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The only harmonic homogeneous functions defined in Rn\{0} are the harmonic poly-
nomials and the so-called multipole potentials, namely functions of the type P (x) =
p (x) / |x|2k+n−2 for some harmonic polynomial p of degree k. The first aim of this 
article is to study the distributional regularization of multipole potentials. We show 
that even though the Hadamard regularization Pf

(
p (x) / |x|2k+n−2

)
exists for any 

homogeneous polynomial of degree k, the principal value p.v.
(
p (x) / |x|2k+n−2

)
ex-

ists if and only if p is harmonic; this means that if p is harmonic then for any test 
function φ the divergent integral 

∫
Rn p (x)φ (x) / |x|2k+n−2 dx can be computed 

by employing polar coordinates and performing the angular integral first. We also 
find the first and second order distributional derivatives of these regularizations and, 
more generally, of the regularizations of functions of the form Pl (x) = p (x) / |x|k+l. 
We find many interesting formulas that hold precisely when p is a harmonic poly-
nomial of degree k. In particular, we prove that

Δp.v.
(

p (x)
r2k+n−2

)
=

(−1)k+1 πn/2

2k−2Γ
(
n
2 + k − 1

)p (∇) δ (x) ,

generalizing the well known relation Δ (r2−n) = (2 − n)Cδ (x), where C is the area 
of a sphere of radius 1. Actually formulas like this one hold for a homogeneous 
polynomial p of degree k if and only if p is harmonic.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

There are some functions that are both harmonic and homogeneous, u (λx) = λαu (x), λ > 0. In the 
whole space Rn the only possibility is α = k ∈ N, and in that case u must be a polynomial function, 
u ∈ Hk, where we denote by Hk the set of harmonic homogeneous functions of degree k. Actually one may 
consider Hk under three different lights, namely, as a set of polynomials in n variables of degree k, or as a 
set of polynomial functions, perhaps better denoted as Hk (Rn), or even as the set of restrictions to the unit 
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sphere, Hk (S). The elements of Hk (S) are usually called spherical harmonics, while those of Hk (Rn) are 
referred to as solid harmonics. Notice that the restriction map Hk (Rn) −→ Hk (S) is a bijection because 
of the maximum principle for harmonic functions. See [1] for the many properties of harmonic polynomials 
and of harmonic functions in general.

On the other hand, we may consider harmonic homogeneous functions defined in Rn \ {0}. One way to 
obtain such functions is to apply the Kelvin transform [1, Chp. 4], u �→ K [u] to the elements u ∈ Hk. In 
general, if u is a function defined in a region Ω ⊂ R

n, then v = K [u] is a function defined in the conjugated 
set Ω∗ = {x∗ : x ∈ Ω}, x∗ = x/ |x|2, by v (x) = |x|2−n

u (x∗); the Kelvin transform sends harmonic functions 
to harmonic functions and it also sends homogeneous functions to homogeneous functions, so that if p ∈ Hk

then the function

P (x) = p (x)
r2k+n−2 , (1.1)

where, as customary, r = |x|, is a harmonic function, homogeneous of degree −k − n + 2, defined1 in 
R

n \ {0}. Functions of the form (1.1) are sometimes called multipole potentials [18]. It is not hard to see 
that all harmonic homogeneous functions defined in Rn \ {0} are either harmonic polynomials or multipole 
potentials of the form (1.1).

The aim of this article is to study several properties of multipole potentials and, more generally, of 
functions of the type Pl (x) = r−k−lp (x) where p ∈ Hk. Since P = Pk+n−2 has a non-integrable singularity 
at the origin, unless k = 0 or k = 1, we need to study the regularization of P as a distribution of the space 
D′ (Rn); we find that the principal value distribution p.v. (P (x)) ∈ D′ (Rn) given as

〈p.v. (P (x)) , φ (x)〉 = lim
ε→0

∫
|x|≥ε

P (x)φ (x) dx , φ ∈ D (Rn) , (1.2)

always exists if p ∈ Hk. This means that if p ∈ Hk one may regularize the divergent integral ∫
Rn P (x)φ (x) dx by following the simple rule of “using polar coordinates and performing the angular in-

tegrals first.” In fact, we show that if p is a general homogeneous polynomial of degree k which is not 
harmonic, then the principal value does not exist, so that the simple rule of regularization does not work
and one needs to employ the Hadamard regularization Pf (P (x)).

