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• Unsteady dynamics of the coherent structures inside the cavity is a slower process 

as compared to the separation region over the afterbody and the mixing layer 

region behind the forebody lip. 

• The instantaneous axial and radial locations of the TV are different at different 

meridional planes. However, time-averaged streamtrace patterns seem to 

converge towards a TV with simpler geometrical features. 

• The ingestion of annular mainflow in front of the afterbody separation region is 

the main mechanism of the flow entrainment inside the cavity. The mixture in the 

cavity is ejected radially outwards due to the pressure gradients there. 

• The three-dimensional nature of the time-averaged TV depicts a doughnut shaped 

structure inside the cavity. The streamtraces along this structure have azimuthal 

component of velocity and hence form a dense spiral around it. Azimuthal 

variability in the pitch of spiraling streamtraces is also noted. 

• Turbulent stress u’w’ enhances the mixing inside the core of the TV. Turbulent 

stress u’v’ enhances mixing along the annular mixing layer behind the forebody 

and over the cavity. Turbulent stress v’w’ governs the radial spread of jets inside 

cavity as well as the mixing of cavity fluid with entrained annular mainflow at 

axial locations close to the injections. 

• Dependence of the turbulent stresses on the in-plane normal stresses and the 

corresponding mean strain rate tensor component implies that the turbulence 

modeling using eddy viscosity assumption may work. However, the anisotropy of 

normal stresses would require a non-linear eddy viscosity model. 



Chapter 8 Concluding Remarks and Future Directions 
 

This research effort has addressed the following issues: 

Development of LES methodology for complex geometries of industrial interests. Of 

particular interest, the external and internal cooling of modern gas turbine blades is 

studied using this methodology. 

Simulation of high Reynolds number turbulent flows of industrial results is a 

daunting task. In principle, a true Large Eddy Simulation (LES) methodology can 

alleviate the issue of ever-increasing computation resource requirement with Reynolds 

number. However, there are several issues regarding the modeling and filtering in 

complex geometries that have not been addressed appropriately yet. Immersed Boundary 

Method (IBM) can potentially be applied to almost any complex and moving geometry. 

As a demonstration of capability of the method for complex moving geometry, a stator-

rotor configuration is studied. Though, the flow conditions are of academic interests only, 

yet it shows the superiority of the methodology over any sliding mesh or re-gridding 

procedure to simulate this flow. There are some open issues regarding the resolution near 

the solid surfaces. In this research effort, a combination of these two powerful ideas is 

presented as the direction to take for the simulations of industrial turbulent flows with 

complex moving geometries. 

Investigated parametric effects on the flow and heat transfer in simple jets-in-crossflow 

situations and film-cooling flow situation. Parameters explored included freestream 

turbulence intensity, freestream length scales, jet injection angle, hole geometry, blowing 

ratio and plenum effects. 
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1. The influence of hole aspect ratio (AR = L/D) on the coherent structures in the near 

field was found to be significant. For small aspect ratios, the horseshoe vortex formed 

upstream of the jet is relatively weak. The jet lift-off is diminished for the low aspect 

ratio case by unsteady counter-rotating structures formed over the counter rotating 

vortex pair (CVP). For the large aspect ratio case, the horseshoe vortex is very strong 

and is observed to induce another unsteady co-rotating secondary CVP over the main 

kidney vortex. 

2. The jet injection angle also affects the flow structures, their vorticity contents and the 

pressure gradients. Two injection angles were studied: a normal (90°) injection and an 

inclined (30°) injection. The stronger pressure gradients in the normal injection case 

lead to a larger recirculation region behind the jet. This is expected to adversely effect 

the film cooling effectiveness. For the normal injection, enhanced mixing of the jet-

fluid and the mainstream is observed near the wall. This can severely decrease the 

film effectiveness. 

3. The effect of freestream turbulence intensity levels (Tu = 2% and 15%) was studied 

to understand the influence of freestream fluctuations on the evolution of various 

coherent structures and the corresponding turbulent stresses. The major effect of the 

freestream turbulence intensity level was through the entrainment of the crossflow 

into the wake region. For the higher Tu, higher turbulent stresses were noted in the 

near wall region. This is likely to lead to increased heat transfer. 

