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THE ITÔ CALCULUS AND WHITE NOISE THEORY: A BRIEF

SURVEY TOWARD GENERAL STOCHASTIC INTEGRATION

HUI-HSIUNG KUO*

Abstract. We give a brief survey on the Itô calculus and white noise theory
with the aim to extend the Itô theory of stochastic integration to stochastic

processes which may not be adapted. The Hitsuda–Skorokhod integral by
white noise methods provides only a partial extension of the Itô integral. A
new class of stochastic processes, called instantly independent, is introduced

and serves as a counterpart of adapted stochastic processes in the Itô theory.
Then a new stochastic integral is defined for linear combinations of products
of adapted and instantly independent stochastic processes. We explain recent
results on this new theory and mention several open problems for further

investigation and study.

1. A Simple Anticipating Stochastic Differential Equation

Let B(t) be a Brownian motion and let {Ft; t ≥ 0} be the associated filtration,
i.e., Ft = σ{B(s), 0 ≤ s ≤ t}. For a ≥ 0, consider the following stochastic
differential equation

dXt = Xt dB(t), Xa = ξ, t ≥ a, (1.1)

where ξ is Fa-measurable. It is well known that the solution of this equation is
given by

Xt = ξeB(t)−B(a)− 1
2 (t−a), t ≥ a. (1.2)

In particular, when a = 0 and ξ = x ∈ R, we have the solution

Xt = xeB(t)− 1
2 t, t ≥ 0. (1.3)

The stochastic process Xt, t ≥ 0, in Equation (1.3) is a martingale and a Markov
process. In fact, the martingale property and the Markov property are the two
guiding properties for which Itô developed the theory of stochastic integration in
the very beginning in 1942 [6].

Received 2014-5-30; Communicated by the editors.
2010 Mathematics Subject Classification. Primary 60H05, 60H40; Secondary 60H07, 60H20.
Key words and phrases. Brownian motion, Wiener integral, isometry, adapted stochastic

process, Itô integral, quadratic variation of Brownian motion, martingale, Itô’s formula, Markov
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Now, consider the modified stochastic differential equation

dYt = Yt dB(t), Y0 = B(1), t ≥ 0, (1.4)

where the initial condition Y0 = B(1) is anticipating. Clearly, this equation is not
within the Itô theory of stochastic integration. But then what is the solution of
this simple stochastic differential equation in Equation (1.4)?

We may try to use the iteration method to derive the solution. First consider

the case when 0 ≤ t ≤ 1. Let Y
(0)
t = B(1) and define

Y
(1)
t = B(1) +

∫ t

0

Y (0)
s dB(s)

= B(1) +

∫ t

0

B(1) dB(s).

Observe that the integral
∫ t

0
B(1) dB(s) is not an Itô integral since the integrand

B(1) is not adapted with respect to the filtration {Ft; t ≥ 0}. In §4 we will
introduce an extension of Itô integral and show in Equation (4.4) the following
stochastic integral ∫ t

0

B(1) dB(s) = B(1)B(t)− t, 0 ≤ t ≤ 1.

Therefore, we have

Y
(1)
t = B(1) +B(1)B(t)− t, 0 ≤ t ≤ 1.

We go one more step to define Y
(2)
t ,

Y
(2)
t = B(1) +

∫ t

0

Y (1)
s dB(s)

= B(1) +

∫ t

0

(
B(1) +B(1)B(s)− s

)
dB(s). (1.5)

Again, for our extension of the Itô integral in Section 4, by Equation (4.5) we have
the stochastic integral∫ t

0

B(1)B(s) dB(s) =
1

2
B(1)

(
B(t)2 − t

)
−
∫ t

0

B(s) ds. (1.6)

Then we can put Equation (1.6) into Equation (1.5) to get

Y
(2)
t = B(1) +

(
B(1)B(t)− t

)
+

1

2
B(1)

(
B(t)2 − t

)
− tB(t), 0 ≤ t ≤ 1.

In general, we can derive that

Y
(n)
t = B(1)

n∑
k=0

1

k!
Hk

(
B(t); t

)
− t

n−1∑
k=0

1

k!
Hk

(
B(t); t

)
, (1.7)

where Hn(x;σ
2) is the Hermite polynomial of degree n with parameter σ2, i.e.,

Hn(x;σ
2) = (−σ2)nex

2/2σ2

Dn
xe

−x2/2σ2

.
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Note that the generating function of Hermite polynomials is given by

etx−
1
2σ

2t2 =
∞∑
k=0

tk

k!
Hk(x;σ

2).

Hence by letting n→ ∞ in Equation (1.7), we see that

Yt =
(
B(1)− t

)
eB(t)− 1

2 t, 0 ≤ t ≤ 1. (1.8)

Next consider the case when t ≥ 1, i.e., the stochastic differential equation

dYt = Yt dB(t), Y1 =
(
B(1)− 1

)
eB(1)− 1

2 , t ≥ 1. (1.9)

Obviously, this stochastic differential equation is within the Itô theory of stochastic
integration and by Equation (1.2) the solution is given by

Yt =
(
B(1)− 1

)
eB(1)− 1

2 eB(t)−B(1)− 1
2 (t−1)

=
(
B(1)− 1

)
eB(t)− 1

2 t, t ≥ 1. (1.10)

Putting Equations (1.8) and (1.10) together, we get the solution of the anticipative
stochastic differential equation in (1.4):

Yt =

{(
B(1)− t

)
eB(t)− 1

2 t, if 0 ≤ t ≤ 1,(
B(1)− 1

)
eB(t)− 1

2 t, if t > 1.

Observe that the stochastic process Yt for 0 ≤ t ≤ 1 is not a martingale, nor a
Markov process. However, the stochastic process Yt for t ≥ 1 is a martingale and
is also a Markov process. Thus we raise the question: What kind of new properties
does the stochastic process Yt, 0 ≤ t ≤ 1, have?

2. The Itô Calculus

In this section we briefly review the Itô theory of stochastic integration.

2.1. Original motivation. Here is the scenario at the time when Itô introduced
his theory of stochastic integration in 1942 [6].

(1) Suppose Xt is a stochastic process. Then we have a family of marginal
distributions of Xt. Conversely, given a family of distributions satisfying
the consistency condition, we can apply the Kolmogorov extension theorem
to obtain a stochastic process Xt such that the given distributions are the
marginal distributions of Xt. In particular, if Xt is a stationary diffusion
process with infinitesimal generator A, then we have a family of transition
probabilities {pt(x, ·)} satisfying the Chapman-Kolmogorov equation.

(2) Suppose {pt(x, ·)} is a family of transition probabilities satisfying the
Chapman-Kolmogorov equation. Then we can define a C0-contraction
semigroup {Pt}. Conversely, given a semigroup {Pt}, we can use the
Riesz representation theorem to obtain a family of transition probabilities
satisfying the Chapman-Kolmogorov equation such that their associated
semigroup is the given {Pt}.
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(3) At the same time K. Yosida was working on constructing a semi-group
{Pt} from an infinitesimal generator A, which later became the well-known
Hille-Yosida theorem. (From a private conversation with K. Itô: It was his
mentor K. Yosida who asked him to find a probabilistic method to construct
diffusion processes from an infinitesimal generator.)

Now, with a given infinitesimal operator A, how can we construct a stochastic
process Xt such that the associated infinitesimal generator is A? In view of the
above description (1) (2) (3), we will need to apply the Hille-Yosida theorem to find
a semigroup {Pt}. Then use the Riesz representation theorem to find transition
probabilities {pt(x, ·)}. And finally use the Kolmogorov extension theorem to
construct a stochastic process Xt whose infinitesimal generator is A. Alternatively,
we can avoid using the Hille-Yosida theorem by solving the Kolmogorov forward or
backward equation to find the transition probabilities {pt(x, ·)}. And then apply
the Kolmogorov extension theorem to construct such a stochastic process Xt. For
detail, see Section §10.9 in the book [14].

The original motivation for K. Itô to introduce the Itô integral is to directly
construct a stochastic process from a given infinitesimal generator A without going
through the various steps as described above. By thinking of the displacement ∆Xt

of a stochastic process Xt as depending on the displacements ∆B(t) of a Brownian
motion and ∆t of the time parameter, K. Itô came up with the following stochastic
differential equation

dXt = f(t,Xt) dB(t) + g(t,Xt) dt, X0 = x,

which is interpreted as meaning the stochastic integral equation

Xt = x+

∫ t

0

f(s,Xs) dB(s) +

∫ t

0

g(s,Xs) ds, (2.1)

since almost all Brownian motion paths are nowhere differentiable.
For a given infinitesimal generator A, we have the functions f and g. Then we

can solve Equation (2.1) to get a stochastic process Xt in just one step. However,
here are crucial points:

(1) In Equation (2.1), what is the definition of the first integral with respect
to a Brownian motion B(t)?