Next we obtain formulas for the first and second order derivatives of the distributions Pf (Pl (x)), in 
particular for the distributions p.v. (Pk+n−2 (x)). Such derivatives are very important in Mathematical 
Physics [3,4,15,18] and several special cases have been computed by several authors [13,17,21,22]. Naturally 
it is rather simple to obtain the ordinary derivatives of Pl (x), that is, the derivatives away from the origin,2
therefore we pay special attention to the delta part of these derivatives. Our computations show that many 
times the derivatives of fields that do not have a delta part may have a high order delta part, that is, 
derivatives of the delta function can appear in the derivatives of fields that have no delta function at the 
origin, as (1.3) already shows; this “apparent paradox” was pointed out by Parker [22], who warns of the 
mistakes that it can produce.

The distributional derivatives of any order of power potentials were given in [8,9], and are available in 
several textbooks [10,20], and in principle could be employed to compute the distributional derivatives of 
Pf (Pl (x)), even if p is not harmonic, but such direct computations become rather complicated and no 
simple formulas are obtained. Nevertheless, we show that when p ∈ Hk the expressions for the derivatives 
can be simplified in a surprising way, leading to rather nice formulas. In particular we show that3

1 In fact P is defined in R̃n \ {0}, the one point compactification of Rn, R̃n, with the origin removed.
2 In other words, this is the far field behavior.
3 An overbar denotes a distributional derivative, a notation first introduced by the late Professor Farassat [11].
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Δp.v.
(

p (x)
r2k+n−2

)
= (−1)k+1

πn/2

2k−2Γ
(
n
2 + k − 1

)p (∇) δ (x) , (1.3)

a generalization of the well known relation Δ
(
r2−n

)
= (2 − n)Cδ (x), where C is given by (2.1). Actually 

we compute all first and second order derivatives of the distribution Pf (Pl (x)). We arrive at our results by 
a careful study of the relationship between the two natural inner products in Pk, the space of homogeneous 
polynomials of degree k, a study which is given in Section 3, and by employing the thick distributional 
analysis [7,27,29], particularly the formulas for the thick derivatives of homogeneous distributions.

2. Preliminaries and notation

We shall employ the notations

cm,n = 2Γ (m + n/2)π(n−1)/2

Γ (m + 1/2) =
∫
S

ω2m
j dσ (ω) , C = c0,n . (2.1)

Notice that c0,n = C = 2πn/2/Γ (n/2), is the surface area of the unit sphere S of Rn.4
Sometimes we shall need the delta derivatives δf/δxi of a function defined on a hypersurface Σ of Rn

[10, Sect. 2.7]. They are defined as follows: Suppose f is a smooth function defined in Σ and let F be any 
smooth extension of f to an open neighborhood of Σ in Rn; the derivatives ∂F/∂xj will exist, but their 
restriction to Σ will depend not only on f but also on the extension employed. However, it can be shown that 
the formulas δf/δxj = (∂F/∂xj − njdF/dn)|Σ, where n = (nj) is the normal unit vector to Σ and where 
dF/dn = nk∂F/∂xk is the derivative of F in the normal direction, define derivatives δf/δxj, 1 ≤ j ≤ n, 
that depend only on f and not on the extension. In general, n = (nj) denotes the normal vector to the 
hypersurface Σ, but when Σ = S, the unit sphere, then at ω ∈ S we have n = ω, and thus one finds in some 
formulas in the literature nj while in others one finds ωj , but of course they are the same.

Let us now recall the notion of the finite part5 of a limit [10, Section 2.4]. Suppose F, the basic functions, 
is a family of strictly positive functions defined for 0 < ε < ε0 such that all of them tend to infinity at 0
and such that, given two different elements f1, f2 ∈ F, then limε→0+ f1 (ε) /f2 (ε) is either 0 or ∞.

Definition 2.1. Let G (ε) be a function defined for 0 < ε < ε0 with |limε→0+ G (ε)| = ∞. The finite part of 
the limit of G (ε) as ε → 0+ with respect to F exists and equals A if we can write6 G (ε) = G1 (ε) + G2 (ε), 
where G1, the infinite part, is a linear combination of the basic functions and where G2, the finite part, has 
the property that the limit A = limε→0+ G2 (ε) exists. We then employ the notation

F.p.F lim
ε→0+

G (ε) = A . (2.2)

The Hadamard finite part limit corresponds to the case when F is the family of functions ε−α |lnα|β , where 
α > 0 and β ≥ 0 or where α = 0 and β > 0. We then use the simpler notation F.p. limε→0+ G (ε).

