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ABSTRACT

Utility o f preemergence soil-applied herbicides at full and half label rates were 

evaluated in glyphosate-resistant soybean, hi most instances, differences in early 

season weed density and height were not noted when rates were reduced. None of the 

herbicides provided complete weed control, but some delayed weed growth providing 

an extra 3 to 7 days before the first postemergence glyphosate application was needed. 

Based on weed control and soybean yield, use o f glyphosate alone was as effective as 

when preemergence herbicides were followed by glyphosate. In another study, 

bamyardgrass control with glyphosate at 0.84 and 1.12 kg ai/ha was not antagonized 

when applied with reduced rates of chlorimuron, acifluorfen, fomesafen, lactofen, or 

CGA-277476. Improved control with the combinations was noted only when pitted 

momingglory and hemp sesbania were large at application. When weeds were 

effectively controlled with glyphosate alone, soybean yield was not improved with the 

herbicide combinations.

Soybean, cotton, rice, and com response to simulated drift representing 0.125,

0.063,0.032,0.016, and 0.008 of the use rates of 1.12 kg ai/ha glyphosate and 0.42 kg 

ai/ha glufosinate was evaluated using a constant spray volume. Injury and height 

reductions occurred in most cases only for the two highest rates. Initially, soybean was 

more sensitive to glyphosate and cotton more sensitive to glufosinate, but both crops 

rapidly recovered from injury and yields were not affected. In contrast, the highest rate 

of glyphosate reduced rice yield as much as 99% when applied at 2- to 3-leaf and 54% 

when applied at panicle differentiation with a 30% reduction for glufosinate. Com yield 

was reduced by as much as 78% for glyphosate, but no more than 13% for glufosinate.
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In subsequent drift studies, com and soybean were exposed to glyphosate applied in 

constant carrier volume o f234 L/ha and in proportional carrier volumes to include 29.3 

and 14.7 L/ha for the 0.125 and 0.063 respective rates. Com height reduction 14 days 

after treatment was 1.6 times greater and visual injury approximately twice as high, and 

yield reduction 1.6 times greater when glyphosate was applied in proportional spray 

volume.
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CHAPTER 1 

LITERATURE REVIEW

Glyphosate [iV-(phosphonomethyl) glycine)] and glufosinate [2-amino-4- 

(hydoxymethylphosphinyl) butanoic acid] are nonselective herbicides that control many 

annual and perennial weeds. Development of glyphosate- and glufosinate-resistant 

crops will increase use of the respective herbicides along with potential problems 

associated with off-target movement to sensitive crops. Availability of herbicide 

resistant crops will allow producers to use nonselective herbicides to control weeds 

comparable to conventional herbicides and tillage (Baldwin 1995; York 1995). 

Glyphosate and glufosinate use in resistant crops can lead to a reduction in both number 

of herbicide applications and in cost of weed control programs. Additionally, herbicide 

resistant crops will promote the use of herbicides with different modes of action to 

counter weed resistance problems (Burnside 1992).

The primary mode of action of glyphosate is inhibition of the shikimate acid 

pathway. Glyphosate works by inhibiting 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSP), the enzyme responsible for the binding of shikimate-3-phosphate 

(S3P) and phosphoenolpyruvate (PGP) to yield enolpyruvyl shikimate phosphate and an 

organic phosphate (Cole 1985; Devine et al. 1993). Glyphosate attaches to the specific 

area of EPSP synthase where PEP binds, thus glyphosate inhibition is competitive with 

respect to PEP (Cole 1985; Devine et al. 1993; Duke 1988; Kishore and Shah 1988). 

Glyphosate binding to the EPSP synthase-S3P complex is 115 times tighter and 20 

times slower than PEP binding to this complex, while dissociation rate is 2,300 times 

slower than PEP (Anderson et al. 1988). Due to the inhibition of EPSP synthase, the

1
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activity o f 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP, EC 

4.1.2.1.5) is significantly increased. DAHP synthase catalyzes the condensation of 

erythrose-4-phosphate with PEP. Lyndon and Duke (1988) reported once the shikimate 

pathway is disrupted, large concentrations of shikimate may accumulate. In sink 

tissues, shikimate and shikimate-3-phosphate may account for up to 16% of the dry 

weight (Schulz et al. 1990). As the plant tries to compensate for the disrupted shikimate 

pathway, more carbon is shunted into this pathway, thereby limiting the amount of 

carbon available for the Calvin cycle (Killmer et al. 1981).

The shikimate pathway occurs only in plants, fungi, and bacteria and the end 

products o f this pathway are the aromatic amino acids phenylalanine, tyrosine, and 

tryptophan (Stryer 1995; Taiz and Zeiger 1998). Secondary plant compounds produced 

by this pathway include flavonoids, lignins, anthocyanins, and coumarins (Taiz and 

Zeiger 1998). Besides the production of phenolic compounds, up to 20% of the carbon 

fixed during photosynthesis in plants flows through the shikimate pathway (Floss 1986). 

Consequently, the shikimate pathway is vital for the survival of plants. Plants resistant 

to glyphosate are encoded for an additional enolpryuvylshikimate phosphate synthase 

(EPSP synthase, E. C. 2.5.1.19) enzyme derived from Agrobacterium tumefaciens strain 

CP4 (Johnson 1996). This gene was transferred to the plants by the use of gene gun 

technology (Horsch et al. 1988). The EPSP synthase derived from the bacterium is not 

affected by glyphosate while EPSP synthase produced naturally by the plant is inhibited 

(Bradshaw et al. 1997; Johnson 1996).

Glyphosate is particularly efficacious on a number of troublesome weeds, including 

sicklepod [Senna obtusifolia (L.) Irwin and Bamaby], johnsongrass [Sorghum

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



halepense (L.) Pers.], annual grasses, red rice [Oryza sativa (L.)], common cocklebur 

[Xanthium strumarium (L.)], and various pigweeds (Jordan et al. 1997; Krausz et al. 

1996; Steckel et al. 1997). Krausz et al. (1996) reported 100% control of giant foxtail 

{Setaria faberi Herrm.), fall panicum (Panicum dichotomijlorum L.), redroot pigweed 

(Amaranthus retroflexus L.), jimsonweed {Datura stramonium L.), velvetleaf (Abutilon 

theophrasti Medik.), and common cocklebur with glyphosate. Glyphosate controlled 

redroot pigweed and velvetleaf 100% (Jordan et al. 1997). Chandler and Prostko (1996) 

reported 98% johnsongrass control with sequential glyphosate applications. However, 

glyphosate is not as effective on hemp sesbania [Sesbania exaltata (Raf.) Rydb. Ex A. 

W. Hill], momingglories, prickly sida {Sida spinosa L.), spreading dayflower 

{Commelina diffusa Brum, f.), and nutsedges (Anonymous 2000).

Several postemergence herbicides effectively control velvetleaf (Cantwell et al.

1988; Kapusta et al. 1994) and several momingglory species (Elmore et al. 1990). Tank 

mixtures of glyphosate with selective broadleaf herbicides could potentially provide an 

economical postemergence herbicide program for broad-spectrum weed control. The 

addition of chlorimuron to glyphosate increased control of hemp sesbania, Palmer 

amaranth {Amaranthus palmeri S.Wats.), and entireleaf momingglory {Ipomoea 

hederacea var. integriuscula Gray) over that of glyphosate applied alone (Starke and 

Oliver 1998; Vidrine et al. 1997). Greater control of common lambsquarters 

{Chenopodium album L.) and velvetleaf was reported when bentazon or CGA-248757 

was applied with glyphosate compared with glyphosate alone (Lich et al. 1997). 

Fomesafen increased tall momingglory [Ipomoea purpurea (L.) Roth] control when 

tank mixed with glyphosate (Culpepper, et al. 2000). Other selective herbicides

3
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effective on weeds that are not adequately controlled with glyphosate should be 

evaluated to determine their use potential.

In contrast to glyphosate, glufosinate inhibits glutamine synthetase (GS, EC 6.3.1.2) 

in susceptible plants (Altenburger et al. 1995; Bellinder et al. 19871. The GS enzyme 

catalyzes the conversions of glutamate plus ammonia to glutamine, an essential reaction 

for nitrogen metabolism. Upon inhibition of this enzyme, the decoupling of 

photophosphorylation by accumulated ammonia ultimately results in membrane 

disruption, inhibition of photosynthesis, and plant death. In glufosinate resistant plants, 

the bialaphos resistance (BAR) gene encodes for the phosphinothricin acetyl transferase 

(PAT) enzyme which acetylates ammonia, thereby detoxifying the ammonia, and 

allowing for the continuation of normal plant processes (Murakami et al. 1986).

Glufosinate is effective on numerous grass and broadleaf weeds. Pankey et al. 

(1997) reported control of bamyardgrass (Echinchloa crus-galli L. Beauv.) and hemp 

sesbania of at least 89% when glufosinate was applied early postemergence. Sicklepod 

and pitted momingglory (Ipomoea lacunosa L.) were controlled at least 80% (Pankey et 

al. 1997; Tingle et al. 1996). Hill et al. (1997) reported that Palmer amaranth was 

controlled at least 89% and entireleaf momingglory at least 92% when glufosinate was 

applied following metolachlor preemergence.

The availability of transgenic crops will increase herbicide alternatives for weed 

control, but also will raise questions as to how this new technology will fit into current 

management programs. The manufacture of glyphosate1 recommends that use of soil- 

applied residual herbicides be eliminated and that only glyphosate be used in

1 Monsanto Company, 800 North Linbergh Boulevard, St. Louis, MO 63167.

4
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glyphosate-resistant cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) 

Merr.]. Their stance is that a total postemergence program with glyphosate can be very 

effective if applied in a timely manner and that yield loss associated with weeds 

emerging with the crop should not occur. However, if no soil residual herbicide is used, 

weeds emerge along with the crop promoting early season competition. Sicklepod 

competition for 4 weeks or longer after soybean emergence reduced soybean yield at 

least 17% (McWhorter and Sciumbato 1988; Shaw et al. 1991). Common cocklebur 

competition for 4 weeks or longer after soybean emergence reduced soybean yield at 

least 10% (Barrentine 1974). These studies clearly show that if weeds are removed 

prior to 4 weeks, yield is not negatively affected, thereby questioning the value of a 

soil-applied herbicide. An effective soil-applied residual herbicide can eliminate early 

season competition of weeds to secure crop yield and allow the grower flexibility in 

timing a postemergence application. Ivyleaf momingglory [Ipomoea hederacea (L.) 

Jacq.] plants that escaped soil treatment of imazaquin {2-[4,5-dihydro-4-methyl-4-(l- 

methylethyl)-5-oxo-lH-imidazol-2-yl]-3-quinolinecarboxylic acid} or chlorimuron {2- 

[[[[(4-chloro-6-methoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid} 

plus metribuzin [4-amino-6-(l, l-dimethylethyl)-3-(methylthio)-l ,2,4-triazin-5(4H)-one] 

were less vigorous and produced less leaf area and biomass compared with nontreated 

plants (Holloway and Shaw 1995; Holloway and Shaw 1996a; 1996b). This suggests 

that competitiveness of weeds exposed to soil-applied herbicides, but not controlled, is 

reduced and that growth rate is diminished such that the time period for making an 

application is extended. Little information is available on how residual herbicides 

impact weed populations, weed growth and development, and subsequent susceptibility

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to postemergence herbicides. Such information would be important in developing 

effective weed control programs using glyphosate and glufosinate.

Consequences of repeated use of glyphosate and glufosinate in resistant crops could 

include weed population shifts toward those less susceptible to the herbicides (Harvey 

2001) along with the possibility of resistance development (Lorraine-Colwill et al.

2001; Simarmata et al. 2001). Another problem associated with the use of herbicide 

resistant crops is the potential for misapplication and crop injury. Proliferation of 

herbicide resistant crops will increase likelihood of off-target movement to adjacent 

crops.

Herbicide drift occurs when wind causes spray droplets to be displaced from their 

intended flight path. Wolf et al. (1992) reported drift from unshielded sprayers ranged 

from 2 to 16% depending on nozzle size and wind velocity. Herbicide drift is especially 

prevalent when herbicides are applied under windy conditions or when environmental 

conditions favor volatilization and redisposition (Hanks 1995; Wall 1994), but often 

herbicide drift is the result of improper application (Wauchope et al. 1982).

Wind speed and boom height above the intended target are primary contributors to 

herbicide drift (Hatterman-Valenti et al. 1995). Droplet size can influence drift, 

especially when herbicides are applied by air as ultra low volume sprays with spray 

droplets less than 105 microns in size (Hanks 1995; Hanks 1997). Droplet size can be 

altered with nozzle selection and drift retardants specifically designed to reduce spray 

drift (Bouse et al. 1976; Johnson et al. 2001). Low drift nozzles include Greenleaf

6
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TurboDrop2, Turbo Teejet3, Al (Air Induction) Teejet3, and DG (Drift Guard) Teejet3. 

The Turbo Teejet and DG Teejet nozzles use a preorifice system to produce a larger 

droplet size range without a reduction in flow rate when compared with standard flat fan 

spray nozzles at equal spray pressure. The Al Teejet and Greenleaf TurboDrop are 

venturi type nozzles that use a pre-orifice system to create a high velocity liquid stream 

and then draw air into the stream through a side opening. This mixture of air and liquid 

is then discharged at a low exit velocity thus creating very coarse droplets. These larger 

droplets are much less susceptible to drift, however, target coverage may be sacrificed 

due to a reduction in the total number of droplets. This factor should be considered 

especially when using nontranslocated herbicides (Anonymous 1998a; Anonymous 

1998b).

Herbicide application during a temperature inversion can encourage herbicide drift 

(Baldwin 1998). Under ambient conditions, air is warmest at the soil surface and cooler 

with increasing altitude. However, during a temperature inversion, a layer of cool air 

forms at the soil surface capturing fine spray droplets that are displaced when wind 

velocity increases. Temperature inversions are most common at dawn, dusk, and when 

winds are calm. Ideally, to avoid drift due to temperature inversions, some wind 

movement should occur.

Simulated drift o f MSMA (monosodium salt of MAA) in rice (Oryza sativa L.) 

(Richard et al. 1981), quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) (Snipes et al.

2 Greenleaf Technologies, P. 0 . Box 1777, Covington, LA 70434.

3Spraying Systems Co., North Avenue at Schmale Rd., Wheaton, IL 60189.

7
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1992) and triclopyr [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid] (Snipes et al. 1991) in 

cotton;, pyrithiobac {2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)thio]benzoic acid} 

(Ghosheh et al. 1994) in com (Zea mays L.), and nicosulfiiron {2-[[[[(4,6-dimethoxy-2- 

pyrimidinyl)amino]carbonyl]amino]sulfonyl]-N,N-dimethyl-3-pyridinecarboxamide} 

and primisulfuron {2-[[[[[4,6-bis(difluoromethoxy)-2-pyrimidinyl] amino] carbonyl] 

amino]sulfonyl]benzoic acid} (Bailey and Kapusta 1993) in soybean has been 

investigated. Injury symptoms from herbicide drift are usually worse when drift occurs 

to the susceptible crop early in its development (Ghosheh et al. 1994; Hurst 1982). In 

addition to initial foliar damage, herbicide drift can be manifested as loss of tuber 

quality in potatoes (Solanum tuberosum L.) (Eberlein and Guttieri 1994), delays in fruit 

maturity in sweet cherries (Prunus avium L.) (Al-Khatib et al. 1992b), reduced boll 

production in cotton (Snipes et al. 1991), straighthead symptoms in rice (Richard et al. 

1981), and stand reductions in alfalfa (Medicago sativa L.) (Al-Khatib et al. 1992a), and 

reduced yield in com and rice (Ellis et al. 1999a, 1999b).

Most simulated drift research in the past has consisted of dose-response studies 

where carrier volume remained constant In a field situation, however, drift occurring 

from aerial or ground equipment would decrease with movement away from the point 

of application and herbicide rate and spray volume would diminish proportionally. 

Banks and Schroeder (2000) conducted studies with 2,4-D [(2,4-dichlorophenoxy)acetic 

acid] on cotton and glyphosate on sweet com (Zea mays var. rogusa Bonaf) to compare 

crop response to herbicide delivery in constant carrier volume compared with carrier 

volume varied proportionally with herbicide dosage. For both crops, visual injury and 

reduction in crop yield were greater for the variable carrier volume compared with

8
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constant carrier volume. Based on their results, simulated herbicide drift research 

where spray volume was constant over a rate range may underestimate the negative 

effect on susceptible crops.

The popularity of glyphosate- and glufosinate-resistant crops will increase the 

potential for herbicide drift to nontransgenic crops. Determining the sensitivity of 

nontransgenic crops to glyphosate and glufosinate drift would be of keen importance 

especially in the South where multiple crops are grown in close proximity.

Research for this dissertation specifically addressed: the effect of soil-applied 

herbicides on weed population, weed growth and development, and subsequent timing 

of glyphosate postemergence application; glyphosate rates, tank-mixture partners, and 

weed species sensitivity; the effect of glyphosate and glufosinate simulated drift on 

growth parameters and yield of soybean, cotton, rice, and com; and the effect of carrier 

volume on com and soybean response to simulated drift of glyphosate and glufosinate.
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CHAPTER 2

VALUE OF SOIL-APPLIED HERBICIDES IN GLYPHOSATE-RESISTANT
SOYBEAN {GLYCINE MAX)

Introduction

Glyphosate [W-(phosphonomethyl)glycine] is a postemergence (POST) nonselective 

herbicide that controls many annual and perennial weeds. In the U. S., soybean with the 

glyphosate-resistance gene (Bradshaw et al. 1997) was introduced in 1996 and cotton 

(Gossypium hirsutum L.) in 1997. More than 60% of the soybean [Glycine max (L.) 

Merr.] and 70% of cotton hectarage in 1999 in Louisiana was planted to glyphosate- 

resistant varieties (Anonymous 1999) and is expected to increase. Availability of 

glyphosate-resistant crops allows producers flexibility to use glyphosate to control 

weeds equal to or greater than conventional herbicides and tillage (Culpepper and York 

1997,1998,1999). Use of glyphosate in resistant crops can lead to a reduction in both 

number of herbicide applications needed and in cost of weed control programs. 

Herbicide resistant crops that allow use of glyphosate will also help to counter weed 

resistance problems (Burnside 1992).

The level o f activity of glyphosate depends on the weed species growth stage at time 

of application, and weather conditions during and after application (Vangessel et al. 

2000). Glyphosate is particularly efficacious on a number of troublesome weeds, 

including sicklepod [Senna obtusifolia (L.) Irwin and Bamaby], johnsongrass [Sorghum 

halepense (L.) Pers.], annual grasses to include red rice [Oryza sativa (L.)] (Askew et 

al. 1998), common cocklebur [Xanthium strumarium (L.)], and various pigweeds 

(Jordan et al. 1997; Krausz et al. 1996). Glyphosate provided 100% control of giant 

foxtail {Setaria faberi Herrm.), fall panicum (Panicum dichotomiflorum L.), common
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cocklebur, and jimsonweed {Datura stramonium L.) (Krausz et al. 1996), as well as 

velvetleaf {Abutilon theophrasti Medik.) and redroot pigweed {Amaranthus retroflexus 

L.) (Jordan et al. 1997; Krausz et al. 1996). McKinley et al. (1999) reported 98% 

johnsongrass control with sequential glyphosate applications. However, glyphosate is 

not as effective on hemp sesbania [Sesbania exaltata (Raf.) Rydb. Ex A. W. Hill], 

momingglory species {Ipomoea spp.), prickly sida {Sida spinosa L.), spreading 

dayflower {Commelina diffusa Brum, f.), and nutsedge species (Anonymous 2000).

The availability of transgenic crops will provide herbicide alternatives for weed 

control, but also will raise questions as to how this new technology will fit into current 

management programs. The manufacturer of glyphosate1 recommends that use of soil- 

applied residual herbicides be eliminated and that only glyphosate be used in 

glyphosate-resistant cotton and soybean. When a soil-applied herbicide is not used, 

weeds emerge along with the crop (Holloway and Shaw 1996a). The manufacturer’s 

stance is that a program using only glyphosate POST can be effective if glyphosate is 

applied in a timely manner. However, weeds not adequately controlled or allowed to 

compete with the crop for too long can have a negative effect on yield. Sicklepod 

competition for 4 weeks or longer after soybean emergence reduced soybean yield at 

least 17% (McWhorter and Sciumbato 1988; Shaw et al. 1991). Common cocklebur 

competition for 4 weeks or longer after soybean emergence reduced soybean yield by as 

much as 57% (Mosier and Oliver 1995). These studies clearly show that if weeds are 

removed prior to 4 weeks, yield is not negatively affected, thereby questioning the value 

of using soil-applied residual herbicides.

