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A CONVERSE COMPARISON THEOREM FOR

DISCRETE-TIME FINITE-STATE BSDES AND

RISK MEASURES USING g-EXPECTATION

ROBERT ELLIOTT, YIN LIN, AND HAILIANG YANG

Abstract. This paper studies properties of non-linear expectations defined
using the discrete-time finite-state Backward Stochastic Difference Equations

(BSDE) proposed by Cohen and Elliott [6]. We also establish a converse
comparison theorem. Properties of risk measures defined by non-linear ex-
pectations, especially the representation theorems, will be given. Finally we
apply the theory of BSDEs to optimal design of dynamic risk measures.

1. Introduction

The study of BSDEs has been developing rapidly recently. Linear BSDEs were
first introduced by Bismut [3]. Then the concept was generalized by Pardoux and
Peng [10] by considering equations of the form:

Yt −
∫ T

t

g(ω, s, Ys−, Zs)ds+

∫ T

t

ZsdWs = Q.

Here g is the driver, Q is a square-integrable terminal condition and the process
W is a d-dimensional Brownian motion. Then g-expectations defined using such
BSDEs were proposed by Peng [12]. Cohen and Elliott [5] also considered BSDEs
related to continuous-time finite-state Markov chains. However, the assumptions
of the work in the continuous-time setting are quite strong and complicated. Thus
Cohen and Elliott [6] introduced BSDEs on spaces related to discrete-time finite-
state processes and explored the corresponding theory under weaker assumptions.

In this paper, we follow the idea of Cohen and Elliott [6] by considering discrete-
time finite-state BSDEs. We first recall the results of Cohen and Elliott [6] in
Section 2. Properties of related g-expectations are discussed in Section 3. Based on
these results, we prove a converse comparison theorem for a general case, together
with the independent case and the deterministic case in Section 4. Then we apply
the results of Section 3 to obtain properties of risk measures using g-expectations
especially the representation theorem in Section 5. In Section 6, applications to
optimal design of dynamic risk measures are explored, including optimal solutions
and characterization of inf-convolution of dynamic entropic risk measures and
associated drivers. We summarize this paper in Section 7.
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2. The Discrete-time Finite-state Model

We follow Cohen and Elliott [6] by considering a discrete-time finite-state pro-
cess X as the underlying stochastic process. Suppose (Ω,F ,P) is a probability
space and X = {Xt, t ∈ {0, 1, . . . , T}} is a finite state process. Without loss of
generality we suppose for each t ∈ {0, 1, . . . , T},

Xt ∈ {e1, e2, . . . , eN},
where N is the number of the states and ei is the ith standard unit vector in RN .
Consider a filtered probability space (Ω,F , {Ft}0≤t≤T ,P), where

Ft = σ({Xs, s ≤ t}, A ∈ F : P(A) = 0).

Then, we can define the martingale process M by Mt := Xt − E(Xt|Ft−1). We
shall discuss vector BSDEs of the form:

Yt(ω)−
∑

t≤s<T

g(ω, s, Ys(ω), Zs(ω)) +
∑

t≤s<T

Zs(ω)Ms+1(ω) = Q(ω). (2.1)

Here g is an adapted functional g : Ω × {0, · · · , T} × RK × RK×N → RK and Q
an RK-valued FT -measurable terminal condition.

Remark 2.1. (see Cohen and Elliott [6]) Since X can take only finitely many
possible paths, and all the quantities are finite-dimensional, it is clear that

L1(Ft) = L2(Ft) = L∞(Ft).

Remark 2.2. (see Cohen and Elliott [6]) BSDE (2.1) is equivalent to the following
one-step equation:

Yt − g(ω, t, Yt, Zt) + ZtMt+1 = Yt+1, YT = Q. (2.2)

Definition 2.3. (see Cohen and Elliott [6]) For any integerK and adapted process
Z in RK×N , we define the seminorm of Z, ‖Z‖M , by:

‖Z‖2M := E[Tr(
∑

0≤s<T

(ZsMs+1)(ZsMs+1)
∗)].

If ‖Z1 − Z2‖2M = 0, we shall write Z1 ∼M Z2. And if Z1
t Mt+1 = Z2

t Mt+1 P-a.s.,
we shall write Z1

t ∼Mt+1 Z2
t .

Theorem 2.4. (Existence and Uniqueness) (see Cohen and Elliott [6]) Suppose g
satisfies the assumptions:

(A) If Z1
t ∼Mt+1 Z2

t , then for any Y , g(ω, t, Yt, Z
1
t ) = g(ω, t, Yt, Z

2
t ) P-a.s. for

all t,
(B) For any z ∈ RK×N , for all t, for P-almost all ω, the map

y 7→ y − g(ω, t, y, z)

is a bijection RK → RK .

Then for any terminal condition Q which is essentially bounded, FT -measurable,
and with values in RK , BSDE (2.1) has an adapted solution (Y, Z). Moreover,
this solution is unique up to indistinguishability for Y and equivalence ∼M for Z.
Thus we can define the conditional g-expectation of Q under Ft as

Eg(Q|Ft) = Yt. (2.3)
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The g-expectation of Q is defined as

Eg(Q) := Y0 = Eg(Q|F0). (2.4)

Theorem 2.5. (Comparison Theorem) (see Cohen and Elliott [6]) Consider two
BSDEs as in (2.1) with drivers gi, i = 1, 2 and essentially bounded terminal values
Qi, i = 1, 2. Suppose that gi satisfies both Assumptions (A) and (B). Let (Y i, Zi)
be the associated solution. Suppose the following conditions hold:

(i) Q1 ≥ Q2, P-a.s.
(ii) P-a.s., for all times t, g1(ω, t, Y 2

t , Z
2
t ) ≥ g2(ω, t, Y 2

t , Z
2
t ).