Consider now a function f defined in Rn that is probably not integrable over the whole space but which 
is integrable in the region |x| > ε for any ε > 0. Then the radial finite part integral is defined as

4 Interestingly, integrals of the type 
∫
S
ω2m1

1 · · ·ω2mn
n dσ (ω) have been evaluated independently by several authors, starting with 

Weyl [25], and, continuing with, among others, [8] and [4].
5 Hadamard introduced the notion of the finite parts, and the name, when considering the divergent integrals that appear in the 

fundamental solutions of hyperbolic equations [16].
6 Such a decomposition is unique since any finite number of elements of F is linearly independent.
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F.p.
∫
Rn

f (x) dx = F.p. lim
ε→0+

∫
|x|>ε

f (x) dx , (2.3)

if the finite part limit exists. When the ordinary limit limε→0+
∫
|x|>ε

f (x) dx exists we call the integral 
a radial principal value integral and use the notation p.v.

∫
Rn f (x) dx; this actually equals the convergent

integral 
∫∞
0 F (r) dr, where F (r) = rn−1 ∫

S
f (rω) dσ (ω).

We shall employ the ideas of the recently developed thick distributional calculus [7,27–29]. The thick 
calculus allows one to study spaces where there is one special point, where the laws governing the rest 
of the space do not apply [2]. If a is a fixed point of Rn, then the space of test functions with a thick 
point at x = a is the space D∗,a (Rn) of all smooth functions φ defined in Rn \ {a}, with support of 
the form K \ {a}, where K is compact in Rn, that admit a strong7 asymptotic expansion of the form 
φ (a + x) = φ (a + rω) ∼

∑∞
j=m aj (ω) rj , as x → 0, where m is an integer (positive or negative), and where 

the aj are smooth functions of ω, that is, aj ∈ D (S). We call D∗,a (Rn) the space of test functions on Rn

with a thick point located at x = a; we denote D∗,0 (Rn) as D∗ (Rn). The space D∗,a (Rn) has a natural 
topology, which makes it a locally convex topological vector space [27].

The space of distributions on Rn with a thick point at x = a is the dual space of D∗,a (Rn). We denote 
it D′

∗,a (Rn), or just as D′
∗ (Rn) when a = 0. Observe that D (Rn), the space of standard test functions, is a 

closed subspace of D∗,a (Rn); if i : D (Rn) → D∗,a (Rn) is the inclusion map then the dual of the inclusion 
is the projection operator

Π : D′
∗,a (Rn) → D′ (Rn) . (2.4)

The derivatives of thick distributions are defined in much the same way as the usual distributional deriva-
tives, that is, by duality, namely, if f ∈ D′

∗,a (Rn) then its thick distributional derivative ∂∗f/∂xj is defined 
as 〈∂∗f/∂xj , φ〉 = − 〈f, ∂∗φ/∂xj〉 if φ ∈ D∗,a (Rn).

Let g (ω) be a distribution on S. The thick delta function of degree q, denoted as gδ[q]
∗ , or as g (ω) δ[q]

∗ , 
acts on a thick test function φ (x) as〈

gδ
[q]
∗ , φ

〉
D′

∗(Rn)×D∗(Rn)
= 1

C
〈g (ω) , aq (ω)〉D′(S)×D(S) , (2.5)

where φ (rω) ∼
∑∞

j=m aj (ω) rj , as r → 0+, and where C is given by (2.1).

3. Two inner products

There are two natural inner products defined in the space Pk of homogeneous polynomials of degree k
in n variables. One is defined in terms of the coefficients as

{p, q} =
∑
|α|=k

α!aαbα , (3.1)

if p (x) =
∑

|α|=k aαxα and q (x) =
∑

|α|=k bαxα. Notice that {p, q} actually equals the following constant 
function, {p, q} = p (∇) q (x), where ∇ = (∂/∂xi)ni=1 is the gradient. The other product is given as

(p, q) = 1
C

∫
S

p (ω) q (ω) dσ (ω) = 1
C

〈
p (ω) , q (ω)

〉
D′(S)×D(S)

, (3.2)

7 Observe that we require the asymptotic development of φ (x) as x → a to be “strong”. This means [10, Chapter 1] that for any 
differentiation operator (∂/∂x)p = (∂p1 ...∂pn ) /∂xp1

1 ...∂xpn
n , the asymptotic development of (∂/∂x)p φ (x) as x → a exists and is 

equal to the term-by-term differentiation of ∑∞
j=m aj (w) rj .
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where dσ is surface measure on S and C is given by (2.1). Both products can also be considered in the space 
P≤k =

⊕k
j=0 Pk of polynomials of degree k at the most.

