Communications on Stochastic Analysis

Volume 7 | Number 2 Article 4

6-1-2013

A converse comparison theorem for discrete-time
finite-state BSDEs and risk measures using g-
expectation

Robert Elliott
University of Calgary, Calgary, Canada

Yin Lin
University of Hong Kong, Hong Kong, China

Hailiang Yang
University of Hong Kong, Hong Kong, China, hlyang@hku.hk

Follow this and additional works at: https://digitalcommons.Isu.edu/cosa

b Part of the Analysis Commons, and the Other Mathematics Commons

Recommended Citation

Elliott, Robert; Lin, Yin; and Yang, Hailiang (2013) "A converse comparison theorem for discrete-time finite-state BSDEs and risk
measures using g-expectation,” Communications on Stochastic Analysis: Vol. 7 : No. 2, Article 4.

DOI: 10.31390/cosa.7.2.04

Available at: https://digitalcommons.Isu.edu/cosa/vol7/iss2/4


https://digitalcommons.lsu.edu/cosa?utm_source=digitalcommons.lsu.edu%2Fcosa%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/cosa/vol7?utm_source=digitalcommons.lsu.edu%2Fcosa%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/cosa/vol7/iss2?utm_source=digitalcommons.lsu.edu%2Fcosa%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/cosa/vol7/iss2/4?utm_source=digitalcommons.lsu.edu%2Fcosa%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/cosa?utm_source=digitalcommons.lsu.edu%2Fcosa%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.lsu.edu%2Fcosa%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.lsu.edu%2Fcosa%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/cosa/vol7/iss2/4?utm_source=digitalcommons.lsu.edu%2Fcosa%2Fvol7%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages

Communication®n StochastidAnalysis 28\ Serials Publications
Vol. 7,No. 2 (2013)227-244 WA www.serialspublications.com

A CONVERSE COMPARISON THEOREM FOR
DISCRETE-TIME FINITE-STATE BSDES AND
RISK MEASURES USING ¢-EXPECTATION

ROBERT ELLIOTT, YIN LIN, AND HAILIANG YANG

ABSTRACT. This paper studies properties of non-linear expectations defined
using the discrete-time finite-state Backward Stochastic Difference Equations
(BSDE) proposed by Cohen and Elliott [6]. We also establish a converse
comparison theorem. Properties of risk measures defined by non-linear ex-
pectations, especially the representation theorems, will be given. Finally we
apply the theory of BSDESs to optimal design of dynamic risk measures.

1. Introduction

The study of BSDEs has been developing rapidly recently. Linear BSDEs were
first introduced by Bismut [3]. Then the concept was generalized by Pardoux and
Peng [10] by considering equations of the form:

T T
Y; - / g(w,s,Ys_, Zs)ds +/ stWs = Q
t t

Here g is the driver, @) is a square-integrable terminal condition and the process
W is a d-dimensional Brownian motion. Then g-expectations defined using such
BSDEs were proposed by Peng [12]. Cohen and Elliott [5] also considered BSDEs
related to continuous-time finite-state Markov chains. However, the assumptions
of the work in the continuous-time setting are quite strong and complicated. Thus
Cohen and Elliott [6] introduced BSDEs on spaces related to discrete-time finite-
state processes and explored the corresponding theory under weaker assumptions.

In this paper, we follow the idea of Cohen and Elliott [6] by considering discrete-
time finite-state BSDEs. We first recall the results of Cohen and Elliott [6] in
Section 2. Properties of related g-expectations are discussed in Section 3. Based on
these results, we prove a converse comparison theorem for a general case, together
with the independent case and the deterministic case in Section 4. Then we apply
the results of Section 3 to obtain properties of risk measures using g-expectations
especially the representation theorem in Section 5. In Section 6, applications to
optimal design of dynamic risk measures are explored, including optimal solutions
and characterization of inf-convolution of dynamic entropic risk measures and
associated drivers. We summarize this paper in Section 7.
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2. The Discrete-time Finite-state Model

We follow Cohen and Elliott [6] by considering a discrete-time finite-state pro-
cess X as the underlying stochastic process. Suppose (2, F,P) is a probability
space and X = {X;,t € {0,1,...,T}} is a finite state process. Without loss of
generality we suppose for each ¢ € {0,1,...,T},

Xt S {617627"'361\7}’
where N is the number of the states and e; is the ith standard unit vector in R™.
Consider a filtered probability space (2, F, {F;}o<i<r,P), where
Fr=0c({Xs,s<t},Aec F:P(A) =0).

Then, we can define the martingale process M by M; := X; — E(X;|F—1). We
shall discuss vector BSDEs of the form:

Yi(w) = Y 9w, s, Ya(w), Zow) + Y Zu(w)Mepr(w) = Q). (2.1)
t<s<T t<s<T
Here g is an adapted functional g : Q x {0,--- , T} x RE x REXN — RE and Q
an R¥-valued Fpr-measurable terminal condition.

