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PORTFOLIO OPTIMIZATION UNDER PARTIAL
INFORMATION WITH EXPERT OPINIONS:
A DYNAMIC PROGRAMMING APPROACH*

RUDIGER FREY, ABDELALI GABIH, AND RALF WUNDERLICH

ABSTRACT. This paper investigates optimal portfolio strategies in a mar-
ket where the drift is driven by an unobserved Markov chain. Information
on the state of this chain is obtained from stock prices and expert opin-
ions in the form of signals at random discrete time points. As in Frey et
al. (2012), Int. J. Theor. Appl. Finance, 15, No. 1, we use stochastic filtering
to transform the original problem into an optimization problem under full
information where the state variable is the filter for the Markov chain. The
dynamic programming equation for this problem is studied with viscosity-
solution techniques and with regularization arguments.

1. Introduction

It is well-known that optimal investment strategies in dynamic portfolio opti-
mization depend crucially on the drift of the underlying asset price process. On
the other hand it is notoriously difficult to estimate drift parameters from histor-
ical asset price data. Hence it is natural to include expert opinions or investors’
views as additional source of information in the computation of optimal portfolios.
In the context of the classical one-period Markowitz model this leads to the well-
known Black-Littermann approach, where Bayesian updating is used to improve
return predictions (see Black & Litterman [1]).

Frey et al. [7] consider expert opinions in the context of a dynamic portfolio
optimization problem in continuous time. In their paper the asset price process is
modelled as diffusion whose drift is driven by a hidden finite-state Markov chain
Y. Investors observe the stock prices and in addition a marked point process
with jump-size distribution depending on the current state of Y that represents
expert opinions. Frey et al. [7] derive a finite-dimensional filter p; with jump-
diffusion dynamics for the state of Y and they reduce the portfolio optimization
problem to a problem under complete information with state variable given by the
filter p;. Moreover they write down the dynamic programming equation for the
value function V of that problem and, assuming that the dynamic programming
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equation admits a classical solution, they compute a candidate solution for the
optimal strategy. The precise mathematical meaning of these preliminary results
is however left open.

This issue is addressed in the present paper. A major challenge in the analysis
of the dynamic programming equation is the fact that the equation is not strictly
elliptic if the number of states of Y is larger than the number of assets. In fact,
due to this non-ellipticity it is not possible to apply any of the known results on
the existence of classical solutions to this equation. We study two ways to address
this problem. First, following the analysis of Pham [13] we show that the value
function is a viscosity solution of the associated dynamic programming equation.
Since the comparison principle for viscosity solutions applies to our model, this
yields an elegant characterization of the value function. However, the viscosity-
solution methodology does not provide any information on the form of (nearly)
optimal strategies.

For this reason we study a second approach based on regularization arguments.
Here an additional noise term of the form m_%dét, B an independent Brownian
motion of suitable dimension and m € N large, is added to the dynamics of the
state process p. The dynamic programming equation associated with the regu-
larized optimization problem is strictly elliptical so that recent results of Davis
& Lleo [4] imply the existence of a classical solution V. Moreover, the optimal
strategy for the regularized problem can be characterized as solution of a qua-
dratic optimization problem that involves V™ and its first derivatives. We show
that for m — oo reward- and value function for the regularized problem and the
original problem converge uniformly for all admissible strategies. This uniform
convergence implies that for m sufficiently large the optimal strategy for the reg-
ularized problem is a nearly-optimal strategy in the original problem, so that we
have solved the problem of finding good strategies. In order to carry out this pro-
gram we need an explicit representation of jump-diffusion processes as a solution
of an SDE driven by Brownian motion and - this is the new part - some ezogenous
Poisson random measure; we refer the reader to Section 5 below for details.

The related literature on portfolio optimization under partial information is
discussed in detail in the companion paper [7]. Here we just mention the papers
Rieder & Béeuerle [14] and Sass & Haussmann[16] that are concerned with port-
folio optimization in models with Markov-modulated drift but without any extra
information.

The paper is organized as follows. In Section 2 we introduce the model of the
financial market and formulate the portfolio optimization problem. For this prob-
lem we derive in Section 3 the dynamic programming equation in the case of power
utility. In Section 4 we reformulate the state equation in terms of an exogenous
Poisson random measure. For this reformulated state equation we provide in Sec-
tion 5 an explicit construction of the jump coefficient. The main results of this
paper are presented in Sections 6 and 7. Here we show that the value function is
a viscosity solution of the dynamic programming equation. Moreover, we study a
regularized version of the dynamic programming equation and investigate nearly
optimal strategies.
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2. Model and Optimization Problem

The setting is based on [7]. For a fixed date T > 0 representing the investment
horizon, we work on a filtered probability space (€2,G,G, P), with filtration G =
(Gt)teo, 1) satisfying the usual conditions. All processes are assumed to be G-
adapted. For a generic G-adapted process H we denote by G the filtration
generated by H.

2.1. Price dynamics. We consider a market model for one risk-free bond with

price S = 1 and n risky securities with prices S; = (S},...,S)" given by
dsi = (ui(Yt)dt—i- Zaijdwg), Si=s, i=1,-,n (2.1)
j=1

Here p = u(Y;) € R™ denotes the mean stock return or drift which is driven by
some factor process Y described below. The volatility o = (0%)1<; j<, is assumed
to be a constant invertible matrix and W; = (W}!,--- , W) is an n-dimensional
G-adapted Brownian motion. The invertibility of ¢ always can be ensured by
a suitable parametrization if the covariance matrix oo’ is positive definite. The
factor process Y is a finite-state Markov chain independent of the Brownian motion
W with state space {ey, ..., eq} where e; is the ith unit vector in R%. The generator
matrix is denoted by @ and the initial distribution by p = (p*,...,p%)". The states
of the factor process Y are mapped onto the states u1, ..., uq of the drift by the
function p(Y;) = MY:, where M, = yﬁe =pller), 1<1<n, 1 <k<d.

Define the return process R associated with the price process S by dR: =
dSi/Si,i=1,...,n. Note that R satisfies dR; = u(Y;)dt + ocdW;, and it is easily
seen that G® = G985 = G . This is useful, since it allows us to work with R
instead of S in the filtering part. For details we refer to [7].

2.2. Investor Information. We assume that the investor does not observe the
factor process Y directly; he does however know the model parameters, in par-
ticular the initial distribution p, the generator matrix @ and the functions p’(-).
Moreover, he has noisy observations of the hidden process Y at his disposal. More
precisely we assume that the investor observes the return process R and that he
receives at discrete points in time 7, noisy signals about the current state of Y.
These signals are to be interpreted as expert opinions; specific examples can be
found in the companion paper [7].

We model expert opinions by a marked point process I = (T,,, Z,,), so that at
T,, the investor observes the realization of a random variables Z,, whose distribu-
tion depends on the current state Y7, of the factor process. The T;, are modeled
as jump times of a standard Poisson process with intensity A, independent of Y,
so that the timing of the information arrival does not carry any useful informa-
tion. The signal Z,, takes values in some set Z C R", and we assume that given
Y, = ey, the distribution of Z, is absolutely continuous with Lebesgue-density
frx(2). We identify the marked point process I = (T, Z,) with the associated
counting measure denoted by I(dt,dz). Note that the G-compensator of I is

Adt S0y Ly fr(2)dz.
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Summarizing, the information available to the investor is given by the investor
filtration T with

Fe=Gfvgl, 0<t<T (2.2)

2.3. Portfolio and optimization problem. We describe the selffinancing trad-
ing of an investor by the initial capital g > 0 and the n-dimensional F-adapted
trading strategy h where hi, i = 1,...,n, represents the proportion of wealth in-
vested in stock ¢ at time ¢. It is well-known that in this setting the wealth process
X ™ has the dynamics

ax™  IL o dsi
X(th) =D bt = b p(Y)dt+ b odW, X = (23)
t i=0 t

We assume that for all ¢ € [0,T] the strategy h; takes values in some non-empty
convex and compact subset K of R™ that can be described in terms of r linear
constraints. In mathematical terms,

K={heR": U h<uy,1<I<r forgiven (¥1,11),...,(¥,, 1) €R" x R}.
(2.4)
We assume that there is some h° € R"™ such that \IllThO <y forall 1l <l <r
and that 0 € K. The set K models constraints on the portfolio. Moreover, the
assumption that h; € K for all ¢ facilitates many technical estimates in the paper.
For a specific example fix constants ¢; < 0, ¢ > 1, and let

K={heR":h;>c foralll <i<n and Zhi§02}.