4. Under realistic engine conditions, the freestream contains a spectrum of energy 

containing scales with the most significant portion of energy concentrated in the 

scales larger than the hole dimension (D). Therefore, the effect of freestream length 
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scales at high turbulence intensity levels is also studied. This was done by prescribing 

a Von-Karman spectrum in the freestream with maximum energy at a wavenumber 

corresponding to 4D. The horseshoe vortex in front of the jet is observed to be 

energized in the large length scale case. The interactions at the jet-freestream 

interface are also enhanced for the large length scale case, and the corresponding 

levels of u'u' and v'v' are higher in the jet-crossflow interaction region. 

5. An inclined circular jet in a crossflow is studied at different blowing ratios (M=0.5 

and 1.0). Simulations correspond to an experimental study at UTRC. The jet delivery 

tube was simulated using IBM. Heat transfer calculations are also performed. The 

coherent structures extraction using positive pressure Laplacian criterion revealed 

hairpin vortices in the wake. This analysis presents a unified explanation of the 

projected vorticity field on different observation planes. The heat transfer calculations 

showed that jet-penetration and spreading are accurately predicted.  

A solution methodology for flow and heat transfer predictions in periodically varying 

geometries representative of internal coolant channels with turbulators in gas turbine 

blades. 

Unsteady heat transfer calculations in periodic geometries are fairly common. An 

approach based on scaling arguments about the self-similar profiles at periodic sections 

for non-dimensional scalar field and surface phenomenon is presented. A specific case 

for internal coolant channel of gas turbine is studied. Low-dimensionality of this system 

was established using Proper Orthogonal Decomposition (POD) technique. The unsteady 

dynamics of coherent structures in this complex flow field is extracted using simple 
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pressure Laplacian criterion. Analysis of thermal fields and coherent structures suggested 

that a larger computational domain must be used for these calculations.  

Understanding unsteady mixing phenomenon in the trapped-vortex combustor by 

rendering the geometry using Immersed Boundary Method on a regular Cartesian grid. 

Mixing inside a trapped vortex combustor (TVC) is a complex phenomenon. The 

geometry of TVC was simulated using IBM. The doughnut shaped structure of the vortex 

is observed. The motion of this vortex inside the cavity leads to exchange of the fluid 

inside the cavity with fluid in the annulus. Details of the time-averaged flow-fields and 

turbulent stresses are also presented.  

1. A Cartesian approximation of the TVC revealed essential dynamics of the trapped-

vortex. However, there are some differences in the entrainment processes. 

2. An immersed boundary implementation of true dumbbell shaped cylindrical flame-

holder is performed. It clearly demonstrated the three-dimensional dynamics of 

trapped-vortex and the potential of IBM in simulating such complex flows. 

Work will be continued to study the following issues: 

1. .The current code will be extended to a multi-block version. The development of a 

direct solver for pressure Poisson equation is the most challenging step in this 

direction. The approach being used is very similar to the influence matrix approach 

(Appendix V, Kleiser and Schumann, 1980 and Raspo et al, 1994).  

2. To develop a simple turbulence model for economic calculations at high Reynolds 

numbers, we need to perform a highly accurate simulation with and without any 

models. The LES budgets will be tested against the DNS calculations to validate the 

predictive capability of LES at moderate Reynolds numbers. The LES runs at higher 
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Reynolds number will then provide the missing information about the turbulent stress 

budgets (Laurence, 2001). The calculation of second moment budgets and two-

equation turbulence model budgets is currently under implementation. The 

relationship between LES stresses and the actual Reynolds stresses will be used 

rigorously to derive the budget equations that can be evaluated as run-time statistics 

(Appendix I, Zang, 1993 and Deshpande and Milton, 1998). These simulations will 

be performed using the multi-block version of the code for the simple Cartesian 

geometry. 

3. The immersed boundary method will be used for more complex geometry situations. 

The resolution near complex geometries will be addressed using a zonal embedded 

(Nested) grid refinement approach (Appendix VI). Implementation of filters will be 

done independent of grid resolution to allow a) numerical studies with varying 

resolution with fixed filter width and b) numerical studies with varying filter width on 

fixed resolution. First set of studies can explore the issues of numerical errors due to 

discretization and grid resolution, while the latter set of studies can yield information 

on errors with SGS modeling (Geurts and Leonard, 2001). 

4. The fundamental issues related to filtering techniques and SGS modeling will be 

investigated further. The issue of commutation errors and filtering in complex domain 

has been studied (Tyagi and Acharya, APS/DFD, 1999). The SGS model needs to be 

tested for more complex flows. 