Remark 2.1. (see Cohen and Elliott [6]) Since X can take only finitely many
possible paths, and all the quantities are finite-dimensional, it is clear that

LY (F) = L*(F) = L™(F).
Remark 2.2. (see Cohen and Elliott [6]) BSDE (2.1) is equivalent to the following
one-step equation:

Yi —g(w, t,Y, Zy) + ZiMyyq = Y1, Yr=Q. (2.2)

Definition 2.3. (see Cohen and Elliott [6]) For any integer K and adapted process
Z in REXN " we define the seminorm of Z, ||Z| ar, by:

1213, = BT S (ZeMan)(ZeMas)*)]
0<s<T

If |2 — Z?|]3, = 0, we shall write Z' ~y; Z%. And if Z} My 1 = Z?M; 1 P-as.,
we shall write Z} ~py,,, Z}.
Theorem 2.4. (Ezistence and Uniqueness) (see Cohen and Elliott [6]) Suppose g
satisfies the assumptions:

(A) If Z} ~rppy ZE, then for any Y, g(w,t,Y:, Z}) = g(w,t,Ys, ZF) P-a.s. for

all t,
(B) For any z € REXN _ for all t, for P-almost all w, the map

y—=y—9gwty,z)
is a bijection RK — RE,
Then for any terminal condition Q which is essentially bounded, Fr-measurable,
and with values in RX, BSDE (2.1) has an adapted solution (Y, Z). Moreover,

this solution is unique up to indistinguishability for Y and equivalence ~y; for Z.
Thus we can define the conditional g-expectation of QQ under F; as

ENQIF:) =Yz (2.3)
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The g-expectation of Q is defined as
£9(Q) == Yo = £9(Q|Fo). (2.4)

Theorem 2.5. (Comparison Theorem) (see Cohen and Elliott [6]) Consider two
BSDEs as in (2.1) with drivers g*, i = 1,2 and essentially bounded terminal values
Q%, i =1,2. Suppose that g* satisfies both Assumptions (A) and (B). Let (Y*, Z?)
be the associated solution. Suppose the following conditions hold:
(i) Q' > Q?, P-a.s.
(ii) P-a.s., for all times t, g*(w,t, Y2, Z}) > g*(w,t, Y2, Z32).
(iii) P-a.s., for all times t, the ith component of gt, given by elg', satisfies

e:gl(watvy;:zvztl) - e;‘gl(w,t,YtaZf) > gréljn{e:(ztl - Zt2)(ej - E(Xt+1|]:))}7

where J; is the Fi-measurable set of indices of possible values of Xyi1,
given Fy, t.e. Jp = {i : P(Xyq1 = €| Ft) > 0}.
(iv) P-a.s., for all t, if

Ytl _gl(w’t’Ytl?Ztl) > Y;tz _gl(w’tYf’Ztl)’
then Y, > Y2,
Then Y1 > Y2 P-a.s.

Properties of solutions of BSDEs, and hence the related g-expectations, are
determined by properties of the driver g. Therefore, before we start the next
section, we shall state some assumptions for g we may use in the sequel:

(C) For any t, g(w,0,0) =0 P-s.s.

(D) For any y and ¢, g(w,t,y,0) = 0 P-a.s.

(E) g is independent of y, i.e. for any z fixed, for any t, g(t,y,2) = g(t,v’, 2)

P-a.s. for any y, y'.
(F) g is positive homogeneous in (y, z), i.e. for all ¢, all A > 0 and all (y, 2),

Ag(t,y, 2) = g(t, Ay, Az), P—a.s.
(G) g is convex in (y,2), that is, for all ¢ and all & € (0,1), and all (y*, 2%),
(y%2), P-as.
g(t,ayt + (1 —a)y? ozt + (1 — a)2?) < ag(t,y', 2') + (1 — a)g(t, y?, 2°).

(H) For any fixed z, for all ¢, for P-almost all w, the map y — y — g(w, t,y, 2)
is increasing, i.e. if y' > y? componentwise, then y' — g(t,y%, 2) > 3? —
g(t,y?, z) P-a.s. componentwise.

(I) (see Cohen and Elliott [6]) Consider some driver g that satisfies Assump-
tions (A) and (B). Suppose for all ¢, and for all essentially bounded Q*,
Q? , the corresponding BSDE solutions (Y1, Z1), (Y2, Z?) satisfy
(iii’) P-a.s., for all times ¢, the ith component of g', given by e} g!, satisfies

ez‘gl(w,t7Yt2,Zg) —e;gl(w,t,)/tz,Zf)
> %&n{ef(ztl — Z})(ej — (X1 |F))},

with equality only if ef Z} ~ny,,, e} Z7.
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(iv’) P-as., for all ¢, if V! — gt (w,t, Y}, Z}) > Y2 — gt (w,t, Y2, Z}), then
Y,! > Y2, the inequalities being taken componentwise.
Then we shall call g a balanced driver.

Lemma 2.6. Assumptions (D), (E), (F), (G) and (H) are respectively equivalent
to:

(D) For any Fi-measurable Y and any t, g(w,t,Y,0) =0, P-a.s..
(E) For any Fi-measurable Y, Y’ any t and Z, g(t,Y,Z) = g(t,Y', Z).
(F) For allt, A >0 and all Fy-measurable Y, Z, P-a.s.,

Mg(t,Y,Z) = g(t,\Y,\2)
(G) For allt, and all a € (0,1), and all F;-measurable Y,}, Y2, Z}, Z2, P-a.s.
g(t, Y + (1= )Y, aZf + (1 - a)Z7) < ag(t, Y, Z)) + (1 — a)g(t, Y2, Z).

(H) For any fived Fi-measurable Zy, for allt, and all Fi-measurable Y;', Y2, if
Y,! > Y2 componentwise, then Y,' — g(t,Y}, Z;) > Y2 — g(t, Y2, Z;) P-a.s.
componentwise.