(iii) P-a.s., for all times t, the ith component of g1, given by e∗i g
1, satisfies

e∗i g
1(ω, t, Y 2

t , Z
1
t )− e∗i g

1(ω, t, Y 2
t , Z

2
t ) ≥ min

j∈Jt
{e∗i (Z1

t − Z2
t )(ej − E(Xt+1|F))},

where Jt is the Ft-measurable set of indices of possible values of Xt+1,
given Ft, i.e. Jt := {i : P(Xt+1 = ei|Ft) > 0}.

(iv) P-a.s., for all t, if

Y 1
t − g1(ω, t, Y 1

t , Z
1
t ) ≥ Y 2

t − g1(ω, t, Y 2
t , Z

1
t ),

then Y 1
t ≥ Y 2

t .

Then Y 1 ≥ Y 2 P-a.s.

Properties of solutions of BSDEs, and hence the related g-expectations, are
determined by properties of the driver g. Therefore, before we start the next
section, we shall state some assumptions for g we may use in the sequel:

(C) For any t, g(ω, 0, 0) = 0 P-s.s.
(D) For any y and t, g(ω, t, y, 0) = 0 P-a.s.
(E) g is independent of y, i.e. for any z fixed, for any t, g(t, y, z) = g(t, y′, z)

P-a.s. for any y, y′.
(F) g is positive homogeneous in (y, z), i.e. for all t, all λ ≥ 0 and all (y, z),

λg(t, y, z) = g(t, λy, λz), P− a.s.

(G) g is convex in (y, z), that is, for all t and all α ∈ (0, 1), and all (y1, z1),
(y2,2 ), P-a.s.

g(t, αy1 + (1− α)y2, αz1 + (1− α)z2) ≤ αg(t, y1, z1) + (1− α)g(t, y2, z2).

(H) For any fixed z, for all t, for P-almost all ω, the map y 7→ y − g(ω, t, y, z)
is increasing, i.e. if y1 ≥ y2 componentwise, then y1 − g(t, y1, z) ≥ y2 −
g(t, y2, z) P-a.s. componentwise.

(I) (see Cohen and Elliott [6]) Consider some driver g that satisfies Assump-
tions (A) and (B). Suppose for all t, and for all essentially bounded Q1,
Q2 , the corresponding BSDE solutions (Y 1, Z1), (Y 2, Z2) satisfy
(iii’) P-a.s., for all times t, the ith component of g1, given by e∗i g

1, satisfies

e∗i g
1(ω, t, Y 2

t , Z
1
t )− e∗i g

1(ω, t, Y 2
t , Z

2
t )

≥ min
j∈Jt

{e∗i (Z1
t − Z2

t )(ej − E(Xt+1|F))},

with equality only if e∗iZ
1
t ∼Mt+1 e∗iZ

2
t .



230 ROBERT ELLIOTT, YIN LIN, AND HAILIANG YANG

(iv’) P-a.s., for all t, if Y 1
t − g1(ω, t, Y 1

t , Z
1
t ) ≥ Y 2

t − g1(ω, t, Y 2
t , Z

1
t ), then

Y 1
t ≥ Y 2

t , the inequalities being taken componentwise.
Then we shall call g a balanced driver.

Lemma 2.6. Assumptions (D), (E), (F), (G) and (H) are respectively equivalent
to:

(D) For any Ft-measurable Y and any t, g(ω, t, Y, 0) = 0, P-a.s..
(E) For any Ft-measurable Y , Y ′, any t and Z, g(t, Y, Z) = g(t, Y ′, Z).
(F) For all t, λ ≥ 0 and all Ft-measurable Y,Z, P-a.s.,

λg(t, Y, Z) = g(t, λY, λZ)

(G) For all t, and all α ∈ (0, 1), and all Ft-measurable Y 1
t , Y

2
t , Z

1
t , Z

2
t , P-a.s.

g(t, αY 1
t + (1− α)Y 2

t , αZ
1
t + (1− α)Z2

t ) ≤ αg(t, Y 1
t , Z

1
t ) + (1− α)g(t, Y 2

t , Z
2
t ).

(H) For any fixed Ft-measurable Zt, for all t, and all Ft-measurable Y 1
t , Y

2
t , if

Y 1
t ≥ Y 2

t componentwise, then Y 1
t − g(t, Y 1

t , Zt) ≥ Y 2
t − g(t, Y 2

t , Zt) P-a.s.
componentwise.

Proof. We need only to prove the equivalence between (D) and (D’), since the
others are analogous. That (D’) implies (D) is trivial. For the converse implication,
suppose there exist some t and Ft-measurable Y , such that g(ω, t, Y, 0) 6= 0 with
positive probability. Since Y and g(t, Y, 0) are Ft-measurable and X can take only
finitely many paths, g(t, Y, 0) =

∑
i aiIAi and Y =

∑
i yiIAi for some partition Ai

of Ft and some constants ai, yi. It follows that there exist some k s.t. ak 6= 0.
Then P-a.s. in Ak, g(ω, t, Y, 0) = g(ω, t, yk, 0) 6= 0, which contradicts assumption
(D). �

Remark 2.7. In continuous-state setting, assumption (D) (respectively (E), (F),
(G) and (H)) is weaker than (D’) (resp. (E’), (F’), (G’) and (H’)). Suppose
Ω = (0, 1), Ft = B(0, 1) and P is Lebesgue measure. Let g(ω, t, y, z) = I{y=ω}. It
is obvious that for any y and t, g(ω, t, y, 0) = 0 P-a.s. But for the Ft-measurable
random variable Y (ω) = ω, g(ω, t, Y, 0) ≡ 1.

3. Properties of Conditional g-expectations

In this section, we study properties of conditional g-expectations, upon which
Sections 5 and 6 are based. Though some of the properties in the following lemma
were proved by Cohen and Elliott [6], for completeness it is worth recalling them.