1 Roundup Ultra, Monsanto Company, 800 North Linbergh Boulevard, S t Louis, MO 
63167.
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An effective soil-applied herbicide can eliminate or reduce early season competition 

of weeds to secure crop yield and allow the grower flexibility in timing a POST 

application if  needed. Additionally, use o f soil-applied herbicides can change the 

composition of weeds that emerge with the crop (Corrigan and Harvey 2000). 

Preemergence (PRE) herbicide with grass activity may eliminate annual grasses, but 

release broadleaf weeds. Likewise, use of a herbicide without grass activity in fields 

with heavy annual grass pressure may prevent emergence and competition from 

broadleaf weeds due to space limitation. Soil-applied herbicides although not providing 

complete control of certain weeds may impact their growth. Ivyleaf momingglory 

[Ipomoea hederacea (L.) Jacq.] plants exposed to imazaquin {2-[4,5-dihydro-4-methyl- 

4-( I -methyIethyl)-5-oxo- l#-imidazol-2-yI]-3-quinolinecarboxylie acid} or chlorimuron 

{2-[[[[(4-chloro-6-methoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic 

acid} plus metribuzin [4-amino-6-(l,l-dimethylethyl)-3-(methylthio)-l,2,4-triazin- 

5(4//)-one] were not completely controlled but were less vigorous and produced less 

leaf area and biomass compared with nontreated plants and were less competitive with 

the crop (Holloway and Shaw 1995, 1996a). A reduction in weed growth rate may 

provide a larger window in which to apply glyphosate, extending the period critical to 

application timing. This advantage to use o f soil-applied herbicides followed by a 

POST herbicide, however, may not result in crop yield greater than when only a timely 

application of POST herbicide is used. The flexibility gained from using a soil-applied 

herbicide may be particularly advantageous for growers with diversified operations.

Little information is available on how residual herbicides impact weed populations, 

weed growth and development, and subsequent susceptibility of weeds to POST
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herbicides. Such information would be important in developing effective and 

economical weed control programs especially in herbicide-resistant crops where 

growers are assessed an additional technology fee. Therefore, the objectives of this 

research were to determine if soil-applied herbicides used in glyphosate-resistant 

soybean: 1) affect weed density and growth rate, 2) extend the number of days between 

weed emergence and glyphosate application, 3) affect weed control with glyphosate, 

and 4) eliminate the need for a sequential glyphosate application.

Materials and Methods 

Field experiments were conducted at the Ben Hur Research Farm near Baton Rouge, 

LA, over three years to evaluate the value of PRE herbicides in a glyphosate-resistant 

soybean system. ‘Asgrow 5901 RR’ soybean was planted on June 2, 1998, May 18, 

1999, and May 9,2000. The original plan was to plant in early May, but planting was 

delayed in 1998 because of weather conditions.

The experimental design was a randomized complete block with four replications. 

The soil type was a Mhoon silty clay loam (fine-silty, mixed, nonacid, thermic Typic 

Fluvaquent) with a pH of 5.7 and 2.2% organic matter. Soil-applied PRE treatments 

included half rates and labeled rates o f pendimethalin [N-( 1 -ethy Ipropyl)-3,4-dimethyl- 

2,6-dinitrobenzenamine] plus imazaquin (0.42 + 0.07 kg ai/ha and 0.84 + 0.14 kg/ha), 

pendimethalin (0.56 and 1.12 kg/ha), metolachlor [2-chloro-Ar-(2-ethyl-6- 

methylphenyl)-Ar-(2-methoxy-1 -methylethyl)acetamide] (0.84 and 1.68 kg ai/ha), SAN 

582 (proposed common name dimethenamid) [2-chloro-/V-(2,4-dimethy 1-3-thienyl)-A/- 

(2-methoxy-l-methylethyl)] plus imazaquin (0.5 + 0.07 kg ai/ha and 1.0 + 0.14 kg/ha), 

sulfentrazone (Ar-[2,4-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-l//-
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1,2,4-triazol-1 -yl]phenyl]methanesulfonamide} plus chlorimuron (0.11 + 0.02 kg ai/ha 

and 0.22 + 0.04 kg/ha), and metribuzin plus chlorimuron (0.18 + 0.03 kg ai/ha and 0.36 

+ 0.06 kg/ha). All treatments were applied in 140 L/ha spray volume with a CO2 

pressurized backpack sprayer at 166 kPa the same day soybean was planted. Plots were 

overhead irrigated (1.9 cm) within 3 days after application o f PRE treatments to ensure 

herbicide activation. The reasoning behind this was to place herbicides under the best 

case scenario so that meaningful conclusions could be drawn as to their effect on weed 

emergence and growth. If plots had not been irrigated and rainfall for activation had not 

been received shortly after herbicide application, weeds would have emerged along with 

soybean since soil moisture was adequate for seed germination. With this situation PRE 

herbicides would have had little influence on weed emergence and their value could not 

have been adequately determined. Irrigation was continued as needed throughout the 

growing season.

Plots consisted of four 76 cm rows, 7.6 m in length with the two inside rows treated 

and used for data collection. Weed height and density were determined from three 0.1 

m2 areas randomly selected in each plot at 14,20, and 24 days after planting Oust prior 

to the initial glyphosate application) in 1998,1999, and 2000, respectively. These dates 

varied due to growing conditions which affected weed growth rate. Weed species each 

year included bamyardgrass, ivyleaf momingglory, prickly sida, hemp sesbania, and 

redweed. After initial weed height and density data were collected, weeds were 

monitored at 2 d intervals to determine number of days from soybean planting required 

to reach the selected treatment stage of 10.2 cm. Glyphosate was applied at 1.12 kg 

ai/ha when the largest weeds reached 10.2 cm, which in most cases were bamyardgrass

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or hemp sesbania depending on PRE herbicide used. Treatment dates in 1998 were 

June 19 for the no PRE plots, June 22 for the half and full rates of pendimethalin plus 

imazaquin, pendimethalin and metolachlor, and June 24 for the half and full rates of 

SAN 582 plus imazaquin, sulfentrazone plus chlorimuron, and metribuzin plus 

chlorimuron. In 1999, all plots were treated June 8 except those that received a full rate 

of metribuzin plus chlorimuron which were treated June 14. Glyphosate was applied in 

2000 to all plots on June 3 except those receiving a full rate of sulfentrazone plus 

chlorimuron or metribuzin plus chlorimuron, which were treated June 10. Weed control 

was evaluated 14 days after glyphosate was applied. Visual weed control ratings were 

based on a scale of 0 to 100% where 0 = no control and 100 = complete control. A 

sequential application of glyphosate was made in the no PRE plots in 1998, but the 

followup application was not needed in the other years. The experimental area was 

cultivated. Since hemp sesbania was not completely controlled with any of the 

treatments, 0.28 kg ai/ha acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2- 

nitrobenzoic acid} was applied in mid July to facilitate harvest. Soybeans were 

harvested on October 16,1998, October 14,1999, and September 28,2000, and yield 

was adjusted to 13% moisture. Data were subjected to analysis of variance and means 

separated using Fisher’s protected LSD at the 5% level of probability. Where treatment 

by year interactions were not observed, data were averaged across years.

Results and Discussion

Weed Density

Reducing the rate o f only sulfentrazone plus chlorimuron increased bamyardgrass 

density in 1998 (Table 2.1). However, reducing the rate o f the PRE herbicides did not
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affect bamyardgrass densities in 1999 and 2000. When compared to the nontreated 

control, bamyardgrass densities were lower for both rates of all PRE herbicides in 1998, 

but not in 1999 or 2000. In 1998, bamyardgrass density in the nontreated control was 

8.6 times higher than in 1999, and in 2000 no bamyardgrass was present in the 

experimental area. These differences among years for bamyardgrass density were 

reflected in differences observed among the herbicide treatments in respect to change in 

weed composition.

Reducing the rate o f the individual preemergence herbicides did not affect ivyleaf 

momingglory densities in any year and differences among herbicide treatments and the 

nontreated control were not observed (Table 2.1). Averaged across all treatments, 

ivyleaf momingglory density was 41 per m2. Results for ivyleaf momingglory, 

however, do not suggest that PRE herbicides did not control ivyleaf momingglory when 

compared with the nontreated control, but rather show interspecific competition from 

bamyardgrass on ivyleaf momingglory emergence when herbicide was not applied. In 

1998, bamyardgrass density was at least 1.8 to 175 times greater in the nontreated 

control than in the plots treated with PRE herbicides. Other research has documented 

the change in weed composition associated with use of soil-applied herbicides 

(Corrigan and Harvey 2000). Prickly sida density decreased when only the rate of 

metolachlor was increased in 1998 and reducing the rate of the herbicides did not affect 

prickly sida densities in 1999 and 2000.

In 1998, reducing the rate of pendimethalin plus imazaquin increased hemp sesbania 

density 64% (Table 2.1). The M l rate o f sulfentrazone plus chlorimuron and the half
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Table 2.1. The effect of preemergence herbicides applied at half and full labeled rates on densities of bamyardgrass (ECHCG), ivyleaf 
momingglory (IPOHE), prickly sida (SIDSP), hemp sesbania (SEBEX), and redweed (MEOCO) 14 to 24 days after planting.8

Weed density

ECHCG IPOHE SIDSP SEBEX MEOCO

Preemergence
herbicide Rate 1998 1999 2000 Average 1998 1999 2000 1998 1999 2000 Average

kg ai/ha

None

Pendimethalin + 
imazaquin

Pendimethalin

Metolachlor

0.42 + 0.07 
0.84 + 0.14

0.56
1.12

0.84
1.68

1924 225 0 65 333

u u j i i i

32 11 473 322 107 129

86 32 0 26 11 11 0 828 301 54 38
32 11 0 41 11 11 0 505 387 75 1 2

151 65 0 58 86 43 11 516 312 65 n o

204 54 0 49 118 2 2 11 516 333 32 53

2 2 32 0 62 398 43 11 441 183 54 80
11 32 0 51 161 11 11 398 312 75 32

SAN 582 + 
imazaquin 0.50 + 0.07 

1.0 + 0.14
54
22

22
11

0
0

59
19

11
11

22
0

0
0

441
333

247
194

65
65

19
5
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Sulfentrazone +
chlorimuron 0.11 +0.02 1054 129 0 5 75 0 11 430 247 86 12

Metribuzin +
0.22 + 0.04 151 22 0 6 11 0 0 280 237 43 12

chlorimuron 0.18 + 0.03 194 140 0 58 11 11 0 97 150 22 0

LSD (0.05)
0.36 + 0.06 54 43 

-3 4 0  —

0 33

NS

11 0

— 80 —

0 32 43 

— 169 —

32 0

70

‘Experimental area was watered (1.9 cm) within 3 d after herbicide application to ensure activation. Density data were collected 14,20, and 24 d after planting 
in 1998,1999, and 2000, respectively, and varied due to time of weed emergence and growth rate.



and full rates of metribuzin plus chlorimuron were the only herbicide treatments in 1998 

that reduced hemp sesbania density when compared with the nontreated control (41 to 

93% reduction). In 1999 and 2000, increasing the rate for individual herbicides did not 

further reduce hemp sesbania density. In 1999, only metribuzin plus chlorimuron 

reduced hemp sesbania density compared to the nontreated control. There were no 

differences in hemp sesbania density among the treatments evaluated in 2000. In 

comparing years for the nontreated control, hemp sesbania density was 1.3 times greater 

in 1998 than in 1999 and 3 times greater in 1999 than in 2000.

Reducing the rate o f the individual preemergence herbicides did not affect redweed 

densities (Table 2.1). However, redweed densities were lower for all PRE herbicide 

treatments compared to the nontreated control, except for half rates of pendimethalin 

and metolachlor. Other research has shown little or no difference in densities of 

velvetleaf, ivyleaf momingglory, and common cocklebur between half and full labeled 

rates of metribuzin plus chlorimuron, clomazone {2-[(2-chlorophenyl)methyl]-4,4- 

dimethyl-3-isoxazolidionone}, and imazaquin when applied preplant incorporated (PPI) 

in soybean (Corrigan and Harvey 2000).

Weed Height

Increasing the rate of individual PRE herbicides did not significantly reduce height 

of bamyardgrass or redweed, and in no cases did herbicide treatments reduce height of 

these weeds when compared with the nontreated control (Table 2.2). For only 

sulfentrazone plus chlorimuron and metribuzin plus chlorimuron was there a decrease in 

ivyleaf momingglory height when the application rate was decreased. Compared with 

the nontreated control, ivyleaf momingglory height was reduced with both rates of
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Table 2.2. The effect of preemergence herbicides applied at half and full labeled rates on height of 
bamyardgrass (ECHCG), ivyleaf momingglory (IPOHE), prickly sida (SIDSP), hemp sesbania (SEBEX), and 
redweed (MEOCO) 14 to 24 days after planting."

Weed height

Preemergence
herbicide Rate ECHCG IPOHE SIDSP SEBEX MEOCO

kg ai/ha----------  cm ----------------------------------------------

None _  13.7 6.1 8.2 13.7 5.9

Pendimethalin +
imazaquin 0.42 + 0.07 11.4 4.6 2.3 13.7 2.5

0.84 + 0.14 7.8 4.3 1.4 12.8 1.8
Pendimethalin 0.56 11.4 5.8 4.1 14.6 3.2

1.12 11.4 4.8 4.1 12.8 3.7

Metolachlor 0.84 11.0 6.6 7.3 13.3 4.1
1.68 11.0 7.6 6.4 14.2 3.7

SAN 582 +
imazaquin 0.50 + 0.07 7.8 5.3 3.7 13.7 3.2

1.0 + 0.14 13.7 4.1 1.4 12.8 1.8
Sulfentrazone +

chlorimuron 0.11 +0.02 13.3 5.1 3.2 13.7 4.1
0.22 + 0.04 11.9 3.3 5.0 11.9 4.1

(Table continued)
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Metribuzin + 
chlorimuron

LSD (0.05)

0.18 + 0.03 10.1 5.8 3.2 11.9 2.5
0.36 + 0.06 11.9 3.8 6.9 9.1 2.5

NS 1.3 2.7 1.8 NS

'Data represent average across three years. Height data was collected 14,20, and 24 d after planting in 1998,1999, and 2000, 
respectively, and varied due to time of weed emergence and growth rate.
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pendimethalin plus imazaquin (25 to 30%), and for the high rate of pendimethalin alone 

(21%), San 582 plus imazaquin (33%), sulfentrazone plus chlorimuron (46%), and 

metribuzin plus chlorimuron (38%). These decreases in weed growth delayed 

application of glyphosate and would be considered a positive benefit in situations where 

growers are under time constraints.

Increasing the rate of individual PRE herbicides did not reduce height of prickly sida 

(Table 2.2). However, compared to when no PRE herbicide was used, prickly sida 

height was reduced 39 to 83% for all PRE herbicide treatments except for metolachlor 

at both rates and for the full rate of metribuzin plus chlorimuron. For hemp sesbania, 

increasing the application rate decreased height for pendimethalin (12%), sulfentrazone 

plus chlorimuron (13%), and metribuzin plus chlorimuron (24%). Hemp sesbania 

height was less for both rates of metribuzin plus chlorimuron and for the high rate of 

sulfentrazone plus chlorimuron when compared to no PRE herbicide.

Glyphosate Application Timing

Under conditions where moisture was not a limiting factor, the PRE herbicides 

extended the initial glyphosate application an extra 3 to 5 days in 1998 when compared 

to no PRE treatment (Table 2.3). Both rates of pendimethalin alone or plus imazaquin, 

and metolachlor extended the glyphosate application 3 d and both rates o f SAN 582 

plus imagaqnin, chlorimuron plus sulfentrazone, and metribuzin plus chlorimuron an 

extra 5 d. This extension in the application window for glyphosate could be extremely 

important especially in diversified fanning operations. Corrigan and Harvey (2000) 

reported that a soil-applied herbicide can be beneficial when early season weed 

competition reduces soybean yield or when glyphosate application is delayed by
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Table 2.3. The effect o f preemergence herbicides applied at half and full 
labeled rates on the number of days from soybean planting until largest 
weeds reached the 10.2 cm treatment stage for glyphosate application.

Preemergence
herbicide Rate 1998 1999 2000

None
kg ai/ha

17
—no. of days — 

21 25
Pendimethalin +

imayarpiin 0.42 + 0.07 20 21 25
Pendimethalin 0.56 20 21 25

1.12 20 21 25
Metolachlor 0.84 20 21 25

1.68 20 21 25
SAN 582 + 

imazaquin 0.50 + 0.07 22 21 25
Sulfentrazone + 

chlorimuron 0.11+0.02 22 21 25
Metribuzin + 

chlorimuron 0.18 + 0.03 22 21 25
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adverse weather or time constraints. When a PRE herbicide was not used in 1998, a 

second glyphosate application was made 10 days after the first application to control 

weed escapes.

In 1999, only the full rate of metribuzin plus chlorimuron extended the glyphosate 

application window (6 d) and was probably related to the control of hemp sesbania 

(Table 2.1). In 2000, only the full rates of sulfentrazone plus chlorimuron and 

metribuzin plus chlorimuron extended the glyphosate application window (7 d) beyond 

that needed where no preemergence herbicide was used. For both 1999 and 2000, a 

second glyphosate application was not needed.

The number of days for weeds to reach the treatment stage for glyphosate when no 

PRE herbicide was used was 17,21, and 25 d for 1998, 1999, and 2000, respectively 

(Table 2.3). The more rapid growth of weeds the first year may have been related to the 

later planting date in early June. It should be noted that for all years glyphosate 

application was made when the largest weeds reached 10.2 cm. This timing would, 

therefore, be dependent on the efficacy of the herbicide and its effect on weed 

composition due to interspecific competition.

Weed Control

There were no differences in control of bamyardgrass, prickly sida, or redweed 

among the herbicide treatments evaluated 14 d after glyphosate was applied (Table 2.4). 

These weeds were controlled 93 to 100% and results show that use of PRE herbicide 

was not beneficial. When only glyphosate was applied, ivyleaf moringglory was 

controlled 77%. Momingglory control was increased to 86 to 93% when glyphosate 

followed the high rate o f SAN 582 plus mureagum and both rates of sulfentrazone plus
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Table 2.4. Bamyardgrass (ECHCG), ivyleaf momingglory (IPOHE), prickly sida (SIDSP), hemp sesbania 
(SEBEX), and redweed (MEOCO) control 14 days after glyphosate was applied following various 
preemergence herbicides at half and full labeled rates.”

Control

Preemergence
herbicide* Rate ECHCG IPOHE SDDSP SEBEX MEOCO

kgai/ba

None 99 77 93 73 94

Pendimethalin +
imazaquin 0.41 +0.06 99 80 97 78 97

0.82 + 0.12 99 82 96 73 96

Pendimethalin 0.54 99 83 97 81 97
1.1 99 83 96 78 97

Metolachlor 0.84 99 77 95 78 95
1.68 99 81 96 78 98

SAN 582 +
imazaquin 0.49 + 0.06 81 100 95 78 95

0.98 + 0.12 86 99 96 81 96
Sulfentrazone +

chlorimuron 0,10 + 0.01 87 100 96 77 96
0.20 + 0.02 89 100 97 83 97

(Table continued)
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Metribuzin +
chlorimuron 0.17 + 0.02 83 100 96 85 97

0.34 + 0.04 93 100 98 95 98
LSD (0.05) NS 5 NS 6 NS

“Data represent an average across years.

bAll preemergence herbicide treatments (to include none) were followed by a single glyphosate application 
at 1.12 kg ai/ha.



chlorimuron and metribuzin phis chlorimuron. When compared to glyphosate alone, 

hemp sesbania control was increased when glyphosate followed the high rate of SAN 

582 plus imazaquin (81%), sulfentrazone plus chlorimuron (83%), and both rates of 

metribuzin plus chlorimuron (85 and 95%). Regardless, half or full rates of 

preemergence herbicides followed by glyphosate did not completely control hemp 

sesbania, necessitating an acifluorfen application each year.

Soybean Yield

There were no differences in soybean yield among the herbicide treatments 

evaluated and yield averaged 2,540 kg/ha (Table 2.5). Other research has shown 

equivalent yield when POST herbicides followed PRE herbicides at half and full rates 

(Muyonga et al. 1996).