=1

This choice of K hat would correspond to a limit |¢1| on the amount of shortselling
and a limit ¢y for leverage.
We denote the class of admissible trading strategies by

H = {h = (ht)iejo,r): h is F-adapted and h; € K for all t}. (2.5)

Since u(Y:) is bounded and since o is constant, equation (2.3) is well defined for
all h € H.
We assume that the investor wants to maximize the expected utility of terminal

wealth for power utility U(z) = %, 6 <1, 6 #0.! The optimization problem thus
reads as

max{E(U(X\")): h € #}. (2.6)
This is a maximization problem under partial information since we have required

that the strategy h is adapted to the investor filtration F.

IThe case § = 0 corresponds to logarithmic utility U(z) = Inz which is treated in [7].
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2.4. Partial information and filtering. Next we explain how the control prob-
lem (2.6) can be reduced to a control problem with complete information via filter-
ing arguments. We use the following notation: for a generic process H we denote
by H = E(H|F;) its optional projection on the filtration I, and the filter for the
Markov chain Y; is denoted by p; = (p},--- ,p%) with pf = P(Y; = ex|F), k =
1...,d. Note that for a process of the form H; = h(Y;) the optional projection is
given by f@ = ZZ:1 h(ex)pf. In particular, the projection of the drift equals

d
p(Ye) = pler)pf = Mp; .
k=1
The following two processes will drive the dynamics of p;. First, let
t
W; = o Ry — / Mpsds).
0

By standard results from filtering theory W is an F-Brownian motion (the so-called
innovations process). Second, define the predictable random measure

d
vi(dt,dz) = \dt Y pf_ fir(2)dz.
k=1

By standard results on point processes vy is the F-compensator of I, see for instance

Bremaud [2]. The compensated random measure will be denoted by I(dt,dz) :=
I(dt,dz) — vi(dt,dz).

Using a combination of the HMM filter (see e.g. Wonham [17], Elliott et al. [5],
Liptser & Shiryaev [11]) and Bayesian updating, in [7] the following d-dimensional
SDE system for the dynamics of the filter p is derived

dp; = Q" prdt + BT (pr)dW, +/ v1(pi—, 2)1(dt,dz) (2.7)
Z

with initial condition pf = p*. Here, the matrix 8 = B(p) = (B4, ..., B4) € R"*4
and the vector vr = v1(p,2) = (7}, ...,7%)" € R? are defined by

d
Br(p) = p* (ofl(uk - ijﬂj)) =pfo ' M(ep —p) €R”
j=1
M — 1), 1<k<d, with f(z,p)= zd:pkfk(z).
f(Z,p) - k=1

(2.8)

It is well-known (see e.g. Lakner [10], Sass & Haussmann [16]) that the F-
semimartingale decomposition of X is given by

ax™
Xt(h)

Now note that for a constant strategy h; = h € K the (d + 1)-dimensional process
(X p) is an F-Markov process as is immediate from the dynamics in (2.7) and
(2.9). Hence the optimization problem (2.6) can be considered as a control problem

and A~} (p,z) = p" (

= ) Mpydt+ hl odW,. (2.9)
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under complete information with the (d + 1)-dimensional state variable process
(X p). This control problem is studied in the remainder of the paper.

3. Dynamic Programming Equation for the Case of Power Utility

3.1. A simplified optimization problem. As a first step, we simplify the con-
trol problem by a change of measure. As shown in Nagai & Runggaldier [12]
this measure change leads to a new problem where the set of state variables is
reduced to p and where the dynamic programming equation takes on a simpler
form. First we compute for an admissible strategy h € H the utility of terminal
wealth U(X(Th)) = %(X:(Fh))e. From (2.9) it follows that

Loxm 4 T Ly 1, 2 T o1 ==

Z(X77)? = R exp {9/ (hs Mp, — = |o "y )d5+9/ hsadWS}, (3.1)
0 0 o 2 o

where |.| denotes the Euclidean norm. Define now the random variable L%h ) =
exp { fOT Oh] cdW, — 1 OT |90Th8l2 ds} and the function

b(p, h; 6) = ﬂQ(hTMp - % |0Th|2). (3.2)

With this notation (3.1) can be written in the form

1 z9 T
g(X(Th))e = ?0 L(Th) exp {/ —b(ps,hs;ﬂ)ds}. (3.3)
0

Since o is deterministic and since h is bounded, the Novikov condition implies
that E(Lg,fl )) = 1. Hence we can define an equivalent measure P" on Fr by
dP"/dP = Lgfh), and Girsanov’s theorem guarantees that B; := Wt —0 f(f o hgds
is a standard F-Brownian motion. Substituting into (2.7) we find the following
dynamics for the filter under P"

dp, = olps, he)dt + B (py)dBy + / vi(pi—, 2)I(dt, dz) (3.4)
z
where o = a(p,h)=Q ' p+608" (p)o'h. (3.5)

In view of these transformations, for 0 < 6 < 1 the optimization problem (2.6) is
equivalent to

max {E(exp { /T A 9)ds}> he ’H} (3.6)
0

where we denote by p{'”™ the solution of (3.4) for s € [t,T] starting at time
t € [0, 7] with initial value p € S for strategy h € H. For § < 0 on the other
hand (2.6) is equivalent to minimizing the expectation in (3.6). In the sequel we
will concentrate on the case 0 < 6 < 1; the necessary changes for § < 0 will
be indicated where appropriate. Moreover, # will be largely removed from the
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notation. The reward and value function for this control problem are given by

o(t,p,h) = E(exp{/tT fb(pgt’p’h),hs)ds}) for h € H,

V(t,p) = sup{v(t,p,h): h € H}. (3.7)

Note that v(T,p,h) = V(T,p) = 1.

3.2. The dynamic programming equation. Next, we derive the form of the
dynamic programming equation for V(¢,p). We begin with the generator of the
state process py (the solution of the SDE (3.4)) for a constant strategy h: = h.
Denote by S = {p € R? : Z?lei = 1,p" > 0,i = 1,...,d} the unit simplex in
R?. Standard arguments show that the solution of this SDE is a Markov process
whose generator £" operates on g € C?(S) as follows

Z BT gp pJ + Za pu 7' (38)

3,7=1

+ A[;mp+vxnz»—g@»?@mMz

By standard arguments the dynamic programming equation associated to this
optimization problem is

Vilt,p) + sup { L'V (t.p) = b(p. s )V (t,p) } =0, (t.p) € [0.T) x S, (3.9)
heK

with terminal condition V(T,p) = 1. In case that § < 0 the equation is similar,
but the sup is replaced by an inf. Plugging in £ as given in (3.8) and b(p, h) as
given in (3.2) into (3.9) the dynamic programming equation can be written more
explicitly as

d d
0 = Vi(t,p) +%Zﬂ (1) Bi(pe) Vi (¢ +Z{ZQ”“ it p)

k,l=1 k=1 =1
+A/kvmp+w@x»fVUm»ﬂamw (3.10)

+ sup {Zﬁ (pr)o " ORV,(t,p) + OV (1, p)(hTMp Liomal? (- 9))}.
heK

Suppose for the moment that a classical solution to (3.10) exists. The argument
of the supremum in the last line of (3.10) is quadratic in h and strictly concave
(as oo is positive definite). Hence this function attains a unique maximum h* on
the convex set K. Moreover, as shown in Davis and Lleo [4], Proposition 3.6, h*
can be chosen as a measurable function of ¢ and p. Hence there exists a solution p*
of the SDE (3.4) with h; = h*(t, p}); this can be verified by a similar application
of Girsanov’s theorem as in the derivation of the equation (3.4). Then standard
verification arguments along the lines of Theorem 3.1 of Fleming & Soner [6] or
Theorem 5.5 of Davis and Lleo[4] immediately give that V' is the value function of
the control problem (3.6) and that h; := h*(¢,p;) is the optimal strategy.
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Remark 3.1. If for some (t,p) h*(t,p) is inner point of K, an explicit formula
for h*(t,p) can be given. In that case h*(¢,p) is given by the solution h* of the
following linear equation (the first-order condition for the unconstrained problem)

025k Wi (t,p) + V(¢ p)(Mp—agTha—a)) = 0.

Since o is an 1nvert1ble matrix h* equals
h* = h*(t,p) = 71 (O’O‘T)il{M 025k Vk t p)}
’ (1-0)

However, the existence of a classical solution of equation (3.10) is an open
issue. The main problem is the fact that one cannot guarantee that the equation
is uniformly elliptic. To see this note that the coefficient matrix of the second
derivatives in (3.10) is given by C(p) = 87 (p)B(p). By definition equation (3.10)
is uniformly elliptic if the matrix C(p) is strictly positive definite uniformly in
p. A necessary condition for this is that there are no non-trivial solutions of the
linear equation Sz = 0 so that we need to have the inequality n > d (at least
as many assets as states of the Markov chain Y). Such an assumption is hard to
justify economically; imposing it nonetheless out of mathematical necessity would
severely limit the applicability of our approach.