Proposition 3.1. Suppose g satisfies Assumptions (A) and (B). Then we have
the following properties:

(i) (Terminal equality) Eg(Q|FT ) = Q, for all Q.
(ii) (Ft-triviality and recursivity) The following three conditions are equiva-

lent:
(a) (Recursivity) Eg(Eg(Q|Ft)|Fs) = Eg(Q|Fs) P-a.s. for any s ≤ t.
(b) (Ft-triviality) Eg(Q|Ft) = Q P-a.s. for any Ft-measurable Q.
(c) For any y and t, g(ω, t, y, 0) = 0 P-a.s..
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(iii) (Monotonicity) If g is a balanced driver, then for any t and any Q ≥ Q′

P-a.s. componentwise,

Eg(Q|Ft) ≥ Eg(Q′|Ft)

P-a.s. componentwise, with equality only if Q = Q′.
(iv) (Translation invariance) for all t, all Q ∈ L1(FT ) and all q ∈ L1(Ft),

Eg(Q+ q|Ft) = Eg(Q|Ft) + q.

if and only if g is independent of y.
(v) (Regularity) For any t, any A ∈ Ft, IAEg(Q|Ft) = Eg(IAQ|Ft) P-a.s. if

and only if g(t, 0, 0) = 0 P-a.s. for any t.
(vi) Eg(·|Ft) is positive homogeneous, that is, for all t, all λ ≥ 0, and all

Q ∈ L(FT ),

Eg(λQ|Ft) = λEg(Q|Ft)

if and only if g is positive homogeneous in (y, z).
(vii) If g is balanced and convex in (y, z), then Eg(·|Ft) is convex, that is, for

all t, all α ∈ (0, 1), all Q1, Q2 ∈ L(FT ) and all t,

Eg(αQ1 + (1− α)Q2|Ft) ≤ αEg(Q1|Ft) + (1− α)Eg(Q2|Ft).

Conversely, if Eg(·|Ft) is convex and g satisfies (D)and (H), then g is
convex.

Proof. (i) is trivial.
(ii): (ii)(a)⇒(ii)(b): For any Ft-measurable Q, define Q′ = YT through the

recursion

Ys+1 = Ys − g(s, Ys, Zs) + ZuMs+1,

where Yt := Q, and Zs is arbitrary Fs-measurable random variable. Then

Eg(Q′|Ft) = Q. (3.1)

From (a), let s = t, then we obtain

Eg(Eg(Q′|Ft)|Ft) = Eg(Q′|Ft). (3.2)

(ii)(b) is established by substituting (3.1) into (3.2).
(ii)(b)⇒(ii)(c): For any y ∈ RK , by (B) we have Eg(y|Ft) = y, for all t. By the
one-step equation (2.2), y − g(t, y, Zt) + ZtMt+1 = y, for all t < T . Taking a
conditional expectation gives Zt = 0 and g(t, y, 0) = 0.
(ii)(c)⇒(ii)(a): For the proof, see Theorem 7 of Cohen and Elliott [6].

(iii) follows directly from Theorem 2.5.
(iv): The first implication follows using the proof given by Cohen and Elliott

[6] for Theorem 7. Conversely, for all t, all (y, z) ∈ RK × RK×N and all q ∈ RK ,
define Q = YT through the recursion

Ys+1 = Ys − g(s, Ys, Zs) + ZsMs+1

where Yt := y, Zt = z. Then Eg(Q|Ft) = y. Consider the one-step equation:

y − g(t, y, z) + zMt+1 = Yt+1. (3.3)
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Since q is a constant, Eg(Q+ q|Ft) = y + q and Eg(Q+ q|Ft+1) = Yt+1 + q. Then
we have

y + q − g(t, y + q, Z) + ZMt+1 = Yt+1 + q. (3.4)

From equation (3.3) and (3.4), it follows that Z = z and g(t, y + q, z) = g(t, y, z).
(v): Cohen and Elliott [6] proved that if g(ω, t, y, 0) = 0, for all y and all t,

then Eg(·|Ft) satisfies regularity. However, we need only the weaker condition
g(ω, t, 0, 0) = 0 and the proof is similar.
Conversely, if Eg(·|Ft) satisfies regularity, then for all A ∈ Ft,

IAEg(Q|Ft) = Eg(IAQ|Ft), (3.5)

IAEg(Q|Ft+1) = Eg(IAQ|Ft+1). (3.6)

It follows that
IAYt − g(t, Yt, Z

′
t) + Z ′

tMt+1 = IAYt+1 (3.7)

Combining (2.2) and (3.7), we can obtain

Z ′
t = IAZt, IAg(t, Yt, Zt) = g(t, IAYt, IAZt).

Then g(t, 0, 0) = 0, since A is any set in Ft.
(vi): Cohen and Elliott [6] proved that the positive homogeneity of g guarantees

the positive homogeneity of Eg(·|Ft).
For the converse implication, for any t and (y, z), we can construct a terminal
condition Q with the associated solution (Yt, Zt) = (y, z) as in the proof of (iv).
Then for any λ ≥ 0,

λEg(Q|Ft) = Eg(λQ|Ft), (3.8)

λEg(Q|Ft+1) = Eg(λQ|Ft+1). (3.9)

i.e.
λy − g(t, λy, Z ′

t) + Z ′
t = λYt+1. (3.10)

Combining (3.3) and (3.10), we obtain Z ′
t = λz and λg(t, y, z) = g(t, λy, λz).

(vii): The first implication is analogous to the one given by Cohen and Elliott
[7] for Theorem 9.7 for BSDEs on continuous-time finite-state Markov chains.
Conversely, suppose Eg(·|Ft) is convex and g satisfies (D) and (H). Then taking a
convex combination of the BSDEs with terminal condition Q1 = y1−g(t, y1, z1)+
z2Mt+1 and Q2 = y2 − g(t, y2, z2) + z2Mt+1 gives the equation

αy1 + (1− α)y2 − (αg(t, y1, z1) + (1− α)g(t, y2, z2))

+ (αz1 + (1− α)z2)Mt+1 = αQ1 + (1− α)Q2.
(3.11)

Consider the BSDE
Yt − g(t, Yt, Zt) + ZtMt+1 = Qα (3.12)

with terminal condition Qα := αQ1+(1−α)Q2. Combining (3.11) and (3.12), we
obtain Zt = αz1 + (1− α)z2. Thus

αy1+(1− α)y2 − (αg(t, y1, z1) + (1− α)g(t, y2, z2))

=Yt − g(t, Yt, αz
1 + (1− α)z2)

≤αy1 + (1− α)y2 − (αg(t, y1, z1)− g(t, αy1 + (1− α)y2, αz1 + (1− α)z2).