Proof. We need only to prove the equivalence between (D) and (D’), since the
others are analogous. That (D’) implies (D) is trivial. For the converse implication,
suppose there exist some ¢t and F;-measurable Y, such that g(w,t,Y,0) # 0 with
positive probability. Since Y and ¢(t, Y, 0) are F;-measurable and X can take only
finitely many paths, g(¢,Y,0) = 3. a;la, and Y = >, y;1 4, for some partition A;
of F; and some constants a;, y;. It follows that there exist some k s.t. ax # 0.
Then P-a.s. in Ay, g(w,t,Y,0) = g(w,t,yk,0) # 0, which contradicts assumption
(D). O

Remark 2.7. In continuous-state setting, assumption (D) (respectively (E), (F),
(G) and (H)) is weaker than (D’) (resp. (E’), (F’), (G’) and (H’)). Suppose
Q= (0,1), 7y = B(0,1) and P is Lebesgue measure. Let g(w,t,y,2) = [{y—.y. It
is obvious that for any y and ¢, g(w,t,y,0) = 0 P-a.s. But for the F;-measurable
random variable Y (w) = w, g(w,t,Y,0) = 1.

3. Properties of Conditional g-expectations

In this section, we study properties of conditional g-expectations, upon which
Sections 5 and 6 are based. Though some of the properties in the following lemma
were proved by Cohen and Elliott [6], for completeness it is worth recalling them.

Proposition 3.1. Suppose g satisfies Assumptions (A) and (B). Then we have
the following properties:

(i) (Terminal equality) E9(Q|Fr) = Q, for all Q.
(i) (Fe-triviality and recursivity) The following three conditions are equiva-
lent:
(a) (Recursivity) E9(EI(Q|Fe)|Fs) = E9(Q|Fs) P-a.s. for any s <t.
(b) (Fi-triviality) E9(Q|F:) = Q P-a.s. for any Fi-measurable Q.
(¢) For any y and t, g(w,t,y,0) =0 P-a.s..
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(iii) (Monotonicity) If g is a balanced driver, then for any t and any Q > Q'
P-a.s. componentwise,

E9(QIF) = &(Q'|F)

P-a.s. componentwise, with equality only if Q = Q.
(iv) (Translation invariance) for allt, all Q € L*(Fr) and all g € L*(F,),
E9(Q + qlFt) = E7(QIF) +q.
if and only if g is independent of .
(v) (Regularity) For any t, any A € Fy, IaE9(Q|F;) = E9(LaQ|F:) P-a.s. if
and only if g(t,0,0) = 0 P-a.s. for anyt.
(vi) E9(:|F) is positive homogeneous, that is, for all t, all X > 0, and all
Q € L(Fr),
EI(AQIF) = AEI(Q|F)
if and only if g is positive homogeneous in (y, z).

(vii) If g is balanced and convex in (y, z), then E9(-|F;) is convez, that is, for
all t, all o € (0,1), all Q', Q* € L(Fr) and all t,

£9(aQ' + (1 - )Q*|F) < af%(Q'|F) + (1 — a)&9(Q| F).
Conversely, if E9(:|Ft) is convexr and g satisfies (D)and (H), then g is

CONVET.

Proof. (i) is trivial.
(ii): (ii)(a)=(ii)(b): For any Fi-measurable @, define Q' = Yr through the
recursion
Y1 =Y, - Q(S, Ys, Zs) + ZuMsya,

where Y; := @, and Z; is arbitrary Fs-measurable random variable. Then

E(Q|F) = Q. (3.1)
From (a), let s = ¢, then we obtain
ENENQ|F)IF) = E9(Q'|F). (3.2)

(ii)(b) is established by substituting (3.1) into (3.2).
(ii)(b)=>(ii)(c): For any y € RX, by (B) we have £9(y|F;) = vy, for all t. By the
one-step equation (2.2), y — g(t,y,2Z:) + ZeMiy1 = y, for all t < T. Taking a
conditional expectation gives Z; = 0 and g(¢,y,0) = 0.
(ii)(c)=-(ii)(a): For the proof, see Theorem 7 of Cohen and Elliott [6].

(iii) follows directly from Theorem 2.5.

(iv): The first implication follows using the proof given by Cohen and Elliott
[6] for Theorem 7. Conversely, for all ¢, all (y,2) € RE x REXN and all ¢ € R¥,
define @@ = Y through the recursion

Y:s-i-l = YS - 9(57Ys, Zs) + ZsMs+1
where Y; :=y, Z; = z. Then £9(Q|F;) = y. Consider the one-step equation:
y—9(t,y,z) + 2Mep1 = Yipa. (3.3)
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Since ¢ is a constant, £9(Q + ¢|F:) =y + ¢ and £9(Q + q|Fi+1) = Y41 +¢. Then
we have
y+a—9ty+4¢,2)+ ZMipy =Y + ¢ (3-4)

From equation (3.3) and (3.4), it follows that Z = z and ¢(t,y + ¢, 2) = g(t,y, 2).

(v): Cohen and Elliott [6] proved that if g(w,t,y,0) = 0, for all y and all ¢,
then &9(-|F;) satisfies regularity. However, we need only the weaker condition
g(w,t,0,0) = 0 and the proof is similar.
Conversely, if £9(-|F;) satisfies regularity, then for all A € F,

TAE9(Q|F:) = E9(1aQ|Fr), (3.5)
TAE9(Q|Fi41) = E9(1aQ| Fis1)- (3.6)

It follows that
IAY: — g(t,Ye, Z)) + Z{My1 = 1aYi1 (3.7)

Combining (2.2) and (3.7), we can obtain
Z; :IAZta IAg(t7)/t7Zt) :g(taIA}/hIAZt)

Then ¢(t,0,0) = 0, since A is any set in F;.