In the present paper we therefore study two alternative routes to giving a pre-
cise mathematical meaning to the dynamic programming equation (3.10). First,
following the analysis of Pham [13], in Section 6 we show that the value function
is a viscosity solution of the associated dynamic programming equation. Since
the comparison principle for viscosity solutions applies in our case, this provides
an elegant characterization of the value function. However, the viscosity-solution
methodology does not provide any information on the form of the optimal strate-
gies. For this reason, in Section 7 we use regularization arguments to find approxi-
mately optimal strategies. More precisely, we add a term \/%dBt, with m € N and

B a Brownian motion of suitable dimension and independent of B, to the dynam-
ics of the state equation (3.4). The dynamic programming equation associated
with these regularized dynamics has an additional term ﬁAV, A the Laplace
operator, and is therefore uniformly elliptic. Hence the results of Davis & Lleo
[4] apply directly to the modified equation, yielding the existence of a classical
solution V. Moreover, the optimal strategy ™h* of the regularized problem is
given by the argument of the supremum in the last line of (3.10) with V™ instead
of V. We then derive convergence results for the reward- and the value function of
the regularized problem as m — oo. In particular, we show in Theorem 7.5 that
for m sufficiently large "*h* is approximately optimal in the original problem.

4. Reformulation of the State Equation

To carry out the program described above we have to reformulate the state
equation for a number of reasons. First, in our model the state variable process
p (the solution of (3.4)) takes values in the simplex S which is a subset of a
d — 1-dimensional hyperplane of R%. If we introduce the announced regularization
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to the diffusion part of the state equation then the state variable will leave this
hyperplane and takes values in the whole R? so that the normalization property
of p is violated, which creates technical difficulties. Second, in our analysis we
need to apply results from the literature on the theory of dynamic programming
of controlled jump diffusions, such as Pham [13] and Davis & Lleo [4]. These
papers consider models where the jump part of the state variable is driven by
an exogenous Poisson random measure, and this structure is in fact essential for
many arguments in these papers. In our model, on the other hand, the measure
I is not an exogenous Poisson random measure since the law of the compensator
vy depends on the solution 7;. Hence we need to reformulate the dynamics of the
state variable process in terms of an exogenous Poisson random measure.

4.1. Restriction to a d — 1-dimensional state. We rewrite the state equation
in terms of the ‘restricted’ (d — 1)-dimensional process m = (n!,..., 74 )T =
(p',...,p"1)". Then the original state p can be recovered from 7 by using the
normalization property for the last component p? and we define p = Rm :=
(7r1, ey g1, 1 — Z?:_ll 7Ti>T. Assuming p € S implies that the restricted state
process takes values in
d—1
S= {weRH S ori <17 >0, z=1,...,d—1}.

i=1

Now the state equation for m € S associated to (3.4) reads as

dry = afm, he)dt —|—é—r(7rt)dBt —|—/ ll(ﬂ't_,z)IN(dt,dz) (4.1)
Z
where the coefficients are given by
a(m, h) = (o (Rm,h),...,a% Y (Rr, b)) e RI! (4.2)
B(x) = (Bi(Rn), ..., Ba—1(Rr)) € R™*41 (4.3)
v, (m2) = (VH(Rm, 2),...,7¢ H(Rm, 2))" € RI7L (4.4)

It is straightforward to give an explicit expression for a, 8 and vy ;» but such an
expression is not needed in the sequel. The original state can be recovered from 7
by setting p = Rm.

4.2. Exogenous Poisson random measure. In the remainder of the paper we
assume that the state process solves the following SDE

dmy = g(m,ht)dt—i—@T(wt)dBt—l—/V(Ft,,u)]\Nf(dt,du), (4.5)
u

where o and /3 are defined above, v : S x U — R4, and N is the compensated
measure to some finite activity Poisson random measure N with jumps in a set
U C R”. The compensator of N is denoted by v(du)Adt, i.e. we have N(dt, du) =
N(dt,du) —v(dz)Adt. In the next section we show that for a proper choice of ~(+)
and N (dt, du) the solution of (4.5) has the same law as the original state process
from (4.1).
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In order to ensure that SDE (4.5) has for each control h € H a unique strong
solution and for the proof of some of the estimates in Section 7 the coefficients
a, 8 and v have to satisfy certain Lipschitz and growth conditions (see [9] and
[13]). These conditions are given below. For technical reasons we require that the
conditions hold not only for 7 € § but also for a slightly larger set S, D § defined
for sufficiently small € > 0 by

S, :={r e R . dist (,S) < ¢},

where we denoted the distance of 7 € R?~! to S by dist (r,S) := inf{|r —
7|oo: Mo € S}, for |7|s the maximum norm on R4~1.

Assumption 4.1 (Lipschitz and growth conditions). There exist constants
Cr,g > 0 and a function p : U — Ry with [, p?(u)r(du) < oo such that for
all my,my € Se,e<zand k=1,...,d

sup\g(m,h)—g(wz,h)u(gk(m)—@k(m)) < COplm—ml|,  (4.6)

heK
a(m )|+ |8,m| < cra+ia, @
A(mu) = A(m, )] < plu) fm =, (48)
hrw| < p@+la).  (49)

In our case the coefficients o and S are continuously differentiable functions of
7 on the compact set S, and h € K is bounded. Hence, the Lipschitz and growth
condition (4.6) and (4.7) are fulfilled. Specific conditions on the densities fx(-)
that guarantee (4.8) and (4.9) are given in the next section.

For the optimization problem (3.6) we can give an equivalent formulation in
terms of the restricted state variable = with dynamics given in (4.5), that is the
equation driven by an exogenous Poisson random measure. For this it is convenient
to denote for a given strategy h € H the solution of the SDE (4.5) starting at time
t < T in the state m € S by 7(&mh)  This control problem reads as

IN

max {E(exp { /T —b(Rr 07 9)ds}) he H}. (4.10)
0

The associated reward and value function for (¢,7) € [0,T] x S are

o(t,mh) = E(exp{/T —b(ngt’”’h)7hs)ds}) for h € H,
t

(4.11)
V(t,m) = sup{v(t,m,h): h € H}.
The generator associated to the solution of the state equation (4.5) reads as
= d-1
Lhy(r) = 5 Zl B (m)B, (1) gmims + ;g(m h) g (4.12)
i,j= i=

+¢}mw+ﬂmu»—gw»wmo
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and the associated dynamic programming equation is

Vi(t, ) + sup {ﬁhV(t,w) - b(Rmh;G)V(t,w)} —0, (t,7) €[0,T) x S. (4.13)
heK

5. State Equation with Exogenous Poisson Random Measure

In this section we show how a solution of the state equation (4.1) can be con-
structed by means of an SDE of the form (4.5) that is driven by an exogenous
Poisson random measure. The main tool for constructing v will be the so-called
inverse Rosenblatt or distributional transform, see Riischendorf [15], which is an
extension of the quantile transformation to the multivariate case.

We impose the following regularity conditions on the functions fi(-) that rep-
resent the conditional densities of Z,, given Y7, = ey.

Assumption 5.1. All densities fi(z), 1 < k < d, are continuously differentiable
and have the common support Z. We assume that Z is a x-dimensional rectangle
[a,b] C R”, ie.

Z={zeR":—c0<ap <z, <bpy<o0, k=1,...,k}.
Moreover, there is some 0 < Cy such that fi(z) > Ci forall z€ Z k=1,...,d.

Remark 5.2. Examples for densities that satisfy the above assumption are easily

constructed. Start with C!-densities fk and choose some (large) rectangle Z then
rs K

fe(z) =01 - 5)@7(2)15(2) + Eilg(z) where |Z] = H(bi —a;) (5.1)
[ Fe(u)du 2] 11

kE=1,...,k, € € (0,1], satisfy the requirements of Assumption 5.1. Intuitively,

(5.1) corresponds to a mixture of the original density fk and the uniform distri-

bution. The latter distribution carries no information so there is uniform a lower

bound on the information carried by a single expert opinion.

5.1. Inverse Rosenblatt Transform. In order to write our state equation (4.1)
in the form (4.5) with exogenous Poisson random measure we apply the inverse
Rosenblatt transform, for instance see [15]. Denote by U = [0, 1] the unit cube in
R*. In our context the inverse Rosenblatt transform is a mapping G : Y — Z such
that for a uniform random variable U on [0, 1]* the random variable Z = G(U)
has density f(z,p) = Z;l:l P’ f;(2), p = Rm; the mapping G can thus be viewed
as a generalization of the well-known quantile transform.