5. A parallel version of the code will be developed to cut-down on computational time 

using Message Passing Interface (MPI). 
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Appendix I: Relationship Between Reynolds Stress Tensor and SGS Stress Tensor 
 

The relationship between Reynolds stress tensor and SGS tensor can be 

established using Germano’s identity. Let us denote the ensemble average or long time 

average by < > and the corresponding fluctuation field with a prime. Again, the overbar 

represents the filtered field and the corresponding subfilter (or subgrid as it is commonly 

referred to) is represented by double prime. Therefore, we have a relation for the 

representation of any instantaneous field amongst the ensemble in terms of either RANS 

field or the LES field. 
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Define the Reynolds stress tensor Rij as follows 

( )0, '''

''''

===

−+++=

−=

iiiji

jijiijjiji

jijiij

uuuuu

uuuuuuuuuu

uuuuR

Q

 

Define the SGS tensor Tij as follows 
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Rewriting in terms of resolvable part and the modeled eddy viscosity part, 
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Now, apply ensemble averaging or long time averaging operation on SGS tensor 
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Again, apply filtering operation on Reynolds stress tensor and using the fact that filtering 

and ensemble averaging operations commute, we get 

""""
jiijjijijiij uuuuuuuuuuR −−−−=  

For an ensemble averaged filtered field, the unclosed stress terms would be  
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Therefore, the above stated relation acts as a bridge between any RANS field and an 

ensemble of LES fields. Making an approximation that the subfilter or subgrid fields are 

stochastic in nature and hence the ensemble average or long time average of these fields 

can be neglected (Zang, 1993). However, the correlations of such fields do not vanish 

during such averaging operation. 
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Note that the right hand side expression can be evaluated as runtime averages from LES 

for any given flow and since it involves only the filtered fields, it is not expected to be 

sensitive to the SGS model for the LES. For anisotropic and inhomogeneous flow 

situation, the calculable part captures most of the turbulence production. Hence, in this 

paper, we will use the difference of filtered Reynolds stress and ensemble averaged SGS 
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tensor as a surrogate to Reynolds stress tensor to describe the dynamics and evolution of 

flow structures. 
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Appendix II: The Eddy Viscosity Concept and Smagorinsky's Model 
 

 Using the arguments for energy spectrum in the equilibrium range, one can relate, 

energy decay, ε, to the magnitude of wave number, k, by 
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On dividing by H(k) and differentiating, we get 
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Since H(k) → ε/2ν as k → ∞ , hence 
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Therefore, the eddy viscosity will be νT ~ ε1/3k-4/3 in the inertial subrange and νT ~ 0 in 

viscous subrange. The expression of νT can be related to ε now. Smagorinsky employed 

the traditional analogy between the turbulence effects and molecular properties. The 

subgrid stress tensor is supposed to be expressible in terms of explicit scales by 

relationship 

( )
2

2

,, ijji
ij

ijSij

uu
S

S

+
=

= ντ
 

 286



using a velocity scale S∆, where S is the magnitude of the resolved strain rate tensor and 

∆ is the filter width. 
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Appendix III: The Dynamic One-Equation Subgrid Scale Model 
 

 The transport equation of subgrid kinetic energy can be written as follows using 

the generalized moments concept (Germano, (1992), Ghosal et al (1995) and Davidson, 

(1997)) 

( ) ( ) ( ) ( ) ( )

( )
( )
( )

( ) ( )
( ) jijijijijijif

iiif

jiiiijijijiijiif

ijjijijif

iiiiSGS

jijifjjSGS
j

jfiijfjijifjSGSj
SGS

uuuuuu

pupupu

uuuuuuuuuuu

uuuuuu

uuuuk

uukpuuuuuuuku
t

k

,,,,,,

,,,
,

,,

,

1,

2
1

2
1

2
1,,

2
1

,
2
1

,,,,
2
1,

−=Φ

−=Φ

−−−=Φ

=−≡Φ

−=

Φ−+






 Φ+Φ−Φ−=+

∂
∂

ρ

ττ

τ

νν

 

here, the subscript f represents the grid filter level.  