The convexity of g is established. �
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4. A Converse Comparison Theorem

Comparison theorem is one of the key results in the theory of BSDEs, as it
allows us to compare the solutions of two BSDEs if we can compare the terminal
conditions and the drivers. Comparison theorem for BSDEs was first established
by Peng [11] in Brownian setting, then generalized by El Karoui et al. [8]. Cohen
and Elliott [7] also explored the theory for BSDEs on spaces related to continuous-
time finite-state Markov chains. The result for discrete-time finite-state BSDEs
was obtained by Cohen and Elliott [6].

Converse comparison theorem is another important result that allows one to
compare the drivers whenever we can compare the solutions of two BSDEs with
the same terminal condition. In Brownian setting, Peng [12] proved that ”Y 1

0 (ξ) =
Y 2
0 (ξ) for each ξ ∈ L2(FT )” implies ”g1 = g2”. Results for inequalities were

discussed by Briand et al. [4]. We explore the results for discrete-time finite-state
models in this section.

Theorem 4.1. (General case) Let Assumptions (A), (B) and (D) hold for gi,
i = 1, 2. Assume moreover that g2 also satisfies (H) and that for all t and all Q,

Eg1

(Q|Ft) ≥ Eg2

(Q|Ft).

Then for all t and all (y, z), we have, P-a.s.,

g1(ω, t, y, z) ≥ g2(ω, t, y, z).

Proof. For any t < T , and any (y, z) ∈ RK × RK×N , consider BSDEs with driver
gi respectively and both with terminal condition Q = y−g1(t, y, z)+zMt+1. Since

(D) is satisfied, Y i
t+1 = Egi

(Q|Ft+1) = Q. The BSDEs will reduce to

Y i
t − gi(t, Y i

t , Z
i
t) + Zi

tMt+1 = y − g1(t, y, z) + zMt+1. (4.1)

Since (D) is satisfied, it is obvious that (Y 1
t , Z

1
t ) = (y, z) and Z2

t = z according to
the uniqueness of the solutions. Then we have

y − g1(t, y, z) = Y 2
t − g2(t, Y 2

t , z) ≤ y − g2(t, y, z), (4.2)

where the last inequality is due to Assumption (H) and Y 2
t = Eg2

(Q|Ft) ≤
Eg1

(Q|Ft) = y. It follows that g1(t, y, z) ≥ g2(t, y, z). �

Remark 4.2. In the general case, in order to compare the drivers, we need the
inequalities of solutions to hold for all times. While in some special cases, for
example, when g is independent of y or g is deterministic, just the inequalities of
the solutions at time 0 is sufficient to compare the drivers. This will be proved in
the following corollaries.

Corollary 4.3. (Independent case) Let Assumptions (A), (B), (D) and (E) hold
for gi, i = 1, 2, g1 be balanced and g2 satisfy (H). Assume moreover that for all
Q,

Eg1

(Q) ≥ Eg2

(Q).

Then for all t and all (y, z), we have, P-a.s.,

g1(ω, t, y, z) ≥ g2(ω, t, y, z).
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Proof. First, we need to show that for all t and all Q, with the assumption of the
theorem,

Eg1

(Q|Ft) ≥ Eg2

(Q|Ft).

Then we can apply Theorem 4.1 to finish the proof. The proof is almost the
same as the one given by Briand et al. [4], in Theorem 4.4, for BSDEs driven by
Brownian motion. �

Remark 4.4. In the above corollary, if we assume that for all t and all Q,

Eg1

(Q|Ft) ≥ Eg2

(Q|Ft)

Then we can omit the assumption that g2 satisfies (H). The conclusion still holds.

Corollary 4.5. (Deterministic case) Suppose gi are defined on: [0, · · · , T ]×RK×
RK×N into RK . Assume that gi, i = 1, 2 satisfies Assumptions (A), (B) and (D).
Assume moreover that g2 satisfies (H) and that for all Q,

Eg1

(Q) ≥ Eg2

(Q).

Then for all t and all (y, z) we have, P-a.s.,

g1(ω, t, y, z) ≥ g2(ω, t, y, z).

Proof. The proof is similar with that of Theorem 4.1. Note only that when the gi

are deterministic, Y i
t in (4.1) are constants so that

Egi

(Q|Ft) = Egi

(Q).

�

We now consider two counterexamples to Theorem 4.1 when one of the As-
sumptions (D) and (H) fails.

Example 4.6. Set T = 2 and

g1(0, y, z) ≡ 0, g1(1, y, z) ≡ 4,

g2(0, y, z) ≡ 1, g2(1, y, z) ≡ 2.

We can see that both g1 and g2 satisfy Assumptions (A), (B) and (H). Moreover,
for any Q,

Eg1

(Q|F1) = Eg2

(Q|F1) + 2 ≥ Eg2

(Q|F1),

Eg1

(Q|F0) = Eg2

(Q|F0) + 1 ≥ Eg2

(Q|F0).

However, g1(0, y, z) < g2(0, y, z).

Example 4.7. Set T = 1 and K = 1. Define:

g1(ω, 0, y, z) =

{
0 if z = 0,

2y if z 6= 0.

g2(ω, 0, y, z) =

{
0 if z = 0,

2y + 1 if z 6= 0.
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It can be checked that both g1 and g2 satisfy (A), (B) and (D), and for any Q,

Eg1

(Q|F0) ≥ Eg2

(Q|F0).