Clearly the two products are different. In fact, if α �= β then 
{
xα,xβ

}
= 0, while if all the entries in 

α + β are even then 
(
xα,xβ

)
> 0. The interesting thing is that sometimes the two inner products are very 

closely related: Indeed, it is proved in [1, Thm. 5.4] that if p and q are both harmonic, p, q ∈ Hk then

{p, q} = n (n + 2) · · · (n + 2k − 2) (p, q) , (3.3)

and we shall see that (3.3) holds if just one of the two polynomials is harmonic. Actually, more is true.

Lemma 3.1. If u ∈ Hk then

Δm
(
r2mu

)
= 2mm! (n + 2k) · · · (n + 2k + 2m− 2)u . (3.4)

Proof. If m = 1 then Δ 
(
r2u

)
= Δ 

(
r2)u + 4xiu,i = 2nu + 4ku = 2 (n + 2k)u, as required. The formula 

then follows by iteration. �
Let us now recall the identity [12], 

{
p, r2q

}
= {Δp, q}, valid if p ∈ Pk and q ∈ Pk−2. It yields the ensuing 

formulas.

Lemma 3.2. If p ∈ Hk and q ∈ Hk, then{
r2mp, r2mq

}
= 2mm!n (n + 2) · · · (n + 2k + 2m− 2) (p, q) , (3.5)

while if p ∈ Hk and q ∈ Hk−2l+2m, where l �= m then

{
r2mp, r2lq

}
= (p, q) = 0 . (3.6)

Proof. Since 
{
r2mp, r2lq

}
=

{
Δl

(
r2mp

)
, q
}
, we immediately obtain 

{
r2mp, r2lq

}
= 0 if l > m, and thus 

if l �= m; since (p, q) = 0 if p and q are spherical harmonics of different order, (3.6) follows. On the other 
hand, 

{
r2mp, r2mq

}
=

{
Δm

(
r2mp

)
, q
}
, so that (3.5) is obtained by combining (3.3) and (3.4). �

Every polynomial p ∈ Pk can be written as [1,12]

p = u0 + r2u2 + · · · + r2mu2m , (3.7)

where k − 2m = 0 or 1, and where u2j ∈ Hk−2j . This is an orthogonal decomposition with respect to 
both inner products, as follows from (3.6). If we now employ (3.5), and collect results, we obtain the next 
proposition.

Proposition 3.3. Let p ∈ Hk and q ∈ Pk+2m. Then

{
r2mp, q

}
= Wn,k,m

(
r2mp, q

)
, (3.8)

where Wn.k,m = 22m+km!Γ (k + m + n/2) /Γ (n/2), that is Wn.0,0 = 1 while if k + m > 0,

Wn.k,m = 2mm!n (n + 2) · · · (n + 2k + 2m− 2) . (3.9)



R. Estrada / J. Math. Anal. Appl. 446 (2017) 770–785 775

Notice that we may rewrite (3.8) in the following way,

1
C

∫
S

p (ω) q (ω) dσ (ω) = 1
Wn,k,m

Δmp (∇) q (x) , (3.10)

if p ∈ Hk and q ∈ Pk+2m, the function on the right side of this formula being a constant function.

Example 3.4. An interesting particular case of (3.10) is the following. Suppose p ∈ Hk. Write r2mp =∑
|α|=k+2m aαxα. If |β| = k + 2m then

aβ = Wn,k,m

C β!

∫
S

p (ω)ωβ dσ (ω) . (3.11)

Example 3.5. If p ∈ Hk then, in general, xip is not harmonic, and thus formulas (3.8) and (3.10) do not 
hold if we replace p by xip. Indeed, if p ∈ Hk and q ∈ Pk+2m+1 then

(ωip, q) = (p, ωiq) = 1
Wn,k,m+1

{
r2m+2p, xiq

}
.

But {
r2m+2p, xiq

}
=

{
∇i

(
r2m+2p

)
, q
}

=
{
(2m + 2)xir

2mp + r2m+2p,i, q
}
,

so that we obtain

(ωip, q) = 1
Wn,k,m+1

[
(2m + 2)Δmp (∇)∇i + Δm+1p,i (∇)

]
q (x) . (3.12)

Similarly, if p ∈ Hk and q ∈ Pk+2m then

(ωiωjp, q) = 1
Wn,k,m+1

{Aij , q} = 1
Wn,k,m+1

Aij (∇) q (x) , (3.13)

where

Aij = 2m (2m + 2) r2m−2xixjp (3.14)

+ (2m + 2) r2mδijp + (2m + 2) r2m (xip,j + xjp,i) + r2m+2p,ij .