Now we explain the construction of the transformation G in detail. First, we
define for k =1,...,k — 1, p = Rm, the marginal densities

b1 be
fZl...Zk(Zla--~7Zkap):/ / f(zl>'"azk>sk+la--~7sn7p)dsm~--dsk+l-
Ak41 7%

(5.2)
For k = k we set fz,. .z, = 7 Next we define for kK = 2,...,x the conditional
densities
fZl...Zk(Zlv e 7Zk7p)
fZlu.Zk,l (Zl7 RS Zk—lap)

fzk\zl...zk,1(2k|21,-~~Zk71,p) =
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and the associated distribution functions
Zk
Frazy..ze 1 (2kl21, .o 2k-1,p) = / f20120 ..z, (8Kl 215 - 211, p)dSig;
ag

for k = 1 we denote by Fz, the distribution function of Z;. Now we introduce the
Rosenblatt transform F : Z — [0,1)* = U, 2+ (Fi(2,p), ..., F.(z,p))" by

Fi(2,p) = Fz,(21,p) and Fi(2,p) = Fz,\z,..2,_, (zk|21, . .- 21-1,p), K =2,... K.
(5.3)
Clearly, ﬁk(zm) depends on the first k variables zi,...,z, only. The desired
transformation G will be the inverse of F , and the explicit form of F is needed
when we estimate the derivatives of G in the proof of Lemma 5.4 below.
Assumption 5.1 ensures that the joint density f(z,p) is finite and bounded
away from zero. Hence, the conditional densities fz,|z,...z,_, (2|21, ... 2x—1,p) are
strictly positive, and the mapping z — Fyz, |z, . 7, ,(2|21,... 2p—1,p) is strictly
increasing and hence invertible. In the sequel we denote the corresponding inverse
function by FZ_kl‘ZlmZki1 (|1, - - 2Zk—1,D).
Now the desired transformation Z = G(U) = G(U,p) with transformation
function G : U — Z, u > (G1(u,p),-..,Ge(u,p))" can be defined recursively by

G1(u,p) = Fz_ll(ul,p) ,and for k=2,...,K,
Gk(uap) = inkl\Zlu.Zk,l (Uk | Gl(uvp)a RS Gk*l(’uﬂp))

Note that by construction it holds G(F(z, p), p) = z. From [15] it is known that if U

is uniformly distributed in [0, 1]*, the random vector Z = (Z1,...,Z.) " = G(U,p)

has the joint distribution density f(z,p).

With the transformation G at hand we define the jump coefficient (7, u) by

’yk(w,u):wk(Mfl) forueld, k=1,...,d—1. (5.5)
- f(G(u, Rm), Rm)

Moreover, we choose the Poisson random measure N (dt,du) in (4.5) such that the

associated compound Poisson process has constant intensity A and jump heights

which are uniformly distributed on U = [0,1]". Then, the compensator of N is

v(du)dt = Adu dt and the compensated measure reads as ]\~7(dt, du) = N(dt,du) —

Adudt. Note that with this definition the solution m; of (4.5) satisfies for some

Borel set A C R?~!

P(Anp, € A| Fr,—) = / 1a(y(7r, -, u))du
u

/MlA(ll(ﬂ'T”_,G(u,Rﬂ'T”_))>du
= /Z1A(1[(77Tn_,z))f(z,RﬂTn_)dz.

Hence with the above choice of vy and N(dt, du), for constant h the process R,
7 the solution of the SDE (4.5), solves the martingale problem associated to the
generator £ from (3.8). Below we show that under Assumption 5.1 the Lips-
chitz and growth conditions from Assumption 4.1 hold, so that the SDE (4.5) has

(5.4)
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a unique solution. It is well-known that this implies that the martingale prob-
lem associated with £" has a unique solution, see for instance Jacod & Shiriaev
[9], Theorem II1.2.26. Hence Rw has the same law as the state variable process
p in (3.4), which shows that we have achieved the desired reformulation of the
dynamics of the problem in terms of an exogenous Poisson random measure.

Remark 5.3. Admittedly, the construction of G and  is quite involved. The main
reason for this is the fact that we consider the case of multidimensional expert
opinions with values in R for some x > 1. Note however, that such a multivariate
situation arises naturally in a model with more than one risky asset.

5.2. Lipschitz and growth conditions. The next Lemma states that under
Assumption 5.1 the functions lk(w, u) satisfy the Lipschitz and growth conditions
(4.8) and (4.9). The proof is given in Appendix A.

Lemma 5.4. Under Assumption 5.1 and for e < & := (d_cﬁ the coefficient
(m,u) defined in (5.5) satisfies for m € S_ the Lipschitz and growth condition
(4.8) and (4.9).

6. Viscosity Solution

In this section we show that the value function of the control problem (4.11)
is a viscosity solution of the dynamic programming equation (4.13). Since it is
known from the literature that the comparison principle holds for these equation
(a precise reference is given below) we obtain an interesting characterization of the
value function as viscosity solution of (4.13). This part of our analysis is based to
a large extent on the work of Pham [13].

6.1. Preliminaries. The following estimates are crucial in proving that the value
function V' (¢, p) is a viscosity solution of (4.13).

Proposition 6.1. For anyr € [0, 2] there exists a constant C > 0 such that for all
6>0,t€0,T], m, (£ €S, h € H and all stopping times T between t and T ANt +§

( |7T(t,7r,h)|7‘ ) < C(1+|n") (6.1)
E( |t —z|") < C(1+ |n|")sE (6.2)

(t,m,h) _ "oz
E({Ki‘iﬁlg‘”s ‘} ) < C(+|x|")s (6.3)
B( |rtmh — g em|") < Olr— gl (6.4)

The proof is given in Appendix B.
Next we state the dynamic programming principle associated to the control
problem (4.10).

Proposition 6.2 (Dynamic Programming Principle). For t € [0,T], = € S and
every stopping time § such that 0 < § < T —t we have

v _ s (t,m,h) (t,m,h)
(t,m) = slelgE(eXp{ t —b(Rm™ ,hs)ds} (t+6,m.3 ))
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For the proof of dynamic programming principle we refer to Pham [13], Proposi-
tion 3.1.

Applying the dynamic programming principle yields the next proposition on
the continuity of the value function. The proof is given in Appendix C.

Proposition 6.3. There exists a constant C > 0 such that for allt,s € [0,T] and
T, €S

[V (t,m1) — V(s,m)| < C’[(l + |m)|t — s\% +|m = 7r2|]. (6.5)

2. Viscosity Solution. Following Pham [13] we adapt the notion of a viscosity
solution introduced by Crandall and Lions [3] to the case of integro-differential
equations. This concept consists in interpreting equation (4.13) in a weaker sense.
To simplify notation we split the generator £" given in (4.12) into

Llg(m) = Atg(r) + B(r)
where for g € C%(S) the linear second-order differential operator A" is defined by

d—
Z ﬂ gﬂ”'frJ ZQ T, h ng )

i,j=1

and B is the integral operator
= [ (gt + () - g(m) ().
u

Moreover D, g and D?g denote the gradient and Hessian matrix of g w.r.t 7.

Definition 6.4.
(1) A function V € C°([0,T] x S) is a viscosity supersolution (subsolution) of
equation (3.9) if

~5 ) - sup ( — b(RT, W)V (E,7) + AMp(E, ﬁ)) “BYET >0 (6.6)

(resp. <0) for all (£,7) € [0,T] x S and for all 1) € C*2(]0,T] x S) with Lipschitz
continuous derivatives 1y, D21 such that (£,7) is a global minimizer (maximizer)
of the difference V' — 1 on [0,T] x S with V (¢, 7) = ¢ (¢, 7).

(2) V is a viscosity solution of (3.9) if it is both super and subsolution of that
equation.