However, g1(0, y, z) < g2(0, y, z).

5. Risk Measures via g-expectations

The theory of dynamic risk measures is one of the important applications of
BSDEs. Peng [13] and Rosazza Gianin [14] established results for BSDEs driven
by Brownian motion. Cohen and Elliott [7] considered the theory in a continuous-
time model driven by a finite-state Markov chain. The discrete-time finite-state
case was also studied by Cohen and Elliott [6]. In this section, we adopt the
model proposed by Cohen and Elliott [6] and focus on applications in static risk
measures.

5.1. Static risk measures via g-expectations. In this subsection, we recall
the definition and representation theorems of static risk measures, then concentrate
on risk measures defined by g-expectations.

First, we denote the set of financial positions by X := L∞(FT ). A static risk
measure is a map ρ : X → R. In this paper, we only consider risk measures ρ such
that

ρ(Q) = ρ(Q′) if Q = Q′ P-a.s.. (5.1)

We follows Follmer and Schied [9] and give the following definitions.

Definition 5.1. A risk measure ρ is called a convex risk measure if it satisfies:

(1) (Monotonicity): If Q ≤ Q′, then ρ(Q) ≥ ρ(Q′),
(2) (Cash invariance): If m ∈ R, then ρ(Q+m) = ρ(Q)−m,
(3) (Convexity): ρ(αQ+ (1− α)Q′) ≤ αρ(Q) + (1− α)ρ(Q′), ∀0 ≤ α ≤ 1.

Definition 5.2. A convex risk measure ρ is called a coherent risk measure if it
satisfies

(4) (Positive Homogeneity): If λ ≥ 0, then ρ(λQ) = λρ(Q).

Lemma 5.3. (See Follmer and Schied [9]) Any risk measure ρ that satisfies mono-
tonicity and cash invariance is Lipschitz continuous w.r.t. the essential supremum
norm ‖ · ‖:

| ρ(Q)− ρ(Q′) |≤‖ Q−Q′ ‖ .

Now, let g satisfy Assumptions (A) and (B). Set F0 = {∅,Ω} and K = 1.
Consider the risk measure defined by g-expectations, which is given by (2.4), as
follows:

ρg(Q) := Eg(−Q). (5.2)

Proposition 5.4. (i) If g is balanced and independent of y, then ρg is con-
tinuous, that is, if Qn → Q P-a.s. in L∞(FT ), then ρ(Qn) → ρ(Q).

(ii) If g is balanced, independent of y and convex, then ρg is a convex risk
measure. Moreover, if g is also positive homogeneous, then ρg is a coherent
risk measure.
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Proof. (i): According to (iii) and (iv) in Proposition 3.1, if g is balanced and
independent of y, then ρg must satisfy monotonicity and cash invariance. Applying
Lemma 5.3,

| ρ(Q)− ρ(Qn) |≤‖ Q−Qn ‖ .

Thus we need only to show that if Qn → Q, then ‖ Q − Qn ‖→ 0. In fact, Let
{Ai} be a partition of FT . Then Qn and Q have the representation

Qn =
∑
i

qinIAi
, Q =

∑
i

qiIAi
.

Thus Qn → Q implies qin → qi for any i. It follows that ‖ Q−Qn ‖→ 0.
(ii) follows by combining Proposition 3.1, Definitions 5.1 and 5.2. �

We recall the representations of convex and coherent risk measures from Follmer
and Schied [9]. We denote byM1,f := M1,f (Ω,F) the set of all finitely additive set
functions Q : F → [0, 1] which are normalized with Q(Ω) = 1, and by M1(P) :=
M1(Ω,F ,P) the set of all probability measures on (Ω,F) which are absolutely
continuous with respect to P. Then we define the acceptance set of ρ by

Aρ := {Q ∈ X |ρ(Q) ≤ 0},

and the minimal penalty function of ρ by

αmin(Q) := sup
Q∈Aρ

EQ[−Q] for Q ∈ M1,f .

Theorem 5.5. (see Follmer and Schied [9]) Suppose ρ is a convex risk measure.
Then the following conditions are equivalent

(i) ρ can be represented as:

ρ(Q) = sup
Q∈M1(P)

(EQ[−Q]− αmin(Q)), Q ∈ L∞. (5.3)

(ii) ρ is continuous from above: If Qn ↘ Q P-a.s., then ρ(Qn) ↗ ρ(Q).

Theorem 5.6. (see Follmer and Schied [9]) For a coherent risk measure ρ the
following conditions are equivalent:

(i) There exists a set Q ∈ M1(P) such that the supremum is attained:

ρ(Q) = max
Q∈Q

EQ[−Q] ∀Q ∈ X . (5.4)

In this case Q can be chosen as {Q ∈ M1(P) | αmin(Q) = 0}.
(ii) ρ is continuous from below: If Qn ↗ Q P-a.s. then ρ(Qn) ↘ ρ(Q).

Then combining Proposition 5.4, Theorem 5.5 and 5.6, we can obtain the suf-
ficient conditions for drivers that guarantee similar representations of the related
risk measures.

Corollary 5.7. (i) If g is balanced, independent of y and convex, then ρg has
the representation (5.3).

(ii) Moreover, if g is also positive homogeneous in (y, z), then ρg has the rep-
resentation (5.4).
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5.2. Connection between static risk measures and drivers. On the other
hand, it is natural to ask under what conditions can a static risk measure be
represented in terms of g-expectation. This question will be answered at the end
of this section. The connection between Ft-consistent nonlinear expectations and
g-expectations together with the connection between static evaluation and Ft-
consistent nonlinear expectations were studied by Cohen and Elliott [6]. What we
need is to combine these two.

Let g satisfy Assumption (A) and (B) and define the dynamic risk measure for
all Q ∈ L∞(FT ) and all t,

ρgt (Q) := Eg(−Q|Ft). (5.5)

Applying Proposition 3.1, we can obtain properties of dynamic risk measures de-
fined by conditional g-expectations.