(2) How do we know that the solutionXt in Equation (2.1) is a Markov process
and its infinitesimal generator is the given operator A?

All of the above discussions led K. Itô [6] to introduce the following stochastic
integral in 1942: ∫ b

a

f(t) dB(t), (2.2)

where the integrand f(t) is a stochastic process. Of course, we need to impose
conditions on f(t). We quickly explain this stochastic integral. For detail, see the
book [14].

2.2. Brownian motion. First recall that a Brownian motion is a stochastic
process B(t, ω), t ≥ 0, ω ∈ Ω, satisfying the following conditions:

1. P{B(0, ·) = 0} = 1,
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2. B(s)−B(t) is normal with mean 0 and variance s− t for any 0 ≤ t < s,
3. B(t) has independent increments,
4. P{ω;B(·, ω) is continuous} = 1.

By the second condition, we see that E
[
(B(s) − B(t))2

]
= |s − t|, which can be

informally interpreted as |B(s) − B(t)| ≈
√

|s− t|. Hence we see that Brownian
motion paths are nowhere differentiable. In fact, we have the following well-known
theorem on the quadratic variation of a Brownian motion. This theorem is a
fundamental property in the Itô theory of stochastic integration.

Theorem 2.1. Let B(t) be a Brownian motion and let ∆n = {a = t0, t1, t2, . . . ,
tn = b} be a partition of a finite interval [a, b]. Then

n∑
i=1

(
B(ti)−B(ti−1)

)2 −→ b− a

in L2(Ω) as ‖∆n‖ = max1≤i≤n(ti − ti−1) tends to 0.

2.3. Wiener integral. Nobert Wiener was the first mathematician to give a
rigorous construction of a Brownian motion B(t). In his analysis of Brownian
functionals, Wiener introduced the homogeneous chaoses of degree n ≥ 0. In
particular, for a function f ∈ L2[a, b], he associated a homogeneous chaos f̃ of
degree 1 which is a Gaussian random variable with mean 0 and variance ‖f‖2 =∫ b

a
|f(t)|2 dt. The homogeneous chaos f̃ can be interpreted as the Wiener integral

of f : ∫ b

a

f(t) dB(t),

which is defined in the following two steps:

1. For a step function f(t) given by f =
∑n

i=1 ai1[ti−1,ti), define

I(f) =

n∑
i=1

ai
(
B(ti)−B(ti−1)

)
.

Note that I(f) is well defined and has normal distribution with mean 0

and variance ‖f‖2 =
∫ b

a
|f(t)|2 dt.

2. For f ∈ L2[a, b], choose a sequence {fn} of step functions such that fn → f
in L2[a, b]. It is easy to see that by Step 1, the sequence {I(fn)} is Cauchy
in L2(Ω). Define∫ b

a

f(t) dB(t) = lim
n→∞

I(fn), in L2(Ω).

It is easy to see that the integral
∫ b

a
f(t) dB(t) is well defined.

Theorem 2.2. Let f ∈ L2[a, b]. Then the Wiener integral I(f) =
∫ b

a
f(t) dB(t)

is a Gaussian random variable with mean 0 and variance ‖f‖2 =
∫ b

a
|f(t)|2 dt.

It follows from this theorem that for any f, g ∈ L2[a, b], we have:

E
(
I(f)I(g)

)
=

∫ b

a

f(t)g(t) dt. (2.3)
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Moreover, by this theorem, the mapping f 7→
∫ b

a
f(t) dB(t) is an isometry from

L2[a, b] into L2(Ω) and the range consists of Gaussian random variables. However,
we should point out that a Brownian functional can be Gaussian and yet not a
Wiener integral.

2.4. Itô integral. Consider Equation (1.1) with a = 0 and ξ = x, namely,

dXt = Xt dB(t), X0 = x, t ≥ 0.

In attempting to find the solution by the iteration method, we get X
(0)
t = x and

X
(1)
t = x+

∫ t

0

x dB(s) = x(1 +B(t)),

X
(2)
t = x+

∫ t

0

x
(
1 +B(s)

)
dB(s) = x(1 +B(t)) + x

∫ t

0

B(s) dB(s). (2.4)

Observe that the stochastic integral
∫ t

0
B(s) dB(s) in Equation (2.4) is not a

Wiener integral since the integrand is not a deterministic function.
Here is what K. Itô tried in the beginning of developing his theory of stochastic

integration. (He told me in a private lecture at his home in Ithaca, New York
in 1969 when I was a graduate student at Cornell University.) For a partition
∆n = {0 = s0, s1, . . . , sn−1, sn = t} of the interval [0, t], define the following
Riemann sums by taking the evaluation points to be the left endpoint and right
endpoint of each subinterval:

Ln =

n∑
i=1

B(si−1)
(
B(si)−B(si−1)

)
, Rn =

n∑
i=1

B(si)
(
B(si)−B(si−1)

)
.

It is easy to see that

Rn + Ln = B(t)2,

Rn − Ln =

n∑
i=1

(
B(si)−B(si−1)

)2
.

Therefore, we can solve the equations and then apply Theorem 2.1 to get

Ln =
1

2

(
B(t)2 −

n∑
i=1

(
B(si)−B(si−1)

)2) −→ 1

2

(
B(t)2 − t

)
, (2.5)

Rn =
1

2

(
B(t)2 +

n∑
i=1

(
B(si)−B(si−1)

)2) −→ 1

2

(
B(t)2 + t

)
(2.6)

in L2(Ω) as ‖∆n‖ → 0. Note that the stochastic process B(t)2 − t in Equation
(2.5) is a martingale, while the stochastic process B(t)2 + t in Equation (2.6) is
not a martingale. Hence in order to keep the martingale property of a Brownian

motion B(t) it is more desirable to define the stochastic integral
∫ t

0
B(s) dB(s) so

that we have the following equality:∫ t

0

B(s) dB(s) =
1

2

(
B(t)2 − t

)
,

namely, the evaluation points are the left endpoints of subintervals.
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From the above discussion in attempting to define
∫ t

0
B(s) dB(s), we see that

the evaluation of an integrand at the left endpoint of each subinterval yields the
martingale property of the integrated stochastic process. In fact, it also yields
the Markov property of the solution Xt of the stochastic differential equation in
Equation (2.1).

Now, we explain the Itô integral
∫ b

a
f(t) dB(t). Let B(t) be a Brownian motion

and {Ft; a ≤ t ≤ b} a filtration such that

1. B(t) is Ft-measurable for each t,
2. B(t)−B(s) and Fs are independent for any s ≤ t.

If {Ft} is not specified, it is understood that Ft = σ{B(s); 0 ≤ s ≤ t}.

Notation. Let L2
ad([a, b]×Ω) denote the Hilbert space of all stochastic processes

f(t, ω) satisfying the conditions:

(1) f(t) is adapted to {Ft}, i.e., f(t) is Ft-measurable for each a ≤ t ≤ b,

(2)
∫ b

a
E
(
|f(t)|2

)
dt <∞.

In the beginning of developing stochastic integration [6, 7], K. Itô defined the
stochastic integral ∫ b

a

f(t) dB(t) (2.7)

for stochastic processes f(t) in the space L2
ad([a, b]× Ω). The procedure to define

this stochastic integral follows the two steps as in the case of Wiener integral.
However, for the case when f(t) is a stochastic process, it is much more complicated
in the second step because of the requirement of adaptedness.

See Chapter 4 of the book [14] for the definition of the Itô integral
∫ b

a
f(t) dB(t)

when f ∈ L2
ad([a, b]× Ω) and the following Theorems 2.3 to 2.6.

Theorem 2.3. Let f ∈ L2
ad([a, b] × Ω) and suppose E

(
f(t)f(s)

)
is a continuous

function of t and s. Then∫ b

a

f(t) dB(t) = lim
‖∆n‖→0

n∑
i=1

f(ti−1)
(
B(ti)−B(ti−1)

)
, in L2(Ω), (2.8)

where ∆n’s are partitions of [a, b].

In particular, if f ∈ L2
ad([a, b] × Ω) is a continuous stochastic process, then

Equation (2.8) holds.

Theorem 2.4. Let f ∈ L2
ad([a, b]× Ω). Then we have the equalities:

E

∫ b

a

f(t) dB(t) = 0,

E

(∣∣∣ ∫ b

a

f(t) dB(t)
∣∣∣2) =

∫ b

a

E
(
|f(t)|2

)
dt. (2.9)

By Equation (2.9) we see that the mapping f 7→
∫ b

a
f(t) dB(t) is an isometry

from L2
ad([a, b]× Ω) into L2(Ω).
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Theorem 2.5. Let f ∈ L2
ad([a, b]× Ω). Then the stochastic process

Xt =

∫ t

a

f(s) dB(s), a ≤ t ≤ b,

is a continuous stochastic process, i.e., almost all of its sample paths are continuous
functions on the interval [a, b].