The transport equation for test filter-level kinetic energy, K can be obtained in the similar 

fashion. Now, using the following expression for the SGS tensor, we get 

SGS

fg

SGS
n

kK
n

K
SGS

fg

SGSk

ijSGSij

kK
kCPPC

KCP
K

k
kCP

SkC

SGS

SGS

ˆ
ˆ

)1ˆ(

ˆ
1ˆ1ˆ

2

2/1
2/3

*
1

*

2/3
*

2/3
*

5.0

∆
∆

−−=∴









∆
−=

∆
−

∆−=

+

τ

 

In deriving this expression, the transport of SGS kinetic energy is assumed proportional 

to that of K with the proportionality constant equal to the ratio of test-filtered SGS energy 

and K. The dynamic coefficient is not taken out of the test-filter, instead the localized 

form of Ghosal et al (1995) is generally used (Piomelli and Liu, 1995).  
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 However, there must be bounds on the value of C for numerical stability. This 

model seems to incorporate more flow physics than standard eddy-viscosity model, but it 

is computationally more expensive too. 
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Appendix IV: The Differential Stress Model 
 

 Since the second moment closure approximations are less severe than single scale 

formulation of eddy viscosity, the details of the differential stress models are presented 

here. The full model is explained with assumptions and approximations generally made 

for the closure. The aim is not to use this model but to expose the reader to the kind of 

approximations that are made and need to be evaluated rigorously.  
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The closure of various tensors are approximated as follows 
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It can be shown that effective dissipation is tensorial and linearly dependent on the SGS 

anisotropy tensor, thereby providing improved treatment of flow and grid anisotropies. 
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Appendix V: Direct Solver for Possion Equation in Complex Geometries 
 

Martin (1973) generalized the classical capacity matrix technique to incorporate 

large class of arbitrary and unusual internal boundary conditions. Schumann (1980) 

obtained direct solution to fluid-structure interaction problems using influence matrix 

technique (IMT). Orszag (1980) extended the spectral methods to complex geometries 

using mapping and patching. Kopriva (1986) presented a multidomain spectral method 

for hyperbolic systems. The division of computational domain allowed local refinement 

and flexibility in distribution of mesh points. Gunzburger and Nicolaides (1986) 

presented an extension of substructuring algorithm that carries out the block Gauss 

elimination procedure without the need for interchanges even when a pivot matrix is 

singular. Macaraeg and Streett (1986) enforced a global flux balance that preserves high-

order continuity of the solution at the interfaces. Shen (1995) developed a fast Poisson 

solver based on the Legendre-Galerkin approximations with the complexity O(N2logN) in 

two-dimensional rectangular domain. McKenney et al. (1995) presented a fast Poisson 

solver based on potential theory. Greengard and Yee (1996) presented a direct, adaptive 

solver for Poisson equation based on domain decomposition approach using local spectral 

approximation, as well as potential theory and the fast multipole method. In 2-D, the 

algorithm requires O(NK) work, where N is the number of discretization points and K is 

the desired order of accuracy. Tufo and Fischer (1997) presented a fast direct solver for 

parallel solution based on the (quasi-) sparse factorization of the inverse of A for linear 

systems of the form Ax = B. Averbuch et al. (1998) presented a direct method for the 

solution of Poisson equation based on a pseudospectral Fourier approximation and a 

polynomial subtraction technique. The solution can be evaluated at N2 interior points 
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requiring O(N2logN) operations. Braverman et al. (1998) presented a 3-D version of the 

method of Averbuch et al. Golub et al. (1998) developed a fast direct Poisson solver for 

the projection method of the incompressible Navier-Stokes equation with finite difference 

schemes on the half-staggered grid. Gustafsson and Hemmingsson (1998) presented a fast 

domain decomposition high order Poisson solver for parallel computations. The method 

used deferred correction by solving a sequence of systems with narrower stencil and 

domain decomposition and it remains direct in the sense that for any given order of 

accuracy, the number of arithmetic operations is fixed. Plagne and Berthou (2000) 

presented a tensorial basis collocation method for Poisson’s equation and showed that 

maximum number of iterations for a given N (number of grid points in each direction) 

leading to a competitive iterative scheme is 12N/128.  