Here and in similar formulas the derivatives of p are denoted as p,i, p,ij , and so on. Notice that these 
formulas hold not only for m ∈ N, but if m = −1 as well, yielding

(ωip, q) = 1
Wn,k,0

p,i (∇) q (x) , p ∈ Hk , q ∈ Pk−1 , (3.15)

and

(ωiωjp, q) = 1
Wn,k,0

p,ij (∇) q (x) , p ∈ Hk , q ∈ Pk−2 . (3.16)

Naturally, if we put i = j and sum over the repeated index in (3.13) we recover (3.10) since Wn,k,m+1 =
2 (m + 1) (n + 2m + 2k)Wn,k,m.
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4. Regularization

We would now like to consider the regularization8 in D′ (Rn) of homogeneous functions of the type

P (x) = p (x)
r2k+n−2 , (4.1)

where p is a homogeneous polynomial of degree k, that belong to D′ (Rn \ {0}). In general, if f is a function 
or distribution defined in Rn \ {0}, then it may or may not be possible to extend it to a distribution in the 
whole space, and, even if possible, the extension is not unique. Furthermore there is no canonical procedure 
that works in all cases [5].

The simplest regularization procedure is the spherical principal value regularization, defined as9

p.v. (f) = lim
ε→0

f (x)H (r − ε) , (4.2)

where H is the Heaviside function. Naturally, for a given f ∈ D′ (Rn \ {0}) the product f (x)H (r − ε)
does not have to be defined, and the limit might not exist; therefore, in general, one would not expect 
the existence of the principal value. Interestingly, when the spherical principal value exists then one may 
employ the simple procedure explained in the Physics literature, namely, “in order to regularize the integral∫
Rn f (x)φ (x) dx, one just needs to use polar coordinates and perform the angular integrals first.” It goes 

without saying that this simple method fails if the spherical principal value does not exist. Many times the 
limit in (4.2) does not exist but the Hadamard finite part limit of Definition 2.1 exists, and this gives the 
distribution

Pf (f (x)) = F.p. lim
ε→0

f (x)H (r − ε) . (4.3)

The notation Pf (f (x)) was introduced by Schwartz [24, Chp. 2, §2], who called it a pseudofunction,
a term that many still use. For instance, if α ≥ n then Pf (r−α) exists but the principal value does not. 
The distribution Pf (P (x)) = p (x)Pf

(
r−(2k+n−2)), where P (x) is given in (4.1) will always exist, but as 

we shall see, if p ∈ Hk then actually more is true, since the principal value p.v. (P (x)) exists as well.

Example 4.1. The principal value p.v.
((

3xixj − r2δij
)
/r5) exists in R3, as will follow from Proposition 4.3, 

but we have

p.v.
(

3xixj − r2δij
r5

)
= Pf

(
3xixj

r5

)
− δijPf

(
1
r3

)
, (4.4)

since the principal values of the distributions on the right do not exist.

We need a simple auxiliary result at this point.

Lemma 4.2. Let p ∈ Pk. Then p ∈ Hk if and only if (p, q) = 0 for all polynomials of degree less than k.

Proof. If p ∈ Hk then clearly (p, q) = 0 for all polynomials of degree less than k, since the restriction of 
q to S can be expressed as a linear combination of homogeneous harmonic polynomials of degree less than 
k and homogeneous harmonic polynomials of different degrees are orthogonal for the inner product ( , ). 

8 Regularization methods are considered in the texts on distributions [10,14,19,20]. See also [6] and [23].
9 One should call the procedure (4.2) a spherical principal value, since the use of the variable r means that f (x)H (r − ε) is the 

distribution where f has been replaced by 0 inside a ball of radius ε. The results when solids of other shapes are removed could 
be very different [11,17,26].
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Conversely, if p ∈ Pk \ Hk, then we can write p = u0 + r2u2 + · · ·+ r2mu2m, where k − 2m = 0 or 1, where 
u2j ∈ Hk−2j , and where u2j �= 0 for some j > 0; but this gives

(p, u2j) =
(
p, r2ju2j

)
= 1

Wn,k−2j,j

{
p, r2ju2j

}
= 1

Wn,k−2j,j

{
Δjp, u2j

}
= 2jj! (n + 2k) · · · (n + 2k + 2j − 2)

Wn,k−2j,j
{u2j , u2j} �= 0 . �

We thus obtain the following result.

Proposition 4.3. Let p ∈ Pk. Then p ∈ Hk if and only if the principal value

p.v.
(

p (x)
r2k+n−2

)
= lim

ε→0

p (x)
r2k+n−2H (r − ε) , (4.5)

exists in D′ (Rn).