(vi): Cohen and Elliott [6] proved that the positive homogeneity of g guarantees
the positive homogeneity of £9(-|F%).
For the converse implication, for any ¢ and (y,z), we can construct a terminal
condition @ with the associated solution (Y, Z;) = (y, 2) as in the proof of (iv).
Then for any A > 0,

AEI(QIF) = E7(AQF), (3.8)
AN Q| Fis1) = E(AQ| Fiqa). (3.9)

ie.
Ay = g(t, Ny, Zy) + Zy = AYyp. (3.10)

Combining (3.3) and (3.10), we obtain Z; = Az and Ag(t,y, z) = g(t, Ay, Az).

(vii): The first implication is analogous to the one given by Cohen and Elliott
[7] for Theorem 9.7 for BSDEs on continuous-time finite-state Markov chains.
Conversely, suppose £9(+|F;) is convex and g satisfies (D) and (H). Then taking a
convex combination of the BSDEs with terminal condition Q! = y* — g(¢, y!, 2*) +
22Myyq and Q2 = y? — g(t,v?, 22) + 22 M4 gives the equation

ayl + (1 - a)y2 - (Oég(t,yl, Zl) + (1 - Oé)g(t,y2, 22))
+ (a2t + (1 — )2 )My = aQ' + (1 — a)Q?.
Consider the BSDE

(3.11)

}/t - g(t7 5/;57 Zt) + ZtMt+1 - Qa (312)
with terminal condition Q% := aQ! + (1 — a)Q?. Combining (3.11) and (3.12), we
obtain Z; = az' + (1 — a)z?. Thus

ay'+(1 - a)y® — (ag(t,y", z") + (1 —a)g(t.y*,2%))
=Y; — g(t, Yy, az' + (1 — a)2?)
<ay' +(1-a)y® — (ag(t,y',2") —g(t,ay’ + (1 - a)y?, a2’ + (1 - )2?).
The convexity of g is established. O
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4. A Converse Comparison Theorem

Comparison theorem is one of the key results in the theory of BSDEs, as it
allows us to compare the solutions of two BSDEs if we can compare the terminal
conditions and the drivers. Comparison theorem for BSDEs was first established
by Peng [11] in Brownian setting, then generalized by El Karoui et al. [8]. Cohen
and Elliott [7] also explored the theory for BSDEs on spaces related to continuous-
time finite-state Markov chains. The result for discrete-time finite-state BSDEs
was obtained by Cohen and Elliott [6].

Converse comparison theorem is another important result that allows one to
compare the drivers whenever we can compare the solutions of two BSDEs with
the same terminal condition. In Brownian setting, Peng [12] proved that "Y' (§) =
YZ(€) for each ¢ € L?(Fr)” implies "g' = ¢?”. Results for inequalities were
discussed by Briand et al. [4]. We explore the results for discrete-time finite-state
models in this section.

Theorem 4.1. (General case) Let Assumptions (A), (B) and (D) hold for g°,
i=1,2. Assume moreover that g* also satisfies (H) and that for all t and all Q,

1 2
ET(QIF) = &7 (Q|F).
Then for all t and all (y, z), we have, P-a.s.,
9w t,y,2) > g°(w, by, 2).

Proof. For any t < T, and any (y,z) € RE x REXN consider BSDEs with driver
g' respectively and both with terminal condition @ = y—g*(t,y,2)+2M;1. Since
(D) is satisfied, Yy, ; = £9'(Q|Fr+1) = Q. The BSDEs will reduce to

thi - gl(tv Y;ia ZZ) + ZtthJrl =Yy - gl(tv Y, Z) + ZMtJrl' (41)
Since (D) is satisfied, it is obvious that (Y;', Z}) = (y,2) and Z? = z according to
the uniqueness of the solutions. Then we have

Yy— gl(ta Y, Z) = Y? - gg(tvl/;527 Z) < Yy— 92(t7y7 Z)7 (42)
where the last inequality is due to Assumption (H) and Y? = 892(Q\}}) <
591(Q|}}) =y. It follows that g'(¢,y,2) > ¢%(t,y, 2). O

Remark 4.2. In the general case, in order to compare the drivers, we need the
inequalities of solutions to hold for all times. While in some special cases, for
example, when ¢ is independent of y or g is deterministic, just the inequalities of
the solutions at time 0 is sufficient to compare the drivers. This will be proved in
the following corollaries.

Corollary 4.3. (Independent case) Let Assumptions (A), (B), (D) and (E) hold
for gt, i = 1,2, g' be balanced and g* satisfy (H). Assume moreover that for all

Q, ) .
£7(Q) = £7(Q).
Then for all t and all (y, z), we have, P-a.s.,

g (w,t,y,2) > g*(w, t,y, 2).
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Proof. First, we need to show that for all ¢ and all @, with the assumption of the
theorem,

€9 (QIF) = £ (QIF).

Then we can apply Theorem 4.1 to finish the proof. The proof is almost the
same as the one given by Briand et al. [4], in Theorem 4.4, for BSDEs driven by
Brownian motion. U

Remark 4.4. In the above corollary, if we assume that for all ¢ and all @,
£ (QIF) = €7 (QIF)
Then we can omit the assumption that g2 satisfies (H). The conclusion still holds.