Kim and Moin (1985) presented a fractional step method in conjunction with 

approximate factorization technique. They derived boundary conditions for the 

intermediate velocity field to achieve higher temporal accuracy. Tuckerman (1989) 

generalized the influence-matrix method of enforcing incompressibility and showed it to 

be an application of the classic Sherman-Morrison-Woodbury formula of numerical 

linear algebra. Perot (1993) analyzed the fractional step method as a block LU 

decomposition. Armfield and Street (1999) showed that pressure correction method could 

achieve second-order accuracy while projection method is only first-order in time, and it 

requires considerably less CPU time as compared to iterative methods. Strikwerda and 

Lee (1999) analyzed the accuracy of the fractional step method and showed that the 

pressure in any projection method can be at best first-order accurate. Brown et al. () 

showed the coupling of approximation of pressure gradient in momentum equation, the 
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formula used for global pressure update during time step and the boundary conditions can 

be combined to yield a fully second-order accurate projection method. 

The extension of the direct solver for pressure Poisson equation in multi-domain 

geometry will be done in the future work using the influence matrix approach. However, 

the solution will be solved twice in each sub-domain to avoid huge storage requirements 

and construction of final solution involving enormous matrix-vector multiplications. The 

formulation of the direct-solver in multi-patched domains will be as follows. For 

simplicity, consider a rectangular domain be divided into two sub-domains. Let interior 

of the sub-domains be Ωi (i = 1,2), boundary of the sub-domains be ∂Ωi (i = 1,2) and the 

interface between the sub-domains be Γ12 = ∂Ω1 ∩ ∂Ω2. Also, let the outward normal to 

the domain boundary be η. Consider the following sub problems with respective 

boundary conditions 

Non-homogeneous problem 1: 

∇2P1
* = ∇•u/∆t in Ω1 

∂P1
*/∂η  = 0 on ∂Ω1\Γ12 and P1

* = 0 on Γ12 

Non-homogeneous problem 2: 

∇2P2
* = ∇•u/∆t in Ω2 

∂P2
*/∂η  = 0 on ∂Ω2\Γ12 and P2

* = 0 on Γ12 

Homogeneous problem 1: 

∇2P1
’ = 0 in Ω1 

P1
’ = 0 on ∂Ω1\Γ12 and ∂P1

’/∂η  = ( ∂P1
*/∂η - ∂P2

*/∂η ) on Γ12 

Homogeneous problem 2: 

∇2P2
’ = 0 in Ω2 
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P2
’ = 0 on ∂Ω2\Γ12 and ∂P2

’/∂η  = -( ∂P1
*/∂η - ∂P2

*/∂η ) on Γ12 

Then, it can be easily shown that the final solution is P = (P1
* + P1

’) ∪(P2
* + P2

’) 

where P satisfies the following equation ∇2P = ∇•u/∆t in Ω1 ∪ Ω2 and the boundary 

conditions ∂P/∂η  = 0 on (∂Ω1∪∂Ω2)\Γ12. 
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Appendix VI: Zonal/Local Refinement of Cartesian Mesh 
 

The issue of very fine grids in the vicinity of walls is a big challenge for the large 

eddy simulations to be a practical tool for engineering flows. The smaller scales of 

motion need finer resolution in all three directions. The non-uniform grid stretching is 

incapable to resolve the smaller scales and hence the energy contained in them, though 

they might be sufficient for the better predictions of mean flow field. Moreover, the non-

uniform grids introduce commutation errors in the LES formulation. There have been 

several suggestions to avoid or minimize commutation errors in such complex situations. 

The accurate simulations of turbulence need high-order accurate discretization of the 

governing equations. The zonal refinement approach can address the issue of resolution 

and accurate modeling of SGS stresses as well as commutation errors satisfactorily while 

retaining high-order of accuracy of discretization schemes. 

There is a large body of literature on zonal embedded grids. The relevant issues that 

need to be addressed while using such an approach for LES should be conservation, 

accuracy, stability, consistency and the implied modifications to the underlying solution 

algorithm. Although the use of zonal refinement is fairly recent in the area of LES, the 

idea of local mesh refinement on Cartesian meshes is pretty old. Rai (1986) presented a 

zonal approach, wherein the given region is subdivided into zones and the grid for each 

zone is generated independently. This procedure introduces zonal boundaries at the 

interfaces of various zones that are accounted for in an accurate, conservative and stable 

fashion. Berger (1987) presented a procedure to derive conservative difference 

approximations at the grid interfaces for two-dimensional grids that overlap in an 

arbitrary configuration. The interface formulas were computed for grids that are refined 
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in space and/or time, and for continuous grids where a switch in scheme causes the 

discontinuity. Kallinderis (1992) proposed interface treatment schemes that have certain 

accuracy and conservation properties. An interface treatment that avoids interface grid 

stretching error and that is non-conservative was found to be more accurate over a 

conservative treatment for viscous flows that do not include moving shocks. Schmidt 

(1995) presented the construction of multigrid method on locally refined grids and the 

constraints on the prolongation and restriction operators. Coirier and Powell (1995) 

performed critical assessment of the accuracy of the Cartesian mesh approaches as 

compared to the body fitted meshes. The global order of accuracy was second-order 

while the local error was between first- and second-order accurate for their simulations. 