Proposition 6.5 (Viscosity solution). The value function V (t, ) associated to
the optimization problem (3.6) is a viscosity solution of (3.9)

Proof. Supersolution inequality. Let be 1 such that

0=(V-y)(t.7) = o (V —19). (6.7)

We apply the dynamic programming principle for a fixed time 6 € [0, T —t] to get

- = o (t,7,h) (t m,h)
[/ %, m) = %, 7) = sup F| ex / 7b R7'St7 3 7hs dS & + (5, .
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From (6.7) we obtain
e (,7,h) (&,7,h)
0> sup F| ex / —b(Rr{t™M h)ds (T + 6,7 ) —(E,7)). (6.8
sup Bexp{ [ - )ds bip(E+ 0,5 ™) ~ (A7), (63)

We now define for u € [¢,T]

Ny := exp {[ —b(ngff’h%hs)ds} and  Z, 1= ny b (u, 770, (6.9)
7

Then, we apply 1t6’s formula to Z; 5, where we use the shorthand notation m, for
Wgt’f’h). Since dZ; = —b(Rmy, he)npab (¢, 7 )dt + nedip(t, 1), we have

t+5
Trvs = T+ / b(Rrra, )t (s, 7, )ds
t

)
+ [ ns{i(s,ms) + A" (s, 75) + By (s, 7s) pds
t

145
+ ﬁ NsDrt)(s,ms) BT (ms)dB,
t

46
+ [ 775/ (w(sms + (7, u)) — 1/)(877('5))]\7((18 x du).
t u

Due to our assumptions on b and 1), the last two terms are martingales with zero
expectations. From (6.8) we therefore obtain

0 > sup E(Z 5 —¢(L,7))
heM

T+ o o
sup E([ —b(ngt’”’h),hs)nsw(s,ﬁgt’“’h))ds (6.10)
heH t

T+ o o o
—|—/ ns{w (s, ﬂ'gt’”’h)) + Al (s, Wgt’”’h)) + By (s, ﬂgt’”’h))}ds).
t

We now show for the first integral that
t+6 _ _
E(/ —b(Rﬂ'gt”T’h),hs)r]sw(s,ﬂgt’”’h))ds> >
t

E(/tt+6 fb(Rw,hs)w(,f)ds) —6e(8).  (6.11)

where €(6) — 0 as 6 — 0. Using the Lipschitz continuity of ¢ we obtain the

inequality [¢(s, ng’?’h)) -, < C(ls — | + \Wg’?’h) —7|), which leads to

T+5 o o
sup E(/ —b(Rr &™) b Yngib(s, Wgt’”’h)))ds >
heH €

sup E( ﬁ " —b(RrEF | b Vs E, ﬁ)ds) - 05{5 + E( sup [wEmh) _ ﬁ|> })
t

heH 0<s<s
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By Proposition 6.1 we have E(supogsg(; |7r§’?’h) - f|> < C(1+ [7])62 and hence

we obtain

t+6 o o
E(/, —b(Rr (™M) h)nsib(s, wgt”“h))ds) >
t

E ( /f v —b(Ra{"™M ho)nab(E, f)ds) — e(8). (6.12)

Recall from (3.2) that b(Rm, h) = —6 (hTMRﬂ' - =t |o*—'—h|2 ) Since this expres-
sion depends linearly on m and hs and since hs takes values in the compact set K
we have - ~

|b(Rx ™M) ) — b(Rm, hy)| < Clxt™h — x|
Using |ns — nz| = |ns — 1] < C|s — ¢| and the same computations to get (6.12) it
yields

) o - i+s
B( / —b(RrT b e (s, T )ds ) = B( / —b(RT, hy) (1, 7)ds) — 8(),
€ t

Applying similar computations to the other terms in (6.10) by using the estimates
for the state process m and the Lipschitz continuity of D24 we obtain

t+6
«0) = gswB( [ {HEBIOET) + 6ET) + AET) + B m)ds).

0 hen
Replacing h € H by a constant strategy in the above sup we get

t+6
(@) 2 5( [ s (= bRRRJOER) + 00 (E.7) + AT + BUET) )ds.

heK
Applying the Mean Value Theorem and sending § to 0 we get the supersolution
viscosity inequality:

%f(f, ™) - sup (- 0B NV (E7) + AT 7)) - Bu(E.m) = 0.

Subsolution inequality. Let i be such that

0=(V-9)t7)= = 6.13
(V —¥)(t,7) [o,T?fs( () (6.13)
As a consequence of dynamic programming principle in Proposition 6.2 we have
i+6 o -
V(E; ﬁ) = sup E(exp{ / _b(Rﬂ_gt,T(,h)’hs)ds}v(t_’_(s’ ﬂ_t(igr,h))>
heH 1

Equation (6.13) implies that

t+0 _ -
0 < sup E( exp { / fb(ngt’”’h), hs)ds}w(t + 4, W,Eig’h)) — (L, ﬁ))
heH t

Using similar computations by applying It6’s formula to the process Z, given in
(6.9) and using the estimates for the state process = we obtain

t+6
«(0) < g5 B( [ {-bRRBJOET) + 00 (E.7) + A DET) + BUET) ).

heH
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Replacing h € H by a constant strategy in the above sup, applying the Mean
Value Theorem and sending § to 0 we obtain the subsolution viscosity inequality

il ) sup (= o(Rm NV (E7) + AM(ET) ) - B, ) < 0.
O

6.3. Comparison principle. Here we quote the following result, which is The-
orem 4.1 of [13].

Theorem 6.6. Suppose that Assumption 4.1 holds and that u; and ug are contin-
uous functions on [0,T] X S such that uy is a subsolution and usy is a supersolution
of the dynamic programming equation (3.9). If uy (T, 7) < ua(T,m) for all w € S,
then

ur(t, ) <wug(t,m) for all (t,7) € [0,T] x S.

Together with Proposition 6.5, this result implies immediately that the value
function V' (t,7) associated to the optimization problem (3.6) is the unique con-
tinuous viscosity solution of (3.9).

7. Regularized Dynamic Programming Equation

In this section we introduce the regularized version of our dynamic programming
problem and we discuss the convergence of reward and value functions as the
regularization-terms converge to zero. In Corollary 7.5 we finally show that optimal
strategies in the regularized problem are nearly optimal in the original problem.

7.1. Regularized state equation. Since regularization will drive the state pro-
cess outside the set S we need to extend the definition of the coefficients «, ﬁ and
7 from S to the whole R4™!. For m € R*!, h € K and € > 0 we define

- [ a(m,h)(1 —dist (7,8)/e) for me S,
o(m, h) = { 0 otherwise.

Note that S C S, and there is a continuous transition to zero if dist (7, S) reaches
. Moreover, on S it holds a(m, h) = a(m, h), i.e. the coefficients coincide. Analo-
gously we define 3 and 7 as extensions of 3 and 7.

Lemma 7.1. Under the assumptions of Lemma 4.1 the coefficients Q,E and ¥
satisfy the Lipschitz and growth conditions (4.6) to (4.9) for 7 € R4~

Proof. The Lipschitz and growth conditions for the coefficients «, 5 and 7 given
in Lemma 4.1 hold for 7 € S, for ¢ < &. Multiplication of these functions by the
bounded and Lipschitz continuous function 1—dist (7, S)/e preserves the Lipschitz
and growth property. O

For the sake of simplicity of notation in the sequel we will suppress the tilde
and simply write o, 8 and v instead of a, 8 and 7.
Next we define the dynamics of the regularized state process ",

~ 1 -~
d™r, = (™, hy)dt + BT ("m)dB Mo w)N(dt,d —dB 1
= a("mg, he)dt + B (") t+/uj( m—, w)N(dt, du) + N : (7.1)
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where B; denotes a d — 1-dimensional Brownian motion independent of B;. This
state process is now driven by an n + d — 1-dimensional Brownion motion. Note
that the diffusion coefficient of the regularized equation

1
Jm

satisfies the Lipschitz and growth condition (4.6) and (4.7) given in Lemma 4.1
since é(ﬁt) satisfies these conditions and ﬁfdfl does not depend on p.

(ﬁT(Wt), Iiq)"

7.2. Lo-Convergence "m; — m;. We now compare the solution "7; of the
regularized state equation (7.1) with the solution m; of the unregularized state
equation (4.5) and study asymptotic properties for m — oo. This will be crucial
for establishing convergence of the associated reward function of the regularized
problem to the original optimization problem.

We assume that both processes start at time ¢y € [0, 7] with the same initial
value ¢ € §, i.e. ™my, = m, = q. The corresponding solutions are denoted by
mﬂ.gtmq,h) and ﬂ.gtm%h).
Lemma 7.2 (Uniform Ly-convergence w.r.t. h € H).
For m — oo the following holds

2
E( sup ‘mwt(to’q’h) — W,Eto’q’h)‘ ) — 0 uniformly for h € H.
to<t<T

Proof. To simplify the notation we suppress the superscript (to, g, h) and write m;
and "m;. Moreover, we denote by C a generic constant.