Actually, in Theorem 2.5 we need to take a continuous version, namely, there

exists a continuous stochastic process X̃t, a ≤ t ≤ b, such that P{Xt = X̃t} = 1
for each t ∈ [a, b].

Theorem 2.6. Let f ∈ L2
ad([a, b]× Ω). Then the stochastic process

Xt =

∫ t

a

f(s) dB(s), a ≤ t ≤ b, (2.10)

is a martingale with respect to the filtration {Ft; a ≤ t ≤ b}.

We want to point out that the stochastic process Xt in Equation (2.10) being a
martingale is a consequence of two facts: (1) The evaluation points of the integrand
are the left endpoints of subintervals and (2) the integrand is adapted with respect
to the filtration {Ft; a ≤ t ≤ b}.

More generally, the Itô integral in Equation (2.7) can be extended to integrands
belonging to the following space Lad(Ω, L

2[a, b]).

Notation. Let Lad(Ω, L
2[a, b]) denote the space of all stochastic processes f(t, ω)

satisfying the conditions:

(1) f(t) is adapted to {Ft}, i.e., f(t) is Ft-measurable for each a ≤ t ≤ b,

(2)
∫ b

a
|f(t)|2 dt <∞ almost surely.

For the precise definition of Itô integral when f ∈ Lad(Ω, L
2[a, b]), see Chapter

5 of the book [14]. In this case, we do not have Theorem 2.4 because of the lack
of expectation. Theorem 2.5 remains valid for f ∈ Lad(Ω, L

2[a, b]). However, the
corresponding theorems for Theorems 2.3 and 2.6 need modifications as follows.

Theorem 2.7. If f(t) is a continuous stochastic process and is adapted to {Ft},
then f ∈ Lad(Ω, L

2[a, b]) and∫ b

a

f(t) dB(t) = lim
‖∆n‖→0

n∑
i=1

f(ti−1)
(
B(ti)−B(ti−1)

)
, in probability.

Theorem 2.8. Let f ∈ Lad(Ω, L
2[a, b]). Then the stochastic process

Xt =

∫ t

a

f(s) dB(s), a ≤ t ≤ b,

is a local martingale with respect to the filtration {Ft; a ≤ t ≤ b}.

For the motivation of local martingale and the proof of Theorem 2.8, see Sections
5.4 and 5.5 of the book [14].
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2.5. Itô’s formula. Suppose f(x) is a C2-function on the real line R and let
∆n = {a = t0, t1, . . . , tn = t} be a partition of the internal [a, t]. By using the
Taylor expansion we have

f(B(t))− f(B(a)) =
n∑

i=1

(
f(B(ti))− f(B(ti−1))

)
≈

n∑
i=1

f ′(B(ti−1))
(
B(ti)−B(ti−1)

)
+

1

2

n∑
i=1

f ′′(B(ti−1))
(
B(ti)−B(ti−1)

)2
.

By Theorem 2.7 we have
n∑

i=1

f ′(B(ti−1))(B(ti)−B(ti−1)) −→
∫ t

a

f ′(B(s)) dB(s), in probability.

as ‖∆n‖ → 0. On the other hand, the quadratic variation of Brownian motion

in Theorem 2.1 indicates that
(
B(ti)− B(ti−1)

)2 ≈ ti − ti−1. Thus if the second
derivative f ′′(x) is bounded, then we can easily see that

n∑
i=1

f ′′(B(ti−1))
(
B(ti)−B(ti−1)

)2 −→
∫ b

a

f ′′(B(t)) dt

as ‖∆n‖ → 0. Hence we have proved the following Itô’s formula when f ′′(x) is a
bounded function.

Theorem 2.9. Let f(x) be a C2-function. Then

f(B(t)) = f(B(a)) +

∫ t

a

f ′(B(s)) dB(s) +
1

2

∫ t

a

f ′′(B(s)) ds. (2.11)

The proof of Theorem 2.9, without assuming f ′′(x) being bounded, is rather
complicated. For detail, see Section 7.2 in the book [14].

It is convenient, for understanding and computation, to express the stochastic
integral in Equation (2.11) in the following stochastic differential form:

df(B(t)) = f ′(B(t)) dB(t) +
1

2
f ′′(B(t)) dt. (2.12)

Notice that dB(t)/dt does not exist since almost all Brownian motion paths are
nowhere differentiable. Hence Equation (2.12) is understood to mean Equation
(2.11) in the integral form. Moreover, recall that the chain rule for the Newton
calculus is given by d

dtf(g(t)) = f ′(g(t))g′(t), or in the differential form

df(g(t)) = f ′(g(t)) dg(t).

Thus in the Itô calculus there is an extra term in Equations (2.11) and (2.12),
which is due to the fact that the quadratic variation of the Brownian motion is
nonzero. This extra term is often called the Itô correction term.

In general, suppose Xt is an Itô process, i.e., its stochastic differential form is
given by

dXt = f(t) dB(t) + g(t) dt,
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where f ∈ Lad(Ω, L
2[a, b]) and g is adapted such that

∫ b

a
|g(t)| dt < ∞ almost

surely. Let θ(t, x) be a continuous function with continuous partial derivatives
θt, θx, and θxx. Then we have Itô’s formula in the stochastic differential form:

dθ(t,Xt) = θt(t,Xt) dt+ θx(t,Xt) dXt +
1

2
θxx(t,Xt) (dXt)

2, (2.13)

where (dXt)
2 is computed by using the Itô Table so that (dXt)

2 = f(t)2 dt.

× dB(t) dt

dB(t) dt 0

dt 0 0

2.6. Stochastic differential equations. Let σ(t, x) and f(t, x) be measurable
functions on [a, b]× R. Consider a stochastic differential equation

dXt = σ(t,Xt) dB(t) + f(t,Xt) dt, Xa = ξ, (2.14)

where ξ is an Fa-measurable random variable. This equation is interpreted as
meaning the following stochastic integral equation

Xt = ξ +

∫ t

a

σ(s,Xs) dB(s) +

∫ t

a

f(s,Xs) dts, a ≤ t ≤ b.

Theorem 2.10. Suppose σ(t, x) and f(t, x) are measurable functions on [a, b]×R
and there exists a constant K > 0 such that for all t ∈ [a, b] and x, y ∈ R:

(a) |σ(t, x)− σ(t, y)|+ |f(t, x)− f(t, y)| ≤ K|x− y|,
(b) |σ(t, x)|+ |f(t, x)| ≤ K(1 + |x|).

Then the stochastic differential equation (2.14) with E(|ξ|2) < ∞ has a unique
continuous solution Xt.

Now, it is easy to derive the following conditional probability equality for a
Brownian motion B(t):

P
(
B(t) ≤ x |B(ti) = yi, i = 1, 2, . . . , n

)
= P

(
B(t) ≤ x |B(tn) = yn

)
. (2.15)

for any x, yi, 1 ≤ i ≤ n, and 0 < t1 < · · · , < tn < t. See Section 10.5 of the book
[14] for detail.

The equality in Equation (2.15) is the motivation for the Markov property of a
stochastic process Xt, a ≤ t ≤ b, i.e.,

P
(
Xt ≤ x |Xti = yi, i = 1, 2, . . . , n

)
= P

(
Xt ≤ x |Xtn = yn

)
(2.16)

holds for any x, yi, 1 ≤ i ≤ n, and a ≤ t1 < t2 < · · · < tn < t ≤ b. A stochastic
process satisfying the Markov property is called a Markov process.

Theorem 2.11. Under the assumption of Theorem 2.10, the solution Xt of the
stochastic differential equation (2.14) with E(|ξ|2) <∞ is a Markov process.

Next consider the case when the functions σ and f do not depend on t. In this
case, the solution Xt, t ≥ 0, with X0 = x is a stationary Markov process (See
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Theorem 10.6.2 in the book [14].) Let ϕ(x) be a C2-function. Then we can apply
Itô’s formula in Equation (2.13) to get

dϕ(Xt) = ϕ′(Xt) dXt +
1

2
ϕ′′(Xt) (dXt)

2

= ϕ′(Xt)σ(Xt) dB(t) +
{1

2
σ(Xt)

2ϕ′′(Xt) + f(Xt)ϕ
′(Xt)

}
dt.

Therefore, we have

ϕ(Xt) = ϕ(x) +

∫ t

0

ϕ′(Xs)σ(Xs) dB(s)

+

∫ t

0

{1

2
σ(Xs)

2ϕ′′(Xs) + f(Xs)ϕ
′(Xs)

}
ds.

Upon taking the expectation, we get the infinitesimal generator A of Xt,

Aϕ′′(x) = lim
t↓0

Eϕ(Xt)− ϕ(x)

t

= E

(
lim
t↓0

1

t

∫ t

0

{1

2
σ(Xs)

2ϕ′′(Xs) + f(Xs)ϕ
′(Xs)

}
ds

)
=

1

2
σ(x)2ϕ′′(x) + f(x)ϕ′(x).