In conclusion, density and growth rate of both annual grass and broadleaf weeds were 

reduced when PRE herbicides were used and in most cases half rates were as effective 

as full rates. Over the 3 yr use of pendimethalin plus imazaquin, pendimethalin alone, 

metolachlor alone, SAN 582 plus imazaquin, sulfentrazone plus chlorimuron, and 

metribuzin plus chlorimuron extended the time period to make glyphosate application 

from 3 to 7 days when compared with no PRE. In only 1 of 3 yr did all PRE herbicide 

treatments extend the application window for glyphosate and only the high rate of 

metribuzin plus chlorimuron consistently proved beneficial over all years (5 to 7 d 

extension). For only momingglory and hemp sesbania was control increased when 

glyphosate followed a PRE herbicide and even so, a followup treatment o f acifluorfen 

was needed to control hemp sesbania. In only 1 of 3 yr did use of PRE herbicides 

eliminate the need for a sequential application of glyphosate.
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Table 2.5. Yield of ‘Asgrow 5901 RR’ soybean as influenced by various 
weed control programs.*

Preemergence
herbicide^ Rate Sovbean vield

kg ai/ha ------- kg/ha--------
None 2,570
Pendimethalin +

imazaquin 0.42 + 0.07 2,550
Pendimethalin 0.56 2,390

1.12 2,740
Metolachlor 0.84 2,230

1.68 2,350
SAN 582 +

imazaquin 0.50 + 0.07 2,750
Sulfentrazone +

chlorimuron 0.11+0.02 2,610
Metribuzin +

chlorimuron 0.18 + 0.03 2,410
LSD (0.05) NS

*Data represent an average across years.

bAll preemergence herbicide treatments (to include none) were followed by a single 
glyphosate application at 1.12 kg ai/ha.
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It is clear from this research that any benefit to use of PRE herbicides in glyphosate- 

resistant soybean should be based on economics and grower preference rather than 

differences in weed control and crop yield. The extension in the time period to make a 

glyphosate application due to use of some PRE herbicides, however, may be extremely 

important in diversified operations where application timing is critical.
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CHAPTER 3

GLYPHOSATE AND BROADLEAF POSTEMERGENCE HERBICIDE 
COMBINATIONS IN SOYBEAN {GLYCINE MAX)

Introduction

Availability of glyphosate-resistant soybean has provided additional options for 

management of troublesome weed in the soybean growing regions of the U. S. This 

technology allows producers to use glyphosate |W-(phosphonomethyl) glycine)], a 

nonselective herbicide, to control weeds equal to or greater than conventional herbicides 

and tillage (York 1995) and also provides a different mode of action to counter weed 

resistance problems (Burnside 1992). Use of glyphosate for postemergence weed 

control in resistant crops can lead to a reduction in both number of herbicide 

applications and in cost of weed control programs. Other possible benefits of 

glyphosate programs include less use of prophylactic soil applied herbicides, more 

practical use of economic thresholds in treatment decisions, and reduced concerns for 

herbicide carryover (Burnside 1992; Culpepper and York 1997,1998, 1999; Ellis et al. 

1999; Wade et al. 1998; Wilcut et al. 1996).

Glyphosate is particularly efficacious on a number of grass and broadleaf weeds, but 

in general is considered more active on grasses (Anonymous 2000; Ahrens 1994). 

Glyphosate effectively controls johnsongrass [Sorghum halepense (L.) Pers.], numerous 

annual grasses, sicklepod [Senna obtusifolia (L.) Irwin and Bamaby], common 

cocklebur [Xanthium strumarium (L.)], and various pigweeds (Jordan et al. 1997; 

Krausz et al. 1996). Krausz et al. (1996) reported 100% control of giant foxtail {Setaria 

faberi Hernn.), fall panicum (Panicum dichotomiflorum L.), redroot pigweed
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(Amaranthus retrqflexus L.), jimsonweed {Datura stramonium L.), velvetleaf (Abutilon 

theophrasti Medik.), and common cocklebur with glyphosate. Glyphosate controlled 

redroot pigweed and velvetleaf 100% (Jordan et al. 1997). Ghosheh and Chandler 

(1998) reported 98% johnsongrass control with sequential glyphosate applications. 

However, glyphosate is less effective on hemp sesbania [Sesbania exaltata (Raf.) Rydb. 

Ex A. W. Hill], momingglories, prickly sida (Sida spinosa L.), spreading dayflower 

(Commelina diffusa Brum, f.), and nutsedges (Anonymous 2000).

There are, however, several broadleaf postemergence herbicides that effectively 

control velvetleaf (Cantwell et al. 1988; Kapusta et al. 1994) and momingglory species 

(Elmore et al. 1990). Tank-mixtures of glyphosate with these selective broadleaf 

herbicides could potentially provide a benefit in enhancing overall weed control in 

glyphosate programs. Addition of chlorimuron (2-[[[[(4-chloro-6-methoxy-2- 

pyrimidinyl)amino]carbonyl] amino]sulfonyl]benzoic acid} to glyphosate increased 

control of hemp sesbania, Palmer amaranth (Amaranthus palmeri S.Wats.), and 

entireleaf momingglory (Ipomoea hederacea var. integriuscula Gray) over that of 

glyphosate alone (Starke and Oliver 1998; Vidrine et al. 1997). Greater control of 

common lambsquarters (Chenopodium album L.) and velvetleaf was reported when 

bentazon [3-(l -methylethyl)-(l//)~2,1,3-benzothiadiazin-4(3//)-one 2,2-dioxide] was 

applied with glyphosate (Lich et al. 1997). Fomesafen {5-[2-chloro-4- 

(trifluoromethyl)phenoxy]-lV-(methylsulfonyl)-2-nitrobenzamide} increased tall 

momingglory [Ipomoea purpurea (L.) Roth] control when tank-mixed with glyphosate 

(Culpepper, et al. 2000).
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Producers who choose to use glyphosate-resistant soybean, particularly in the South, 

realize the weakness o f glyphosate alone on certain broadleaf weeds. Selection of 

glyphosate-resistant varieties involves an additional seed cost to support the technology. 

Therefore, producers must consider the potential benefit in weed control of adding a 

tank-mix partner versus the impact that the mixture may have on reducing grass control 

and ultimately economics.

The objectives of this research were to evaluate grass and broadleaf control with 

glyphosate alone and in combination with reduced rates broadleaf herbicides 

chlorimuron, acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic 

acid}, fomesafen, lactofen {(±)-2-ethoxy-1 -methy 1-2-oxoethy 15-[2-chloro-4- 

(trifluoromethyl)phenoxy]-2-nitrobenzoate}, and CGA-277476 {2-[[[[(4,6-dimethyl-2- 

pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid} and to determine possible 

interactions that could impact their utility in soybean production systems.

Materials and Methods

Field studies were conducted at the Ben Hur Research Farm near Baton Rouge, LA, 

on a Mhoon silty clay loam (fine-silty, mixed, nonacid, thermic Typic Fluvaquent) with 

a pH of 5.7 and 2.2% organic matter. ‘Asgrow 5901 RR’ (glyphosate-resistant) soybean 

was planted June 8,1998, May 17,1999, and June 15,2000 at a seeding rate of 130,000 

seeds/ha.

Herbicide treatments included glyphosate at 840 and 1120 g ai/ha applied alone and 

in combination with the following broadleaf herbicides: chlorimuron (4.5 and 6.7 g 

ai/ha), acifluorfen (210 and 315 g ai/ha), fomesafen (210 and 315 g ai/ha), lactofen (112 

and 168 g ai/ha), and CGA-277476 (39 and 59 g ai/ha). Application rates of the
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broadleaf herbicides represented one-half and three-fourths of the recommended field 

use rates. Treatments were arranged in a randomized complete block with four 

replications. Plots consisted of four 76.2 cm rows, 7.6 m in length with the two inside 

rows treated. Herbicide treatments were applied with a C02 pressurized backpack 

sprayer calibrated to deliver 140 L/ha spray volume at 166 kPa. Weed species evaluated 

included bamyardgrass [{Echinochloa crus-galli L. (Beauv.)], wild poinsettia 

(.Euphorbia heterophylla L.), prickly sida, pitted momingglory {Ipomoea lacunosa L.), 

and hemp sesbania. Weed density and size at application are shown in Table 3.1. 

Attempts were made to standardize timings of applications over years, but weather 

conditions resulted in some variability.

Weed control and soybean injury were evaluated 14 and 28 days after treatment 

(DAT). Visual ratings were based on a scale of 0 to 100% where 0 = no control and 100 

= complete control of all weeds. Rating dates were selected to allow for comparisons of 

initial control and subsequent weed recovery and regrowth. Soybeans were not 

harvested in 1998 because of very low yields due to inadequate rainfall, but were 

harvested in 1999 and 2000 in mid-October. Data were subjected to analysis of 

variance and means were separated using Fisher’s protected LSD at the 5% level of 

probability. Where treatment by year interactions occurred, data are presented for 

individual years.

Results and Discussion 

Bamyardgrass

Of concern in this study was the possible antagonism that might occur with the 

herbicide combinations. Previous research has shown reduced grass control when grass
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Table 3.1. Bamyardgrass, wild poinsettia, prickly sida, pitted momingglory, and hemp 
sesbania density and height when glyphosate was applied alone and in combination with 
other herbicides.

Weed species

Weed density* Weed height*

1998 1999 2000 1998 1999 2000

_/__2nojm —” cm
Bamyardgrass 88 215 108 20 15 10

Wild poinsettia 108 108 - 15 8 -

Prickly sida 25 - 108 8 - 6

Pitted momingglory 18 22 22 15 8 10

Hemp sesbania 45 86 54 18 10 10

“Wild poinsettia was not present in the experimental area in 2000 and prickly sida was 
not present in 1999.
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specific herbicides were applied with broadleaf herbicides (Corkem et al. 1998). In the 

present study, addition of chlorimuron, acifluorfen, fomesafen, lactofen, or CGA- 

277476 did not negatively influence bamyardgrass control with glyphosate in any year 

(Tables 3.2 and 3.3). Bamyardgrass control 14 and 28 DAT averaged 96%. Other 

research has shown excellent grass control with glyphosate (Jordan et al. 1997; Krausz 

et al. 1996).

Wild Poinsettia

Wild poinsettia was evaluated in 1998 and 1999, but was not present in the 

experimental area in 2000. At 14 DAT, glyphosate alone controlled wild poinsettia at 

least 96% (Table 3.2). Addition of broadleaf herbicides provided 95 to 99% control. At 

28 DAT, wild poinsettia control varied between years. Weed regrowth occurred in 1998 

and control with glyphosate was no more than 80%. This was in contrast to the second 

year when control was 100% with glyphosate alone at both rates. Greater weed 

regrowth the first year can be explained by the taller weeds at the time of application 

when compared to the second year, (Table 3.1) along with adequate rainfall received 

within two weeks after application (6.6 cm). Consequently, addition of certain 

broadleaf herbicides in the present study was beneficial for control of wild poinsettia 

only in 1998. Addition of chlorimuron in 1998 did not improve wild poinsettia control 

when compared with glyphosate applied at the high rate alone and was also not 

antagonistic. In contrast, combinations of CGA-277476 at both rates with the high rate 

of glyphosate that year reduced wild poinsettia control when compared with glyphosate 

alone 12 to 20 percentage points. The reason for this response is not apparent. Addition 

of acifluorfen, fomesafen, or lactofen regardless of rate increased wild poinsettia control
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Table 3.2. Bamyardgrass, wild poinsettia, prickly sida, pitted momingglory, and hemp sesbania control 14 days after 
treatment with glyphosate applied alone and in combination with other herbicides.

Pitted momingglory Hemp sesbania
Wild Prickly

Herbicide Rate Bamyardgrass* poinsettia* sida* 1998 1999 2000 1998 1999 2000
gai/ha

Glyphosate 840 95 98 95
yo

66 75 88 50 78 58

1120 96 96 93 75 75 95 55 87 85

Glyphoate +
chlorimuron 840 + 4.5 97 95 92 66 93 95 91 100 84

1120 + 4.5 97 97 91 75 93 93 93 97 87

840 + 6.7 94 95 92 65 95 90 88 100 86

1120 + 6.7 97 97 93 79 93 93 92 98 88

Glyphoate +
acifluorfen 840 + 210 97 99 94 88 80 96 97 97 89

1120 + 210 98 99 95 89 91 95 97 100 94

840 + 315 95 97 90 89 96 94 93 99 88

1120 + 315 95 99 91 94 89 95 95 100 88

Glyphosate +
fomesafen 840 + 210 94 99 91 87 93 93 89 100 90

1120 + 210 97 99 92 90 89 97 97 100 95

(Table continued)
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&

Glyphosate + 
lactofen

Glyphosate + 
CGA-277476

LSD (0.05)

840 + 315 96 98 94 85 91 94 96 100 97

1120 + 315 98 99 96 93 93 94 96 100 93

840+112 98 98 93 85 85 97 88 98 97
1120+112 98 99 94 90 88 97 94 98 98

840 +168 96 98 94 86 96 94 83 98 95

1120+168 96 97 94 84 98 97 81 100 94

840 + 39 96 98 90 65 82 96 70 100 92
1120 + 39 96 98 95 73 93 93 70 100 90

840 + 59 97 96 90 70 87 91 69 100 85

1120 + 59 97

NS

98

3

90

9

78 88

10 -

96 97 100

1 1 -

95

Data averaged across years. Wild poinsettia present only in 1998 and 1999 and prickly sida only in 1998 and 2000.
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Table 3.3. Bamyardgrass, wild poinsettia, prickly sida, pitted momingglory, and hemp sesbania control 28 days after treatment with 
glyphosate alone and in combination with other herbicides.

Wild poinsettia Prickly sida Pitted momingglory Hemp sesbania

Herbicide Rate Bamvarderass* 1998 1999 1998 2000 1998 1999 2000 1998 1999 2000
gai/ha o//o

Glyphosate 840 96 60 100 33 93 28 94 89 26 98 85

1120 100 80 100 43 94 30 98 91 23 100 88

Glyphosate + 
chlorimuron 840 + 4.5 

1120 + 4.5
99
98

67
73

100
99

40
40

91
95

43
49

100
99

90
88

62
61

100
99

76
84

840 + 6.7 97 69 98 35 95 46 99 85 63 99 85

1120 + 6.7 96 75 98 50 94 48 99 93 64 99 84

Glyphosate + 
acifluorfen 840 + 210 

1120 + 210
96
96

93
92

99
99

60
63

95
94

73
66

95
94

91
94

91
93

98
100

88
85

840 + 315 95 92 98 83 93 73 97 89 91 99 88

1120 + 315 97 95 100 73 95 79 96 90 91 99 86

Glyphosate + 
fomesafen 840 + 210 

1120 + 210
96
96

92
91

100
100

60
60

96
95

53
63

99
96

93
94

70
83

99
99

88
91

£
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840 + 315 97 92

1120 + 315 95 91

Glyphosate +
lactofen 840+ 112 96 94

1120+112 97 93

840+168 96 92

1120+168 95 95

Glyphosate +
CGA-277476 840 + 39 97 64

1120 + 39 97 60

840 + 59 95 70

f t  1120 + 59 95 68
1 /1

LSD (0.05) NS ------

"Data averaged across years.

100 70 96 60 98 95 85 100 90

100 75 97 66 100 92 88 100 94

100 78 95 70 95 90 84 98 89
100 80 95 70 97 93 86 96 93

100 78 94 70 100 90 88 98 91

100 78 94 66 94 93 83 97 91

100 41 95 46 100 93 18 100 89
100 38 97 35 100 91 20 100 89

100 33 94 43 98 91 20 98 83

100 48 94 43 98 93 26 99 86

A 0- 9 ------ ..............7



to 91 to 95%. Ellis et al. (2000) has reported inconsistent results in improvement of 

wild poinsettia control when glyphosate was applied with either chlorimuron or 

fomesafen.

Prickly Sida

Prickly sida was evaluated only in 1998 and 2000. At 14 DAT both years (Table 

3.2) and 28 DAT in 2000 (Table 3.3), addition of chlorimuron, acifluorfen, fomesafen, 

lactofen, or CGA-277476 to either rate of glyphosate did not in most cases increase 

control compared to glyphosate applied alone, and control was at least 91%.

Regrowth of prickly sida occurred in 1998 and by 28 DAT control with glyphosate 

alone was no more than 43% (Table 3.3). Weed size was similar for the two years 

(Table 3.1) and regrowth was probably related to excellent growing conditions as 

discussed previously for wild poinsettia. Addition of acifluorfen, fomesafen, or lactofen 

regardless of rate increased prickly sida control 28 DAT when tank-mixed with either 

rate of glyphosate (60 to 83%). Control was at least 80% for acifluorfen at 315 g/ha or 

lactofen at 112 g/ha plus the high rate of glyphosate. Increases in prickly sida control 

associated with addition of acifluorfen or fomesafen was not expected since these 

herbicides do not effectively control this weed (Anonymous, 2000). Weed control was 

not increased with the addition of chlorimuron to glyphosate. Ellis et al. (2000) 

reported little or no increase in prickly sida control when fomesafen or chlorimuron was 

tank-mixed with glyphosate.

Pitted Morningglory

Year by treatment interactions were observed for pitted momingglory control. In 

none of the years did increasing the glyphosate rate when applied alone result in
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increased weed control 14 DAT (Table 3.2). For the three years, glyphosate applied 

alone controlled pitted momingglory 66 to 88% at 840 g ai/ha and 75 to 95% at 1120 

g/ha. Addition of acifluorfen, fomesafen, or lactofen regardless of rate generally 

increased pitted morningglory control when applied with either rate of glyphosate at 14 

DAT in 1998 compared to glyphosate alone. That year, addition of chlorimuron or 

CGA-277476 was not beneficial. In 1999 14 DAT, all broadleaf herbicides in most 

cases increased pitted momingglory control compared with glyphosate alone. The 

addition of a broadleaf herbicide to 840 or 1120 g/ha of glyphosate, however, did not 

increase control of pitted momingglory in 2000, but in that year, control with 

glyphosate alone was 88 and 95%, greater than observed for the previous two years.

By 28 DAT, pitted momingglory control with glyphosate alone was 89 to 98% in 

1999 and 2000, but no more than 30% in 1998 (Table 3.3). Addition of all broadleaf 

herbicides regardless of rate increased pitted morningglory control in 1998 28 DAT, but 

the magnitude of increase varied among herbicides. Pitted momingglory control ranged 

from 35 to 49% when glyphosate was tank-mixed with either chlorimuron or CGA- 

277476. Addition of acifluorfen, fomesafen, or lactofen to glyphosate increased pitted 

momingglory control to 53 to 79%. Chlorimuron, acifluorfen, fomesafen, and lactofen 

control pitted momingglory (Anonymous 2000) and it would be expected that control 

levels in the present study would have been greater. At application, however, pitted 

momingglory was 15 cm in height (Table 3.1), which combined with the reduced rates 

of the herbicides probably attributed to the lower control in 1998 compared with the 

other years. Bennett et al. (1999) reported that tank-mixing fomesafen or acifluorfen 

with glyphosate did not improve pitted momingglory control over that for glyphosate
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applied alone. When pitted momingglory in the present study was no more than 10 cm 

at application (Table 3.1), control 28 DAT for the herbicide treatments ranged from 94 

to 100% in 1999 and 85 to 95% in 2000.

Hemp Sesbania

Interaction with years was also observed for hemp sesbania control. For glyphosate 

applied alone at 840 g/ha, control was lowest in 1998 and 2000 (50 and 58%, 

respectively) and higher in 1999 (78%) (Table 3.2). In contrast, control with glyphosate 

alone at 1120 g/ha was 55% in 1998, but 87 and 85% in 1999 and 2000, respectively. 

Increasing rate of glyphosate increased hemp sesbania control 14 DAT in only 2000 (58 

to 85%). At 14 DAT in 1998, addition of chlorimuron, acifluorfen, fomesafen, lactofen, 

or CGA-277476 to either rate of glyphosate increased hemp sesbania control (69 to 

97%) compared to glyphosate applied alone. The most consistent responses across 

herbicide rates were observed with the acifluorfen or fomesafen and glyphosate 

combinations (89 to 97% control). In 1999, hemp sesbania control with the broadleaf 

herbicide and glyphosate combinations was 97 to 100% and greater in most cases than 

glyphosate applied alone. In 2000, all combinations provided greater control than the 

low rate of glyphosate alone, but not for the high rate of glyphosate. Mulkey et al. 