We give the proof for tg = 0, only. Using the corresponding representation as
stochastic integrals for the solutions of the above SDEs we find

Moy —m = A+ M where
t
AP = / (a(M7s, hs) — alms, hs))ds and
0

m_tm’]T—’]TT t Moo u) — (s, u s. du
My = /0@( ) = B(r)) st+/O/u(1( o1t) — (e ) N (ds, du)

1 -~
+ Jm dBgy.
Note that here we have used the fact that the SDE for "7 and for 7 is driven by an
exogenous Poisson random measure, since this permits us to write the difference
of the jump-terms as stochastic integral with respect to the same compensated
random measure.
Denoting G}* := E(sups<t |"™7ms — 7r5|2) the following holds

Gm = E(sup|A;" +M§"\2) < 2E(sup|AT|2) + QE(sup|M;n|2). (7.2)
s<t s<t s<t



PORTFOLIO OPTIMIZATION WITH EXPERT OPINIONS 67

For the first term on the r.h.s. we find by applying Cauchy-Schwarz inequality and
the Lipschitz condition (4.6) for «

s 2
sup |A™|> = sup / (™7, ha) — a(my, b)) du
s<t s<t [JO
s 2
< sup s / a("my, hy) —g(wu,hu))‘ du
s<t 0
t t
< t- / Cp|™my — my|?du < t- Cp sup |"m, — m,|*du.
0 0 v<u

Note that the constant C, does not depend on h. Taking expectation it follows
¢ ¢
E(sup |AT|2> < t- C’L/ E(sup |7, — 7TU|2ds) < C’/ Gds. (7.3)
s<t 0 v<s 0

For the second term on the r.h.s. of (7.2) Doob’s inequality for martingales yields

B(sup M) < 4B(MP)
s<t

4(f (tr[(B("ms) — Bms)) (B(™ms) — B(ms))])ds  (7.4)
// (Jy("ms,u (Ws,u))|2)y(du)ds+w).

Using the Lipschitz conditions (4.6) and (4.8) for the coefficients 8 and ~ it follows

E(tr[(B("m) = B(mo)) (B("ms) — B(,)]) < CLE(™ms — )
< CEE(sw|"m —ml) = CLGY"

PP (W) E("ms — )
P> (u)E(sup ["m, — my|*) = p?(u) G-

v<s

E(|y("me,u) — (7, u))[*)

IN

IN

Substituting the above estimates into (7.4) it follows that

(/mCiGmds+¥/ Gmdg/ (d;fﬁ)

C/Gmd +4(7
m

IN

E(sup |M:”|2>
s<t

IN

(7.5)

Substituting (7.3) and (7.5) into (7.2) we find

4d-1)T K
Gi" < u+C/ GTds.
m 0
Finally we apply Gronwall Lemma to derive
4(d—-1)T
G?ngCT%O for m — oo

m
which concludes the proof. O
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Note that the Ls-convergence for the restricted state process ™ established
in Lemma 7.2 also holds for the associated d-dimensional process "'p; = R 7.

We now extend the notions of reward and value function given in (3.7) to the
process ™p; = R™m; with ™m, satisfying the regularized state equation (7.1).
Since ™p; takes values in R? (and not only in ) we extend the function b given
in (3.2) to p = Rr € R%. With the notation b, = min{b(p,h), p € S,h € K} and
b* = max{b(p,h), p € S,h € K} we define

b(p, h) := (b(p,h) V by) A b*.

Then b is bounded on R? x K and for p € S the function b coincides with b. In
the sequel we simply write b instead of b. We define the reward and value function
associated to the regularized state equation (7.1) by

T
v (t,mh) = E(exp{/ —b(R(™w (bR ),hs)ds}) for h € H,
t
V™) = sup{v™(t,m h): h € H}.
Recall that v(t, 7, h) and V(¢,7) defined in (4.11) denote the reward and value

function associated to the unregularized state equation (4.5). The generator asso-
ciated to the solution of the regularized state equation (7.1) reads as

i 2 g7r7TJ+ Zgwﬂ1+2a ﬂ—hg,n-z

+ /M {9(m +(m,u)) — g(m)}v(du)

mEh

l\D\H

and the associated dynamic programming equation is

Vi (t, ) + sup {mchvm(m) — b(Rn, h;G)Vm(t,w)} =0, (t,7) €[0,T) x R,

heK
(7.6)
Note that for the generator ™ L" the ellipticity condition for the coefficients of the
second derivatives holds: we have for all z € R4~1\ {0}

1 1 1
(ﬁ B+ 2— a-1)2 = zTﬁTéer %ZTZ: |@z|2 + %|Z|2 > 0.

Hence the results of Davis & Lleo [4] apply to this dynamic programming problem.
equation. According to Theorem 3.8 of their paper, there is a classical solution
V™ of (7.6). Moreover, for every (¢,m) there is a unique maximizer ™h* of the
problem

sup {mchvm(t, ) — b(Rr, I Q)Vm(t,w)}.

heK
The maximizer ™h* can be chosen as a Borel-measurable function of ¢ and 7
and the optimal strategy is given by ™hy = ™h*(¢,™m;); see also the discussion
preceding Remark 3.1.
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7.3. Convergence of reward and value functions. The next theorem on the
uniform convergence of reward functions is our main result; convergence of the
value function and e-optimality of "h* follow easily from this theorem.

Theorem 7.3 (Uniform Convergence of reward functions).

For m — oo the following holds

sup [v™(t,m, h) —v(t,m, h)| =0 forte0,T], T €S.
heH

Proof. We introduce the notation
T T
J::/ —b(Rxt™M ho)ds and J™ ::/ —b(R™ 7™M hy)ds.
t t

Then the reward functions read as v(t,m,h) = E(e’) and v™(t,7,h) = E(e’")
and it holds

o™t B) — ot m B = B — )] < B(le’™ — )
< CE(J™-J)), (7.7)

where we used Lipschitz continuity of f(z) = e” on bounded intervals and the
boundedness of J and J™ which follows from the the boundedness of b. Using
Lipschitz continuity of b we derive

T
B = 1) = B(| [ R, = R, )] ds])

T
S / CE(|m7T£t’ﬂ’h) _ ﬂ_‘gt,ﬂ,h)l) ds
t

IN

T 1/2
C / (Braltm — = 2) s 5 0 (7.8)
t

for m — oo and uniformly w.r.t. h € H which follows from Lemma 7.2. Plugging
(7.8) into (7.7) we find sup [v™ (¢, 7, h) —v(t,m, h)| = 0 for m — oo. O
heH

Corollary 7.4 (Convergence of value functions).
For m — oo the following holds
Vh(t,m) - V(t,m) fortel0,T], m€S.

Proof. For 6 € (0,1) the assertion follows from

V™ (t,m) = V(t,7) = ‘ sup v (¢, m, h) — sup U(t,ﬂ',h)‘
heH heH
< sup |0 (¢, m h) —v(t, T, h)|
heH

and Lemma 7.3. Analogously, for 6 < 0 it follows
mt ) — Vit - 'fmt,h—'ft,,h’
Vo (tm) — V(L] = | inf o™ (k) — inf ot 7, h)

) sup (—v" (¢, m, h)) — sup (—v(t,, h))‘
heH heH
< sup "Um(t,ﬂ,h) *”U(t,ﬂ',h”.

hEH
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O

7.4. On e-optimal stratgies. Finally we show that the optimal strategy ""h*
for the regularized problem is e-optimal in the original problem. This gives a
method for computing (nearly) optimal strategies.

Corollary 7.5 (c-optimality). For every e > 0 there exists some mg € N such
that
[V(t,m) —v(t,m,"h*)| <e form > my,

i.e. ™h* is an e-optimal strategy for the original control problem.

Proof. Tt holds
[V (t,7) —v(t,m,™h")|

< V(t,m) —o™(t,m, "R+ ot w, hT) — o(t,m, T

= |V(t,m) = V™(,m)|+ v, w, ™h) —o(t, 7, hY)| (7.9)
where for the first term on the r.h.s. we used v™ (¢, 7w, h*) = V™ (¢, 7). Using the
convergence properties for the reward function given in Lemma 7.3 and for the

value function given in Corollary 7.4 we can find for every € > 0 some mg € N
such that for m > mgq it holds

V(t,7) — V™t )| < g and o™ (¢, 7, ™) — v(t, T, ™R <

| ™

Plugging the above estimates into (7.9) it follows for m > mg

Vit —o(tm"h)| < S+ =
O

Remark 7.6. Note that in the proof of the corollary we use that the sequence of
reward functions v converges to v uniformly in h. This is a stronger property
than convergence of the value functions V'™ to V so that standard stability results
for dynamic programming equations are not sufficient to proof the corollary.

Appendix A. Proof of Lemma 5.4

Proof. We give the proof for the maximum norm |.| _ in R?. From this the assertion
for the Euclidean norm can be deduced from the equivalence of norms.