Corollary 4.5. (Deterministic case) Suppose g* are defined on: [0,--- ,T] x RE x
REXN into RE. Assume that g°, i = 1,2 satisfies Assumptions (A), (B) and (D).
Assume moreover that g* satisfies (H) and that for all Q,
£7(Q) > £7(Q).
Then for all t and all (y, z) we have, P-a.s.,
9 (w,t,y,2) 2 g*(w, by, 2).

Proof. The proof is similar with that of Theorem 4.1. Note only that when the g
are deterministic, Y}’ in (4.1) are constants so that

£9(QF) = €7 (Q).
O

We now consider two counterexamples to Theorem 4.1 when one of the As-
sumptions (D) and (H) fails.

Example 4.6. Set T'= 2 and
g'0,y,2) =0, g¢g'(1,y,2) =4,
320,y,2) =1, ¢*(l,y,2) =2.

We can see that both g! and ¢* satisfy Assumptions (A), (B) and (H). Moreover,
for any @,

£7 (QIF1) = €7 (QIF1) +2 > €7 (QIF),
£ (QIFo) = €7 (QIFo) +1 > £ (QlFo).
However, ¢'(0,y, z) < ¢%(0,v, 2).
Example 4.7. Set T =1 and K = 1. Define:
0 ifz=0,
2y ifz#0.

0 if z=0,
2u+1 ifz#0.

g (w,0,y,2) = {

9 (w,0,y,2) = {
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It can be checked that both g! and ¢? satisfy (A), (B) and (D), and for any Q,
£9(Q1F0) > €7 (QIF0)-
However, g'(0,y,2) < ¢%(0,y, 2).

5. Risk Measures via g-expectations

The theory of dynamic risk measures is one of the important applications of
BSDEs. Peng [13] and Rosazza Gianin [14] established results for BSDEs driven
by Brownian motion. Cohen and Elliott [7] considered the theory in a continuous-
time model driven by a finite-state Markov chain. The discrete-time finite-state
case was also studied by Cohen and Elliott [6]. In this section, we adopt the
model proposed by Cohen and Elliott [6] and focus on applications in static risk
measures.

5.1. Static risk measures via g-expectations. In this subsection, we recall
the definition and representation theorems of static risk measures, then concentrate
on risk measures defined by g-expectations.

First, we denote the set of financial positions by X := L (Fr). A static risk
measure is a map p : X — R. In this paper, we only consider risk measures p such
that

p(Q)=pQ) fQ=Q P-as. (5.1)
We follows Follmer and Schied [9] and give the following definitions.

Definition 5.1. A risk measure p is called a convex risk measure if it satisfies:
(1) (Monotonicity): If @ < @’, then p(Q) > p(Q'),

(2) (Cash invariance): If m € R, then p(Q +m) = p(Q) —m,

(3) (Convexity): p(aQ + (1 - a)Q') < ap(Q) + (1 - a)p(Q"), YO < a < 1.

Definition 5.2. A convex risk measure p is called a coherent risk measure if it
satisfies

(4) (Positive Homogeneity): If A > 0, then p(AQ) = Ap(Q).

Lemma 5.3. (See Follmer and Schied [9]) Any risk measure p that satisfies mono-
tonicity and cash invariance is Lipschitz continuous w.r.t. the essential supremum
norm || - ||:

1p(Q) —p(@) < Q-Q" .

Now, let g satisfy Assumptions (A) and (B). Set Fy = {0,Q} and K = 1.
Consider the risk measure defined by g-expectations, which is given by (2.4), as
follows:

p(Q) = E9(-Q). (5.2)

Proposition 5.4. (i) If g is balanced and independent of y, then p9 is con-
tinuous, that is, if Qn — Q P-a.s. in L™= (Fr), then p(Q,) — p(Q).
(ii) If g is balanced, independent of y and convex, then p? is a convex risk
measure. Moreover, if g is also positive homogeneous, then p? is a coherent
risk measure.
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Proof. (i): According to (iii) and (iv) in Proposition 3.1, if g is balanced and
independent of y, then p9 must satisfy monotonicity and cash invariance. Applying
Lemma 5.3,

| p(Q) — p(Qn) IS Q@ — Qn | -
Thus we need only to show that if @, — @, then || @ — @, ||— 0. In fact, Let
{4;} be a partition of Fr. Then @, and @ have the representation

Qn = Zq;IAw Q = ZquAr

Thus Q,, — Q implies ¢°, — ¢* for any i. It follows that | Q — Q,, |— 0.
(ii) follows by combining Proposition 3.1, Definitions 5.1 and 5.2. O

We recall the representations of convex and coherent risk measures from Follmer
and Schied [9]. We denote by M ¢ := M #(Q, F) the set of all finitely additive set
functions Q : F — [0,1] which are normalized with Q(2) = 1, and by M;(P) :=
M (9, F,P) the set of all probability measures on (€, F) which are absolutely
continuous with respect to P. Then we define the acceptance set of p by

A, ={Q € X|p(Q) < 0},

and the minimal penalty function of p by

ozmin(@) = sup EQ[—Q] for Q € MLf'
QeA

Theorem 5.5. (see Follmer and Schied [9]) Suppose p is a convex risk measure.
Then the following conditions are equivalent
(i) p can be represented as:

p(Q)= sup (Eg[-Q] - amin(Q)), @ € L™. (5-3)

QeM(P)
(i) p is continuous from above: If Q, \( Q P-a.s., then p(Q,)  p(Q).