Hence the infinitesimal generator A is the differential operator

A =
1

2
σ(x)2

d2

dx2
+ f(x)

d

dx
.

Conversely, suppose we are given an infinitesimal generator A, which can be
shown to be of the form

A =
1

2
Q(x)

d2

dx2
+ f(x)

d

dx
, (2.17)

where Q(x) ≥ 0 is the diffusion coefficient and f(x) is the drift. Assume that there
exists a constant c > 0 such that

Q(x) ≥ c, ∀x ∈ R,

and the functions Q and f satisfy the Lipschitz and linear growth conditions in
Theorem 2.10. Then we can solve the following stochastic differential equation

dXt =
√
Q(Xt) dB(t) + f(Xt) dt, X0 = x, (2.18)

to get a stochastic process Xt. By the above discussion, the infinitesimal generator
of Xt is the given operator A in Equation (2.17). This method of constructing
a stochastic process directly from a given infinitesimal generator is the original
motivation for K. Itô to introduce his theory of stochastic integration. For detail,
see Section 10.9 of the book [14].
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2.7. Multiple Wiener–Itô integrals. N. Wiener [26] introduced homogeneous
chaos in 1938 in order to analyze the Hilbert space of Brownian functionals. An
important property of homogeneous chaos is that homogeneous chaoses of different
orders are orthogonal. In particular, all homogeneous chaoses of order n ≥ 1 have
expectation zero.

The space of homogeneous chaoses of order 1 is the Hilbert space spanned by
Wiener integrals as described in Subsection 2.3. Wiener defined homogeneous
chaoses of orders n ≥ 2 by multiplying Wiener integrals and taking projections.
For detail, see Section 9.4 of the book [14].

Several years after K. Itô defined the stochastic integral, he was wondering
whether homogeneous chaoses can be defined in a probabilistic way by Wiener-
like integrals. (He told me in another private lecture at his home in Ithaca, New
York in 1969 when I was a graduate student at Cornell University.) Consider the
case n = 2 with integrand f(s)g(t), it seems to be natural to have the equality:∫ b

a

∫ b

a

f(s)g(t) dB(s)dB(t) =
(∫ b

a

f(s) dB(s)
)(∫ b

a

g(t) dB(t)
)
. (2.19)

However, the right hand side of Equation (2.19) may not have expectation zero.
Thus the left hand side, if given by this equation, cannot be a homogeneous chaos
of order 2. Then Itô realized that the projections used by Wiener is equivalent to
removing the values of an integrand on all “diagonals” meaning that at least two
coordinates are equal. This led Itô to define multiple Wiener integral in 1951 [8]:

In(f) =

∫ b

a

∫ b

a

· · ·
∫ b

a

f(t1, t2, . . . , tn) dB(t1)dB(t2) · · · dB(tn) (2.20)

for f ∈ L2([a, b]n). For detail, see Section 9.6 of the book [14]. For example, for
continuous functions f and g on [a, b], the definition yields the following∫ b

a

∫ b

a

f(s)g(t) dB(s)dB(t)

= lim
‖∆n‖→0

∑
i 6=j

f(ui−1)g(uj−1)
(
B(ui)−B(ui−1)

)(
B(uj)−B(uj−1)

)
=

(∫ b

a

f(s) dB(s)
)(∫ b

a

g(t) dB(t)
)
−
∫ b

a

f(t)g(t) dt.

In particular, when a = 0, b = 1, and f = g = 1, we have∫ 1

0

∫ 1

0

1 dB(s)dB(t) = B(1)2 − 1. (2.21)

Now, if we perform iterated integration for this double integral, then we get∫ 1

0

∫ 1

0

1 dB(s)dB(t) =

∫ 1

0

B(1) dB(t). (2.22)

However, the stochastic integral in the right hand side is not an Itô integral since
the integrand B(1) is not adapted to the filtration associated with the Brownian
motion B(t). Because of this difficulty, Itô had to cut down the region for iteration
so that after each iteration the resulting integrand is adapted. But in order to
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compensate this subregion, the symmetrization of the integrand must be used to
have the next theorem.

Theorem 2.12. Let f ∈ L2([a, b]n). Then

In(f) = n!

∫ b

a

· · ·
∫ tn−2

a

[ ∫ tn−1

a

f̂ (t1, t2, . . . , tn) dB(tn)

]
dB(tn−1) · · · dB(t1),

where f̂ is the symmetrization of f .

We also mention an important property of homogeneous chaoses which shows
that for each n ≥ 1, the mapping f 7→ In(f) is an isometry from the space

L2
symm([a, b]

n) into L2(Ω) up to a scale of
√
n!. Here sub-“symm” means the

symmetric functions.

Theorem 2.13. Let f ∈ L2([a, b]n). Then E
(
In(f)

)
= 0 and

E
(
|In(f)|2

)
= n!

∫ b

a

∫ b

a

· · ·
∫ b

a

∣∣f̂(t1, t2, . . . , tn)∣∣2 dt1dt2 · · · dtn.
3. White Noise Theory

A white noise can be thought of as a generalized Gaussian process z(t) with
mean zero and covariance given by

E
(
z(s)z(t)

)
= δt(s),

where δt is the Dirac delta function at t. This white noise z(t) is often used as a
disturbance in applied mathematics.

Let B1(t) and B2(t) be independent Brownian motions with t ≥ 0. Define

B(t) =

{
B1(t), t ≥ 0,

B2(−t), t < 0.

Then B(t) a Brownian motion with t ∈ R. Its derivative Ḃ(t) does not exist since

almost all Brownian motion paths are nowhere differentiable. But Ḃ(t) can be
regarded as a generalized Gaussian process. Informally, its mean is given by

E(Ḃ(t)) = lim
∆→0

E
(B(t+∆)−B(t)

∆

)
= 0.

To derive the covariance of Ḃ(t), we need the following lemma, which can be easily
verified by using integration by parts formula.

Lemma 3.1. Let F (t) be a C1-function on R with compact support. Then∫
R
B(t)F ′(t) dt = −

∫
R
F (t) dB(t). (3.1)
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Now, let F and G be C1-functions on R with compact support. Let f = F ′ and
g = G′. Then by using Lemma 3.1, we see that∫ ∞

−∞

∫ ∞

−∞
E
[(
B(s+∆1)−B(s)

)(
B(t+∆2)−B(t)

)]
f(s)g(t) dsdt

= E
(∫ ∞

−∞

(
B(s+∆1)−B(s)

)
f(s) ds

∫ ∞

−∞

(
B(t+∆2)−B(t)

)
g(t) dt

)
= E

(∫ ∞

−∞

(
F (s)− F (s+∆1)

)
dB(s)

∫ ∞

−∞

(
G(t)−G(t+∆2)

)
dB(t)

)
=

∫ ∞

−∞

(
F (t)

(
G(t)−G(t+∆2)

)
+ F (t+∆1)

(
G(t+∆2)−G(t)

))
dt.

Here in the last equality we have used Equation (2.3). Then we have∫ ∞

−∞

∫ ∞

−∞
E
(
Ḃ(s)Ḃ(t)

)
f(s)g(t) dsdt

= lim
∆1,∆2→0

∫ ∞

−∞

∫ ∞

−∞
E
(B(s+∆1)−B(s)

∆1

B(t+∆2)−B(t)

∆2

)
f(s)g(t) dsdt

= lim
∆1,∆2→0

1

∆1∆2

∫ ∞

−∞

(
F (t)

(
G(t)−G(t+∆2)

)
+ F (t+∆1)

(
G(t+∆2)−G(t)

))
dt

=

∫ ∞

−∞
f(t)g(t) dt,

which implies that in the generalized sense

E
(
Ḃ(s)Ḃ(t)

)
= δt(s).

Thus Ḃ(t) is a white noise. In fact, the informal derivative Ḃ(t) of a Brownian
motion B(t) is often taken by definition as a white noise.

Before K. Itô introduced stochastic integrals in 1942, white noise had already
been used as a disturbance. Itô combined the “meaningless” white noise Ḃ(t) with
infinitesimal dt to form a stochastic differential

Ḃ(t) dt = dB(t).

In 1975 T. Hida [4] introduced the theory of white noise in order to define Ḃ(t) as
a rigorous mathematical object. Moreover, Hida had in mind to study functionals
of white noise, e.g., to treat Feynman integral as a white noise functional. Below
we briefly describe the theory of white noise. For detail, see the book [13].

3.1. White noise space. Consider the real Hilbert space L2(R). Let

A = − d2

dx2
+ x2 + 1. (3.2)

The operator A is densely defined on L2(R) with eigenvalues 2n + 2, n ≥ 0. By
using this operator A, we can reconstruct the Schwartz space S(R) of rapidly
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decreasing functions on R. First use the Riesz representation theorem to identify
the dual space of L2(R) with itself. Then we get the following triple:

S(R) ⊂ L2(R) ⊂ S ′(R),

where S ′(R) is the dual space of S(R). Moreover, the Schwartz space S(R) is a
nuclear space so that the above triple is a Gel’fand triple.