(1998) also observed increased hemp sesbania control when chlorimuron was tank- 

mixed with reduced rates of glyphosate.

By 28 DAT, hemp sesbania control had decreased to no more than 26% in 1998, but 

had improved to at least 98% in 1999 (Table 3.3). Plant height at application in 1998 

was 1.8 times greater than in 1999 or 2000 (Table 3.1), which may explain the regrowth 

that occurred the first year. Hemp sesbania control 28 DAT in 1998 was not improved

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



when CGA-277476 was applied with glyphosate. Addition of chlorimuron to 

glyphosate controlled hemp sesbania 61 to 64% compared with 91 to 93% for 

acifluorfen, and 70 to 88% for fomesafen and lactofen. Acifluorfen has been shown to 

be highly effective on hemp sesbania, even at reduced rates (Vidrine et al. 1992). In 

contrast, in 1999 in the present study none of the combinations improved hemp sesbania 

control when glyphosate alone was effective. In 2000, glyphosate alone controlled 

hemp sesbania 85 and 88% 28 DAT. Even though control was less than observed the 

previous year, in most cases none of the combinations in 2000 were any more effective 

than glyphosate alone. Glyphosate normally does not provide adequate control of hemp 

sesbania (Anonymous 2000), however, under humid conditions and high temperatures 

herbicide diffusion rate through the cuticle and cell membranes can be increased 

(Wanamarta and Penner 1989). Results clearly show that control of hemp sesbania with 

glyphosate alone can be severely reduced, however, if plants are large at application as 

observed in this study in 1998 (Table 3.1). This supports other research that places 

emphasis on the early timing of herbicide applications for optimum weed control 

(DeFelice et al. 1989; Lee and Oliver 1982).

Soybean Injury and Yield

Soybean injury 14 DAT for all treatments evaluated was no more than 9% in 1998 

and no more than 2% in 1999 and 2000 (Table 3.4). In 1998, at 28 DAT, soybean 

injury ranged from 6 to 13% for chlorimuron, 12 to 14% for acifluorfen, and 18 to 23% 

for lactofen, but soybean was injured no more than 6% with fomesafen and CGA- 

277476. Other studies have shown less injury with fomesafen compared with 

acifluorfen or lactofen (Harris et al. 1991; Higgins et al. 1988) and excellent soybean
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Table 3.4. Soybean injuiy 14 and 28 days after treatment (DAT) and soybean yield as influenced by glyphosate 
applied alone and in combination with other herbicides.

Soybean injury

Herbicide Rate 1998

14 DAT 

1999 2000 1998

28 DAT 

1999 2000 Soybean yield*

gai/ha - % ---------- kg/ha

Glyphosate 840 0 0 0 0 0 0 2,620

1120 0 0 0 4 0 0 2,290

Glyphosate +
chlorimuron 840 + 4.5 0 0 0 6 0 0 2,490

1120 + 4.5 1 0 0 7 0 0 2,490

840 + 6.7 0 0 0 10 0 0 2,290

1120 + 6.7 3 0 0 13 0 0 2,560

Glyphosate +
acifluorfen 840 + 210 7 0 0 14 0 0 2,220

1120 + 210 7 0 0 14 0 0 2,220

840 + 315 5 0 0 12 0 0 2,490

1120 + 315 9 0 0 14 0 0 2,150

Glyphosate +
fomesafen 840 + 210 0 0 0 3 0 0 2,150

(Tabl
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1120 + 210 3 0 0 5 0 0 2,350

840 + 315 0 0 0 6 0 0 2,620

1120 + 315 1 0 0 5 0 0 2,690

Glyphosate +
lactofen 840+112 5 0 0 19 0 0 2,220

1120+112 3 2 0 23 0 0 2,490

840+ 168 6 0 0 20 0 0 2,350

1120+ 168 7 0 0 18 0 0 2,150

Glyphosate +
CGA-277476 840 + 39 0 0 0 0 0 0 2,560

1120 + 39 0 0 0 3 0 0 2,420

840 + 59 2 0 0 4 0 0 2,560

1120 + 59 1 0 0 6 0 0 2,690

LSD (0.05) 0 0 0 0 0 0 2,620

—  2 ----- —  2 ---- NS
"Data averaged for 1999 and 2000. Yield of the nontreated control was 1,010 kg/ha.



tolerance to CGA-277476 (Palmer and Shaw 2000). Soybean injury was not observed 

28 DAT in 1999 and 2000. For soybean yield, herbicide treatments responded similarly 

for 1999 and 2000, even though differences between years were observed for control of 

some of the weeds. Yield differences were not observed where glyphosate was applied 

alone or in combination with various broadleaf herbicides, but yield was more than 

twice that of the nontreated control (Table 3.4). The similarly in yield among herbicide 

treatments is not unexpected since in few cases was weed control 28 DAT increased 

where combinations were used compared with glyphosate alone in 1999 and 2000 

(Table 3.3). It is possible that if yields could have been determined the first year where 

differences in weed control were most apparent, yield differences among the treatments 

may have been detected.

Results indicate that tank-mixtures of glyphosate plus the broadleaf herbicides 

chlorimuron, acifluorfen, fomesafen, lactofen, or CGA-277476 can increase control of 

wild poinsettia, prickly sida, pitted momingglory, and hemp sesbania, especially when 

weeds are too large to be effectively controlled with glyphosate alone. Increasing the 

rate of either the broadleaf herbicides or glyphosate did not in most cases increase weed 

control and in no instances was bamyardgrass control antagonized with the herbicide 

combinations. The variation in control of some of the weed species from year to year 

was related in part to weed size at application combined with excellent growing 

conditions following application. Yield differences were not observed where 

glyphosate was applied alone or in combination with various broadleaf herbicides, but 

yield was more than twice that of the nontreated control. Results emphasize the 

importance of early applications, especially when glyphosate is used as a stand alone
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product. In previous research improvement in pitted momingglory or hemp sesbania 

control was observed when broadleaf herbicides were applied with glyphosate (Ellis et 

al. 2000; Mulkey et al. 1998; Vidrine et al. 1992). However, in those studies glyphosate 

rate was lower than the highest rate of 1120 g/ha evaluated in the present study. It 

would be expected that an advantage would be seen when efficacious broadleaf 

herbicides are applied with glyphosate when glyphosate rate is insufficient to 

consistently control problem weeds. Even though in this study yield differences among 

treatments were not detected even though some differences in weed control occurred, 

weed regrowth and emergence through the soybean canopy in late season could impact 

harvest efficiency and crop quality (Ellis et al. 1998; Willard and Griffin 1993).
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CHAPTER 4

RICE (ORYZA SATIVA) AND CORN (ZEA MAYS) RESPONSE TO 
SIMULATED DRIFT OF GLYPHOSATE AND GLUFOSINATE

Introduction

Glyphosate [iV-(phosphonomethyl) glycine)] and glufosinate [2-amino-4- 

(hydoxymethylphosphinyl) butanoic acid] are non-selective herbicides used to control 

annual and perennial weeds in reduced tillage systems and in herbicide-resistant, 

transgenic crops. Glyphosate-resistant soybean [Glycine max (L.) Merr.], cotton 

(Gossypium hirsutum L.), and com (Zea mays L.) and glufosinate-resistant soybean and 

com are marketed in the South. The expected expansion in acreage of these crops will 

increase the likelihood of off-target movement of glyphosate and glufosinate. It is also 

possible that rice (Oryza sativa L.) resistant to glyphosate and glufosinate will be on the 

market in the near future. Since aerial application is common in rice culture, this may 

further magnify the problem. With the diversity in cropping systems in the South it is 

not uncommon for rice, com, soybean, and cotton to be grown adjacent to one another. 

All these factors point to greater problems associated with herbicide drift.

Herbicide drift occurs when wind causes spray droplets to be displaced from their 

intended flight path. Wolf et al. (1992) reported drift from unshielded sprayers ranged 

from 2 to 16% depending on nozzle size and wind velocity. Herbicide drift is especially 

prevalent when herbicides are applied under windy conditions or when environmental 

conditions favor volatilization and redisposition (Hanks 1995; Wall 1994).
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Herbicide application during a temperature inversion can encourage herbicide drift1. 

Under ambient conditions, air is warmest at the soil surface and cooler with increasing 

altitude. However, during a temperature inversion, a layer of cool air forms at the soil 

surface capturing fine spray droplets that are displaced when wind velocity increases. 

The droplets eventually encounter a down draft, which propels them back to the soil 

surface. Temperature inversions are most common at dawn, dusk, and when winds are 

calm. Therefore, contrary to what one would expect, herbicide drift would be reduced 

when herbicides are applied under slightly windy conditions.

Herbicide drift is most often the result of improper application (Wauchope et al. 

1982). However, wind speed and boom height above the intended target are also 

primary contributors to herbicide drift (Hatterman-Valenti et al. 1995). Environmental 

conditions can have a negative effect on herbicide drift (Bouse et al. 1976). Besides 

windy conditions at application, wet fields can delay timely herbicide application, 

which can increase the risk associated with off-target movement of herbicides applied 

aerially (Martin and Green 1995).

Droplet size can influence drift, especially when herbicides are applied by air as ultra 

low volume sprays with spray droplets less than 100 microns in size (Hanks 1995, 

1997). To reduce herbicide drift, formation of spray droplets less than 100 microns 

during application should be avoided. Droplet size can be altered with nozzle selection 

and drift retardants specifically designed to reduce spray drift (Bouse et al. 1976).

1 Anonymous. 1994. Herbicide Application Management Sandoz Crop Protection. 
Des Plaines, IL. 60016.27 p.
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Simulated drift of MSMA (monosodium salt of MAA) in rice (Richard et al. 1981), 

quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) (Snipes et al. 1992) and triclopyr 

[(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid] (Snipes et al. 1991) in cotton, pyrithiobac 

{2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)thio]benzoic acid} in com (Ghosheh et al. 

1994), and nicosulfuron {2-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino] 

sulfonyl]-iV^V-dimethyl-3-pyridinecaiboxamide} and primisulfuron {2-[[[[[4,6-bis 

(difluoromethoxy)-2-pyrimidinyl]amino]carbonyl] mino]sulfonyl]benzoic acid} in 

soybean (Bailey and Kapusta 1993) has been investigated. Injury symptoms from 

herbicide drift are usually worse when drift occurs to the susceptible crop early in its 

development (Ghosheh et al. 1994; Hurst 1982). In addition to initial foliar damage, 

herbicide drift can be manifested as loss of tuber quality in potatoes (Solatium 

tuberosum L.) (Eberlein and Guttieri 1994), delays in fruit maturity in sweet cherries 

(Prunus avium L.) (Al-Khatib et al. 1992b), reduced boll production in cotton (Snipes et 

al. 1991), straighthead symptoms in rice (Richard et al. 1981), and stand reductions in 

alfalfa (Medicago sativa L.) (Al-Khatib et al. 1992a).

Of concern from the standpoint of drift is that glyphosate has been shown to affect 

vigor of seeds produced from treated plants. Glyphosate treatment of wild oat (Avena 

fatua L.) at or near anthesis inhibited seed development and reduced seed germination 

(Shuma et al. 1995; Shuma and Raju 1993). Clay and Griffin (2000) reported 

reductions in seedling emergence of 82% for common cocklebur (Xanthium 

struamarium L.) and 94% for hemp sesbania [Sesbania exaltata (Raf.) Rybd. ex A. W. 

Hill] when glyphosate was applied at initial seed set Low vigor seed may result in 

slower germination and seedling growth rate, greater susceptibility to seed-rotting
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organisms, poor stands, and reduced yield (Edje and Burris 1971). The implications 

would be important when considering the effect of drift of glyphosate on commercial 

seed production fields.

The objectives of this research were to determine the effect of simulated drift of 

glyphosate and glufosinate on growth and yield of conventional non-herbicide resistant 

rice and com, and to evaluate the subsequent effect of simulated drift on rice seed 

germination and vigor.

Materials and Methods

Rice Field Study

Field experiments were conducted at the Rice Research Station in Crowley, LA over 

three years to evaluate response o f ‘Cypress’ non-herbicide resistant rice to simulated 

drift rates of glyphosate and glufosinate. Rice was drill planted (18 cm row spacing) 

April 24,1998, May 5, 1999, and April 25,2000 at a seeding rate of 112 kg/ha. The 

experimental area was tilled and the seedbed packed prior to planting. The soil type 

was a Crowley silt loam (fine, montmorillonitic, thermic Typic Albaqualf) with a pH of 

5.5 and 1.4% organic matter. The fertilizer program consisted of 8-24-24 kg/ha (N- 

P205-K2O) preplant incorporated and 104-0-0 kg/ha broadcast 4 weeks after planting. 

Plots were maintained weed free by an application of propanil [iV-(3,4-dichlorophenyl) 

propanamide] plus molinate (5-ethyl hexahydro- 1/f-azepine-1 -carbothioate) (3.36 + 

3.36 kg ai/ha) on May 17,1998, June 3, 1999, and May 20,2000.

Plots consisted of 7,18 cm rows 6.1 m long. The experimental design was a 

randomized complete block with a three-factor factorial treatment arrangement and four 

replications. The first and second factors were herbicides and herbicide drift rates.
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Drift rates represented 0.125,0.063,0.032,0.016, and 0.008 of the use rate of 1.12 kg 

ai/ha glyphosate (140,70,35,18, and 9 g/ha, respectively) and 0.42 kg ai/ha glufosinate 

(53,26,13,7, and 4 g/ha, respectively). The third factor was application timing. An 

early postemergence application was made prior to establishment of the permanent 

flood when rice was at 2- to 3-leaf on May 20,1998, May 25,1999, and May 5,2000 

and a late postemergence application to flooded 2- to 3-tiller rice at panicle 

differentiation (initiation of reproductive stage) on June 19,1998, June 30,1999, and 

June 16,2000. Herbicide treatments were applied using a C02 pressurized backpack 

sprayer calibrated to deliver 140 L/ha spray volume at 166 kPa. The permanent flood 

was established on May 23, 1998, June 4,1999, and June 8,2000. Visual injury and 

plant heights horn the soil to the tip of the uppermost leaf of 10 plants in each plot were 

determined 7,14, and 28 days after treatment (DAT). Visual injury ratings were based 

on a scale of 0 to 100% where 0 = no injury and 100 = complete death of the plant. 

Height was expressed as a percentage of the nontreated glyphosate/glufosinate control. 

Days from rice emergence to 50% heading were determined to document any delay in 

rice maturity. Plant height of 10 plants in each plot was determined just prior to harvest 

by measuring horn the soil surface to the tip of extended seed-heads. Rice was 

harvested on August 27,1998, August 30,1998, and August 16,2000 and yield was 

adjusted to 12% moisture. Data were subjected to analysis of variance with partitioning 

appropriate for the factorial arrangement of treatments. Means of significant main 

effects and interactions were separated using Fisher’s protected LSD at the 5% level of 

probability.
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Rice Germination/Vigor Study

Germination and vigor of seed are important to producers who are growing rice for 

commercial seed because these factors can impact emergence and development of 

healthy seedlings (AOSA 198S). Rice seed was saved from each plot after harvest in 

order to evaluate the effects of the herbicides on germination and vigor. Harvested rice 

seeds were cleaned to remove excess debris and seeds were dried to 12% moisture.

After drying, seeds were stored at 7 C.

Germination procedures were in accordance with established guidelines (AOSA 

1992). Rice seeds were soaked for 30 minutes in a 50:50 solution of sodium 

hypochlorite and distilled water. After soaking, seeds were tripled rinsed with distilled 

water and one hundred seeds were placed between two sheets of germination paper and 

into a 8.9 cm diameter plastic petri dishes. Seeds were incubated in darkness in a liquid 

cooled incubator. Percent germination was evaluated 5,9, and 14 days after seed 

plating (DAP). Rice seeds were counted as germinated if the radicle or shoot was 1 mm 

in length. Ten milliliters of distilled water was added at the beginning of the experiment 

and 1.5 ml of distilled water was added to the petri dish at the 9 d counting. Percent 

germination was calculated on the basis of 100 seeds. A completely randomized design 

with a factorial arrangement of treatments replicated four times was used. All data were 

subjected to analysis of variance and treatment means were separated using Fisher’s 

protected LSD at the 5% level of probability.

The vigor experiment was prepared as described in the germination experiment 

Seeds were soaked in a 50:50 solution of sodium hypochlorite and distilled water for 30 

minutes. After soaking, seeds were triple rinsed and pre-soaked for 24 horns in distilled
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water to promote germination before seedling plating. At plating, 10 pre-germinated 

seed from each treatment were placed on sterile germination paper. Germination paper 

was placed on a 12 cm wide 23 cm long sheet of plastic. A one-ply paper towel strip 

was placed over the seed and 5 ml of mancozeb (ethylene bisdithiocarbamate) fungicide 

was applied on top of the paper towel strip to eliminate seedling diseases. The plated 

seeds and 1.1 L of distilled water were then placed in glass containers that were 30 cm 

wide and SI cm long. The glass containers were covered in plastic wrap and placed in a 

double liquid cooled incubator at 25 C for 12 days. At the end of 12 days, vigor was 

evaluated by measuring shoot lengths. Statistical analysis was as described for the 

germination study.

Corn Field Study

Field experiments were conducted at the R & D Research Farm, Inc., near 

Washington, LA in 1997, and at the Ben Hur Research Farm near Baton Rouge, LA in 

1998 and 1999, to evaluate com response to simulated drift of glyphosate and 

glufosinate. Non-herbicide resistant Dekalb 687’ com was planted March 14,1997 at 

the R & D Research Farm, and March 16,1998 and March 25, 1999 at the Ben Hur 

Research Farm at a seeding rate o f74,000 seed/ha with an estimated final stand of 

60,000 plants/ha. The experimental areas were tilled and bedded prior to planting. The 

soil type at the R & D Research Farm was a Baldwin silty clay loam (fine, 

montmorillonitic, thermic Vertic Ochraqualf) with a pH of 5.9 and 1.4% organic matter. 

The fertilizer program consisted o f64-64-64 kg/ha broadcast prior to planting and 11- 

37-0 kg/ha in-furrow at planting. Three weeks after planting 65-0-0 was side dressed. 

The insecticides terbufos {iS-[[(l,l-dimethylethyl)thio]methyl]0,0-diethyl
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phosphorodithioate} (1.12 kg ai/ha) and permethrin [(3-phenoxyphenyl)methyl(+)-c£s, 

fra/ts-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate] (0.22 kg ai/ha) 

were applied in-furrow at planting. The soil type at the Ben Hur Research Farm in 1998 

and 1999 was a Commerce silt loam (fine-silty, mixed, nonacid, thermic Aerie 

Fluvaquent) with a pH of 5.6 and 1.3% organic matter. The fertilizer program consisted 

o f200-30-30 kg/ha side dressed three weeks after planting. The insecticide chlorpyrifos 

[0,0-diethyl-0-(3,5,6-trichloro-2-pyridinyl] (2.0 kg ai/ha) was applied in-furrow at 

planting. At both locations plots were maintained weed free by a preemergence 

application of atrazine plus metolachlor (2.17 + 1.79 kg ai/ha) the day of planting and 

mechanical cultivation as needed.

Plots consisted of four, 91.4 cm rows 7.6 m long in 1997 and three, 96.5 cm rows 7.6 

m long in 1998 and 1999. The experimental design was a randomized complete block 

with a three-factor factorial treatment arrangement with four replications. Treatments 

were the same as described for the rice study with the exception of the application 

timings. An early application was made at 6-leaf on May 2,1997, May 5,1998, and 

April 27,1999 and a late application at 9-leaf on May 28,1997, May 20, 1998, and May 

21,1999. A glyphosate/glufosinate nontreated control was included for comparison. 

Herbicide treatments were applied as described previously. Visual injury and plant 

height data were collected 7,14, and 28 DAT for the 6-leaf application and 7 DAT for 

the 9-leaf application. Later ratings for the 9-leaf application were not made because 

com plants were tasseling 7 DAT. Com height was based on measurement from the soil 

surface to the last frilly developed collar and expressed as a percentage of the nontreated 

glyphosate/glufosinate control. Com was harvested August 22,1997, July 31,1998,

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and August 5, 1999 and yield was adjusted to 15% moisture. Statistical analysis was as 

described for the rice study.

Greenhouse Studies

Since only one com and rice variety were evaluated in the field, greenhouse 

experiments were conducted to evaluate differences in sensitivity to simulated drift rates 

of glyphosate and glufosinate using five commonly grown rice and com varieties. The 

experimental design was a randomized complete block with a three-factor factorial 

arrangement of treatments with four replications. The first factor was crop variety and 

the second and third factors were herbicide and herbicide drift rate, respectively.