Proof. Let φ ∈ D (Rn). Suppose its support is contained in the ball |x| ≤ A. Let q (x) =
∑k−1

j=0 qj (x) be its 
Taylor polynomial of degree k − 1, where qj ∈ Pj . Then if ε < A we have〈

p (x)
r2k+n−2H (r − ε) , φ (x)

〉
=

∫
ε≤|x|≤A

p (x)φ (x)
r2k+n−2 dx

=
∫

ε≤|x|≤A

p (x) (φ (x) − q (x))
r2k+n−2 dx+

∫
ε≤|x|≤A

p (x) q (x)
r2k+n−2 dx ,

and since (p, qj) = 0 if k − j is odd,

∫
ε≤|x|≤A

p (x) q (x)
r2k+n−2 dx =

�
k/2

�∑
l=1

(p, qk−2l)
A∫
ε

r−2l+1dr , (4.6)

so that 〈
p (x)

r2k+n−2H (r − ε) , φ (x)
〉

= GInfinite (ε) + GFinite (ε) , (4.7)

where limε→0 GFinite (ε) exists, and where

GInfinite (ε) = − (p, qk−2) ln ε +

�
k/2

�∑
l=2

(p, qk−2l)
(2l − 2) ε2l−2 . (4.8)

It follows that the limit in (4.7) exist for all test functions φ ∈ D (Rn) if and only if GInfinite (ε) = 0, and 
because of (4.8) this is equivalent to (p, qj) = 0 for all qj ∈ Pj , 0 ≤ j ≤ k−1. The Lemma 4.2 gives therefore 
that the principal value exists precisely when p ∈ Hk. �

When k = 2, then p ∈ P2 is harmonic if and only if 
∫
S
p (ω) dσ (ω) = 0, so we obtain the following simple 

consequence of the above proposition.

Example 4.4. If p ∈ P2 then the principal value p.v.
(
p (x) /rn+2) exists if and only if 

∫
S
p (ω) dσ (ω) = 0.
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In general if f ∈ D′ (Rn \ {0}) is homogeneous of some degree α, then the pseudofunction Pf (f (x))
does not have to be homogeneous of degree α. For instance, Pf

(
r−n−2k) is not homogeneous of degree 

−n − 2k in D′ (Rn) for k = 0, 1, 2, . . .. However, if the principal value F (x) = p.v. (f (x)) exists, then10 it 
is homogeneous of degree α, since if λ > 0

F (λx) = lim
ε→0

f (λx)H (|λx| − ε) = λα lim
ε→0

f (x)H (r − ε/λ) = λαF (x) .

Therefore we obtain the following on the homogeneity of p.v.
(
p (x) /r2k+n−2).

Proposition 4.5. If p ∈ Hk then Pf
(
p (x) /r2k+n−2) = p.v.

(
p (x) /r2k+n−2) is homogeneous of degree −k−

n − 2. If p ∈ Pk \ Hk then Pf
(
p (x) /r2k+n−2) is not homogeneous.

One may also consider the regularization of (4.1) in the space of thick distributions D′
∗ (Rn). It turns out 

that in this space we always need to consider the Hadamard regularization, since the principal value never
exists. We shall use the same notation, Pf (f (x)) in both spaces, D′ (Rn) and D′

∗ (Rn), since this should 
not cause any confusion.

4.1. The delta part of a distribution

In general it is not possible to separate the contribution to a distribution from a given point; to talk 
about the “delta part at x0” of all distributions does not make sense. However, sometimes, we can actually 
separate the delta part.

Definition 4.6. Let f0 ∈ D′ (Rn \ {0}) be a distribution defined in the complement of the origin. Suppose 
the pseudofunction Pf (f0 (x)) exists in D′ (Rn) (respectively in D′

∗ (Rn)). Let f ∈ D′ (Rn) (respectively in 
f ∈ D′

∗ (Rn)) be any regularization of f0. Then the delta part at 0 of f is the distribution f − Pf (f0 (x)), 
whose support is the origin.11

It must be emphasized that even though Pf (f0 (x)) is in a way the natural regularization of f0, other 
regularizations appear also very naturally, as we illustrate in the following examples.