Theorem 5.6. (see Follmer and Schied [9]) For a coherent risk measure p the
following conditions are equivalent:

(i) There exists a set Q € M1(P) such that the supremum is attained:
= Eg|— V@ e X. 5.4
P(Q) = maxEo[-Q] VQ (5.4)

In this case Q can be chosen as {Q € M1(P) | amin(Q) = 0}.
(ii) p is continuous from below: If Q, ,/ Q P-a.s. then p(Qn) \\ p(Q).

Then combining Proposition 5.4, Theorem 5.5 and 5.6, we can obtain the suf-
ficient conditions for drivers that guarantee similar representations of the related
risk measures.

Corollary 5.7. (i) If g is balanced, independent of y and convez, then p9 has
the representation (5.3).
(i) Moreover, if g is also positive homogeneous in (y, z), then p? has the rep-
resentation (5.4).
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5.2. Connection between static risk measures and drivers. On the other
hand, it is natural to ask under what conditions can a static risk measure be
represented in terms of g-expectation. This question will be answered at the end
of this section. The connection between F;-consistent nonlinear expectations and
g-expectations together with the connection between static evaluation and Fi-
consistent nonlinear expectations were studied by Cohen and Elliott [6]. What we
need is to combine these two.

Let g satisfy Assumption (A) and (B) and define the dynamic risk measure for
all @ € L>°(Fr) and all ¢,

i (Q) = E9(=Q|F). (5.5)

Applying Proposition 3.1, we can obtain properties of dynamic risk measures de-
fined by conditional g-expectations.

Proposition 5.8. Let {p{}ic(o, be the dynamic risk measure defined in (5.5).
Then we can obtain the following properties:
(i) (Terminal equality) p7(Q) = —Q, for all Q.
(ii) (Fi-triviality and Recursivity) If for any y, g(w,t,y,0) = 0 P-a.s., then
pi(—p{(Q)) = pl(Q), P-a.s. for any s < t, and pj(Q) = —Q P-a.s. for
any Fy-measurable Q.
(i11) (Monotonicity) If g is a balanced driver, for any Q > Q' P-a.s. compo-
nentwise, then
Pl (Q) < p{(Q),
P-a.s. componentwise, with equality only if Q = Q.
(iv) (Translation invariance) If g is independent of y, then for all t, all Q €
L>(Fr) and all g € L>®(F),

pi(@Q+aq) =l (Q) —q

(v) (Regularity) If g(t,0,0) = 0 P-a.s., then for any A € Fy, Iap}(Q) =
Pl (14Q) P-a.s..

(vi) If g is positive homogeneous, then pi(-) is positive homogeneous, that is,
for allt, all X\ >0 and all Q € L>=(Fr)

P?(AQ) = Ap?(Q).

(vii) If g is balanced and convez, then p{(-) is convez, that is, for all t, all

a € (0,1), and all Q*, Q% € L>=(Fr),
pl(aQ' + (1 — @)Q?) < apf(Q") + (1 — )] (Q?).

Now we turn to the question: under what conditions can a dynamic risk measure
be represented in term of a conditional g-expectation. It will be answered in
Corollary 5.12. As in Cohen and Elliott [6], we follow Peng [13] and give the
following definition.

)

Definition 5.9. A system of operators
ECIF) : LY (Fr) = LY(F), 0<t<T

is called an F;- consistent nonlinear expectation if it satisfies the following prop-
erties:
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(i) (Monotonicity) For any @ > Q' P-a.s.,
E9(QIF) = E%(Q'|F),

P-a.s. with equality only if Q = Q' P-a.s..
(i) (Fe-triviality) £9(Q|F:) = Q P-a.s. for any Fi-measurable Q.
(iii) (Recursivity) £9(E9(Q|Fe)|Fs) = E9(Q|Fs) P-a.s. for any s <.
(iv) (Regularity) For any A € Fy, IaE9(Q|F:) = E9(1aQ|F:) P-as..
The following theorem relates an F;-consistent nonlinear expectation to condi-
tional g-expectations.

Theorem 5.10. (see Cohen and Elliott [6]) For some family of operators E(-|F) :
LY (Fr) — LY(F), the following conditions are equivalent:

(i) E(-|Ft) is an Fy-consistent nonlinear expectation satisfying translation in-
variance as () in Proposition 3.1.

(ii) There exists a driver g, which is balanced, independent of y and satisfies
g(t,y,0) =0, such that, for all Q, Y, = E(Q|F) is the solution to a BSDE
with terminal condition @ and driver g.

Furthermore, these two statements are related by the equation
g(w,t,y, 2) = E(zMe41|Fr).

Remark 5.11. Theorem 5.10 is also true in the vector case and for £(-|F;) with
restriction on Q; C L'(Fr), as was proved by Cohen and Elliott [6].

Corollary 5.12. In Theorem 5.10, if we replace E(:|F;) by {pi}icio,r), condition
(i) by
(i’) For any t, p; salisfies monotonicity, Fi-triviality, recursivity, regularity
and translate invariance as in Proposition 5.8.

and 7Yy = E(Q|F:)” in (i) by 7Yy = pi(—Q) 7, the theorem still holds.

The next theorem shows the connection between static evaluation and JF;-
consistent nonlinear expectation.