Dekalb 687, ‘Asgrow 897’, ‘Pioneer 3223’, ‘Mycogen 8460’, and ‘Terral 2930’ com 

varieties and Cypress, ‘Bengal’, ‘Cocodrie’, ‘Drew’, and ‘Jefferson’ rice varieties were 

treated with 0.125,0.063, and 0.032 of the use rates of 1.12 kg ai/ha of glyphosate and 

0.42 kg ai/ha of glufosinate at the 3-leaf stage. Rates were selected because they had 

caused significant crop injury in the field experiments. All treatments were applied in 

140 L/ha of water at 166 kPa. Plants were grown in the greenhouse using plastic pots 

containing a 50:50 mix of commercial peat premix2 and Olivier silt loam (fine-silty, 

mixed, thermic, thermic, Aerie Fluvaquent) soil. Artificial lighting was utilized to 

extend day length to 14 h and temperature was maintained at 31 + 4 C. Plants were 

thinned after emergence to two plants per pot. At 7 and 14 DAT, plant height and 

injury were recorded as described previously. At 14 DAT, the above ground biomass 

was harvested and oven dried at 60 C for 48 h. Separate experiments and analyses were

2 Jiffy Mix Plus, Jiffy Products of America Inc., Batavia, IL 60510.
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conducted for each crop and experiments were repeated. Data were subjected to 

analysis of variance and means separated using Fisher’s protected LSD at the 5% level 

of probability.

Results and Discussion

Rice Field Study

For rice injury, height, and yield, data are presented for individual years because of 

significant year by treatment interactions. In general, herbicide injury symptoms were 

more severe in 1998 and 2000 than in 1999. Air temperatures averaged 5 to 7 C higher 

during and after herbicide application in 1998 and 2000 compared to 1999, which may 

explain the variation observed. Greater injury under warm weather conditions was not 

surprising since high temperatures increase herbicide diffusion rate through the cuticle 

and cell membranes (Wanamarta and Penner 1989). Past simulated drift research has 

shown significant variation in years when evaluating sub-lethal rates of herbicides 

(Snipes et al. 1991; Richard 1995). It would be expected that differences in 

environmental conditions among years would have a greater impact on herbicide 

activity when reduced rates are applied (Jordan et al. 1997).

Rice symptoms varied between glyphosate and glufosinate. Visual injury from 

glyphosate developed slowly and consisted of stunting and a slight yellow discoloration 

of leaves. Symptoms caused by glufosinate developed quickly and included some 

stunting, however, injury mainly consisted of chlorosis and necrosis of leaves. At 7 

DAT, rice height following glyphosate applied early to 2- to 3-leaf rice was reduced 16 

to 37% at rates of 0.016 to 0.125 of the use rate, but injury from glufosinate at the same 

rates was generally not observed (data not shown). Neither herbicide reduced rice
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height when applied late at panicle differentiation. Glyphosate at the 0.016 to 0.125 

rates applied early injured rice 0 to 94% compared with 0 to 45% for glufosinate. In 

contrast, rice injury was not observed following late application of glyphosate, but was 

11 to 44% for the 0.063 rate and higher for glufosinate.

At 14 DAT, glyphosate applied at the 0.125 and 0.063 rates in 1998 and the 0.032 

rate and higher in 2000 reduced rice height when applied early 10 to 63% (Table 4.1). 

However, no reduction in rice height was observed when glyphosate was applied early 

in 1999 or when applied late any year. Rice height was not reduced with glufosinate. 

Even though height was not reduced for some of the treatments injury was observed.

All rates of glyphosate applied early injured rice (5 to 78%) in 1998. Injury to rice 

occurred when glyphosate was applied early at the 0.125 and 0.063 rates in 1999 (11 

and 5%), and at the 0.032 rate and higher in 2000 (11 to 98%). Glufosinate applied 

early did not injure rice in 1999, but the 0.125 and 0.063 rates injured rice 11 and 39% 

in 1998 and 24 and 25% in 2000. Glyphosate applied late injured rice at 0.125 and 

0.063 rates in 1999 (15 and 10%) and in 2000 (8 and 6%), but only for the 0.125 rate in 

1998 (10%). Glufosinate applied late injured rice at 0.032 of the use rate and higher in 

1998 and 2000 (5 to 35%), but for only the two high rates in 1999 (23 and 13%).

At 28 DAT, rice height was still reduced where glyphosate at the 0.125 and 0.063 

rates was applied early in 1998 and 2000 (8 to 51%), but not for glufosinate (Table 4.2). 

Of interest is that rice height was not reduced following either herbicide applied late 14 

DAT (Table 4.1), but reductions were observed 28 DAT (Table 4.2). The 0.125 and 

0.063 rates of glyphosate in 1998 and 2000 and the 0.125 rate in 1999 reduced rice
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Table 4.1. Height and injury of non-transgenic ‘Cypress’ rice 14 days following simulated drift rates of glyphosate and glufosinate at 
two application timings*

Rice height Rice injury

Early timing Late timing Early timing • Late timing

Treatment Rateb 1998 1999 2000 1998 1999 2000 1998 1999 2000 1998 1999 2000

- OA

Glyphosate 0.125 47 94
/ d 01 UOUUCalcU

37 95 96 93 78 11 98
/O

10 15 8

0.063 91 99 61 102 96 96 41 5 61 4 10 6

0.032 104 102 90 100 99 98 23 0 11 0 0 3

0.016 106 97 97 105 96 95 6 0 0 0 1 0

0.008 104 96 99 99 98 95 5 0 1 0 3 0

Glufosinate 0.125 92 98 92 100 99 98 39 3 25 35 23 21

0.063 98 98 98 101 98 97 11 0 24 20 13 10

0.032 107 99 92 104 98 98 4 0 4 5 3 5

0.016 102 97 103 101 98 98 3 0 0 0 1 0

0.008 104 95 105 103 96 100 1 1 0 0 0 0

LSD (0.05)
"■»* ^ ____̂  :_____

A c!/ D

‘Application timings correspond to 2- to 3-leaf (early timing) and panicle differentiation (late timing). Rice height based on measurement from the soil to the 
tip of the uppermost leaf.

*1(8168 correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate.
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Table 4.2. Height and injury of non-transgenic ‘Cypress’ rice 28 days following simulated drift rates of glyphosate and glufosinate at 
two application timings*

Rice height Rice injury

Early timing Late timing Early timing Late timing

Treatment Rate* 1998 1999 2000 1998 1999 2000 1998 1999 2000 1998 1999 2000

OA

Glyphosate 0.125 49 98
/if Ol llOull ChICU
56 84 73 85 83 0 94

/O

35 29 33

0.063 92 99 79 89 98 88 19 0 40 24 19 23

0.032 100 97 101 96 94 95 0 0 0 9 0 0

0.016 103 95 99 102 95 96 0 0 2 0 0 0

0.008 101 96 100 98 95 95 0 0 2 2 0 0

Glufosinate 0.125 94 96 97 85 90 87 6 0 0 28 44 16

0.063 99 96 100 93 95 92 0 0 0 16 5 6

0.032 104 97 94 101 96 96 0 0 0 5 0 3

0.016 99 94 98 99 96 97 0 0 0 0 0 0

0.008 105 96 100 103 96 100 0 0 0 0 0 0

LSD (0.05) O 1
O O

'Application timings correspond to 2- to 3-leaf (early timing) and panicle differentiation (late tuning). Rice height based on measurement from the soil to the 
tip of the uppermost leaf.

bRates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate.



height when applied late 11 to 27%. The 0.125 rate of glufosinate in 1998 and 1999 and 

the 0.125 and 0.063 rates in 2000 reduced rice height when applied late 8 to 15%. Rice 

was injured 83 and 19% in 1998 and 94 and 40% in 2000 when the 0.125 and 0.063 

rates of glyphosate were applied early, but not in 1999. By 28 DAT, rice plants had 

recovered from visual injury sustained from early application of glufosinate in 1998 and 

2000. In contrast, rice injury 28 DAT had increased for the 0.063 and 0.125 rates from 

that observed at 14 DAT, and was 19 to 35%. For glufosinate, injury in some years 28 

DAT following late application had increased from the earlier rating and was 5 to 44% 

for the two highest rates. In comparing across rating dates, it is evident that rice plants 

exposed to the highest rate of glyphosate were not able to recover from height reduction 

observed in 2 o f 3 yr when glyphosate was applied early and in all years when applied 

late. Additionally, injury increased with time in all years when glyphosate was applied 

late. For glufosinate, however, plants in most cases were able to more rapidly recover 

from herbicide injury. This clearly shows the greater sensitivity of rice to glyphosate.

Rice height at harvest and days to 50% heading were not influenced by application 

timing and year. At rice harvest, height was reduced 12 and 6% where glyphosate was 

applied at 0.125 and 0.063 rates, respectively, but no more than 3% for the same rates of 

glufosinate (data not shown). Number of days to 50% heading was delayed 5 and 2 

days following 0.125 and 0.063 rates of glyphosate and 1 day following glufosinate at 

the 0.125 rate (data not shown). Data for rice height at harvest again reflect the inability 

to recover from height reduction following the early and late applications (Tables 4.1 

and 4.2) and the subsequent impact of this stress on delayed heading.
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Glyphosate reduced rice yield when applied early at the 0.125 rate in 1998 (99%) 

and at 0.125 and 0.063 rates (67 and 26%, respectively) in 2000 (Table 4.3). Rice 

yields were reduced 29 to 54% for the two highest rates of glyphosate applied late.

Yield reductions for the early or late glyphosate applications, however, were not 

observed in 1999. In contrast to glyphosate, only the 0.125 rate of glufosinate in 1998 

(30%) reduced rice yield when applied at panicle differentiation, again supporting the 

greater sensitivity of rice to glyphosate.

Rice Germination/Vigor Studies

Application timings did not affect rice germination and data are averaged across the 

two application timings. In 1999, simulated drift of glyphosate and glufosinate did not 

affect rice germination evaluated at temperatures of 13,16,19,22, and 25 C, however, 

differences were observed among seed saved from 2000 (data not shown). Rice injury 

was generally higher in 2000 versus 1999 (Tables 4.1 and 4.2), which may have 

contributed to reductions in germination observed in 2000.

In 2000, differences in germination were not observed among the treatments when 

evaluated at 13 C. At 16 C, differences were not observed in rice germination 5 DAP in 

2000, but by 9 DAP rice germination was reduced by the 0.032 rate and higher of 

glyphosate and the 0.125 and 0.063 rates of glufosinate. However, at 14 DAP, all rates 

of glyphosate and the two highest rates of glufosinate reduced rice germination 

compared to the glyphosate/glufosinate nontreated control. At 19 C, only the 0.125 and 

0.063 rates of glyphosate resulted in reduction of rice seed germination 14 DAP. As 

temperature was increased to 22 and 25 C, more favorable for rice seed germination,
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Table 4.3. Yield of non-transgenic ‘Cypress’ rice following simulated drift rates of
glyphosate and glufosinate at two application tunings/

Rice yield'

Early timing Late timing

Treatment Rateb 1998 1999 2000 1998 1999 2000

Glyphosate 0.125 1 95
/o  01  U O U U C alSu

33 46 89 71

0.063 96 102 74 67 93 70

0.032 95 88 93 94 104 94

0.016 98 92 91 103 98 86

0.008 97 102 96 90 102 97

Glufosinate 0.125 89 93 85 70 97 86

0.063 102 103 83 86 106 93

0.032 107 94 94 104 102 98

0.016 100 102 102 103 92 99

0.008 98 101 101 101 98 96

LSD (0.05)
— n — n —7-— T T-r-—

t  £1 0

Rice height based on measurement from the soil to the dp of the uppermost leaf.

bRates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha 
gyphosate and 0.42 kg ai/ha glufosinate.

‘Yield for the nontreated control was 8,770,5,810, and 7,860 kg/ha in 1998, 1998, and 2000, 
respectively.
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only the 0.125 rate o f glyphosate reduced rice seed germination below that of the 

control 14 DAP (56% vs. 89% at 22 C and 65 vs. 96% at 25 C).

Differences in rice vigor based on shoot length of germinating seeds were not 

dependent on herbicides or application timings. Simulated drift rates did not negatively 

affect rice vigor in 1999 (data not shown). However, following the 0.125 rate in 2000, 

vigor was reduced 18% when compared to the control (data not shown). These data 

suggest that glyphosate at reduced rates can affect seed germination and vigor and that 

caution should be used when applying glyphosate near fields used for commercial seed 

production. In other studies glyphosate has had a negative impact on germination of 

seed produced from treated plants (Clay and Griffin 2000).

Corn Field Study

Com symptoms varied between glyphosate and glufosinate. Com visual injury from 

glyphosate developed slowly and consisted of stunting and yellow and red discoloration 

of leaves. Symptoms caused by glufosinate developed quickly and included some 

stunting, however, injury mainly consisted of chlorosis and necrosis of leaves. 

Significant interactions occurred among years for com injury and height 7,14, and 28 

DAT, therefore data are presented by year. At 7 DAT, glyphosate applied early to 6 - 

leaf com at the 0.125 and 0.063 rates in 1997 reduced height 28 and 22% and 0.125, 

0.063, and 0.032 rates in 2000 reduced com height 87,45, and 12%, respectively (Table 

4.4). Glyphosate, however, applied early did not reduce height in 1998. When 

glyphosate was applied late to 9-leaf com, the highest rate reduced height 32 and 13% 

in 1998 and 1999, respectively. Glufosinate reduced com height only in 1998 at 7 DAT 

when applied late (12%). In 1997, all rates of glyphosate applied early injured com (10
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Table 4.4. Height and injury of non-transgenic ‘Dekalb 687’ com 7 days following simulated drift rates of glyphosate and
Glufosinate at two application timings.8

Com height Com injury

Early timing Late timing Early timing Late timing

Treatment Rateb 1997 1998 1999 1997 1998 1999 1997’ 1998 1999 1997 1998 1999

- %

Glyphosate 0.125 72 90
/o  OI UuUuGalCU

13 96 68 87 78 48 64 0 40 10

0.063 78 96 55 100 90 97 55 24 41 0 13 5

0.032 99 101 88 94 90 96 29 13 15 0 0 0

0.016 100 100 98 100 88 101 25 12 0 0 0 0

0.008 107 101 99 98 96 100 10 5 0 0 0 0

Glufosinate 0.125 96 98 92 101 88 97 46 61 54 20 29 25

0.063 104 97 98 102 88 99 20 44 24 12 23 13

0.032 n o 103 100 104 91 111 11 24 14 3 8 5

0.016 106 106 100 103 86 103 8 15 3 0 1 0

0.008 107 107 103 101 85 101 4 6 0 0 0 0

LSD (0.05)
1 " t s ' ^ i Z Z  "iZ

-  A  -U
- .

collar.

bRates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha 
glufosinate.



to 78%). Com injury was observed with the 0.016 rate and higher at the early 

application in 1998 (12 to 48%) and 0.032 and higher in 1999 (15 to 64%). When 

applied early, ail rates of glufosinate injured com in 1998 6  to 61%. The 0.016 rate and 

higher of glufosinate applied early injured com 8  to 46% in 1997 and injury in 1999 

ranged from 14 to 54% for the 0.032 rate and higher.

Injury was not observed in 1997 when glyphosate was applied late (Table 4.4). In 

1998, however, com was injured 13 and 40% for the two highest rates and 10% for the 

highest rate in 1999. When glufosinate was applied early, the 0.125 and 0.063 rates 

injured com 12 to 29% over the three years.

Since com was tasseling 7 d following the late application, com height and injury 14 

and 28 DAT represents only the early application. At 14 DAT, com height was reduced 

55 and 42% in 1997 with the two highest rates of glyphosate and with the three highest 

rates in 1998 (14 to 61%) and in 1999 (19 to 73%) (Table 4.5). Glufosinate did not 

reduce com height 14 DAT in 1997, but height was reduced 21% in 1998 and 14% in 

1999 for the highest rate. All rates of glyphosate and glufosinate injured com 14 DAT 

in 1997 and ranged from 13 to 79% and 10 to 36%, respectively. In 1998, com was 

injured by the 0.016 rate and higher for glyphosate (14 to 58%) and glufosinate (16 to 

36%). In 1999, however, the 0.032 rate and higher of glyphosate injured com 38 to 

80% and the 0.125 and 0.063 rates of glufosinate injured com 31 and 11%, respectively.

At 28 DAT, com height was reduced by the two highest rates of glyphosate in 1997 

(63 and 36%) and 1999 (87 and 45%), but only for the highest rate in 1998 (33%) 

(Table 4.5). Height reduction was not apparent for glufosinate regardless of rate. In 

1997, all rates of glyphosate and glufosinate injured com 28 DAT and ranged from 9 to
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Table 4.5. Height and injury of non-transgenic ‘Dekalb 687’ com 14 and 28 days following simulated drift rates of glyphosate and
glufosinate applied at the 6-leaf growth stage*

Treatment Rateb

14 DAT 28 DAT

Com height Com injury Cora height Com injury

1997 1998 1999 1997 1998 1999 1997 1998 1999 1997 1998 1999

% of nontreated -----% ------ % of nontreated -----% ------
Glyphosate 0.125 45 39 27 79 58 80 27 67 13 81 69 61

0.063 58 79 29 56 43 66 64 94 55 38 23 38

0.032 97 86 81 26 25 38 91 97 87 14 8 11

0.016 96 89 97 21 14 3 91 99 99 18 3 0

0.008 97 91 97 13 5 6 95 99 99 9 0 3

Glufosinate 0.125 101 79 86 36 36 31 93 94 92 13 11 10

0.063 98 89 94 25 21 11 95 100 98 13 8 1

0.032 99 91 96 13 21 3 102 100 100 11 5 1

0.016 96 95 95 9 16 4 97 100 99 10 0 0

0.008 100 95 102 10 5 0 97 99 103 14 0 0

LSD (0.05) 11 O

i r .  i_ • i _ . " j
IZ ' o 1 4  ” /

*Com height based on measurement from the soil to the last fully developed collar.

'’Rates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha 
glufosinate.



81% and 10 to 14%, respectively. Com injury for the three highest rates of glyphosate 

was 8  to 69% in 1998 and 11 to 61% in 1999. Injury for glufosinate was no more than 

11% in 1998 and 1999. As also noted for rice, com was able to recover from height 

reduction associated with glufosinate at the highest rates, but not with glyphosate. The 

differential response again points to the greater sensitivity of com to glyphosate.

Even though variation in crop response was observed among years this same 

response was not manifested in yield. Com yield averaged across years was reduced 78, 

43, and 22% following early application of 0.125,0.063, and 0.032 rates of glyphosate, 

respectively (Table 4.6). However, when application was delayed, only the highest 

glyphosate rate reduced com yield (33%). For glufosinate, the 0.125 rate reduced com 

yield 13 and 11% when applied at the early and late timings, respectively.

Greenhouse Studies

For the greenhouse experiments, no differences in height, injury, and dry weight 

responses were observed among Cypress, Bengal, Cocodrie, Drew, and Jefferson rice 

varieties and Dekalb 687, Asgrow 897, Pioneer 3223, Mycogen 8460, and Terral 2930 

com varieties following application of simulated drift rates of glyphosate or glufosinate 

(data not shown). Even though experiments were not conducted in the field, results 

suggest that varieties would respond similarly to the negative effects of the herbicides. 

Greenhouse research also clearly showed the greater sensitivity of both crops to 

glyphosate.

Results emphasize the negative effect that both glyphosate and glufosinate can have 

on rice and com when applied at the sub-lethal rates. Both crops are more sensitive to
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Table 4.6. Yield o f non-transgenic ‘Dekalb 687’ com following 
simulated drift rates of glyphosate and glufosinate at two application 
timings.*

Com yield'

Treatment Rateb Early timing Late timing

 % of nontreated------
Glyphosate 0.125 22 67

0.063 57 104

0.032 78 95

0.016 92 100

0.008 96 93

Glufosinate 0.125 87 89

0.063 91 92

0.032 97 101

0.016 96 98

0.008 97 97

LSD (0.05)---------------------------------------------- ---------------11--------------
'Application timings correspond to 6-leaf (early tuning) and 9-leaf (late timing). 

Data averaged across years.

*Rates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of
1.12 kg ai/ha glyphosate and 0.42 kg ai/ha.