Example 4.7. Consider the distribution Pf
(
r−k

)
in Rn. Then the distributional derivative 

(
∂/∂xi

)
Pf

(
r−k

)
is a regularization of −kxir

−k−2, the ordinary derivative of r−k; however [9, (3.16)] if k−n = 2m is an even 
positive integer, then

∂

∂xi
Pf

(
r−k

)
= Pf

(
−kxir

−k−2)− cm,n

(2m)!k∇iΔmδ (x) , (4.9)

where cm,n is given by (2.1). Therefore, (−cm,n/ (2m)!k)∇iΔmδ (x) is the delta part of the distribution (
∂/∂xi

)
Pf

(
r−k

)
in D′ (Rn). In the space D′

∗ (Rn), now for any integer k ∈ Z, the delta part of the thick 

derivative (∂∗/∂xi)Pf
(
r−k

)
is given [27, Thm. 7.1] as Cniδ

[−k−n+1]
∗ . Naturally, when k−n = 2m ≥ 0, the 

projection of the thick delta part is precisely the distributional delta part, and this agrees with [27, (7.7)].

Example 4.8. If λ > 0 is fixed, then λkPf
(
H (x) / (λx)k

)
is a regularization of H (x) /xk in D′ (R), but [10, 

(2.93)]

10 This argument does not work for Pf (f (x)), in general, because F.p. limε→0 F (cε) and F.p. limε→0 F (ε) might be different 
(take F (ε) = ln ε, for instance).
11 Notice that this delta part is in fact a spherical delta part.
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Pf

(
H (x)
(λx)k

)
= 1

λk
Pf

(
H (x)
xk

)
+ (−1)k−1 lnλ δ(k−1) (x)

(k − 1)!λk
, (4.10)

so that the delta part of λkPf
(
H (x) / (λx)k

)
is (−1)k−1 lnλ δ(k−1) (x) / (k − 1)!. Similarly, in Rn for n ≥ 2, 

and for m ∈ N, the distribution λn+2mPf
(
|λx|−n−2m

)
is a regularization of r−n−2m and in D′ (Rn) its 

delta part is lnλ cm,n∇2mδ (x) / (2m)!, while in D′
∗ (Rn) its delta part is lnλ Cδ

[2m]
∗ , as follows from [27, 

(5.13), (5.14)].

Example 4.9. The function sin r−k is locally integrable in Rn, and thus it gives a well defined regular 
distribution in D′ (Rn). If k > n, then the distributional derivative 

(
∂/∂xi

)
sin r−k is another well defined 

distribution, but its delta part at the origin is not defined, since Pf
(
(∂/∂xi) sin r−k

)
does not exist.

When f0 is a smooth function defined in Rn \ {0} such that the Hadamard regularization exists at the 
origin, and f ∈ D′ (Rn) is a regularization of f0, then we call f0 the ordinary part of f . Thus, for instance, 
−kxir

−k−2 is the ordinary part of 
(
∂/∂xi

)
Pf

(
r−k

)
.

5. Derivatives of homogeneous distributions

We now shall present the distributional derivatives of the regularization Pf (Pl (x)) of the functions of 
the type

Pl (x) = p (x)
rk+l

= p (ω)
rl

, p ∈ Hk , (5.1)

that are homogeneous in Rn \ {0}, particularly when l = k+n − 2, so that Pk+n−2 is harmonic in Rn \ {0}. 
Naturally our main interest is in the delta part of these distributional derivatives, since obtaining the 
ordinary part is quite straightforward. Actually ΔPf (Pk+n−2 (x)) is a distribution concentrated at the 
origin, that is, it is just the delta part.

Our approach is based on the thick distributional calculus, since the thick derivatives of general homo-
geneous functions are available [29, Prop. 3.3 and Prop. 3.5]. Therefore the distributional derivatives are 
obtained by projection onto D′ (Rn), since [27, Prop. 5.9]

Π (∇∗
i (f)) = ∇i (Π (f)) . (5.2)

Even though one can do this for general homogeneous functions, the expressions for the projections can 
be simplified and yield a rather nice formula in the case of Pl (x); in fact, if we assume p ∈ Pk, but p not 
harmonic, the formulas become much more involved.

5.1. Projection formulas

We now give several projection formulas of thick distributions that involve harmonic polynomials. Let us 
recall, first, the general formula for the projection of Π 

(
g (ω) δ[l]

∗
)

if g ∈ D′ (S), namely [27, (4.9)]

Π
(
g (ω) δ[l]

∗
)

= (−1)l

C

∑
|α|=l

〈g (ω) , ωα〉D′(S)×D(S)

α! ∇αδ (x) . (5.3)

No extra simplification is to be expected for a general g, but if g = p ∈ Hk, then we have the ensuing 
projection results.
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Proposition 5.1. Let p ∈ Hk. Then

Π
(
p (ω) δ[l]

∗
)

= 0 , if l − k �= 0, 2, 4, . . . , (5.4)

Π
(
p (ω) δ[k+2m]

∗
)

= (−1)k

Wn,k,m
p (∇)∇2mδ (x) . (5.5)

In particular,

Π
(
p (ω) δ[k]

∗
)

= (−1)k

Wn,k,0
p (∇) δ (x) . (5.6)

Proof. Formula (5.4) follows since (p, ωα) = 0 if |α| = l and l − k is not an even positive12 integer. To 
establish (5.5) we proceed as follows. Let φ ∈ D (Rn); let 

∑∞
j=0 qj be its Taylor expansion, where qj ∈ Pj . 