Note that the fact that all densities are C! with compact support Z = [a, b
implies the existence of constants Cs,Cy < oo such that for all 1 <k <d, z € Z,

0 ‘
fr(z) < Cy and lgf](z)‘ <Cq, t=1,... K. (A1)

Boundedness of f(z, Rr). First we show that for r € S, 2 € Z and e < &
there are constants 0 < C, < C* < oo such that
C. < f(z,Rr) < C*. (A.2)

For this, observe that for p = R,

d
Fz2p) =) P 1i(2) = > i)+ > P fiz) (A.3)
j=1

pi<0 pi>0
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For the lower bound we deduce

fzp) = Y (- ) max f;(z +y P min f;(z

pi <0 pi>0

—e(d—1)Cy  + (172pj)-01_75g+1 Cy =,

pI <0

Y

where we used Assumption 5.1, (A.1), p/ > —e and Z?zlpj = 1. For the upper
bound from A.3 we find

Fzp) < 0+ 3 pmaxfi(z) < (1-Y V)e<+e@-1)c=c

pi>0 pI <0

Note that the lower bound in (A.2) implies that f(-, Rm) is strictly positive for
m € §.. Moreover, since the components of p = Rm sum up to one by definition
f(-, Rr) is a strictly positive probability density for m € S.. Hence, the inverse
Rosenblatt transform G(u, Rw) and thus the function ~(m,u) defined in (5.5) are
well defined for 7 € S, (and not just for 7 € S).

Lipschitz condition (4.8). Clearly, (4.8) holds for some constant function
p(u) = p if we can show that the derivatives of v(m,u) with respect to 7/ are
bounded for all 1 < j < d — 1. This is obviously equivalent to estimating the
derivatives of

Ji(G(u,p)) 1)
F(G(u,p),p)

with respect to the components p? where p = Rw. Let

v (p,u) = p’“(

| (G, p) o
Kp,u) = i (m—l), jk=1,....,d.

Then it holds

5 (Gl p)
api! e )_%k(T(G(u,p),p)

The first term on the r.h.s. is bounded since it holds for k =1,...,d and e < €

where we have used (A.1) and the lower bound for f(z,p) given in (A.2).
It remains to show that c; ¥(p,u) is bounded. Abbreviating z = z(p) = G(u,p)
we find

C?(p, u) = ? (Z azl (u p) ?(va)
d K

#W%@@+Zﬂ2§fﬁwﬁmmn (A5)
=1

=1

— 1) —i—pkcf(p, u).
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Using (A.1), Z?Zl |p?| < 1+ (d—1)z and estimate (A.2) for f, we derive for e < &

1 "0 .
|C?(p,u)| < CE(Cd;‘WGz(U,p)‘C

+Cy - (02 +(A+d- 1)5)0&3 ‘%Gl(u,p)‘ )) (A.6)
=1

In Lemma A.1 below we show that the derivatives %Gl(u, p) are bounded, that is
there is some C > 0 such that for j=1,...,dand Il =1,...,k |%Gl(u,p)| <C.
From this the boundedness of c;? follows immediately.

Growth condition (4.9). Here we apply estimate (A.4) and find

(u p)) e Co
= _— < JI [ == < el
Y (pw)| = ‘ﬂ( wp)0) 1)‘ < |P|(C*+1)_(1+|p|oo)(c*+l)
and hence |y(p, u)|0o g p(1+ [p|.,) with some constant 7. O

Lemma A.1. Under the assumptions of Lemma 5.4 there exists a constant C > 0
such that for j=1,...,d andl=1,... Kk

0
ﬁGl(u p)‘ C.

Proof. We derive from differentiating G;(F F(z ,D),p) = z1 w.r.t. p; using the chain
rule

"0 ~ d 13}
gauiGl(F(Z7p) )8 J (Z p)_‘_ﬁGl( ( 7p)ap>:0'
Substituting v = F(z, p) we obtain the estimate
0 0 ~
5y Clp)| < Z -Gl 5P| (A7)

(i) For the proof of the boundedness of the derivatives on the r.h.s. we need the
following auxiliary estimates for t}ie marginal densities fz, . z.,k=1,...,k given
n (5.2). From estimate (A.2) for f we derive the estimate
Co I] 0i—ai) < fzz.(21, . 200) < C° [ (bi—ai). (A8)
i=k+1 i=k+1

For the derivatives of the marginal densities w.r.t. p’ the definition of f in (2.8)
yields

b bri1
szl.uzk(zl)"'azk5p):/ / fj(zla"'vzkask-‘rl)'"asﬁ)dsk-'rl"'dslﬁ'
P k1

From Assumption 5.1 and (A.1) it follows

K K

0
0<Cy H (b —a;) < @le...zk(zb'u,zk,]?) < Cqy H (bi —a;). (A9)

i=k+1 1=k+1
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For the derivatives of the marginal densities w.r.t. z;, j =1...,k we find
0
‘aizjle...Zk (Zla ey Zkap)‘
bry1 b, d b
< / / Zpl’aifl(zla---azk55k+17~-~75n) dsgt1 ... dsy
a1 Jaw 7 i
K
< Cy H (bi — ai), (A.10)
i=k+1

where the upper bound from (A.1) on the derivatives of the densities f; has been
used.

(ii) Now we can prove the boundedness for the second term r.h.s. of (A.7). For
k=2,...,k we obtain from the definition of F(z,p) in (5.3)

0 =~ k0
‘TI)JFZ(Z,]))‘ = /ak @fzk‘zl'nzkil(SkLZl’...Zk717p)d8k‘

_ 0 fZl...Zk(zlw--;Zkflaskap)d ‘

= — Sk
ag apj fZ1..4Zk,1(Zlv"'7Zk—17p)
Zk 1 a

< |5 fz..2.( ’le...zk,1 )+
. B0 gfaeat ©

le...zk(-)‘%lemzk_l(-)‘ )dSk:,

which is bounded. Here, we have used estimate (A.8), which states that the

marginal densities are bounded from above and bounded away from zero, and

(A.9) for the boundedness of the derivatives of the marginal densities w.r.t. p/.
For k =1 we observe that

0 0
@FI(Zap) = @le (Zl,p) = / WfZ1(51ap)d51~

The boundedness 8/dp Fy(z, p) is a consequence of estimate (A.9).

(iii) For proving the boundedness of 9/0u;G;(u,p) in (A.7) we consider the Jaco-
bian matrices for G(u) and F(z) defined by

and Jﬁ(z) = (iﬁz(z,p))

JC(u) = (iGi(U,p)) 9z

du; i j=1...,k ij=lore

Below we show that for z = G(u,p) the matrix Jﬁ(z) is regular, hence J%(u) =
J;I(G(u,p)), since G(F(z,p),p) = z. From the definition of F in (5.3) it follows
that Jﬁ(z) is a lower triangular matrix since ﬁk depends on z1, ..., 2, only.

Next we consider the diagonal elements of J F (2). Using (A.8) we find constants
C and C such that C < fz, 7. (21,...,2k,p) < C for all k =1..., k. Then with
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§ :=min{C, C /C?} the following holds

0 ~
TFl(Zap) = fZ1 (Zl7p) > 0 and

21

0 ~ Jzi.. 2, (21, 2k, D)
—Fi(z,p) = oz (zklzs e ze—1,p) = Lok >4,
azk ( ) kalzl Zk 1( | ) fZl___Zk71(21,~«~,Zk—17p)
for k=2,...,k. Since Jﬁ(z) is triangular, its determinant is

det(17 () = [T g Flzp) = 6% > 0
k=1

hence JF (2) is invertible.

Next we show that the the non-zero off-diagonal elements of .J F are bounded.
It holds for k=2,...,k, j=1,...,k—1

0 7 k0 d
87,21- k(Zyp) = o szfZMZl...Zk,l(sﬂzlw~~Zk717p) Sk
0 fzi.ze(21,. ., Zh—1, 8k, D)
- Sk
ak 8Zj fZ1...Zk71(Z17"'7Zk—1ap)
Zk 1

IN

() ( );zjfZl"‘Zk(')‘le.,,Zk_l(.)

2
ak fZ1~~-Zk71

hn Ol a0 Y.

which is bounded. Here again we have used that the marginal densities are
bounded from above and bounded away from zero, and (A.10) for the bound-
edness of the derivatives of the marginal densities w.r.t. z;.