Edwards (1996) presented a flux continuous locally conservative approximation that 

removes the interface error and has a symmetric positive definite matrix for general 

discrete anisotropic coefficients. Minion (1996) presented a projection method for locally 

refined grids. The adjointness relation between gradient and divergence operators for 

refined grid MAC projection and a refined grid approximate projection was developed.  

Kravchenko et al. (1996, 1999) developed a B-spline based numerical method on zonal 

embedded grids for the computations of turbulent flows using LES. Sullivan et al. (1996) 

presented a grid nesting methodology in the framework of large eddy simulations (LES). 

They used a conservation rule for averaging fine grid resolved and SGS turbulent fluxes 

and kinetic energy to the coarse grid that is equivalent to Germano’s identity used to 

develop dynamic SGS models. Boersma et al. (1997) performed nested-grid calculations 

with LES. They used different grid-communication strategies to show that a local 

increase of resolution can be achieved through grid-nesting procedures. Colella et al. 
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(1998) observed that the dependent variables in a finite difference method are represented 

as arrays defined on subsets of an index space and the transformations on arrays can be 

expressed as combinations of pointwise operations on the arrays, and of sums over 

nearby points of arrays i.e. stencil operations. They proposed to use the stencil locations 

and the locations where the stencil operations are applied and computed using a set 

calculus on the index space. This provides a convenient and consistent infrastructure for a 

general-purpose algorithm. Day et al. (1998) presented a graph-based strategy for 

representing the computational domain for embedded boundary discretizations. This 

representation allowed recursive generation of coarse-grid geometry representations 

suitable for multigrid and adaptive mesh refinement calculations. Shariff and Moser 

(1998) developed a two-dimensional mesh embedding procedure with B-spline as basis 

functions. Bennett and Smooke (1998, 1999) showed that local rectangular refinement 

multiple-scale discretization produced a smaller overall error than the single scale 

discretizations commonly used on unstructured grids, and the layering technique also 

reduces errors while increasing grid robustness. These results were comparable in 

accuracy to those obtained on larger equivalent tensor product grids. Roma et al. (1999) 

used adaptive version of immersed boundary method on locally refined meshes to 

simulate complex geometries on the Cartesian grids. Cook (1999) discussed the issue of 

commutation errors in LES using the adaptive mesh refinement. Multiple uniform grids 

in a nested hierarchy using a constant-width filter for each grid was used as a means to 

mostly avoid commutation errors where increased grid resolution is required to capture 

key flow features. Moore (1999) derived finite difference approximations for grids with 

irregular nodes to ensure consistency and accuracy. Washio and Oosterlee (2000) 
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proposed an interpolation technique on interior boundaries of the composite grid based on 

conservative discretization and presented a rigorous error analysis on the locally refined 

grids. Teigland and Eliassen (2001) described a patched-based local refinement that is 

essentially block-unstructured. Gullbrand et al. (2001) proposed a high-order wall 

treatment procedure using Lagrangian interpolations and extrapolations in locally refined 

Cartesian grids for LES.  

In the future development, a nested grid approach will be used. The interpolation 

between grid interfaces will be achieved using cubic splines. Note that such an 

interpolation will be conserving both mass and momentum fluxes. Moreover, the nesting 

of finer meshes in the coarse cells provides a rational basis for SGS modeling without 

any commutation errors on the coarse mesh. Also, the mesh refinement will be performed 

in the multiple of odd-integers. This approach has advantages in the staggered mesh 

arrangement for the coarse node will always coincide with the node of central refined 

mesh and hence only injection from fine mesh to coarse mesh is needed, avoiding 

interpolation of finer mesh data. Furthermore, the interfaces are also positioned 

consistently in such a refinement strategy. Thus, the little loss in the flexibility to perform 

arbitrary refinement is well compensated by these added advantages. 
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