Consider the function F : S(R) −→ C given by

F (ξ) = exp
[
− 1

2

∫
R
|ξ(x)|2 dx

]
.

It is easy to check that F satisfies the following conditions:

(1) F (0) = 1,
(2) F is continuous,
(3) F is positive definite.

Hence we can apply the Minlos theorem to get a unique probability measure µ on
the dual space S ′(R) such that∫

S′(R)
ei〈x,ξ〉 dµ(x) = e−

1
2 |ξ|

2

, ∀ ξ ∈ S(R),

where 〈·, ·〉 is the bilinear pairing of S ′(R) and S(R) and |ξ|2 =
∫
R |ξ(x)|2 dx.

The probability space (S ′(R), µ) is called a white noise space. For simplicity,
we will use the notation

(L2) ≡ L2(S ′(R), µ). (3.3)

For each ξ in S(R), the function 〈·, ξ〉 is defined everywhere on S ′(R) and is a
Gaussian random variable with mean 0 and variance |ξ|2. If f ∈ L2(R), we choose
a sequence {ξn} in S(R) such that ξn → f in L2(R). Then the sequence 〈·, ξn〉
converges in (L2). Define

〈·, f〉 = lim
n→∞

〈·, ξn〉, in (L2).

It is easy to see that 〈·, f〉 is well defined and is a Gaussian random variable with
mean 0 and variance |f |2.

It is easy to check that the following stochastic process

B(t, x) =

{
〈x, 1[0,t)〉, t ≥ 0, x ∈ S ′(R),
−〈x, 1[t,0)〉, t < 0, x ∈ S ′(R),

(3.4)

is a Brownian motion. Informally, we have the time derivative Ḃ(t) = x(t) so that

Ḃ can be regarded as an element in the white noise space S ′(R).

3.2. Test and generalized functions on white noise space. Consider the
space (L2) defined in Equation (3.3). By the Wiener–Itô theorem, each ϕ ∈ (L2)
can be uniquely represented by

ϕ =
∞∑

n=0

In(fn), fn ∈ L2
symm(Rn), (3.5)
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where In is the multiple Wiener–Itô integral of order n defined in Equation (2.20)
with [a, b] being replaced by R and B(t) the Brownian motion given in Equation
(3.4). Moreover, we have the (L2)-norm of ϕ:

‖ϕ‖ =

( ∞∑
n=0

n!|fn|2L2(Rn)

)1/2

. (3.6)

For each p ≥ 0 and ϕ represented by Equation (3.5), define

‖ϕ‖p =

( ∞∑
n=0

n!|(Ap)⊗n fn|2L2(Rn)

)1/2

and let
(S)p =

{
ϕ ∈ (L2); ‖ϕ‖p <∞

}
.

Then we take the following projective limit:

(S) = the projective limit of
{
(S)p; p ≥ 0

}
.

The space (S) serves as a space of test functions defined on S ′(R). Its dual
space (S)∗ serves as a space of generalized functions defined on S ′(R). It is a fact
that (S) is a nuclear space. Hence we have a Gel’fand triple

(S) ⊂ (L2) ⊂ (S)∗, (3.7)

which is for distribution theory on the white noise space S ′(R).
Here are some examples. For each ξ in Sc(R) (the complexification of S(R)),

the function e〈·,ξ〉 is a test function. For each fixed t ∈ R, the functions Ḃ(t),

:Ḃ(t)
n
:, and :eḂ(t) : are all generalized functions. The Feynman integral, Donsker’s

delta function, Kubo-Yokoi delta function are important examples of generalized
functions in applications. For detail, see the book [13].

3.3. Characterization theorems. A fundamental tool in white noise theory is
the S-transform. The S-transform of Φ ∈ (S)∗ is the function

SΦ(ξ) = 〈〈Φ, :e〈·,ξ〉 :〉〉, ξ ∈ Sc(R),
where 〈〈·, ·〉〉 is the bilinear pairing of (S)∗ and (S), Sc(R) is the complexification
of S(R) and :e〈·,ξ〉 : is given by

:e〈·,ξ〉 : =

∞∑
n=0

1

n!
〈: ·⊗n :, ξ⊗n〉.

In the early stage after T. Hida introduced the theory of white noise in 1975,
it was quite hard to check whether a functional on S ′(R) is actually a generalized
function, in particular, one would have to find its Wiener–Itô decomposition in
the generalized sense.

In 1991, Potthoff and Streit [23] did a revolutionary work for white noise theory.
They proved the next theorem to characterize generalized functions in the space
(S)∗ in terms of the analytic and growth conditions of its S-transform.

Theorem 3.2. A function F : Sc(R) −→ C is the S-transform of Φ ∈ (S)∗ if and
only if it satisfies the following conditions:

(1) For any ξ, η ∈ Sc(R), the function F (zξ+η) is an entire function of z ∈ C;
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(2) There exist constants K, a, p > 0 such that

|F (ξ)| ≤ K exp
[
a

∫
R

∣∣(Apξ)(x)
∣∣2 dx], ∀ ξ ∈ Sc(R),

where A is the operator in Equation (3.2).

For the white noise approach to stochastic integration, we use the basic Gel’fand
triple in Equation (3.7) and the above characterization theorem. We mention
that there are many other Gel’fand triples and the corresponding characterization
theorems in the work of L. Streit and his collaborators, Y.-J. Lee, Ouerdiane and
his collaborators, my joint work with W. G. Cochran and A. N. Sengupta, and
with N. Asai and I. Kubo.

3.4. White noise differentiation operator. Let h ∈ S ′(R) and ϕ ∈ (S). The
Gâteaux derivative of ϕ in the direction h is given by

Dh ϕ(x) = lim
ε→0

ϕ(x+ εh)− ϕ(x)

ε
.

The operator Dh can be shown to be a continuous operator from (S) into itself.
Hence its adjoint D∗

h is a continuous operator from (S)∗ into itself.
In particular, let h = δt, the Dirac delta function at t ∈ R. Then we have the

white noise differentiation operator ∂t:

∂t ≡ Dδt .

Thus we have continuous operators ∂t : (S) −→ (S) and ∂∗t : (S)∗ −→ (S)∗ for
each t ∈ R.

Let ν be the standard Gaussian measure on Rn. By the integration by parts
formula, we have the equality∫

Rn

(
Dhf(x)

)
g(x) dν(x) =

∫
Rn

f(x)
{
g(x)〈x, h〉 −Dhg(x)

}
dν(x)

for suitable functions f and g. The infinite dimensional analogue of this formula
for the white noise space (S ′(R), µ) is given by∫

S′(R)

(
Dhϕ(x)

)
ψ(x) dµ(x) =

∫
S′(R)

ϕ(x)
{
ψ(x)〈x, h〉 −Dhψ(x)

}
dµ(x),

where h ∈ S ′(R) and ϕ,ψ ∈ (S). This equality yields the adjoint operator of Dh,
i.e., D∗

h = 〈·, h〉 −Dh, which can be rewritten as

〈·, h〉 = Dh +D∗
h

as continuous operators from the space (S) into (S)∗. Take h = δt, the Dirac delta

function at t ∈ R and note that 〈·, δt〉 = Ḃ(t). Then we have the equality

Ḃ(t) = ∂t + ∂∗t . (3.8)

Therefore, for each t ∈ R, we can view the quantity Ḃ(t) in two ways:

(a) Ḃ(t) is a generalized function in (S)∗ and
(
SḂ(t)

)
(ξ) = ξ(t).

(b) Ḃ(t), as a multiplication operator, is continuous from (S) into (S)∗ and
Equation (3.8) holds.
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3.5. White noise integral. Consider the Brownian motion B(t), t ≥ 0, defined
in Equation (3.4). Let {Ft} be the filtration with Ft = σ{B(s), 0 ≤ s ≤ t}. In the

Itô calculus, the white noise Ḃ(t) and time differential dt are combined together
to form the stochastic differential

Ḃ(t) dt = dB(t).

But now, with white noise theory, we know that the white noise Ḃ(t) for each
t can be regarded as a generalized function in (S)∗ or as a continuous operator

Ḃ(t) = ∂t + ∂∗t from (S) into (S)∗. It is natural to ask whether we can interpret
an Itô integral as ∫ b

a

f(t) dB(t) =

∫ b

a

Ḃ(t)f(t) dt ? (3.9)∫ b

a

f(t) dB(t) =

∫ b

a

(∂t + ∂∗t )f(t) dt ? (3.10)

Note that the integrand in the right hand side of Equation (3.9) makes sense
as a generalized function in the space (S)∗ only when f(t) ∈ (S) for each t. Hence
this equation does not fit to the Itô calculus. On the other hand, the white noise
differentiation ∂t in Equation (3.10), when applied to a stochastic process f(t), is
not well defined. In fact, we need to consider the right-hand and left-hand white
noise differentiation operators ∂t+ and ∂t−. For detail, see the book [13].