'Yield for the nontreated check was 9,270 kg/ha.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



glyphosate than to glufosinate, this based on the ability of plants to recover from height 

reduction associated with the early application. In general, glyphosate controls grasses 

better than glufosinate and glufosinate is generally a better broadleaf herbicide than 

glyphosate (Anonymous 2000; Ahrens 1994).

Variation in crop response was observed among years and may be related to inability 

to precisely time the applications combined with weather conditions around application 

that may have affected herbicide uptake (Wanamarta and Permer 1989). In regard to 

rice, panicle differentiation can occur over several days. Based on yield reductions 

associated with glyphosate, rice and com can be classified as equally sensitive. For 

both crops, early applications (2- to 3-leaf rice and 6 -leaf com) of glyphosate reduced 

yield more than the later applications (panicle differentiation in rice and 1 wk prior to 

com tasseling). At the highest rate evaluated for glyphosate (0.125 of the labeled use 

rate), which is typical of what could be expected from herbicide drift (Wolf et al. 1992), 

rice yield was reduced in 2 of 3 experiments 99 and 67% when applied early and 64 and 

29% when applied late. In com, yield following the 0.125 rate o f glyphosate was 

reduced over 3 experiments an average of 78% when applied early and 33% when 

applied late. For glufosinate, com yield was reduced 13 and 11% when applications 

were made early and late, respectively. These studies clearly indicate that producers 

should use caution when applying glyphosate and glufosinate to fields adjacent to non- 

herbicide resistant rice and com.
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CHAPTER 5

SOYBEAN (iGLYCINE MAX) AND COTTON {GOSSYPIUM HIRSUTUM) 
RESPONSE TO SIMULATED DRIFT OF GLYPHOSATE AND

GLUFOSINATE

Introduction

Glyphosate [//-(phosphonomethyl) glycine)] and glufosinate [2-amino-4- 

(hydoxymethylphosphinyl) butanoic acid] are nonselective postemergence herbicides 

that control many annual and perennial weeds. In general, glyphosate controls grasses 

better than glufosinate and glufosinate is generally a better broadleaf herbicide than 

glyphosate (Anonymous 2000; Ahrens 1994). Glyphosate and glufosinate were initially 

evaluated as preplant herbicides for use in reduced tillage cropping systems (Lanie et al. 

1994a, 1994b), but there role expanded with the development of herbicide-resistant 

crops.

Soybean [Glycine max (L.) Merr.] with the glyphosate-resistance gene (Bradshaw 

1997) was introduced in the U. S. in 1996 and cotton (Gossypium hirsutum L.) in 1997. 

In 1999, more than 50% of the soybean and 60% of the cotton hectarage in Louisiana 

was planted to glyphosate-resistant varieties (Anonymous 1999). Expanded use of 

glyphosate-resistant and glufosinate-resistant crops will increase use of the respective 

herbicides and also increase the likelihood of off-target movement to adjacent crops. 

Because of the diversity of cropping systems in the South, it is no uncommon for 

herbicide resistant crops to be planted near susceptible soybean and cotton. 

Consequently, potential for herbicide drift is of great concern.

Most agricultural chemicals used to control pests are applied into the atmosphere as 

liquid spray droplets (Hanks 1995). Conversion of a liquid into spray droplets and the
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ultimate fate of the droplets depend on nozzle type, spray pressure, droplet size, 

environmental conditions, protective shielding, boom height, and spray additives (Bode 

et al. 1976; Wolf et al. 1993). Research has shown that downwind drift from unshielded 

sprayers ranges from 1 to 16% depending on nozzle size and wind velocity (Maybank et 

al. 1978; Wolf et al. 1993). Drift is especially prevalent when herbicides are applied 

under windy conditions or when environmental conditions favor volatilization and 

redisposition (Hanks 1995). Besides windy conditions at application, wet fields can 

delay timely herbicide application, which can increase the risk associated with off-target 

movement of herbicides applied aerially (Martin and Green 1995). Herbicide drift may 

also be the result of improper application (Wauchope et al. 1982).

Herbicide application during a temperature inversion can encourage herbicide drift 

(Anonymous 1993). Under ambient conditions, air is warmest at the soil surface and 

cooler with increasing altitude. However, during a temperature inversion, a layer of 

cool air forms at the soil surface capturing fine spray droplets that are displaced when 

wind velocity increases. The droplets eventually encounter a down draft, which propels 

them back to the surface. Temperature inversions are most common at dawn, dusk, and 

when winds are calm. To alleviate herbicide drift due to inversions, formation of spray 

droplets less than 1 0 0  microns during application should be avoided.

Droplet size can influence drift, especially when herbicides are applied by air as 

ultra low volume sprays with spray droplets less than 105 microns in size (Hanks 1995, 

1997). Droplet size can be altered with nozzle selection and drift retardants specifically 

designed to reduce spray drift (Bouse et al. 1976). While herbicides vary in their 

relative drift potential (Hanks 1997; Mueller and Womac 1997), use of venturi-type
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nozzles and other drift reducing nozzles may minimize their overall drift potential 

(Etheridge et al. 1999). However due to the larger droplet size, weed control with 

certain herbicides could be compromised.

Research has shown that off-target movement of herbicide during application is 

somewhere between 1/10 and 1/100 of the applied rate (Al-Khatib and Peterson 1999; 

Bailey and Kapusta 1993; Snipes et al. 1991,1992). Even though the herbicide rates 

would be considered sub-lethal, response can be quite severe for susceptible crops. 

Previous research has investigated simulated drift of quinclorac (3,7-dichloro-8- 

quinolinecarboxylic acid) (Snipes et al. 1992) and triclopyr {[(3,5,6-trichloro-2- 

pyridinyl)oxy]acetic acid} (Snipes et al. 1991) in cotton and nicosulfiiron {2-[[[[(4,6- 

dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]suIfonyl]-A/Ar-dimethyl-3- 

pyridinecarboxamide} and primisulftiron {2-[[[[[4,6-bis(difluoromethoxy)-2- 

pyrimidinyl]amino]carbonyl]amino]sulfonyl]benzoic acid} in soybean (Bailey and 

Kapusta 1993). Injury from herbicide drift is usually worse when drift occurs early in 

the development o f susceptible plants or when plants are in the early reproductive 

growth stage (Ghosheh et al. 1994; Hurst 1982; Snipes et al. 1991,1992). However, 

significant injury from exposure to simulated drift rates of certain herbicides does not 

always result in yield losses. Levels of soybean injury were similar after exposure to 

simulated drift of nicosulfiiron and primisulfuron, but significant yield losses occurred 

only for primisulfuron-treated plants (Bailey and Kapusta 1993). Weidenhammer et al. 

(1989) reported significant soybean injury and yield reductions when exposed to 

simulated drift of dicamba (3 ,6 -dichloro-2 -methoxybenzoic acid). Snipes et al. (1991) 

reported delayed cotton maturity and yield reduction when triclopyr was applied at early
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bloom. Cotton yield was also reduced when quinclorac was applied at the cotyledon

stage or at pinhead square (Snipes et al. 1992).

The objective of this research was to determine the effect o f simulated drift of 

glyphosate and glufosinate on growth and yield of conventional, non-herbicide resistant 

soybean and cotton.

Materials and Methods

Soybean Field Study

Field experiments were conducted at the Ben Hur Research Farm near Baton Rouge, 

LA, to evaluate response of ‘DPL 3588’ non-herbicide resistant soybean to simulated 

drift rates o f glyphosate and glufosinate. Soybean was planted May 26,1998 and May 

18, 1999 at a seeding rate of 130,000 seeds/ha. The experimental area was tilled and 

the seedbed packed prior to planting. The soil type was a Commerce silt loam (fine- 

silty, mixed, nonacid, thermic Aerie Fluvaquent) with a pH of 5.6 and 1.3% organic 

matter. Plots were maintained weed free by a preemergence application of metolachlor 

[2-chloro-/V-(2-ethyl-6-methylphenyl)-/V-(2-methoxy-l-methylethyl)acetamide] plus 

imazaquin {2-[4,5-dihydro~4-methyl-4-(l-methylethyl)-5-oxo-l//-imidazol-2-yl]-3- 

quinolinecarboxylic acid} (1.7 + 0.14 kg ai/ha) and a postemergence application of 0.28 

kg ai/ha fomesafen (5-[2-chIoro-4-(trifuoromethyl)phenoxy]-iV-(methylsulfonyl)-2- 

nitrobenzamide} in early June followed by mechanical cultivation as needed.

Plots consisted of 3,76 cm rows 7.6 m in length. The experimental design was a 

randomized complete block with a three-factor factorial treatment arrangement with 

four replications. The first and second factor was herbicide and herbicide rates. Drift 

rates represented 0.125,0.063,0.032,0.016, and 0.008 of the use rates o f 1.12 kg ai/ha
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glyphosate (140,70,35,18, and 9 g/ha, respectively) and 0.42 kg ai/ha glufosinate (53, 

26,13,7, and 4 g/ha, respectively). The range of drift rates was chosen because it 

represents what could typically occur under field conditions (Al-Khatib and Peterson 

1999; Ghosheh et al. 1994; Hurst 1982; Snipes et al. 1991,1992). The third factor was 

application timing. An early postemergence application was made to soybean at 2- to 

3-trifoliate on June 17,1998 and June 9,1999 and a late postemergence application at 

first flower on July 13,1998 and July 7,1999. A glyphosate/glufosinate nontreated 

control was included for comparison. Herbicide treatments were applied using a C02 

pressurized backpack sprayer calibrated to deliver 140 L/ha spray volume at 166 kPa. 

Visual injury and plant height data were collected 7,14, and 28 days after treatment 

(DAT). Soybean height was based on measurement from the soil to the terminal of 

each plant and expressed as a percentage of the nontreated control. Height 

measurements 28 DAT for the first flower application were not made because DPL 

3588 is a determinant variety and mam stem growth had ceased shortly after flowering 

began. Visual injury ratings were based on a scale of 0 to 100% where 0 = no injury 

and 100 = complete death of the plant. Soybean was harvested October 16,1998 and 

October 7,1999 and yield was adjusted to 13% moisture. Data were subjected to 

analysis o f variance with partitioning appropriate for the factorial arrangement of 

treatments. Means of significant main effects and interactions were separated using 

Fisher’s protected LSD at the 5% level o f probability.

Cotton Field Study

Non-herbicide resistant ‘Delta Pine 33B’ cotton was planted at the R & D Research 

Farm near Washington, LA, on May 8,1998 and May 21,1999 at a seeding rate of
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130,000 seeds/ha. The experimental area was tilled and bedded prior to planting. The 

soil type was a Baldwin silty clay loam (fine, montmorillonitic, thermic Vertic 

Ochraqualf) with a pH of 5.9 and 1.4% organic matter. The fertilizer program consisted 

o f64-64-64 kg/ha (N-P2O5-K2O) broadcast prior to planting. Three weeks after 

planting 65-0-0 kg/ha. The insecticide aldicarb [2-methyl-2-(methylthio) 

propionaldehyde 0-(methylcarbamoyl)oxime] at 0.67 kg ai/ha was applied in-furrow at 

planting. Plots were maintained weed free by a preemergence application of 0.06 kg 

ai/ha pyrithiobac {2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)thio]benzoic acid} and 

postemergence applications of 0.28 kg ai/ha sethoxydim {2-[l-(ethoxyimino)butyl]-5- 

[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-l-one} followed by a postemergence- 

directed application of 1.1 kg ai/ha fluometuron [/V^V-dimethyl-/V-[3-(trifluoromethyl) 

phenyl]urea] plus 2.2 kg ai/ha MSMA (monosodium salt of MAA).

Plots consisted of 3,91.4 cm rows 7.6 m long. The experimental design was a 

randomized complete block with a three-factor factorial treatment arrangement with 

four replications. A glyphosate/glufosinate nontreated control was included for 

comparison. Treatments were the same as described for the soybean study with the 

exception of the application timings. An early postemergence application was made at 

3- to 4-leaf on May 29,1998 and June 14,1999, a mid-postemergence application at 

pinhead square June 9,1998 and June 28,1999, and a late postemergence application at 

early bloom on June 30, 1998 and July 19,1999. Visual injury and plant height data 

were collected 7,14, and 28 DAT as described previously for the soybean study. Plots 

were monitored twice weekly for appearance of first square (flower bud) and first 

flower to document any delay in cotton maturity. Monitoring was based on the normal
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cotton development where a square is produced every three days. When approximately 

50% of the plants reached first square or first flower in the glyphosate/glufosinate 

nontreated control plots, days to first-square and first flower were determined. Also at 

flowering, nodes above white flower (NAWF) were determined from 10 plants in the 

center two rows of each plot each week until NAWF was less than 5 (near end of 

flowering period). Cotton was mechanically harvested on September 19,1998 and 

September 21,1999 and seed cotton yield was determined. Statistical analysis was as 

described for the soybean study.

Greenhouse Study

Since only one soybean and cotton variety was evaluated in the field, greenhouse 

experiments were conducted to evaluate differences in sensitivity to simulated drift of 

glyphosate and glufosinate using five commonly grown soybean and cotton varieties. 

The experimental design was a randomized complete block with a three-factor factorial 

arrangement of treatments with four replications. The first factor was crop variety and 

the second and third factors were herbicide and herbicide drift rate, respectively. DPL 

3588, ‘Asgrow 5959’, ‘Terral 5893’, ‘Pioneer 9594’, and ‘Dekalb 5850’ soybean 

varieties and DPL 33B, ‘Stoneville 474’, ‘Suregrow 125’, ‘Suregrow 747’, and 

‘Paymaster 1560B’ cotton varieties were treated with 0.125,0.063, and 0.032 of the use 

rates of 1.12 kg/ha o f glyphosate and 0.42 kg/ha of glufosinate at the 3-leaf stage. Rates 

were selected because they had caused significant crop injury in the field experiments. 

All treatments were applied in a spray volume of 140 L/ha at 166 kPa. Plants were 

grown in the greenhouse using plastic pots with a 50:50 mix of commercial potting mix'

1 Jiffy Mix Plus, Jiffy Products of America Inc., Batavia, IL 60510.
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and Olivier silt loam (fine-silty, mixed, theimic, Aerie Fluvaquent) soil. Artificial 

lighting was utilized to extend day length to 14 hours and temperature was maintained 

at 31+4 C. Plants were thinned after emergence to two plants per pot. At 7 and 14 

DAT, plant height and injury were recorded as described previously. At 14 DAT, 

above ground biomass was harvested and oven dried at 60 C for 48 h. Separate 

experiments and analyses were conducted for each crop and experiments were repeated. 

Data were subjected to analysis of variance with partitioning appropriate for the 

factorial arrangement of treatments. Means of significant main effects and interactions 

were separated using Fisher’s protected LSD at the 5% level of probability.

Results and Discussion

Soybean Field Study

Soybean height was influenced only by herbicide rate and data were averaged across 

herbicides and application timings. At both 7 and 28 DAT, the two highest rates (0.125 

and 0.063) reduced soybean height 11 and 9%, respectively (Table 5.1). Soybean 

height was reduced 14 DAT by only the highest rate (11%). Plant symptoms varied 

between glyphosate and glufosinate. Visual injury from glyphosate applied early at 2- 

to 3-trifoliate consisted of stunting and chlorosis o f youngest leaves. When applied late 

at first flower, injury was manifested as chlorosis. Injury from glufosinate consisted of 

some stunting, but predominantly chlorosis and necrosis of contacted leaves.

For soybean, injury 7 and 14 DAT is presented for individual years because of 

significant year by treatment interactions. Injury was most evident for the two highest 

rates of the herbicides (Table 5.2). At 7 DAT, glyphosate at 0.125 and 0.063 rates
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Table S.l. Height of non-transgenic ‘DPL 3588* soybean 7,14, and 28 
days following simulated drift rates of glyphosate and glufosinate at 
two application timings.*_________  _______________________

Soybean height

Rateb 7 DAT 14 DAT 28 DAT1

0.125 89
/ u  o i  u o u u c d i c a

89 89

0.063 91 95 91

0.032 98 100 102

0.016 98 101 98

0.008 98 100 92

LSD (0.05)
I A '" J

7 8 9

‘Averaged across years and application timings of 2- to 3-trifoliate (early timing) 
and first flower (late timing).

bRates correspond to 0.12S, 0.063,0.032,0.016, and 0.008 of the labeled rates of
1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate.

‘Soybean height based on measurement from the soil to the terminal of each plant.

dHeight was not measured 28 DAT for the late timing.
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Table 5.2. Injury of non-transgenic ‘DPL 3588’ soybean 7,14, and 28 days following simulated drift rates of glyphosate and
glufosinate at two application timings.*____________________________________________________________________

Soybean injury

Herbicide Rateb

7 DAT 14 DAT 28 DAT*

Early timing Late timing Early tuning Late timing Early timing Late timing

/u
Glyphosate 0.125 29(21)d 25(17) 35(5) 3(0) 8 0

0.063 18(8) 3(5) 9(1) 0(0) 0 0

0.032 3(4) 0(0) 1(0) 0(0) 0 0

0.016 0(0) 3(0) 0(0) 0(0) 1 0

0.008 0(0) 0(0) 0(0) 0(0) 0 0

Glufosinate 0.125 14(19) 40(17) 4(6) 14(0) 1 0

0.063 9(6) 16(5) 0(0) 6(0) 1 0

0.032 0(1) 0(0) 0(3) 0(0) 0 0

0.016 0(0) 0(0) 0(1) 3(0) 0 0

0.008 0(0) 0(0) 0(0) 0(0) 0 0

LSD (0.0S) e A
D . . .  q ~ H

‘Application timings correspond to 2- to 3-trifoliate (early timing) and first flower (late timing).

bRates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate.

‘Data averaged across years.

dData arc for 1998 and for 1999 in parentheses.



applied early injured soybean 29 and 18%, respectively in 1998, which was greater than 

in 1999 (21 and 8 %, respectively). In 1998, injury from glyphosate 7 DAT was greater 

than observed for glufosinate (no more than 14%). The second year, injury from the 

two highest rates of glufosinate (19 and 6 %) was equivalent to that of glyphosate.

When applied late the high rate of glyphosate injured soybean 7 DAT 25% in 1998, 

however, in 1999, the two highest rates injured soybean 17 and 5%. The 0.125 and 

0.063 rates of glufosinate injured soybean 40 and 16% in 1998 and 17 and 5% in 1999. 

Unlike for the early timing, glufosinate applied late in 1998 injured soybean 7 DAT 

more than glyphosate.

At 14 DAT, glyphosate applied at the 0.125 and 0.063 rates in 1998 injured soybean 

when applied early 35 to 9%, respectively, with injury at least 7 times greater than for 

the same rate the second year (Table 5.2). The high rate of glufosinate injured soybean 

in 1998 and 1999 when applied early no more than 6 %. Late application of glyphosate 

injured soybean both years no more than 3% compared with no more than 14% for 

glufosinate.

At 28 DAT averaged across years, only the high rate of glyphosate applied early 

injured soybean (8%) (Table 5.2). The ability o f soybean to recover within 28 days 

after early or late application of glyphosate and glufosinate was reflected in yields equal 

for all treatments (Table 5.3). Other research has shown the ability of soybean to 

recover from herbicide injury from drift rates (Bailey and Kapusta 1993). Al-Khatib 

and Peterson (1999) reported no reductions in soybean yield when 0.01 to 0.3 of the use 

rates o f 1.12 kg/ha glyphosate and 0.42 kg/ha glufosinate injured 2- to 3-trifoliate 

soybean 15 to 40%.
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Table 5.3. Yield o f non-transgenic ‘DPL 3588’ soybean following 
simulated drift rates of glyphosate and glufosinate at two application
timings.*________________________________________________

Soybean yield'

Herbicide Rate Early timing Late timing

Glyphosate 0.125 92
% of nontreated----------

91

0.063 91 93

0.032 97 102

0.016 91 97

0.008 95 91

Glufosinate 0.125 91 90

0.063 98 99

0.032 92 99

0.016 92 92

0.008 95 96

LSD (0.05) -NS-
'Application timings correspond to two to three trifoliate (early timing) and first 

flower (late timing).

bRates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of
1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate.

°Data averaged across years. Yield for the nontreated check was 3,830 
kg/ha.
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Cotton Field Study

Cotton injury from glyphosate consisted of slight stunting from the high rate and a 

chlorosis o f leaves. Symptoms caused by glufosinate included stunting but mostly 

chlorosis and necrosis of leaves.

