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Abstract

The Hawking effect can be rederived in terms of two-point functions and in such a
way that it makes it possible to estimate, within the conventional semiclassical theory,
the contribution of ultrashort distances at I+ to the Planckian spectrum. Thermality is
preserved for black holes with κlP ≪ 1. However, deviations from the Planckian spectrum
can be found for mini black holes in TeV gravity scenarios, even before reaching the Planck
phase.
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In 1974 Hawking predicted the thermal emission of quanta by black
holes [1] using semiclassical gravity . The deep connection of this result
with thermodynamics and, in particular, with the generalized second law,
strongly support its robustness and its interpretation as a low-energy effect,
not affected by the particular underlying theory of quantum gravity [2] .
However[3] , ultrahigh frequencies (or ultrashort distances) seem to play a
crucial role in the derivation of the Hawking effect. Any emitted quanta,
even those with very low frequency at future infinity, will suffer a diver-
gent blueshift when propagated backwards in time and measured by a freely
falling observer. The exponential redshift of the event horizon provides, to
the external observer, a glimpse of the world at very short-distance scales,
where semiclassical tools are not well justified. All derivations of Hawking
radiation seem to invoke Planck-scale physics in a fundamental way, which
makes it unclear the way to parameterize the contribution of transplanckian
physics in black hole radiation.

We propose an alternative to the standard approach in terms of Bogol-
ubov coefficients to derive the Hawking effect. In our approach, the correla-
tion functions of the matter fields are used to compute the spectrum of the
emitted particles. This provides an explicit way to evaluate the contribution
of ultrashort distances (Planck-scale) to the spectrum of Hawking quanta
within the semiclassical approach.

Let us assume, for the sake of simplicity, that φ is a massles, neutral,
and minimally coupled scalar field. One can easily verify that the number
operator can be obtained from the following projection

aout
†
ia

out
j =

∫

Σ

dΣµ
1dΣ

ν
2[u

out
i (x1)

↔
∂µ][u

out∗
j (x2)

↔
∂ ν ] {φ(x1)φ(x2)− 〈out|φ(x1)φ(x2)|out〉} ,

(1)
where uout

i (x) is a normalized positive frequency mode with respect to the
inertial time at future infinity, and Σ represents a suitable initial value hyper-
surface. Therefore, the number of particles in the ith mode measured by the
“out” observer in the “in” vacuum is given by 〈in|Nout

i |in〉 ≡ 〈in|Nout
ii |in〉,

where Nout
ij ≡ ~

−1aout
†
ia

out
j can be easily worked out using the above expres-

sion. Let us now apply (1) to the formation process of a Schwarzschild black
hole and restrict the “out” region to future null infinity (I+). The “in” re-
gion is, as usual, defined by past null infinity (I−). At I+ we can consider
the normalized radial plane-wave modes uout

wlm(t, r, θ, φ) = uw(u)r
−1Ylm(θ, φ),

where uw(u) =
e−iwu

√
4πw

and u is the null retarded time. Using these modes in
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(1) one finds[4, 5] (for simplicity we omit the factor δl1l2δm1m2)

〈in|Nout
i1i2

|in〉 = −|tlm(w)|2δ(w1 − w2)

2π
√
w1w2

∫ +∞

−∞
dze−i

(w1+w2)

2
z

[

κ2e−κz

(e−κz − 1)2
− 1

z2

]

(2)
where z = u1 − u2 represents the “distance” between the points u1 and u2

and tlm(w) are the transmission coefficients. To get the Planckian spectrum,
there remains to perform the integration in z

〈in|Nout
w |in〉 = −|tlm(w)|2

2πw

∫ +∞

−∞
dze−iwz

[

κ2e−κz

(e−κz − 1)2
− 1

z2

]

=
|tlm(w)|2

e2πwκ−1 − 1
.

(3)
The interesting aspect of the above expression is that it allows us to explicitly
evaluate the contribution of distances to the thermal spectrum. To be more
explicit, the integral

I(w, κ, ǫ) = − 1

2πw

∫ +ǫ

−ǫ

dze−iwz

[

κ2e−κz

(e−κz − 1)2
− 1

z2

]

(4)

can be regarded as the contribution coming from distances z ∈ [−ǫ, ǫ] to
the full spectrum. This integral can be solved analytically. For details and
the case of a massless spin s = 1/2 field see [4, 5] . Obviously, in the limit
ǫ → ∞, we recover the Planckian result I(w, κ,∞) = (e2πwκ−1 − 1)−1. For a
rotating black hole the result is similar with the usual replacement of w by
w̃ ≡ w −mΩH (m is the axial angular momentum quantum number of the
emitted particle and ΩH the angular velocity of the horizon).

On the other hand, if we take ǫ of order of the Planck length lP = 1.6×
10−33cm, we obtain that the contribution to the thermal spectrum at the
typical emission frequency, wtypical ∼ κ/2π ≡ TH , due to transplanckian
scales is of order κlP . This contribution is negligible for macroscopic black
holes with typical size much bigger than the microscopic Planck length. In
fact, for three solar masses black holes the contribution to the total spectrum,
(e2πwκ−1 − 1)−1, at wtypical is of order 10−38%. We need to look at high
frequencies, w/wtypical ≈ 96, to get contributions of the same order as the
total spectrum itself. This is why Hawking thermal radiation is very robust,
as it has been confirmed in analysis based on acoustic black holes[6] .
Our results, in addition, indicate that when the product κlP is of order
unity, the contribution of short distances to the Planckian spectrum is not
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negligible. The integral I(w, κ, ǫ) gives values similar to (e2πwκ−1 − 1)−1

when w/wtypical is not very high. This happens in the case of black holes
predicted by TeV gravity scenarios [7, 8] . For detailed and recent results see
[9] . Assuming a drastic change of the strength of gravity at short distances
due to n extra dimensions (a Planck mass MTeV of 1 TeV) and for a (4 +
n)-dimensional Kerr black hole with surface gravity κ ∼ 0.6 − 1 TeV −1

(this means M ∼ 5 − 10 TeV when a=0), we obtain that, at w̃ = κ/2π =
TH , around the 20% of the spectrum comes from distances shorter than
the new Planck length lTeV ∼ 10−17cm, for n = 2 − 6 and for spin zero
particles. Moreover, at frequencies w̃ ≈ 3TH the contribution of ultra-short
distances is of order of the total spectrum itself. For massless s = 1/2-
particles the results can be obtained from the formulaes of [5] . In this case
the contribution from ultrashort distances is smaller than for spin zero and
it is around the 0.2% of the spectrum at w̃ = κ/2π = TH . In addition
we find that, for κ = 0.9 − 1, and n = 6 we need to go to frequencies
w̃ ≈ 5.5TH and w̃ ≈ 5.6TH , respectively, to find short-distance contributions
of order of the fermionic thermal spectrum (e2πw̃κ−1

+1)−1. For κ = 0.6−0.8,
and n = 2 we obtain w̃ ≈ 6.2TH and w̃ ≈ 6.9TH , respectively. Therefore,
in TeV gravity scenarios the spectrum of Hawking quanta is sensitive to
transplanckian physics and significant deviations from the thermal spectrum
can emerge in the “semiclassical” phase of the evaporation.
Acknowdelgements. We thank L. Parker for collaboration on the topic
of this work. J. N-S also thanks M. Casals for interesting discussions on
rotating black holes and TeV gravity. I. A. also thanks R.M. Wald for useful
discussions.
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