-Nyquist
sampling techniques to determine the optimal rate of sampling
for effective inference. Due to the expensive nature of the IVE
SCEs, we could only explore a limited set of scenarios. While
it showed the potential of the framework, there is scope for
computational bias and overfitting. In [45], we have attempted
to reduce the size of the model using knowledge distillation
to counter overfitting. However, more scenarios need to be
considered. In addition, bias-variance-cost trade-offs need to
be investigated. Also, due to the time and cost limitations,
only a small sample size of participants (180) was considered.
To this end, low shot and unsupervised [50], [51] learning
techniques need to be considered to learn from a small dataset.
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