This leads to the integral in Equation (3.10) with the operator ∂∗t . Actually,
I. Kubo and S. Takenaka [11] obtained the next theorem in 1981. Recall that we
are using the Brownian motion B(t) in Equation (3.4) and its associated filtration
Ft = σ{B(s), 0 ≤ s ≤ t}.

Theorem 3.3. Let f(t, x), a ≤ t ≤ b, x ∈ S ′(R), be an adapted stochastic process

such that
∫ b

a

∫
S′(R) |f(t, x)|

2 dµ(x)dt <∞. Then∫ b

a

f(t) dB(t) =

∫ b

a

∂∗t f(t) dt, (3.11)

where the left hand side is an Itô integral.

For the proof of this theorem, see Theorem 13.12 in the book [13]. Thus an
Itô integral of a stochastic process f ∈ L2

ad([a, b] × S ′(R)) can be expressed as a
white noise integral. However, for f ∈ Lad(S ′(R), L2[a, b]), we cannot express its
Itô integral as a white noise integral.

3.6. Hitsuda–Skorokhod integral. Observe that the white noise integral in
the right hand side of Equation (3.11) does not require the stochastic process f(t)
to be adapted with respect to the Brownian motion filtration. Hence the white

noise integral
∫ b

a
∂∗t f(t) dt provides an extension of the Itô integral to stochastic

processes f(t) which may not be adapted, i.e., possibly anticipating. For example,
we have the white noise integral∫ 1

0

∂∗tB(1) dt = B(1)2 − 1.
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(See Example 13.14 in the book [13].) Hence we have an extension of the following
Itô integral ∫ 1

0

B(1) dB(t) = B(1)2 − 1, (3.12)

where the integrand B(1) is not adapted with respect to the Brownian motion
B(t) for 0 ≤ t ≤ 1.

There is a theorem due to N. Obata [22] stating that⋃
p>1

Lp(S ′(R), µ) ⊂ (S)∗.

(See also Section 8.5 in the book [13].) Being motivated by this fact, we say that
the white noise integral ∫ b

a

∂∗t f(t) dt (3.13)

is the Hitsuda–Skorokhod integral of f if it is represented by a random variable in
Lp(S ′(R), µ) for some p > 1, i.e., there exists Φ ∈ Lp(S ′(R), µ) for some p > 1
such that

〈〈Φ, ϕ〉〉 =
〈〈∫ b

a

∂∗t f(t) dt, ϕ
〉〉
, ∀ϕ ∈ (S).

The Hitsuda–Skorokhod integral in Equation (3.13), with different notation,
was introduced independently by M. Hitsuda [5] in 1972 using complex Brownian
motion and by A. V. Skorokhod in 1975 using Wiener–Itô theorem. (I learned
from Yu. L. Daletskii in 1989 during the Fifth International Vilnius Conference
on Probability Theory and Mathematical Statistics that it was Hitsuda who first
introduced this stochastic integral in 1972 at the Second Japan-USSR Symposium
on Probability Theory. Daletskii also mentioned that Skorokhod attended Hitsuda’s
lecture and must be aware of this then new stochastic integral.)

Example 3.4. Consider the white noise formulation of the stochastic differential
equation in Equation (1.4) with a different anticipating initial condition

dXt = ∂∗tXt dt, X0 = sgn
(
B(1)

)
, 0 ≤ t ≤ 1. (3.14)

It is shown in Example 13.30 in the book [13] that the solution is given by

Xt = sgn
(
B(1)− t

)
eB(t)− 1

2 t, 0 ≤ t ≤ 1.

It is interesting to compare this solution Xt with the solution Yt of Equation (1.4)
given by Equation (1.8).

The next theorem is an anticipative Itô’s formula obtained by Hitsuda [5] in
1972. For the proof, see Theorem 13.19 in the book [13].

Theorem 3.5. Let θ(x, y) be a C2-function on R2 such that

θ
(
B(·), B(b)

)
, θxx

(
B(·), B(b)

)
, θxy

(
B(·), B(b)

)
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are all in L2
(
[a, b]; (L2)

)
. Then the following equality holds in (L2):

θ
(
B(t), B(b)

)
= θ

(
B(a), B(b)

)
+

∫ t

a

∂∗s

(
θx
(
B(s), B(b)

))
ds

+

∫ t

a

(1
2
θxx

(
B(s), B(b)

)
+ θxy

(
B(s), B(b)

))
ds, a ≤ t ≤ b, (3.15)

where the first integral is a Hitsuda–Skorokhod integral.

We point out that in Equation (3.15) there is an additional correction term
involving θxy due to the anticipating B(b) in the y variable.

4. General Stochastic Integration

H. Lebesgue introduced measure theory around 1902-04. However, the first
really significant application of the Lebesgue measure theory was given years later
by N. Wiener in his construction of Brownian motion in 1923 [25]. The Wiener
integral was generalized to the Itô integral by K. Itô in 1942 [6] as we explained
in Section 2. On the other hand, Wiener’s work inspired L. Gross to introduce
abstract Wiener space in 1965 [3] for infinite dimensional analysis (see also the
book [12].) Then came the white noise theory initiated by T. Hida in 1975 [4]
as we described in Section 3. In his lecture for the 1976 Kyoto International
Symposium, P. Malliavin [20] achieved a triumph to provide a probabilistic proof
of the existence of transition probabilities (see also the book [21].)

The following diagram shows the relationships among the above four areas of
stochastic analysis.

Itô Calculus
(1942)

Abstract Wiener Space
(Gross 1965)

White Noise Theory
(Hida 1975)

Malliavin Calculus
(1976)

-�

-�

6

?
(∗) 6

?

�������9�������:

XXXXXXXyXXXXXXXz

We are interested in extending Itô’s theory of stochastic integration to stochastic
integrals with integrands being possibly not adapted with respect to the underlined
filtration. For example, recall the stochastic differential equation in Equation (1.4).
Since the initial condition Y0 = B(1) is anticipating, this equation is not within
the scope of Itô’s theory. More generally, suppose we are given an infinitesimal
generator in Equation (2.17). Then we can consider the stochastic differential
equation in Equation (2.18) with an anticipating initial condition. Then we need
to extend Itô’s theory in order to handle this equation.

The Hitsuda–Skorokhod integral provides an extension (actually only partial
extension) of Itô integral. However, within white noise theory, there are several
difficulties to handle this extension:



THE ITÔ CALCULUS AND WHITE NOISE THEORY 131

(a) In general, the integral
∫ b

a
∂∗t f(t) dt of a stochastic process f(t) is a white

noise integral that defines a generalized function in the space (S)∗ and has
no probabilistic meaning.

(b) The white noise integral
∫ b

a
∂∗t f(t) dt is a Hitsuda–Skorokhod integral if

it is represented by a random variable in the space Lp(S ′(R), µ) for some
p > 1. However, there is no theorem which asserts when a generalized
function in (S)∗ belongs to Lp(S ′(R), µ), p > 1.

We want to follow Itô’s ideas in his lecture for the 1976 International Symposium
[9], yet keep in mind white noise methods, to give a real extension of the Itô
integral. We expect this extension to be connected to abstract Wiener space
theory and the Malliavin calculus.

4.1. Motivating ideas. Let B(t) be a Brownian motion and take {Ft} to be
the filtration, i.e., Ft = σ{B(s); 0 ≤ s ≤ t}. At the 1976 Kyoto International
Symposium, K. Itô started his lecture [9] by writing on the blackboard the following
question (I was in the audience):∫ 1

0

B(1) dB(t) = B(1)

∫ 1

0

dB(t) = B(1)2 ? (4.1)

Then he pointed out that
∫ 1

0
B(1) dB(t) cannot be defined as a stochastic integral

with respect to a Brownian motion since the integrand B(1) is not adapted with
respect to B(t). To overcome this difficulty, he enlarged the filtration

Gt = α{B(1), B(s); 0 ≤ s ≤ t}.
and decomposed the Brownian motion B(t) as

B(t) =

(
B(t)−

∫ t

0

B(1)−B(u)

1− u
du

)
+

∫ t

0

B(1)−B(u)

1− u
du.

so that B(t) is a quasimartigale. Obviously, the integrand B(1) is adapted with

respect to {Gt}. Thus
∫ 1

0
B(1) dB(t) is defined as a stochastic integral with respect

to a quasimartingale and Equation (4.1) holds. In general,

(Itô)

∫ t

0

B(1) dB(s) = B(1)B(t), 0 ≤ t ≤ 1. (4.2)

Observe that when t = 1, this integral is different from the Hitsuda–Skorokhod
integral in Equation (3.12) as defined through white noise theory.