Proposition 5.8. Let {ρgt }t∈[0,t] be the dynamic risk measure defined in (5.5).
Then we can obtain the following properties:

(i) (Terminal equality) ρgT (Q) = −Q, for all Q.
(ii) (Ft-triviality and Recursivity) If for any y, g(ω, t, y, 0) = 0 P-a.s., then

ρgs(−ρgt (Q)) = ρgs(Q), P-a.s. for any s ≤ t, and ρgt (Q) = −Q P-a.s. for
any Ft-measurable Q.

(iii) (Monotonicity) If g is a balanced driver, for any Q ≥ Q′ P-a.s. compo-
nentwise, then

ρgt (Q) ≤ ρgt (Q
′),

P-a.s. componentwise, with equality only if Q = Q′.
(iv) (Translation invariance) If g is independent of y, then for all t, all Q ∈

L∞(FT ) and all q ∈ L∞(Ft),

ρgt (Q+ q) = ρgt (Q)− q.

(v) (Regularity) If g(t, 0, 0) = 0 P-a.s., then for any A ∈ Ft, IAρ
g
t (Q) =

ρgt (IAQ) P-a.s..
(vi) If g is positive homogeneous, then ρgt (·) is positive homogeneous, that is,

for all t, all λ ≥ 0 and all Q ∈ L∞(FT ),

ρg(λQ) = λρg(Q).

(vii) If g is balanced and convex, then ρgt (·) is convex, that is, for all t, all
α ∈ (0, 1), and all Q1, Q2 ∈ L∞(FT ),

ρgt (αQ
1 + (1− α)Q2) ≤ αρgt (Q

1) + (1− α)ρgt (Q
2).

Now we turn to the question: under what conditions can a dynamic risk measure
be represented in term of a conditional g-expectation. It will be answered in
Corollary 5.12. As in Cohen and Elliott [6], we follow Peng [13] and give the
following definition.

Definition 5.9. A system of operators

E(·|Ft) : L
1(FT ) → L1(Ft), 0 ≤ t ≤ T

is called an Ft- consistent nonlinear expectation if it satisfies the following prop-
erties:
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(i) (Monotonicity) For any Q ≥ Q′ P-a.s.,

Eg(Q|Ft) ≥ Eg(Q′|Ft),

P-a.s. with equality only if Q = Q′ P-a.s..
(ii) (Ft-triviality) Eg(Q|Ft) = Q P-a.s. for any Ft-measurable Q.
(iii) (Recursivity) Eg(Eg(Q|Ft)|Fs) = Eg(Q|Fs) P-a.s. for any s ≤ t.
(iv) (Regularity) For any A ∈ Ft, IAEg(Q|Ft) = Eg(IAQ|Ft) P-a.s..

The following theorem relates an Ft-consistent nonlinear expectation to condi-
tional g-expectations.

Theorem 5.10. (see Cohen and Elliott [6]) For some family of operators E(·|Ft) :
L1(FT ) → L1(Ft), the following conditions are equivalent:

(i) E(·|Ft) is an Ft-consistent nonlinear expectation satisfying translation in-
variance as (iv) in Proposition 3.1.

(ii) There exists a driver g, which is balanced, independent of y and satisfies
g(t, y, 0) = 0, such that, for all Q, Yt = E(Q|Ft) is the solution to a BSDE
with terminal condition Q and driver g.

Furthermore, these two statements are related by the equation

g(ω, t, y, z) = E(zMt+1|Ft).

Remark 5.11. Theorem 5.10 is also true in the vector case and for E(·|Ft) with
restriction on Qt ⊂ L1(FT ), as was proved by Cohen and Elliott [6].

Corollary 5.12. In Theorem 5.10, if we replace E(·|Ft) by {ρt}t∈[0,T ], condition
(i) by

(i’) For any t, ρt satisfies monotonicity, Ft-triviality, recursivity, regularity
and translate invariance as in Proposition 5.8.

and ”Yt = E(Q|Ft)” in (ii) by ”Yt = ρt(−Q)”, the theorem still holds.

The next theorem shows the connection between static evaluation and Ft-
consistent nonlinear expectation.

Theorem 5.13. (see Cohen and Elliott [6]) Consider a measurable, scalar valued
map E : L1(FT ) → L1(F0). Suppose this map satisfies:

(i) (Ft-consistency) For any Q ∈ L1(FT ) and any t ≤ T , there exists an
Ft-measurable random variable Yt such that

E(IAQ) = E(IAYt),

for any A ∈ Ft.
(ii) (F0-triviality) E(Q) = Q for all F0-measurable Q.
(iii) (Monotonicity) For any Q ≥ Q′ P-a.s.,

E(Q) ≥ E(Q′),

P-a.s. with equality only if Q = Q′ P-a.s..
Then there exists a unique Ft-consistent nonlinear expectation E(·|Ft) such that

E(Q) = E(Q|F0),
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for all Q ∈ L1(FT ). This nonlinear expectation is given by

E(Q|Ft) = Yt,

with Yt as in (i). In fact, the assumptions are necessary.

The following corollary answers the question proposed at the beginning of this
subsection.

Corollary 5.14. For a static risk measure ρ, the following conditions are equiv-
alent:

(i) ρ satisfies:
(a) (Ft-consistency) For any Q ∈ L1(FT ) and any t ≤ T , there exists an

Ft-measurable random variable Yt such that

ρ(IAQ) = ρ(IAYt),

for any A ∈ Ft.
(b) (Constancy) ρ(Q) = −Q for all constant Q.
(c) (Monotonicity) For any Q ≥ Q′ P-a.s.,

ρ(Q) ≤ ρ(Q′),

P-a.s. with equality only if Q = Q′ P-a.s..
(d) (Translation invariance) For any Q ∈ L1(FT ), any t ≤ T and the

associated Yt as in (i)(a) fixed (note that monotonicity ensures the
uniqueness of Yt, see the proof given by Cohen and Elliott [6] for
Theorem 8), then for any q ∈ Ft,

ρ(IA(Q+ q)) = ρ(IA(Yt + q)),

for any A ∈ Ft.
(ii) There exists a driver gρ, which is balanced, independent of y and satisfies

gρ(t, y, 0) = 0, such that, for all Q, Y0 = Egρ(−Q) = ρ(Q) is the solution
to a BSDE with terminal condition Q and driver gρ.