For proving the boundedness of 9/0u;G;(u,p) in (A.7) which are the entries
of the Jacobian matrix J%(u) we use that J is the inverse of J¥. Since JI is
a triangular matrix the entries of J& can be computed recursively by Gaussian
elimination starting with the first row. This gives that for k,l=1,... &

k=1
JS = iﬁ(akl =S5 I5),
Jkk j=1

i.e. the entry J g can be represented by an affine linear combination of the bounded

off-diagonal entries in row k of J F divided by Jfk. The latter is strictly positive
and bounded from below by ¢ > 0. Hence, all entries of J¢ are bounded. O

Appendix B. Proof of Proposition 6.1

Proof. We give the proof for » = 2. The assertions for r € [0,2] follow from
Holder’s inequality. We denote by C' a generic constant which may vary from line
to line.
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Inequality (6.1): E(|="™"2) < C(1 + |=]?).
We recall the state equation

dry = a(me, he)dt + B (my)dBy + / (s, w) N (dt x du) (B.1)
u
and for the sake of shorter notation we denote by 7w, = w&t”“h) the solution of

equation (B.1) starting from 7 at time ¢ using strategy h for 7 > ¢. Then it holds

P < C<|7r\2+’/Tg(ws,hs)ds‘QJr‘/Té(ﬂs)st
t t

| [ 2w < au)

Taking expectation and using It6-Levy isometry implies

B ) < c(inf +B( [ latmnas) + B( [ (g (r)s(a)as)

+E(/tT/u|fy(7rs,u)QV(du)ds))).

We now use the linear growth of a, 8 and v and the integrability property for
p (see Assumption 4.1) to obtain

E(|r, ) < o{ n* + B( / a4 i [2)ds) } < c{Inl’ + B(r) + B( / des)}
< c{ 2+ 1+ E(/t |775\2ds)}. (B.2)

For any deterministic time 7 = u Fubini’s Theorem gives

B(m?) < Ol + 1+ [ B(n,P)as)

2

+

and applying Gronwall’s Lemma to G,, := E(|m,|?) implies
E(|r,[*) < C(|x[* + 1)e?™ " < O(|x[* + 1).

Finally, we note, that for any stopping time 7 € [¢t,T At + §] it holds

T ) t+0 ) 9
B( [ mPas) < [ Blm R < c+ ).

Substituting the upper estimate back into (B.2) proves the assertion.
Inequality (6.2): E(|7r§t‘7r’h) —72) < C(1 + |x})6.

The process (7, — ) starts from 0 and hence the computations for 7 in the above

proof inequality (6.2) give for 7 € [t,T At + J]

IN

- t+5
B, =n) < [ (4B fNds<C [ 0+ BllmP)is

IN

t+6
c/ (14 C(1+ (|72)ds < C(1+ [7[2)0.
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2
Inequality (6.3): E({ SUD;< g<t 46 |7rst’ﬂ’h) — 7T|} ) <C(l1+ |7T|2)5.
We give the proof for ¢ = 0 from which the claim for general ¢ follows immediately.
Using the corresponding representation as stochastic integrals for the solution of
equation (B.1) we find

me—m = Ag+ M, where
As = / a(my, hy)dr and My = / ﬁ—r(m,)dB,. —|—/ 1(777.,u)]\~f(dr X du).
0 0 0
Then it holds

E({ sup |7rs—7r|}2)
0<5<5

E({ sup |AS+M5|}2)
0<s<s

IN

2E( sup |A?) +2B( sup |M,[*). (B.3)
0<s<é 0<s<é

For the first term on the r.h.s. we find by applying Cauchy-Schwarz inequality and
the growth condition (4.7) for o
sup |A,l? sup

S
/ a(my, hy)dr
0<s<6 0<s<s |Jo

)
5/ C(1 + | ?)dr
0

Taking expectation and applying estimate (6.1) we find

< sup s/ |7y, B | dr.

0<s<d

IN

5
E( sup |A?) < 5/ C(1+ |x[P)dr < 6C(1 + |7]?). (B.4)
0<s<6 0

For the second term on the r.h.s. of (B.3) Doob’s inequality for martingales and
Ito-Levy isometry yields

B sup M) <4B(MP) = 4(/5 E(tr(8" () B(m)])dr

0<s<6
// (|y(r,u) )du)dr)

Applying the growth conditions (4.9), (4.7) and estimate (6.1) it yields

(/0 B+ |, ? dr+/ / E(1+|m [P (du)dr)

C(1+|7r|2)/0 (1 +/up2(u)u(du)>dr§C<5(1+|7r|2).(B.5)

Substituting (B.4) and (B.5) into (B.3) yields the assertion.
Inequality (6.4): E(jn\"™" —zl"5M12) < O(r — ¢)2.
For the sake of shorter notation we write m, = W(tﬂh) and & = wgt’é’h) and

we set Aa(m, &, h) = a(n,h) —a(§,h), AB(m, &) = B(r) — B(§) and Ay(7,§) =

IN

B s i)
0<s<é

IN
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y(m,u) — v(&,u). Then,
T T T
Y, = m & =1-¢ +/ Aa(ms, &y, hs)ds +/ ABT (7, €,)dBs
t t

+/tT/uA7(7Ts,£S,u)JV(dsxdu).

Applying Itd’s lemma to Y2 and using Ito-Levy isometry we obtain
BQY.P) = = ¢+ B( [ {207 Baln, &b + tr(85(r, €)AF (7,.6,))
t
+ [ 18y g Putau) s ).
u

Hence we obtain from the Lipschitz continuity of a, 8,7 given in Assumption 4.1
BE(Y.)?) <|r—€*+ CE(/T |YS‘2ds).
t
For any deterministic time 7 = u Fubini’s Theorem gives
B(YuP) < |r— 2+ B( [ [as)
t

and applying Gronwall’s Lemma to G,, := E(|Y,|?) implies
E([V,[?) < |m = €[ e70 < Clm — ¢

Finally, we note, that for any stopping time 7 € [¢t,T At + §] it holds

t+48
B(Y,) <ln— ¢+ CE( [ Vifds) < Clm = ¢,
t

Appendix C. Proof of Proposition 6.3
Proof. Boundedness of V. We recall that V (¢, 7) = supj,cq v(t, , h) where

T
v(t,m h) = E(exp {/ —b(Rﬂgt’”’h),hs)ds})
t
1—46
with b(p,h) = —e(hTMp - |0Th|2),
and 7{"™" is the solution of the SDE (4.5) with initial value m = 7.

The function b is bounded, since it is continuous and 7 € § and h € K take
values in compact sets, i.e. |b(Rm, h)| < Cp with some constant C, > 0. Hence
0 <wo(t,mh) < eCr(T=t) < ¢OT for all h € H which implies that 0 < Vt,m) <

T
e“vl.

Note that since the value function V' is bounded, it also satisfies the linear
growth condition V (t,7) < C(1 + |r|) since |7| < 1.

Lipschitz continuity in 7. The reward function can be written as
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o(t,mh) = E(e’™) where J(r) == [ —b(Rxl"™" hy)ds. For 6 € (0,1) the
following holds
V(t,m) =V (8 = [sup E(e’™) = sup B(e’®)] < sup |E(e’™ — /)|
heH heH heH
< sup E(le’™ — /@) < sup CE(|J () = J(€)]), (C.1)
heH heH

where we used Lipschitz continuitiy of f(z) = e” on bounded intervals and the
boundedness of J(7) which follows, since b is bounded. For § < 0 we use V (¢, 7) =
infrew E(e’(™) = supp,cy —E(e’(™) and apply analogous estimates.

Using that b is linear in the first variable and that h; € K is uniformly bounded
we derive

E(|J(m) = J(©)])

T
E(’ / [b(ngt*f’h),hs)—b(ngt’”*h),hs)}dsD
t

T
/ C B(jaltmh) — g bEm)]) g
t

IN

IN

T
c[in-gds<cin-g. (2)
t

for every h € H, where we used estimate (6.4). Note that as always C denotes
a generic constant. Plugging the above estimate into (C.1) it follows |V (¢, 7) —
V(t,&)| < C|r — &|, which proves the Lipschitz continuity of V (¢, 7) in .

Continuity in ¢. Let 0 <t < s <7, then the dynamic programming principle
to V(t,n) implies

0 < |V(t,m) -V s,7r)|
= sup E eXp / b( R7r (t.mh) b )du} V(s,ﬂgt’”’h)) — V(s,ﬂ'))

< supE eXp /bRﬂt”h) hy) du}‘sz(”’h)) V(s,ﬂ')D

+ sup E(‘ exp{ - / b(Rr{t™h), hu)du} Vs,m) —V{(s, W)’)
t
Using the Lipschitz continuity of V' in 7 the first term can be estimated by

C sup E(|7r(t mh) 7r|> <C|s— t|%
heH

where we have used (6.3). Again C denotes a generic constant. For the second
term the boundedness of b and V yields the estimate

|eCes=) _ 1|V (s,7) < C|s — ¢

where we have used that f(x) = e is Lipschitz continuous on bounded intervals.
Finally, we obtain

V(t,m) = V(s,m)| < Cfls—t]2 +]s—t) < (C+T7)|s —t]2.
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