We notice that the essence of Itô’s ideas is the following two points:

(a) Keep the integrand B(1).
(b) Change the filtration and decompose the integrator B(t).

Being inspired by Itô’s ideas, we would try to reverse the roles of the integrand
and the integrator, namely,

(1) Keep the Brownian motion B(t) and the filtration.
(2) Decompose the integrand B(1).

The integrand B(1) is decomposed as follows:

B(1) =
(
B(1)−B(t)

)
+B(t). (4.3)
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Let ∆n = {0 = s0, s1, . . . , sn−1, sn = t} be a partition of the interval [0, t] with
fixed t in [0, 1]. On the subinterval [si−1, si], we evaluate the first term B(1)−B(t)
in Equation (4.3) at the right endpoint si. On the other hand, we evaluate the
second term B(t) (which is adapted) at the left endpoint si−1 just as in an Itô
integral. Then we have∫ t

0

B(1) dB(s)

= lim
‖∆n‖→0

n∑
i=1

{(
B(1)−B(si)

)
+B(si−1)

}(
B(si)−B(si−1)

)
= lim

‖∆n‖→0

n∑
i=1

{
B(1)−

(
B(si)−B(si−1)

)}(
B(si)−B(si−1)

)
= B(1)B(t)− lim

‖∆n‖→0

n∑
i=1

(
B(si)−B(si−1)

)2
= B(1)B(t)− t,

where in the last equality we have used the quadratic variation of the Brownian
motion B(t). Therefore, we have∫ t

0

B(1) dB(s) = B(1)B(t)− t, 0 ≤ t ≤ 1. (4.4)

Observe that this new stochastic integral in Equation (4.4) is different from the
one in Equation (4.2), but agrees with the Hitsuda–Skorokhod integral in Equation
(3.12) when t = 1.

To illustrate our ideas, we do one more example to evaluate the integral∫ t

0

B(1)B(s) dB(s), 0 ≤ t ≤ 1.

The integrand is decomposed in terms of B(s) and B(1)−B(s) as follows:

B(1)B(s) =
(
B(1)−B(s)

)
B(s) +B(s)2.

On the subinterval [si−1, si], we evaluate B(s) and B(1)−B(s) at the left endpoint
and right endpoint, respectively. Then we get∫ t

0

B(1)B(s) dB(s)

= lim
‖∆n‖→0

n∑
i=1

{(
B(1)−B(si)

)
B(si−1) +B(si−1)

2
}(
B(si)−B(si−1)

)
= lim

‖∆n‖→0

n∑
i=1

{
B(1)B(si−1)−B(si−1)

(
B(si)−B(si−1)

)}(
B(si)−B(si−1)

)
= B(1)

∫ t

0

B(s) dB(s)−
∫ t

0

B(s) ds

=
1

2
B(1)

(
B(t)2 − t

)
−

∫ t

0

B(s) ds,
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where in the third equality we used the fact that
(
B(si)−B(si−1)

)2 ≈ si − si−1.
Hence we have the equality∫ t

0

B(1)B(s) dB(s) =
1

2
B(1)

(
B(t)2 − t

)
−
∫ t

0

B(s) ds, 0 ≤ t ≤ 1. (4.5)

4.2. Definition of a new stochastic integral. In view of the discussion in the
previous subsection 4.1, we see that the Itô theory has a counterpart consisting of
stochastic processes that are not adapted, but have a very special property. When
those stochastic processes are taken as integrands, the evaluation points are the
right endpoints of subintervals.

As in the Itô theory, we fix a Brownian motion B(t) and a filtration {Ft}
such that (1) B(t) is Ft-measurable for each t and (2) B(t) − B(s) and Fs are
independent for any s ≤ t.

Definition 4.1. A stochastic process ϕ(t) is called instantly independent with
respect to a filtration {Ft} if ϕ(t) and Ft are independent for each t.

We will refer the set of adapted stochastic processes as the Itô part and the
set of instantly independent stochastic processes as the counterpart. It is easy to
see that if a stochastic process g(t, ω) is both adapted and instantly independent,
then it must be a deterministic function g(t) of t.

Definition 4.2. Let f(t) be a continuous adapted stochastic process and ϕ(t)
a continuous instantly independent stochastic process. Define the new stochastic
integral of f(t)ϕ(t) by∫ b

a

f(t)ϕ(t) dB(t) = lim
‖∆n‖→0

n∑
i=1

f(ti−1)ϕ(ti)
(
B(ti)−B(ti−1)

)
, (4.6)

provided that the limit in probability exists.

We use the linearity to extend this stochastic integral to stochastic processes
which are finite linear combinations of such products f(t)ϕ(t).

We quickly point out the relationship of this new stochastic integral and multiple
Wiener–Itô integral. Consider the simple example∫ 1

0

∫ 1

0

1 dB(s)dB(t).

Suppose we apply iterated integration. Then we can use Equation (4.4) to get∫ 1

0

B(1) dB(t) = B(1)2 − 1,

which is exactly the double Wiener–Itô integral of 1. Hence we have∫ 1

0

∫ 1

0

1 dB(s)dB(t) =

∫ 1

0

(∫ 1

0

1 dB(s)
)
dB(t).

More generally, we can use the new stochastic integral to evaluate multiple
Wiener–Itô integrals by performing iterated integration (which makes sense with
our new stochastic integration), exactly like in the ordinary calculus. This property
seems to be interesting for stochastic analysis. For detail, see [2].
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4.3. Near martingale. In the Itô theory of stochastic integration, two guiding
motivations are the martingale property and Markov property, which lead to the
evaluation points of an integrand at the left endpoints of subintervals.

With our evaluation points in Definition 4.2, we certainly do not have martingale
property. But then what kind of property do we have? Consider the stochastic
process in Equation (4.4), i.e.,

Xt =

∫ t

0

B(1) dB(s) = B(1)B(t)− t, 0 ≤ t ≤ 1. (4.7)

Recall that we have an underlined filtration {Ft}. Let s ≤ t. Then we have

E(Xt| Fs) = E(B(1)B(t)− t| Fs)

= E
({

[B(1)−B(t)] + [B(t)−B(s)] +B(s)
}

×
{
[B(t)−B(s)] +B(s)

}∣∣∣Fs

)
− t

= t− s+B(s)2 − t

= B(s)2 − s, (4.8)

which is clearly not equal to Xs almost surely. Hence Xt is not a martingale with
respect to the filtration {Ft}. However, observe that Xs is not Fs-measurable.
Moreover, by putting t = s in Equation (4.8), we get

E(Xs| Fs) = B(s)2 − s. (4.9)

It follows from Equations (4.8) and (4.9) that for any s ≤ t,

E(Xt| Fs) = E(Xs| Fs), a.s.

This equality is the motivation for the concept in the next definition.

Definition 4.3. A stochastic process Xt is called a near-martingale with respect
to a filtration {Ft} if for any s ≤ t it holds that

E(Xt| Fs) = E(Xs| Fs), a.s. (4.10)

or equivalently,

E(Xt −Xs| Fs) = 0, a.s.

Note that if a near-martingale Xt is adapted, then it is a martingale. Moreover,
by taking expectation in both sides of Equation (4.10), we see that EXt = EXs

for any s ≤ t. Hence near-martingale implies fair game.
The next theorem shows that the near-martingale property is the analogue of

martingale property in the Itô integral for the new stochastic integral that we have
defined. For detail, see [17].

Theorem 4.4. Let f and ϕ be continuous functions on R and

Xt =

∫ t

a

f
(
B(s)

)
ϕ
(
B(b)−B(s)

)
dB(s), a ≤ t ≤ b.

Assume that E|Xt| <∞ for all t ∈ [a, b]. Then the stochastic process Xt, t ∈ [a, b],
is a near-martingale.
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4.4. Itô’s formula. Let θ(x) be a C2-function of x. Then by Itô’s formula,

dθ(B(t)) = θ′(B(t)) dB(t) +
1

2
θ′′(B(t)) dt, a ≤ t ≤ T,

which means the following equality in a stochastic integral form:

θ(B(t)) = θ(B(a)) +

∫ t

a

θ′(B(s)) dB(s) +
1

2

∫ t

0

θ′′(B(s)) ds, a ≤ t ≤ T.

Now, suppose we have a function θ(x, y) and consider θ
(
B(t), B(T )

)
. What is it

equal to? In order to find out the answer, let us assume that θ(x, y) = f(x)ϕ(y−x)
with f and g being C1-functions. Then we have

n∑
i=1

θ
(
B(si−1), B(T )

)(
B(si)−B(si−1)

)
=

n∑
i=1

f
(
B(si−1)

)
ϕ
(
B(T )−B(si−1)

)(
B(si)−B(si−1)

)
≈

n∑
i=1

f
(
B(si−1)

){
ϕ
(
B(T )−B(si)

)
+ ϕ′(B(T )−B(si)

)(
B(si)−B(si−1)

)}
×
(
B(si)−B(si−1)

)
→

∫ t

a

f
(
B(s)

)
ϕ
(
B(T )−B(s)

)
dB(s) +

∫ t

a

f
(
B(s)

)
ϕ′(B(T )−B(s)

)
ds.