Theorem 5.13. (see Cohen and Elliott [6]) Consider a measurable, scalar valued
map &€ : LY (Fr) — LY (Fo). Suppose this map satisfies:
(i) (Fi-consistency) For any Q € LY(Fr) and any t < T, there exists an
Fi-measurable random wvariable Y; such that
E(14Q) = E(1aYY),
for any A € F;.
(i) (Fo-triviality) £(Q) = Q for all Fo-measurable Q.
(111) (Monotonicity) For any Q > Q' P-a.s.,
E(Q) = £(Q),
P-a.s. with equality only if Q = Q' P-a.s..

Then there exists a unique Jy-consistent nonlinear expectation E(-|F;) such that

£(Q) = £(Q|F),
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for all Q € L*(Fr). This nonlinear expectation is given by
E(QIF) =i,
with Y; as in (i). In fact, the assumptions are necessary.

The following corollary answers the question proposed at the beginning of this
subsection.

Corollary 5.14. For a static risk measure p, the following conditions are equiv-
alent:

(i) p satisfies:
(a) (Fi-consistency) For any Q € L' (Fr) and any t < T, there exists an
Fi-measurable random variable Y; such that

p(1aQ) = p(14Y3),

for any A € Fy.

(b) (Constancy) p(Q) = —Q for all constant Q.
(¢) (Monotonicity) For any Q > Q' P-a.s.,

p(Q) < p(Q"),

P-a.s. with equality only if Q = Q' P-a.s..

(d) (Translation invariance) For any Q € L'(Fr), any t < T and the
associated Yy as in (i)(a) fized (note that monotonicity ensures the
uniqueness of Yy, see the proof given by Cohen and Elliott [6] for
Theorem 8), then for any q € F,

p(1a(Q +q)) = p(1a(Yi + q)),

for any A € Fy.
(i1) There exists a driver g,, which is balanced, independent of y and satisfies
9o(t,y,0) = 0, such that, for all Q, Yo = E9(—Q) = p(Q) is the solution
to a BSDE with terminal condition Q) and driver g,.

Proof. The proof is just a combination of Theorems 5.10 and 5.13. |

6. Application to Optimal Design of Dynamic Risk Measures

Optimal design of dynamic risk measures has been widely studied. Barrieu and
El Karoui [1] discussed a related problem in a continuous diffusion setting. Barrieu
and El Karoui [2] adopted techniques in BSDEs driven by Brownian motion to
characterize the optimal solution of the inf-convolution problem. The problem
of default risk which is characterized by a single jump process was explored by
Shen and Elliott [15]. In this section, we apply theory of discrete-time finite-state
BSDEs to this specific problem.

Throughout this section, we set K = 1 and consider the set of financial positions
X defined in Subsection 5.1. Firstly we recall the optimal design problem.
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6.1. Static optimal design problem.

Definition 6.1. For any @ in X, the entropic risk measure is defined as:
Q
Q= sw (Bo(-Q) - h(@P) =y (e (-2)). )
QeM; (P) Y

Here ~ is the risk tolerance coefficient, M;(P) is the set of probability measures
on the considered space and h(Q|P) is the relative entropy of Q with respect to P.

We consider a problem about an optimal transaction between two economic
agents, denoted by A and B respectively. Agent A is exposed towards a non-
hedgeable risk of a financial position ). Thus agent A wants to issue a financial
product S and sell it to agent B for a forward price at time T denoted by 7 to
reduce his exposure.

Suppose both agent use entropic risk measures, with tolerance coefficients ~y
and 7', to assess the risk of their financial positions. Agent A wants to determine
the structure (S, 7) as to minimize his global risk measure

gnfeW(Q - S+m)
with the constraint
eV (S—m) <e’(0)=0.

Using the cash translation invariance property and binding the constraint at the
optimum, the pricing rule of the S-structure is fully determined by the buyer as

T*(8) = —e7 (9).

Using the cash translation invariance property again, the optimization problem
simply becomes

inf (eW(Q —S)+e” (S)) .

6.2. Dynamic optimal design problem. We extend the notion of static en-
tropic risk measures to a dynamic one defined on space (2, F, {F; bo<i<7,P)

7@ =mz (e (-2) 7).

Then we can obtain the following proposition:

Proposition 6.2. —¢](Q) is an F;-consistent, dynamically translation invariant
nonlinear expectation.

Proof. Monotonicity, Fi-triviality, recursivity and dynamically translation invari-
ance are obvious. We only show the proof for regularity. For any A € F;,

—e/(14Q) = Ia(—¢!(Q))

o IE <exp <—Qj“‘> |ft) — I4InE (exp (-3) I]-'t)
cr{or (2o 2]



CONVERSE COMPARISON FOR DISCRETE BSDES & RELATED RISK MEASURES 241

It is obvious that

o (~24) ) 1 [2 o (-2) )] 10
o (~29) ) 1= [ o0 (-2) 7))

Combine the above proposition and Theorem 5.10, we can prove the following
result:

and that

(]

Theorem 6.3. (—¢;(Q — S), Z}) is the solution of the following BSDE
—1(Q=9)+ > glw,s, Zi W)+ D ZiM(w) =Q =S, (6.2)

t<s<T t<s<T

where

M
g(w,t,z) = ef (:Mz41) = yInE (eXP (—'ZM) |-7:t> .
Remark 6.4. we can rewrite (6.2) as

Q-9 > gwsZlw)+ Y. ZIMy(w)=-(Q-S5), (6.3)

t<s<T t<s<T

where Z) = —Z7 and

M,
§7(@,4,2) = €] (~2My41) = 7 InE (exp ( ;“) m) .