Differences in cotton height response were not herbicide dependent, but could be 

attributed to herbicide rate and application timing. Height reductions were noted only 

for the highest herbicide rate (Table 5.4). Averaged across herbicides, cotton height 

was reduced 15% for the mid timing (pinhead square) 7 DAT in 1998; 20% for the early 

timing (2- to 3-Ieaf) 14 DAT in 1999; 21% for the mid timing 14 DAT in 1998; and 

17% for the early timing 28 DAT in 1999.

Cotton injury data are presented for individual years because of significant year by 

treatment interactions. At 7 DAT, glyphosate injured cotton only at the late timing in 

1998 for the 0.125 (16%) and 0.063 (5%) rates (Table 5.5). In contrast, glufosinate at 

the 0.032 rate and higher applied early in 1999 injured cotton 4 to 36%. For the mid 

timing, glufosinate at the two highest rates injured cotton 8 to 29% over the two years. 

Injury was 5 to 39% when the same rates were applied at the late timing over the two 

years.

Glyphosate at the highest rate injured cotton 0 to 13% 14 DAT and 0 to 21% 28 

DAT when applied at the various timings over the years (Table 5.5). This compares 

with 0 to 20% 14 DAT and 0 to 9% 28 DAT for the two highest rates of glufosinate 

applied at the various timings. When comparing individual rates o f the herbicides 

inconsistency in response between years was evident and in some cases injury would 

be higher at a specific timing for the first year with the reverse occurring for another
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Table 5.5. Injury of non-transgenic ‘DPL 33B’ cotton 7,14, and 28 days following simulated drift rates of glyphosate and glufosinate
at three application timings.*

Cotton injury

7 DAT 14 DAT 28 DAT

Herbicide Rateb
Early
timing

Mid
timing

Late
timing

Early
timing

Mid
timing

Late
timing

Early
timing

Mid
timing

Late
timing

o/

Glyphosate 0.125 0(5)* 0(3) 16(0) 0(13)
- /o —
4(5) 10(0) 0(18) 16(0) 21(0)

0.063 0(0) 0(0) 5(0) 0(0) 0(0) 0(0) 0(0) 0(0) 5(0)

0.032 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

0.016 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

0.008 0(0) 0(0) 0(0) 0(3) 0(0) 0(0) 0(0) 0(0) 0(0)

Glufosinate 0.125 3(36) 29(20) 39(7) 0(20) 6(0) 19(1) 0(6) 3(0) 9(0)

0.063 0(20) 11(8) 24(5) 0(16) 0(0) 14(0) 0(4) 0(0) 9(0)

0.032 0(4) 3(1) 5(0) 0(1) 0(0) 4(0) 0(0) 0(0) 0(0)

0.016 0(0) 3(0) 0(0) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0)

0.008 0(0) 0(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

LSD (0.05) A A

'Application timings correspond to 2- to 3-leaf (early timing), pinhead square (mid timing), and early bloom (late timing).

‘’Rates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate. 

‘Data for 1998 and for 1999 in parentheses.



Table 5.4. Height of ‘DPL 33B\ non-transgenic cotton 7,14, and 28 days following simulated drift rates of glyphosate and glufosinate
at three application timings.*____________________________________________________________________________________

Cotton height

7 DAT 14 DAT 28 DAT

Rateb Early tuning Mid tuning Late timing Early timing Mid timing Late timing Early timing Mid timing Late timing

A/

0.125 98 (88)' 85(100) 97 (93) 102 (80)
/U

79(93) 95 (102) 93 (83) 88(87) 95(103)

0.063 103 (89) 100(81) 92(102) 103 (92) 95 (92) 92 (103) 97 (92) 97 (86) 92(103)

0.032 96(100) 94(103) 94(107) 97 (107) 89(111) 92(111) 94 (89) 93 (103) 93(111)

0.016 94 (100) 92(107) 101 (99) 91 (111) 88(116) 101 (99) 89(109) 94(112) 101 (99)

0.008 98(104) 100(98) 97 (88) 95(113) 96(98) 98 (98) 95(113) 95(90) 98 (98)

LSD (0,05)
" 1 i;-IT;

11 1 cI J I J I j

'Application timings correspond to 2- to 3-leaf (early timing), pinhead square (mid tuning), and early bloom (late tuning).

'’Rates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate. 

'Data are for 1998 and 1999 in parentheses.



timing the second year. Variation in cotton injury observed between years may be 

related to inability to precisely time the applications, combined with environmental 

conditions around application that may have affected herbicide uptake (Wanamarta and 

Penner 1989). Previous research has shown significant variation in years when 

evaluating crop response to sub-lethal rates of herbicides (Richard 1981; Snipes et al. 

1991). This may very well explain the variability in injury often observed among plants 

within fields suspected of exposure to sub-lethal herbicide rates due to drift.

Conclusions can be drawn from the present study that cotton was more sensitive to 

glufosinate than glyphosate 7 DAT, but with time, differences between herbicides were 

less apparent due to the ability of cotton to quickly recover (Tables 5.4 and 5.5). The 

fact that there were no differences in number of days to first square or flower and 

NAWF (data not shown), demonstrates that cotton maturity was not delayed due to drift 

rates of glyphosate and glufosinate. Additionally, early season injury from the 

herbicides (Tables 5.4 and 5.5) was not manifested in yield reductions (Table 5.6). 

Snipes et al. (1991) reported cotton maturity was delayed and yield was reduced when 

triclopyr was applied at early bloom. Also, cotton yield was reduced when quinclorac 

was applied at either cotyledon or pinhead square (Snipes et al. 1992).

Greenhouse Study

For the greenhouse experiments, no differences in height, injury, or dry weight were 

observed among the soybean or cotton varieties following simulated drift rates of 

glyphosate and glufosinate (data not shown). Even though these experiments were not 

conducted in the field, results suggest that varieties should respond similarly to the
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Table 5.6. Yield o f non-transgenic ‘DPL 33B’ cotton following simulated drift 
rates of glyphosate and glufosinate at three application timings.a

Yield®
Herbicide Rate Early timing Mid timing Late timing

Glyphosate

Glufosinate

0.125 105
------% of nontreated-------

94 108

0.063 108 101 105

0.032 95 106 108

0.016 110 109 107

0.008 108 102 95

0.125 99 98 107

0.063 105 97 107

0.032 100 102 107

0.016 108 no 104

0.008 110 108 109

-------------- NS-------------LSD (0.05)_________________________________________________________________
'Application timings correspond to 2- to 3-leaf (early timing), pinhead square (mid timing), 

and early bloom (late timing).

‘’Rates correspond to 0.125,0.063,0.032,0.016, and 0.008 of the labeled rates of 1.12 kg ai/ha 
glyphosate and 0.42 kg ai/ha glyphosate.

‘Data averaged across years.
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negative effects o f the herbicides. Greenhouse research also clearly showed the 

tolerance o f soybean and cotton to sub-lethal rates of glyphosate and glufosinate.

hi contrast to previous research evaluating com and rice response to simulated drift 

o f glyphosate and glufosinate (Ellis et al. 1999a, 1999b), soybean and cotton appear to 

be more tolerant to these herbicides. Glyphosate is very effective on grasses 

(Anonymous 2000; Ahrens 1994; Lanie 1994a, 1994b), which may explain the greater 

sensitivity of com and rice to glyphosate. Based on injury 7 DAT, cotton was more 

sensitive to glufosinate than to glyphosate, but was able to recover with no ill effect on 

maturity or yield. The early sensitivity of cotton to glufosinate can be explained by its 

excellent broadleaf activity (Anonymous 2000; Ahrens 1994; Lanie 1994a, 1994b). In 

these studies attempts were made to apply herbicides at sub-lethal rates typical of what 

would be expected under drift conditions. Even though only one soybean and cotton 

variety was evaluated, greenhouse experiments indicate that similar response should be 

expected with other non-herbicide resistant varieties. Application at rates higher than 

evaluated in this study could be very detrimental to both soybean and cotton. 

Precautions should be used to prevent off-target movement o f glyphosate and 

glufosinate to sensitive crops.
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CHAPTER 6

EFFECT OF CARRIER VOLUME ON CORN (ZEA MAYS) AND 
SOYBEAN (<GLYCINE MAX) RESPONSE TO SIMULATED DRIFT OF 

GLYPHOSATE AND GLUFOSINATE

Introduction

Development of herbicide resistant crops has offered novel weed management 

options with economical advantages to growers (Burnside 1992; Culpepper and York 

1998,1999; Wyse 1992). In particular, availability of crops with resistance to 

glyphosate [W-(phosphonomethyl) glycine)] and glufosinate [2-amino-4- 

(hydoxymethylphosphinyl) butanoic acid] has increased. A major concern associated 

with proliferation of herbicide resistant crops, however, is potential for misapplication 

and likelihood of increased incidence of off-target herbicide movement to sensitive 

crops. Herbicide drift occurs when wind causes spray droplets to be displaced from 

their intended flight path. Wolf et al. (1992) reported drift from unshielded sprayers 

ranged from 2 to 16% depending on nozzle size and wind velocity. Herbicide drift is 

especially prevalent when herbicides are applied under windy conditions or when 

environmental conditions favor volatilization and redeposition (Hanks 1995; Wall 

1994).

Herbicide drift is most often the result of improper application (Wauchope et al. 

1982). Wind speed and boom height above the intended target are primary contributors 

to herbicide drift (Hatterman-Valenti et al. 1995). Environmental conditions can also 

have an effect on herbicide drift (Bouse et al. 1976). Besides windy conditions and 

temperature inversions at application, wet fields can delay timely herbicide application,
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which can increase the risk associated with off-target movement of herbicides applied 

aerially (Martin and Green 1995).

Simulated drift o f MSMA (monosodium salt of MAA) in rice (Oryza sativa L.) 

(Richard et al. 1981), quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) (Snipes et al. 

1992) and triclopyr [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid] (Snipes et al. 1991) in 

cotton, pyrithiobac {2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)thio]benzoic acid} 

(Ghosheh et al. 1994) in com (Zea mays L.), and nicosulfuron {2-[[[[(4,6-dimethoxy-2- 

pyrimidinyl)amino]carbonyl]amino]sulfonyl]-A/^V-dimethyl-3-pyridinecarboxamide} 

and primisulfuron {2-[[[[[4,6-bis(difhioromethoxy)-2-pyrimidinyl]amino]carbonyl] 

amino]sulfonyl]benzoic acid} (Bailey and Kapusta 1993) in soybean has been 

investigated. Injury symptoms from herbicide drift are usually worse when drift occurs 

to the susceptible crop early in its development (Ghosheh et al. 1994; Hurst 1982). In 

addition to initial foliar damage, herbicide drift can be manifested as loss of tuber 

quality in potatoes (Solatium tuberosum L.) (Eberlein and Guttieri 1994), delays in fruit 

maturity in sweet cherries (Prunus avium L.) (Al-Khatib et al. 1992b), reduced boll 

production in cotton (Snipes et al. 1991), straighthead symptoms in rice (Richard et al. 

1981), stand reductions in alfalfa (Medicago sativa L.) (Al-Khatib et al. 1992a), and 

reduced yield in com and rice (Ellis et al. 1999a, 1999b).

In previous research, simulated drift was accomplished by varying herbicide rate 

with application in a constant carrier volume (Bailey and Kapusta 1993; Ellis et al. 

1999a, 1999b; Ghosheh et al. 1994; Snipes et al. 1991,1992). In these studies, carrier 

volumes ranged from 140 to 187 L/ha. Using this methodology, though providing dose 

response information, does not reflect what occurs in typical field situations. In the
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field, drift occurring from aerial or ground equipment would decrease with movement 

away from the point of application and herbicide rate and spray volume would diminish 

proportionally. Research conducted in New Mexico by Banks and Schroeder (2000) 

addresses this concern and evaluated the effect of varying the carrier volume 

proportionally with rates of glyphosate on sweet com (Zea mays var. rogusa Bonaf) and 

2,4-D [2,4-(dichIorophenoxy)acetic acid] on cotton. For both crops and for the same 

herbicide rate, greater injury and height and yield reductions were observed for the 

variable carrier volume compared with constant carrier volume.

Drift of glyphosate to sensitive crops in the South has increased in recent years and 

observations have been that crop injury at sub-lethal rates was much greater than has 

been reported in the literature for simulated drift studies (Griffin, personal 

communication). These differences may be due to carrier volume. Of interest is that 

environmental conditions in the mid-South (high soil moisture and humidity) may result 

in even greater differences between constant and proportional spray volume than has 

been reported by Banks and Schroeder (2000) in New Mexico.

It is already established that weed control with glyphosate can be significantly 

influenced by carrier volume (Buhler and Burnside 1983a, 1983b; Stahlman and 

Phillips 1979). At a reduced rate of glyphosate (0.1 to 0.4 kg ai/ha), phytotoxicity to 

oats (Avena sativa L. ‘Stout’) was increased when carrier volume was decreased from 

190 to 24 L/ha (Buhler and Burnside 1983b). The objective of this research was to 

evaluate the effect of carrier volume on com and soybean response to sub-lethal 

simulated drift rates (1/8 and 1/16 of the labeled rates) of glyphosate and glufosinate 

under mid-South environmental conditions.
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Materials and Methods

Field experiments were conducted in 2000 at the R & D Research Farm near 

Washington, LA, and at the Ben Hur Research Farm near Baton Rouge, LA, to 

determine if varying the carrier volume proportionally to rates of glyphosate and 

glufosinate would change com and soybean response compared to maintaining a 

constant carrier volume. The soil type at the R & D Research Farm was a Baldwin silty 

clay loam (fine, montmorillonitic, thermic Vertic Ochraqualf) with pH of 5.9 and 1.4% 

organic matter. The soil type at the Ben Hur Research Farm was a Commerce silt loam 

(fine-silty, mixed, nonacid, thermic Aerie Fluvaquent) with pH of 5.6 and 1.3% organic 

matter. Both soils are representative of com and soybean producing areas of Louisiana. 

Separate studies were conducted for com and soybean and the experimental design for 

each was a randomized complete block with a three-factor factorial treatment 

arrangement with four replications. The first and second factors were herbicide and 

herbicide drift rate. Drift rates represented 0.125 (1/8) and 0.063 (1/16) of the use rates 

of 1.12 kg ai/ha glyphosate1 (140 and 70 g/ha, respectively) and 0.42 kg ai/ha 

glufosinate2 (53 and 26 g/ha, respectively). A glyphosate/glufosinate nontreated control 

was included for comparison. The third factor was carrier volume. Rates for each 

herbicide were applied in constant carrier volume o f233.9 L/ha and in proportional 

carrier volumes o f 29.3 L/ha for the 0.125 rate and 14.7 L/ha for the 0.063. Only two 

rates o f each herbicide were evaluated because of the difficulty of obtaining carrier

1 Roundup Ultra™ (479 g/L of glyphosate), Monsanto Company, St. Louis, MO 
63167.

2 Liberty™ (200 g/L of glufosinate), Aventis CropScience, Research Triangle Park, 
NC 27709.
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volumes below 14.7 L/ha with the equipment used. Also, previous research in 

Louisiana has shown that injury from drift rates of glyphosate and glufosinate on com 

and soybean was not observed at less than 0.063 o f the labeled rates (Ellis et al. 1999a, 

1999b).

Herbicide treatments were applied using a tractor mounted compressed air sprayer 

with a spray pressure o f 186 kPa. A TurboTeejet3 110005 nozzle was used for all 

treatments and tractor speed was adjusted to obtain the desired carrier volumes. Tractor 

speed was 1.0 km/h for the constant carrier volume and 8.1 and 16.1 km/h for the 29.3 

and 14.7 L/ha proportional carrier volumes, respectively.

Corn Study

Nontransgenic ‘Dekalb 687’ com was planted at 74,000 seeds/ha at the Ben Hur 

Research Farm on April 3 and on March 26 at the R & D Research Farm. The 

experimental area was tilled and bedded prior to planting. The fertilizer program at the 

Ben Hur Research Farm consisted o f64-64-64 kg/ha (N-P2O5-K2O) broadcast prior to 

planting and 11-37-00 kg/ha in-furrow at planting. Three weeks after planting 65-0-0 

was side dressed. The insecticides terbufos {S-[[(l,l-dimethylethyl)thio]methyl]0,0- 

diethyl phosphorodithioate} (1.12 kg ai/ha) and permethrin [(3-phenoxyphenyl) 

methyl(+)-c£s, /rans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate] 

(0.22 kg ai/ha) were applied in-furrow at planting. The fertilizer program at the R & D 

Research Farm consisted of 200-30-30 side dressed three weeks after planting. The 

insecticide chlorpyrifos [0,0-diethyl-0-(3,5,6-trichloro-2-pyridinyl] (2.0 kg ai/ha) was 

applied in-furrow at planting. At both locations plots were maintained weed free by a

3 Teejet Agricultural Spray Products. Spraying Systems Co. Wheaton, IL. 60189.
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preemergence application of atrazine [6-chloro-/V-ethyl-/V-(1 -methylethy 1)-1,3,5- 

triazine-2,4-diamine] plus metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2- 

methoxy-1 -methylethyl)acetamide] (2.17 + 1.79 kg ai/ha) the day of planting and 

mechanical cultivation as needed.

Com plots consisted of four, 91.4 cm rows 12.2 m long at the R & D Research Farm 

and four, 96.5 cm rows 7.6 m long at the Ben Hur Research Farm. Herbicide treatments 

were applied to the two center rows when com was at the 6-leaf growth stage on May 4 

at the Ben Hur Research Farm and on April 27 at the R & D Research Farm. Visual 

injury and plant height data were collected 7,14, and 28 days after treatment (DAT). 

Visual injury was based on a scale of 0 to 100% with 0 = no plant injury and 100% = 

complete death of the plant Chlorosis, necrosis, and plant stunting were used when 

making visual estimates. Com height was based on measurement from the soil to the 

last fully developed collar and was expressed as a percentage of the nontreated 

glyphosate/glufosinate control. Com was harvested on August 17 at the R & D 

Research Farm and August 15 at the Ben Hur Research Farm. Seed com yield was 

adjusted to 15% moisture and expressed as a percentage of the control. Data were 

subjected to analysis of variance with partitioning appropriate for the factorial 

arrangement of treatments. Means of significant main effects and interactions were 

separated using Fisher's protected LSD at the 5% level of probability.

Soybean Study

‘DPL 3588’, anontransgenic soybean variety, was planted at 130,000 seeds/ha at the 

Ben Hur Research Farm on May 5 and at the R & D Research Farm on May 20. Plots 

at the Ben Hur Research Farm were maintained weed free by a preemergence
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application of 1.7 kg/ha metolachlor plus 0.14 kg ai/ha imagaqiiin {2-[4,5-dihydro-4- 

methyl-4-(l-methylethyl)-5-oxo-lH-imidazoI-2-yl]-3-quinolinecarboxylic acid}. Plots 

were maintained weed free at the R & D Research Farm by a postemergence application 

of 0.28 kg ai/ha fomesafen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-iV- 

(methylsulfonyl)-2-nitrobenzamide} on June 30 followed by 0.28 kg ai/ha sethoxydim 

{2-[l-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-l-one} on 

July 10.

Soybean plots consisted of four, 96.5 cm rows 9 m long at the Ben Hur Research 

Farm and four, 91.4 cm rows 12 m long at the R & D Research Farm. Herbicide 

treatments were applied to the two center rows when soybean was at the two to three 

trifoliate growth stage on June 6 at the Ben Hur Research Farm and on July 5 at the R& 

D Research Farm. Visual injury and plant height data were collected 7,14, and 28 

DAT. Soybean height was measured from the soil to the terminal of each plant and 

expressed as a percentage of the nontreated glyphosate/glufosinate control. Soybean 

was harvested on September 28 at the Ben Hur Research Farm and on October 23 at the 

R & D Research Farm. Soybean seed yield was adjusted to 13% moisture and 

expressed as a percentage of the nontreated control. Statistical analysis was as 

described for the com study.

Results and Discussion

Corn Study

Differences in com height and injury, and yield reductions were not herbicide 

dependent; therefore, data were averaged across herbicides. At 7 DAT, com height was 

reduced more when the 0.125 rate was applied in proportional carrier volume of 29.3
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L/ha compared to the constant carrier volume o f233.9 L/ha, but in both cases height 

was reduced at least 23% (Table 6.1). For the 0.063 rate, com height was reduced no 

more than 9% for the carrier volumes. Even though a significant portion of com injury 

was from height reduction, injury was also manifested as leaf chlorosis and necrosis. 