Note that f(x)ϕ′(y − x) = ∂θ
∂y (x, y). Hence we have the next lemma from [1].

Lemma 4.5. Let f(x) be a continuous function and ϕ(x) a C1-function. Let
θ(x, y) = f(x)ϕ(y − x). Then

n∑
i=1

θ
(
B(si−1), B(T )

)(
B(si)−B(si−1)

)
−→

∫ t

a

θ
(
B(s), B(T )

)
dB(s) +

∫ t

a

∂θ

∂y

(
B(s), B(T )

)
ds, (4.11)

in probability as ‖∆n‖ → 0. Here ∆n’s are partitions of [a, t].

Notice the second integral in Equation (4.11). This is a correction term due to
the anticipating B(T ) in the function θ. By using this lemma, we can derive the
following Itô’s formula from [1].

Theorem 4.6. Let f and ϕ be C2-functions and let θ(x, y) = f(x)ϕ(y−x). Then

θ
(
B(t), B(T )

)
= θ

(
B(a), B(T )

)
+

∫ t

a

∂θ

∂x

(
B(s), B(T )

)
dB(s)

+

∫ t

a

{1

2

∂2θ

∂x2
(
B(s), B(T )

)
+

∂2θ

∂x∂y

(
B(s), B(T )

)}
ds, a ≤ t ≤ T.

The above theorem provides an anticipative Itô’s formula for a special case. For
further generalizations, see the references [15] and [18].



136 HUI-HSIUNG KUO

4.5. Girsanov theorem. Suppose B(t) is a Brownian motion with respect to a
probability measure P . A very important stochastic process in the Itô calculus is
the exponential process defined by

Eh(t) = exp
[ ∫ t

0

h(s) dB(s)− 1

2

∫ t

0

h(s)2 ds
]
, 0 ≤ t ≤ T, (4.12)

where h(t) is an adapted stochastic process such that
∫ T

0
|f(t)|2 dt < ∞ almost

surely. Consider the translation of B(t) by the integral of h(t), i.e.,

W (t) = B(t)−
∫ t

0

h(s) ds, 0 ≤ t ≤ T. (4.13)

The well-known Girsanov theorem says that if EP (Eh(t)) = 1 for all t ∈ [0, T ],
then the stochastic process W (t) in Equation (4.13) is a Brownian motion with
respect to the probability measure dQ = Eh(T ) dP .

If one examines the proof of the Girsanov theorem (e.g., see the book [14]), one
sees that the conclusion “W (t) is a Brownian motion” can be replaced by “W (t)
is a martingale” since the other properties (those needed for applying the Lev́y
characterization theorem of Brownian motion) are automatically satisfied. With
this modification of the Girsanov theorem, we can extend the theorem to the new
stochastic integral.

The next theorem [15] gives a special case of anticipative Girsanov theorem.
See [16] for further generalizations.

Theorem 4.7. Let ϕ ∈ L2(R). Then the stochastic process

W (t) = B(t)−
∫ t

0

ϕ
(
B(T )−B(s)

)
ds, 0 ≤ t ≤ T,

is a near-martingale with respect to the probability measure given by

dQ = exp

{∫ T

0

φ
(
B(T )−B(s)

)
dB(s)− 1

2

∫ T

0

φ2
(
B(T )−B(s)

)
ds

}
dP.

4.6. Some remarks and open problems. By taking ϕ ≡ 1 in Equation (4.6),
we see that our stochastic integral reduces to the Itô integral. Hence our stochastic
integral is obviously a true extension of the Itô integral. However, our extension is
still in the early stage and has many difficulties to be overcome. Below we mention
some remarks and open problems.

1. The Itô integral
∫ b

a
f(t) dB(t) is defined for stochastic processes f in the

space Lad(Ω, L
2[a, b]), i.e., f(t) is adapted and

∫ b

a
|f(t)|2 dt < ∞ almost

surely. Let f ∈ Lad(Ω, L
2[a, b]). Then we can ask the question:

“What is the class of stochastic processes ϕ(t) for which the new stochastic

integral
∫ b

a
f(t)ϕ(t) dB(t) exists?”

More generally, we need to find the class of all stochastic processes Φ(t)

for which the new stochastic integral
∫ b

a
Φ(t) dB(t) exists.
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2. The Hitsuda–Skorokhod integral
∫ b

a
∂∗t f(t) dB(t) is a partial extension of

the Itô integral for non-adapted stochastic processes f(t). It is natural to
ask the question:

“Is the new stochastic integral related to the Hitsuda–Skorokhod integral?”

We conjecture that when both integrals exist, they have the same value.
3. In Definition 4.3 we have the concept of near-martingale. Obviously, we

can define near-submartingale and near-supermartingale by replacing the
equality sign = in Equation (4.10) with ≥ and ≤, respectively. In order to

prove the continuity property of a stochastic process Xt =
∫ t

a
Φ(s) dB(s)

associated with a nonadapted integrand Φ(t) of our kind, we will need to
obtain the Doob inequality for near-submartingales. We will also need the
Doob–Meyer decomposition theorem for near-submartingales.

4. In Theorem 4.6 we stated a very simple form of Itô’s formula for the new
integral. This theorem has been generalized further in the papers [15] and
[18]. However, the more general form of Itô’s formula is yet to be derived.
Moreover, in view of the relationship between Itô’s formula and the Doob–
Meyer decomposition in the Itô calculus, we can ask the question:

“Is there a relationship between the yet to be derived Itô’s formula and the
yet to be discovered Doob–Meyer decomposition for the new integral?”

5. In the Itô calculus the exponential process of h(t) is defined by Equation

(4.12), which is in fact the renormalization of exp
[ ∫ t

0
h(s) dB(s)

]
. When

h(t) is in the counterpart given by h(t) = φ
(
B(T )−B(t)

)
, the exponential

process takes the same form as in the Itô calculus and is given in Theorem
4.7. In general, we can ask the following question:

“What is the exponential process associated with a non-adapted stochastic
process h(t)?”

Here is an example. Let θ be a C2-function on R. By direct computation,
we can derive the following exponential process associated with θ(B(1))

Xt = exp

{∫ t

0

θ(B(1)) dB(s)

−
∫ t

0

[1
2
θ(B(1))2 +

(
θ′(B(1))B(s)− θ′′(B(1))s

)
θ(B(1))

]
ds

}
in the sense that Xt, 0 ≤ t ≤ 1, is a near-martingale.

6. Special cases of the Girsanov theorem for the new stochastic integral have
been obtained in the papers [15] and [16]. It would be interesting to
find the formulation of the Girsanov theorem for the general case where
the translation involves both the Itô part (adapted) and the counterpart
(instantly independent). This formulation needs to use the exponential
process mentioned in the previous item of remark.

7. In Section 1 we have a simple stochastic differential equation (1.4) with an
anticipating initial condition. The solution is given by Equation (1.8) for
0 ≤ t ≤ 1. In fact, we can also use Itô’s formula in Theorem 4.6 to derive
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the solution. In the paper [10] we have solved a class of linear stochastic
differential equations with anticipating initial conditions. However, we
have not yet been able to obtain a theorem on the existence and uniqueness
of a solution of a general stochastic differential equation with the new
stochastic integral. On the other hand, below is an interesting problem:

“Let Xt and Yt be the solutions of the stochastic differential equations:

dXt = f(Xt) dB(t) + g(Xt) dt, X0 = x, 0 ≤ t ≤ T,

dYt = f(Yt) dB(t) + g(Yt) dt, X0 = ξ(B(T )), 0 ≤ t ≤ T.

Find the relationship between the solutions Xt and Yt.”

8. We know that the martingale property in the Itô theory of stochastic
integration has an analogue, namely, the near-martingale property for the
new stochastic integration. Here is the question for another important
property:

“What is the analogue of the Markov property for the counterpart of the
new stochastic integration?”

9. In the paper [16] we give an application of the new integral to a simple
model of the Black–Scholes equation. It would be interesting to use this
model together with the classical Black–Scholes model to investigate the
influence of the insider information on a market. Moreover, we hope that
the new stochastic integration will be useful to study finance whenever
there is insider information, which is anticipating.

10. Let (i,H,B) be an abstract Wiener space and µ the standard Gaussian
measure on B [12]. Suppose T : B → B is a nonlinear transformation such
that µ◦T−1 is absolutely continuous with respect to µ. It is a well-known
fact that the Radon-Nikodym derivative d(µ ◦ T−1)/dµ is related to the
exponential process in the Girsanov theorem. This leads to the question:

“Can we use the transformation formula for an abstract Wiener space to
derive the exponential process needed for the Girsanov theorem for the new
stochastic integral?”

We do not have an answer yet to this question.
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