Thus the dynamic risk measure €] (Q) can be represented as the solution of the

BSDE with driver g7 and terminal condition —@Q.

We now study for any ¢ € [0, 7] the inf-convolution of the dynamic entropic risk

measures e; and eZ/ and the inf-convolution of the corresponding g; and g;. We
define

(067),(Q) = inf(e] (Q - 5) + ¢ (5)), (6.4)
909" (w,t,2) 1= inf(g" (w, 1,2 — ') + g7 (w, 1,2")). (6.5)
We now prove the following theorem:

Theorem 6.5. Inf-convolutions (6.4) and (6.5) have properties as follows:

gWDgV/(w, 8,2) = g7+7/(w, 8, 2), (6.6)
(0@ = Y 9 (w5, Zew) = D ZuMipi(w) - Q
t<s<T t<s<T (6.7)

=7 (Q).



242 ROBERT ELLIOTT, YIN LIN, AND HAILIANG YANG

Proof. Consider the function
f&) =g (Wt = 2) + 9" (w,1,2)

-2 M, "M,
=~InE (exp (W) .7-}) ++'InE (exp (Z ny“) |.7-'t> .

In order to show f(z) is a convex function, we need only to show that

F4(z) :=InE <eXp < J\jt“) |]-"t>

. ‘M,
is convex. In fact, denote L = exp (%), for any z = (z',z°,--- ,x

1 _ . .
_ E : i i j
- i ~2E? (L|.7:t)x [E(LIF:)E (Mt+1Mt+1L|]:t>

—E (M, L|F) E (M, LIF )l

:Wmm{Z[E@'EW«MZHFLlﬂ)—E?(Mzﬂumw
+2 Y [E(LIF)E(M 1 My LIF) — By LIF)E(M,, LIF) o'}
- Wmm[E(L'fﬂE((w*Mtﬂvao ~ EX((@" M) LIF)

Applying Holder’s inequality gives z*H(f*)x > 0, which means f(z') is a convex
function. Therefore for each w the minimum of (6.4) with respect to 2z’ occurs

when
Vf(z’) _ E (Mtﬂ exp (7> \]—") ~ E (Mt+1 €Xp <(Z_ZI3MM) |]:t> W
E (exp (252) 17:) E (exp (=22 ) 17,)

We denote by 2*7" the value at which the minimum is attained. It is obvious that

27 s unique up to equivalence ~yy, ., ,, and 2 = 7]_;,2. Therefore
g'0g" (w,5,2) = inf (g7 (w, t,2 = 2') + g7 (w,t,2"))
Z/
=g (w2 —27) + g7 (w,t,2*7)

Mt+1> )
=(v+~)InE
(v+9)In <exp<7+7 | F

= g’y+’)’/ (w7 87 Z)'

Similar with (6.3), we have

ez,(S)— Z 9" (w,s,2) Z ZY Moy (w) = —8. (6.8)

t<s<T t<s<T



CONVERSE COMPARISON FOR DISCRETE BSDES & RELATED RISK MEASURES 243

Adding (6.3) and (6.8), we have
e/(Q—9)+¢] (5)

=Y 9w s 2] (W) + 9" (w5, 27 = > ZMei(w) - Q
t<s<T t<s<T

= > 0w s Ze— 27 W)+ 9" (w5, 20 ()] = Y ZuMea(w) - Q
t<s<T t<s<T

> > 9w Z) - Y ZuMop(w) - Q,
t<s<T t<s<T

where Z, = Z7 + Z7'. Thus ] (Q — S) + ez/(S) can be regarded as the solution
to the BSDE with terminal condition —@) and the driver

9(w,5,2) = g7 (w, 8,2 — Z (W) + g7 (w, 5, 2] (w)).

Similar with (6.3), e;HV/ (Q) is the solution to the BSDE with terminal condition
—@Q and the driver ¢**". g > ¢ implies that for any S,

e (Q—5)+e] (5) = (Q). (6.9)

Taking S* = WJW Q, we can show that VZ*V Msy1 =~"Z%"Msyq1. Then
7 ! ’ ’)//
7 My, = 2 L I NYMyy = —— Z. M., .
S +1 ’Y"_’Y/(S S) +1 ’Y"_’y/ +1
Consequently,
e (Q — S*)—&-et (S") = Z g (W, 5, Z4( Z ZuMsi1(w) — Q.

t<s<T t<s<T

This means ¢ (Q — S*) + et/(S*) is the solution to the BSDE with the driver

function g7 and the terminal condition —Q. Then it also equals to e”+7 (Q)
due to the uniqueness of the solution. According to (6.9), we have

77(Q) =t (Q = ) + €7 () = (10 )u(Q).

O

Remark 6.6. Note that S* defined in the above theorem is optimal. And for any
constant ¢, S* + ¢ is also optimal.

7. Conclusion

In this paper, we have systematically studied properties of nonlinear expec-
tations defined using the discrete-time finite-state BSDEs. A converse compari-
son theorem has also been established. Properties, especially the representation
theorems, for risk measure defined on discrete-time finite-state space have been
explored. We also have obtained the solution for optimal design of dynamic risk
measures by BSDE approach. The optimal solution for the value of insurance is
proportional to the non-hedgeable contingent claim. The ratio is the Agent B’s
risk tolerance to the total risk tolerance.
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