Proof. The proof is just a combination of Theorems 5.10 and 5.13. �

6. Application to Optimal Design of Dynamic Risk Measures

Optimal design of dynamic risk measures has been widely studied. Barrieu and
El Karoui [1] discussed a related problem in a continuous diffusion setting. Barrieu
and El Karoui [2] adopted techniques in BSDEs driven by Brownian motion to
characterize the optimal solution of the inf-convolution problem. The problem
of default risk which is characterized by a single jump process was explored by
Shen and Elliott [15]. In this section, we apply theory of discrete-time finite-state
BSDEs to this specific problem.

Throughout this section, we setK = 1 and consider the set of financial positions
X defined in Subsection 5.1. Firstly we recall the optimal design problem.
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6.1. Static optimal design problem.

Definition 6.1. For any Q in X , the entropic risk measure is defined as:

eγ(Q) = sup
Q∈M1(P)

(EQ(−Q)− γh(Q|P)) = γ lnEP

(
exp

(
−Q

γ

))
. (6.1)

Here γ is the risk tolerance coefficient, M1(P) is the set of probability measures
on the considered space and h(Q|P) is the relative entropy of Q with respect to P.

We consider a problem about an optimal transaction between two economic
agents, denoted by A and B respectively. Agent A is exposed towards a non-
hedgeable risk of a financial position Q. Thus agent A wants to issue a financial
product S and sell it to agent B for a forward price at time T denoted by π to
reduce his exposure.

Suppose both agent use entropic risk measures, with tolerance coefficients γ
and γ′, to assess the risk of their financial positions. Agent A wants to determine
the structure (S, π) as to minimize his global risk measure

inf
S,π

eγ(Q− S + π)

with the constraint

eγ
′
(S − π) ≤ eγ

′
(0) = 0.

Using the cash translation invariance property and binding the constraint at the
optimum, the pricing rule of the S-structure is fully determined by the buyer as

π∗(S) = −eγ
′
(S).

Using the cash translation invariance property again, the optimization problem
simply becomes

inf
S

(
eγ(Q− S) + eγ

′
(S)

)
.

6.2. Dynamic optimal design problem. We extend the notion of static en-
tropic risk measures to a dynamic one defined on space (Ω,F , {Ft}0≤t≤T ,P)

eγt (Q) = γ lnE
(
exp

(
−Q

γ

)
|Ft

)
.

Then we can obtain the following proposition:

Proposition 6.2. −eγt (Q) is an Ft-consistent, dynamically translation invariant
nonlinear expectation.

Proof. Monotonicity, Ft-triviality, recursivity and dynamically translation invari-
ance are obvious. We only show the proof for regularity. For any A ∈ Ft,

− eγt (IAQ) = IA(−eγt (Q))

⇔ lnE
(
exp

(
−QIA

γ

)
|Ft

)
= IA lnE

(
exp

(
−Q

γ

)
|Ft

)
⇔ E

(
exp

(
−QIA

γ

)
|Ft

)
=

[
E
(
exp

(
−Q

γ

)
|Ft

)]IA
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It is obvious that

E
(
exp

(
−QIA

γ

)
|Ft

)
IA =

[
E
(
exp

(
−Q

γ

)
|Ft

)]IA
IA,

and that

E
(
exp

(
−QIA

γ

)
|Ft

)
IAc =

[
E
(
exp

(
−Q

γ

)
|Ft

)]IA
IAc .

�

Combine the above proposition and Theorem 5.10, we can prove the following
result:

Theorem 6.3. (−eγt (Q− S), Z∗
t ) is the solution of the following BSDE

−eγt (Q− S) +
∑

t≤s<T

g(ω, s, Z∗
s (ω)) +

∑
t≤s<T

Z∗
sMt+1(ω) = Q− S, (6.2)

where

g(ω, t, z) = eγt (zMt+1) = γ lnE
(
exp

(
−zMt+1

γ

)
|Ft

)
.

Remark 6.4. we can rewrite (6.2) as

eγt (Q− S)−
∑

t≤s<T

gγ(ω, s, Zγ
s (ω)) +

∑
t≤s<T

Zγ
sMs+1(ω) = −(Q− S), (6.3)

where Zγ
s = −Z∗

s and

gγ(ω, t, z) = eγt (−zMt+1) = γ lnE
(
exp

(
zMt+1

γ

)
|Ft

)
.

Thus the dynamic risk measure eγt (Q) can be represented as the solution of the
BSDE with driver gγ and terminal condition −Q.

We now study for any t ∈ [0, T ] the inf-convolution of the dynamic entropic risk

measures eγt and eγ
′

t and the inf-convolution of the corresponding gγt and gγt . We
define

(eγ�eγ
′
)t(Q) := inf

S
(eγt (Q− S) + eγ

′

t (S)), (6.4)

gγ�gγ
′
(ω, t, z) := inf

z′
(gγ(ω, t, z − z′) + gγ

′
(ω, t, z′)). (6.5)

We now prove the following theorem:

Theorem 6.5. Inf-convolutions (6.4) and (6.5) have properties as follows:

gγ�gγ
′
(ω, s, z) = gγ+γ′

(ω, s, z), (6.6)

(eγ�eγ
′
)t(Q) =

∑
t≤s<T

gγ+γ′
(ω, s, Zs(ω))−

∑
t≤s<T

ZuMs+1(ω)−Q

= eγ+γ′

t (Q).