Com injury increased from 32 to 45% for the 0.125 rate and 18 to 36% for the 0.063 

rate when the carrier volume was adjusted proportionally with herbicide rate.

At 14 DAT, com height continued to be reduced more when the 0.125 rate was 

applied in proportional carrier volume (45%) compared to constant carrier volume 

(28%) (Table 6.1). The 0.063 rate reduced com height 38% when applied in 

proportional carrier volume, but not when the same rate was applied in constant carrier 

volume. Com injury at 14 DAT changed little from that observed 7 d earlier and was 

only 18% when the 0.063 rate was applied in the constant spray volume.

At 28 DAT, com height reduction and injury was still apparent and most severe for 

both herbicide rates when applied in proportional rather than a constant spray volume 

(Table 6.1). Com height was reduced only 10% when the 0.063 rate was applied in 

constant carrier volume, however height reduction increased to 38% when applied in 

proportional carrier volume. Com injury when the 0.125 rate was applied in 

proportional carrier volume was 46%, 13 percentage points higher than for the constant 

carrier volume. Com injury for the 0.063 rate doubled when the carrier volume was 

adjusted proportionally to the herbicide drift rate (18 to 37%).

Com symptoms varied between glyphosate and glufosinate. Visual injury from 

glyphosate developed slowly and consisted of severe stunting of plants and a yellow to 

red discoloration of stems and leaves. Symptoms caused by glufosinate developed
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Table 6.1. Com height and injury 7,14, and 28 days after treatment and yield following simulated drift rates of glyphosate and
glufosinate applied at 6-leaf growth stage.*

Herbicide rateb

Application carrier 

volume0

Com height* Cora injury

Yield'17 14 28 7 14 28

L/ha -  %  of nontreated — --------- % --------- % of nontreated
0.125 233.9 77 72 82 32 33 33 59

29.3 71 55 58 45 51 46 38

0.063 233.9 91 93 90 18 18 13 87

14.7 93 62 62 36 38 37 48

LSD (0.05) 5 8 12 4 5 12 10

"Data averaged across herbicides and locations.

'’Rates correspond to 0.125 and 0.063 of the labeled rate of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate.

T he constant carrier volume was 233.9 and variable carrier volumes, adjusted proportionally with the simulated drift rate, were 29.3 and 14.7 L/ha for the 
0.125 and 0.063 rates, respectively.

dCom height was measured from the soil to the last fully developed collar. Yield for the nontreated glypbosate/glufosinate control 
was 9,820 kg/ha.



quickly and included slight stunting, however, injury mainly consisted of chlorosis 

followed by necrosis of treated leaves. Even though the herbicides responded similarly 

when carrier volume was adjusted, injury and height reductions when averaged across 

all other factors were twice as severe for glyphosate compared to glufosinate. The fact 

that herbicide response to carrier volume was consistent is noteworthy due to 

differences in uptake and translocation for glyphosate and glufosinate. Glyphosate is 

readily translocated throughout the plant; therefore symptoms appear later when 

compared to glufosinate, which is more of a contact type herbicide, with little or no 

translocation occurring in the plant (Ahrens 1994).

Com yield was reduced only 13% when the 0.063 rate was applied in constant 

carrier volume compared with 52% when the same rate was applied in proportional 

volume (Table 6.1). As expected, when rate was increased, greater yield reduction was 

observed. The 0.125 rate applied in constant carrier volume reduced com yield 41%, 

but 62% when applied in proportional carrier volume. These results showing 

differences in response due to carrier volume agree with those reported in New Mexico 

with 2,4-D on cotton and glyphosate on sweet com (Banks and Schroeder 2000).

O f interest is that when comparing herbicide rates, yield reduction was 36 and 45% 

greater for the proportional compared with the constant spray volume for the 0.125 and 

0.063 rates, respectively. In reality, in a field situation where drift occurs, rate 

diminishes as distance away from the application site increases. As rate decreases, 

spray volume also decreases proportionally to one another. Results clearly show a 

greater negative impact of herbicide rate as spray volume is adjusted proportionally 

when compared with a constant spray volume. This obvious differential response may
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explain why higher yield reductions from sub-lethal glyphosate rates have been 

observed where actual drift occurred (Griffin, personal communication).

Possible explanations for the differences in response between carrier volumes for 

glyphosate and glufosinate may be related to water hardness, surfactant concentration, 

and spray droplet dynamics. Researchers have shown that the activity of glyphosate can 

be reduced when carrier volume is increased (Sanberg et al. 1978; Stahlman and 

Phillips 1979). Most believe this is attributed to water hardness (Hatzios and Penner 

1985; Nalewaja and Matysiak 1991,1993). Water is determined to be “hard” if total 

hardness is 100 ppm or higher. When glyphosate is applied in hard water Ca, Mg, and 

other cations interact with the glyphosate molecule forming a complex that is less 

readily absorbed by the plant. This situation has been overcome by adding ammonium 

sulfate to the spray solution (Thelen et al. 1995). For the two experiments conducted in 

the present study, analysis of water showed only one source to be hard-water (281 

ppm). Since a location by experiment interaction was not observed, water hardness was 

ruled out as an explanation. Also, there were no reports in the literature showing that 

glufosinate is susceptible to decreased activity in hard-water. Both glyphosate and 

glufosinate responded the same in this study, also ruling out hard-water as a culprit.

Both the glyphosate and glufosinate formulations used in our research were 

formulated with a surfactant, and no surfactant was added to the spray solution. A 

plausible explanation for the difference in response due to carrier volume may be 

related to spray droplet number and herbicide/surfactant concentration in individual 

spray droplets. At the 29.3 and 14.7 L/ha spray volumes in this study, spray droplets 

would have been more concentrated with herbicide and surfactant compared to the
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233.9 L/ha spray volume, which may have enhanced herbicide uptake. Research has 

shown greater activity of glyphosate at lower spray volumes (Buhler and Burnside 

1983a, 1983b; Sandberg et al. 1978; Stahlman and Phillips 1979). Ambach and 

Ashford (1982) reported glyphosate applied in ultra low volumes had a greater 

phytotoxic effect on barley at a given rate than a high diluent volume application. It 

could be speculated that the high spray volume (233.9 L/ha) used to make comparisons 

in the present study was atypical of field situations and may have actually decreased 

herbicide activity due to surfactant dilution. If so, then differences in response between 

carrier volumes would have been even greater. Furthermore, yield reductions in com in 

the present study where a constant spray volume o f233.9 L/ha was used mirror those 

reductions observed in previous research where the same rates were applied in 140.3 

L/ha (Ellis et al. 1999a).

Soybean Study

Unlike com, differences in soybean response were not affected by carrier volume, 

but could be attributed to the herbicides. Soybean height was reduced by the 0.125 rate 

of glyphosate 23,20, and 16% at 7,14, and 28 DAT, respectively (Table 6.2). Neither 

of the rates o f glufosinate or the 0.063 rate of glyphosate reduced soybean height at the 

three evaluation dates. Ellis et al. (1999b) reported that simulated drift rates of 

glufosinate (3 to 51 g/ha) did not significantly reduce soybean height and that height 

reductions with glyphosate were rate dependent At 7 and 14 DAT in the present study, 

both rates o f glyphosate and glufosinate injured soybean, clearly indicating that injury 

was more related to chlorosis/necrosis than to height reduction (Table 6.2). The 0.125 

and 0.063 rates of glyphosate injured soybean 31 and 19%, respectively, 7 DAT, but
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Table 6.2. Soybean height and injury 7,14, and 28 days alter treatment and yield following simulated drift rates of glyphosate and
glufosinate applied at the 2- to 3-trifoliate growth stage.*

Herbicide Rateb

Soybean height* Soybean injury

Yield*7 14 28 7 14 28

-  %  of nontreated — ----------% ---------- % of nontreated
glyphosate 0.125 77 80 84 31 23 13 87

0.063 95 95 97 19 8 7 92

glufosinate 0.125 92 92 96 26 13 3 91

0.063 91 93 92 16 12 1 93

LSD (0.05) 10 9 11 7 5 3 NS

‘Data averaged across application carrier volumes (233.9 L/ha for constant and 29.3 and 14.7 L/ha adjusted proportionally to herbicide rate) and 
locations.

bRates correspond to 0.125 and 0.063 of the labeled rate of 1.12 kg ai/ha glyphosate and 0.42 kg ai/ha glufosinate. 

cSoybean height measured from the soil to the terminal. Yield for the nontreated glyphosate/glufosinate control was 2,290 kg/ha.



injury was reduced to 23 and 8%, respectively at 14 DAT. Glufosinate at the 0.12S and 

0.063 rates injured soybean 26 and 16%, respectively, 7 DAT and 13 and 12%, 

respectively, at 14 DAT. By 28 DAT, injury was 13% for the 0.125 rate of glyphosate, 

but was no more than 7% for the other herbicide rates.

Soybean symptoms varied between glyphosate and glufosinate. Visual injury from 

glyphosate consisted of some stunting of plants at the high rate and yellowing in the 

terminals o f treated plants. Symptoms caused by glufosinate consisted of chlorosis 

followed by necrosis of treated leaves. No stunting of plants was observed following 

glufosinate application.

Even though soybean injury was significant at all rating intervals, soybean recovered 

rapidly and no negative effect on yield was observed (Table 6.2). Findings agree with 

those of Al-Khatib and Peterson (1999) who reported no reductions in soybean yield 

when exposed to 0.01 to 0.3 of the use rates of 1.12 kg/ha glyphosate and 0.42 kg/ha 

glufosinate at the two to three trifoliate growth stage. The fact that differences in 

soybean height, injury, and yield were carrier volume independent in the present study 

shows that soybean are inherently less sensitive than com to these two herbicides.

This research clearly shows that adjusting carrier volume from constant to 

proportional based on herbicide rate increases the negative effects of glyphosate and 

glufosinate on com injury and yield. This response however, was not observed when 

herbicides were applied to soybean, a less sensitive crop. Traditional simulated 

herbicide drift research where dose response is evaluated over a constant spray volume 

does not represent what would occur under field situations and results may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



underestimate yield reductions. Results clearly demonstrate the importance of using 

caution when applying glyphosate or glufosinate near non-target, sensitive crops.
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CHAPTER 7 

SUMMARY

Field studies were conducted to evaluate weed control in glyphosate-resistant 

soybean and implications off-target movement of glyphosate [/V-(phosphonomethyl) 

glycine] and glufosinate [2-amino-4-(hydoxymethylphosphinyl) butanoic acid] to 

susceptible crops.

Research conducted 3 yr evaluated the utility of preemergence (PRE) soil-applied 

herbicides in glyphosate-resistant soybean. Soil-applied herbicide treatments at hill 

label rates included pendimethalin [N-( 1 -ethylpropyl)-3,4-dimethyl-2,6- 

dinitrobenzenamine] plus imazaquin {2-[4,5-dihydro-4-methyl-4-(l-methylethyl)-5- 

oxo-lH-imidazoI-2-yl]-3-quinolinecarboxylic acid} (0.84 + 0.14 kg ai/ha), 

pendimethalin (1.12 kg/ha), metolachlor [2-chloro-A/:-(2-ethyl-6-methylphenyl)-Ar-(2- 

methoxy-l-methylethyl)acetamide] (1.68 kg ai/ha), SAN 582 [2-chloro-A/-(2,4- 

dimethyl-3-thienyl)-Ar-(2-methoxy-1 -methylethyl)] plus imazaquin (1.0 + 0.14 kg 

ai/ha), sulfentrazone {/V-[2,4-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5- 

oxo-\H -l,2,4-triazol-1 -yl]phenyl]methanesulfonamide} plus chlorimuron {2-[[[[(4- 

chloro-6-methoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid} (0.22 + 

0.04 kg ai/ha), and metribuzin [4-amino-6-(l, 1 -dimethylethyl)-3-(methylthio)-1,2,4- 

triazin-5(4//)-one] plus chlorimuron (0.36 + 0.06 kg ai/ha). In most instances, 

differences in weed density and height (14 to 28 days after soybean planting) were not 

noted when preemergence herbicide rates were reduced from the hill to half rates and 

none o f the treatments provided complete weed control. In 1998, all soil-applied 

herbicide treatments provided an extra 3 to 5 days before the first glyphosate
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application was needed compared to no preemergence herbicide. For 1999, the full rate 

of metribuzin plus chlorimuron extended the application time for glyphosate 6 d and in 

2000,7  d for the full rates of sulfentrazone plus chlorimuron and metribuzin plus 

chlorimuron. Where soil applied herbicide was not used, a second glyphosate 

application was needed only in 1998. Soybean yield was equivalent for all herbicide 

treatments further showing a total postemergence program using glyphosate was as 

effective as when PRE herbicides are applied at half or M l rates and followed by 

glyphosate.

Research conducted over 3 yr evaluated grass and broadleaf weed control in soybean 

with glyphosate alone and in combination with reduced rates of the broadleaf herbicides 

chlorimuron, acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic 

acid}, fomesafen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-A/-(methylsulfonyl)-2- 

nitrobenzamide}, lactofen {(±)-2-ethoxy-l-methyl-2-oxoethyl 5-[2-chloro-4- 

(trifluoromethyl)phenoxy]-2-nitrobenzoate}, or CGA-277476 (2-[[[[(4,6-dimethyl-2- 

pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid}. Bamyardgrass control was 

at least 94% with glyphosate at 0.84 and 1.12 kg ai/ha and was not antagonized with 

any of the combinations. At 14 days after treatment (DAT) wild poinsettia and prickly 

sida control in most cases was greater than 90% when glyphosate was applied alone or 

in the combinations. By 28 DAT, in 1 of 2 experiments wild poinsettia was controlled 

80% and prickly sida 43% with the high rate of glyphosate and addition of acifluorfen 

or fomesafen (0.21 and 0.32 kg ai/ha), or lactofen (1.12 and 1.68 kg ai/ha) increased 

control of wild poinsettia to 91 to 95% and prickly sida to 60 to 80%. For pitted 

momingglory and hemp sesbania, control 14 DAT in most cases was improved with the

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



addition of chlorimuron (0.0045 and 0.0067 kg/ha) or CGA-277476 (0.39 and 0.59 

kg/ha). By 28 DAT, improved control with the combinations was noted in only 1 of 3 

experiments when pitted momingglory and hemp sesbania were larger at application.

In the other two experiments, pitted momingglory was controlled 91 to 98% and hemp 

sesbania 88 to 100% with glyphosate alone at 1.12 kg/ha. Soybean injury 28 DAT was 

as high as 13,15, and 23% for the chlorimuron, acifluorfen, and lactofen treatments, 

respectively, but no more than 6% for fomesafen and CGA-277476. Soybean yield was 

determined only for the experiments where glyphosate alone provided good to excellent 

weed control and the combinations did not improve yield.

Results indicate that tank-mixtures o f glyphosate plus the broadleaf herbicides can 

increase control of wild poinsettia, prickly sida, pitted momingglory, and hemp 

sesbania, especially when weeds are too large to be effectively controlled with 

glyphosate alone. Increasing the rate of either the broadleaf herbicides or glyphosate 

did not in most cases increase weed control and in no instances was bamyardgrass 

control antagonized with the herbicide combinations. The variation in control for some 

of the weed species from year to year was related in part to weed size at application 

combined with excellent growing conditions following application. Results emphasize 

the importance of early applications, especially when glyphosate is used as a stand 

alone product. It would be expected that an advantage would be seen when efficacious 

broadleaf herbicides are applied with glyphosate when glyphosate rate is insufficient to 

consistently control problem weeds. Even though in this study yield differences among 

treatments were not detected even though some differences in weed control occurred,
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weed regrowth and emergence through the soybean canopy in late season could impact 

harvest efficiency and crop quality.

Field studies were conducted to evaluate response of rice, com, soybean, and cotton 

to simulated drift rates representing 0.125,0.063,0.032,0.016, and 0.008 of the use 

rates of 1.12 kg/ha glyphosate and 0.42 kg ai/ha glufosinate. Early applications were 

made to 2- to 3-leaf rice, 6-leaf com, 2- to 3-trifoliate soybean, and 2- to 3-leaf cotton 

and late applications to rice at panicle differentiation, com at 9-leaf (one week prior to 

tasseling), soybean at first flower, and cotton at early bloom. A mid-postemergence 

application was also made to cotton at pinhead square (first flower bud). Crop injury 

was generally higher for the 0.125 and 0.063 rates for both herbicides when applied 

early. Little to no reduction in rice, com, soybean, or cotton height was observed with 

glufosinate.

For rice, glyphosate consistently reduced plant height when the two highest rates 

were applied early and heading was delayed 5 and 2 days, respectively. In two of three 

year, the highest rate of glyphosate reduced rice yield 99 and 67% when applied early 

and 54 and 11% when applied late. Germination of rice seed from glyphosate-treated 

plants was reduced in one of two yr and with only the highest rate. For glufosinate, rice 

yield was reduced 30% and in only one year when applied late at the highest rate.

Early applications of glyphosate reduced com yield an average of 22 to 78% for the 

three highest rates, but only for the highest rate at the late timing. Coro yield was 

reduced an average of 13 and 11% for the highest rate of glufosinate at the early and 

late timing, respectively. Soybean height was reduced no more than 11% regardless of 

herbicide rate or timing. Based on visual injury, soybean was more sensitive to
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glyphosate when applied early in 1998, but equal for the herbicides in 1999. When 

herbicides were applied late, soybean was more sensitive to glufosinate the first year. 

Cotton was more sensitive to glufosinate 7 d after application both years regardless of 

timing, but by 28 d differences between herbicides were less apparent. Cotton maturity 

was not delayed by either herbicide based on days to first square or flower, and nodes 

above white flower. Both soybean and cotton were able to rapidly recover from 

herbicide injury and yields were not negatively affected. In greenhouse studies, five 

rice, com, soybean, and cotton varieties were equally sensitive to reduced rates of 

glyphosate and glufosinate.

Variation in crop response observed among years may be related to inability to 

precisely time the applications combined with weather conditions around application 

that may have affected herbicide uptake. Based on yield reductions associated with 

glyphosate, rice and com can be classified as equally sensitive. For both crops, early 

applications of glyphosate reduced yield more than the later applications. In contrast, 

soybean and cotton appear to be more tolerant to these herbicides. Based on injury 7 

DAT, cotton was more sensitive to glufosinate than to glyphosate, but was able to 

recover with no ill effect on maturity or yield.

In these studies attempts were made to apply herbicides at sub-lethal rates typical of 

what would be expected under drift conditions. Application at rates higher than 

evaluated in this study could be very detrimental.

In traditional simulated herbicide drift research, dose-response is evaluated using a 

constant carrier volume. Typically when drift occurs under field conditions, spray 

volume and dose vary proportionally. In field experiments, the influence of carrier
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volume was evaluated with drift rates representing 0.125 and 0.063 of the use rates of 

1.12 kg/ha glyphosate and 0.42 kg/ha glufosinate. Com and soybean were exposed to 

herbicide rates applied in constant carrier volume o f234 L/ha and in proportional 

carrier volumes to include 29.3 and 14.7 L/ha for the 0.125 and 0.063 rates, 

respectively. Differences in com response were not herbicide dependent. Averaged 

across herbicides, com height reduction 14 DAT was greater for the 0.125 rate when 

applied in proportional carrier volume (45%) compared to constant carrier volume 

(28%). The 0.063 rate reduced com height 38% when applied in proportional carrier 

volume, but not when applied in constant carrier volume. When carrier volume was 

changed from constant to proportional, injury 14 DAT increased from 33 to 51% for the 

0.125 rate and 18 to 38% for the 0.063 rate. Compared to constant spray volume, com 

yield reduction was about 1.6 times greater when spray volume was varied 

proportionally to the herbicide rates. Differential response due to carrier volume was 

not observed when herbicides were applied to soybean, a less sensitive crop. Soybean 

was injured more by glyphosate than glufosinate, but recovery was rapid and yield was 

not negatively affected.

This research clearly shows that adjusting carrier volume from constant to 

proportional based on herbicide rate increases the negative effects of glyphosate and 

glufosinate on com injury and yield. This response however, was not observed when 

herbicides were applied to soybean, a less sensitive crop. Traditional simulated 

herbicide drift research where dose response is evaluated over a constant spray volume 

does not represent what would occur under field situations and yield reductions maybe 

underestimated.
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The research described in this dissertation is significant in that in provides 

information critical to making sound weed management decisions in glyphosate- 

resistant soybean. Also, information on the effects o f glyphosate and glufosinate drift 

on rice, com, soybean, and cotton is important since use of both herbicides will increase 

along with potential for off-target movement
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