(6.7)



242 ROBERT ELLIOTT, YIN LIN, AND HAILIANG YANG

Proof. Consider the function

f(z′) := gγ(ω, t, z − z′) + gγ
′
(ω, t, z′)

= γ lnE
(
exp

(
(z − z′)Mt+1

γ

)
|Ft

)
+ γ′ lnE

(
exp

(
z′Mt+1

γ′

)
|Ft

)
.

In order to show f(z′) is a convex function, we need only to show that

f∗(z′) := lnE
(
exp

(
z′Mt+1

γ′

)
|Ft

)
is convex. In fact, denote L = exp

(
z′Mt+1

γ′

)
, for any x = (x1, x2, · · · , xN )∗,

x∗H(f∗)x

=
∑
i,j

1

γ′2E2 (L|Ft)
xi[E (L|Ft)E

(
M i

t+1M
j
t+1L|Ft

)
− E

(
M i

t+1L|Ft

)
E
(
M j

t+1L|Ft

)
]xj

=
1

γ′2E2(L|Ft)

{∑
i

[E(L|Ft)E((M i
t+1)

2L|Ft)− E2(M i
t+1L|Ft)](x

i)2

+ 2
∑
i<j

[E(L|Ft)E(M i
t+1M

j
t+1L|Ft)− E(M i

t+1L|Ft)E(M j
t+1L|Ft)]x

ixj
}

=
1

γ′2E2(L|Ft)
[E(L|Ft)E((x∗Mt+1)

2L|Ft)− E2((x∗Mt+1)L|Ft))].

Applying Hölder’s inequality gives x∗H(f∗)x ≥ 0, which means f(z′) is a convex
function. Therefore for each ω the minimum of (6.4) with respect to z′ occurs
when

∇f(z′) =
E
(
Mt+1 exp

(
z′Mt+1

γ′

)
|Ft

)
E
(
exp

(
z′Mt+1

γ′

)
|Ft

) −
E
(
Mt+1 exp

(
(z−z′)Mt+1

γ

)
|Ft

)
E
(
exp

(
(z−z′)Mt+1

γ

)
|Ft

) = 0.

We denote by z∗γ
′
the value at which the minimum is attained. It is obvious that

z∗γ
′
is unique up to equivalence ∼Mt+1

, and z∗γ
′
= γ′

γ+γ′ z. Therefore

gγ�gγ
′
(ω, s, z) = inf

z′
(gγ(ω, t, z − z′) + gγ

′
(ω, t, z′))

= gγ(ω, t, z − z∗γ
′
) + gγ

′
(ω, t, z∗γ

′
)

= (γ + γ′) lnE
(
exp

(
zMt+1

γ + γ′

)
|Ft

)
= gγ+γ′

(ω, s, z).

Similar with (6.3), we have

eγ
′

t (S)−
∑

t≤s<T

gγ
′
(ω, s, Zγ′

s (ω)) +
∑

t≤s<T

Zγ′

s Ms+1(ω) = −S. (6.8)
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Adding (6.3) and (6.8), we have

eγt (Q− S) + eγ
′

t (S)

=
∑

t≤s<T

[gγ(ω, s, Zγ
s (ω)) + gγ

′
(ω, s, Zγ′

s (ω))]−
∑

t≤s<T

ZuMs+1(ω)−Q

=
∑

t≤s<T

[gγ(ω, s, Zs − Zγ′

s (ω)) + gγ
′
(ω, s, Zγ′

s (ω))]−
∑

t≤s<T

ZuMs+1(ω)−Q

≥
∑

t≤s<T

gγ+γ′
(ω, s, Zs)−

∑
t≤s<T

ZuMs+1(ω)−Q,

where Zs = Zγ
s + Zγ′

s . Thus eγt (Q − S) + eγ
′

t (S) can be regarded as the solution
to the BSDE with terminal condition −Q and the driver

g(ω, s, z) = gγ(ω, s, z − Zγ′

s (ω)) + gγ
′
(ω, s, Zγ′

s (ω)).

Similar with (6.3), eγ+γ′

t (Q) is the solution to the BSDE with terminal condition

−Q and the driver gγ+γ′
. g ≥ gγ+γ′

implies that for any S,

eγt (Q− S) + eγ
′

t (S) ≥ eγ+γ′

t (Q). (6.9)

Taking S∗ = γ′

γ+γ′Q, we can show that γZ∗
s
γ′
Ms+1 = γ′Z∗

s
γMs+1. Then

Z∗
s
γ′
Ms+1 =

γ′

γ + γ′ (Z
∗
s
γ′

+ Z∗
s
γ)Ms+1 =

γ′

γ + γ′ZsMs+1.

Consequently,

eγt (Q− S∗) + eγ
′

t (S∗) =
∑

t≤s<T

gγ+γ′
(ω, s, Zs(ω))−

∑
t≤s<T

ZuMs+1(ω)−Q.

This means eγt (Q − S∗) + eγ
′

t (S∗) is the solution to the BSDE with the driver

function gγ+γ′
and the terminal condition −Q. Then it also equals to eγ+γ′

t (Q)
due to the uniqueness of the solution. According to (6.9), we have

eγ+γ′

t (Q) = inf
S
(eγt (Q− S) + eγ

′

t (S)) = (eγ�eγ
′
)t(Q).

�
Remark 6.6. Note that S∗ defined in the above theorem is optimal. And for any
constant c, S∗ + c is also optimal.

7. Conclusion

In this paper, we have systematically studied properties of nonlinear expec-
tations defined using the discrete-time finite-state BSDEs. A converse compari-
son theorem has also been established. Properties, especially the representation
theorems, for risk measure defined on discrete-time finite-state space have been
explored. We also have obtained the solution for optimal design of dynamic risk
measures by BSDE approach. The optimal solution for the value of insurance is
proportional to the non-hedgeable contingent claim. The ratio is the Agent B’s
risk tolerance to the total risk tolerance.
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