Then 〈
Π
(
p (ω) δ[k+2m]

∗
)
, φ

〉
D′(Rn)×D(Rn)

=
〈
p (ω) δ[k+2m]

∗ , φ
〉
D′

∗(Rn)×D∗(Rn)

= 1
C

∫
S

p (ω) qk+2m (ω) dσ (ω) = 1
Wn,k,m

Δmp (∇) qk+2m (x)

= 1
Wn,k,m

Δmp (∇)φ (x)
∣∣∣∣
x=0

,

that is

〈
Π
(
p (ω) δ[k+2m]

∗
)
, φ

〉
D′(Rn)×D(Rn)

=
〈

(−1)k

Wn,k,m
p (∇)∇2mδ (x) , φ (x)

〉
D′(Rn)×D(Rn)

,

as required. An alternative derivation employs (3.11) and (5.3). �
Notice that we may take p = 1 in the above projection formulas, and this yields Π 

(
δ
[l]
∗
)

= 0, if l �=
0, 2, 4, . . ., and

Π
(
δ
[2m]
∗

)
= 1

Wn,0,m
∇2mδ (x) =

Γ
(
m + 1

2
)
Γ
(
n
2
)

Γ
(
m + n

2
)
Γ
(1

2
)
(2m)!

∇2mδ (x) , (5.7)

that agrees with [27, (6.5)]. Similarly, we could take p = xi, which gives Π 
(
δ
[l]
∗
)

= 0, if l �= 1, 3, 5, . . ., and 

[27, (7.7)]

Π
(
ωiδ

[1+2m]
∗

)
= −1

Wn,1,m
∇i∇2mδ (x) =

−Γ
(
m + 1

2
)
Γ
(
n
2
)

(2m + 2) Γ
(
m + n

2
)
Γ
(1

2
)
(2m)!

∇i∇2mδ (x) . (5.8)

Formula (5.5) cannot be applied if p is not harmonic, but we may employ formulas (3.12) and (3.13) and 
an argument similar to the proof of the Proposition 5.1 to obtain the following results.

12 We employ the term x positive to mean x ≥ 0; if x > 0 we say that x is strictly positive.
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Proposition 5.2. Let p ∈ Hk. Then Π 
(
ωip (ω) δ[l]

∗
)

= 0 if l − k �= −1, 1, 3, 5, . . ., while

Π
(
ωip (ω) δ[k+2m+1]

∗
)

= (−1)k+1

Wn,k,m+1

(
(2m + 2)∇ip (∇)∇2m + p,i (∇)∇2m+2) δ (x) . (5.9)

Also Π 
(
ωiωjp (ω) δ[l]

∗
)

= 0 if l − k �= −2, 0, 2, 4, 6, . . ., and

Π
(
ωiωjp (ω) δ[k+2m+2]

∗
)

= (−1)k+2

Wn,k,m+1
Aij (∇) δ (x) , (5.10)

where the polynomial Aij ∈ Pk+2 is given by (3.14).

Formulas (5.9) and (5.10) hold not only if m ∈ N, but for m = −1 as well, namely,

Π
(
ωip (ω) δ[k−1]

∗
)

= (−1)k+1

Wn,k,0
p,i (∇) δ (x) , (5.11)

Π
(
ωiωjp (ω) δ[k−2]

∗
)

= (−1)k+2

Wn,k,0
p,ij (∇) δ (x) . (5.12)

Notice also that (5.9) allows us to generalize the projection formula Π 
(
ωiωjδ

[0]
∗
)

= (δij/n) δ (x) [27] to

Π
(
ωiωjδ

[2m]
∗

)
= 1

Wn,1,m

(
2m∇i∇j∇2m−2 + δij∇2m)

δ (x) . (5.13)

5.2. First order derivatives of Pf (Pl (x))

The thick first order derivatives of Pf (Pl (x)) can be obtained from [29, Prop. 3.3]. There is no delta 
part unless l ∈ Z, and in this case

∇∗
iPf

(
p (x)
rk+l

)
= Pf

(
r2p,i (x) − (k + l)xip (x)

rk+l+2

)
+ Cnipδ

[1−n+l]
∗ . (5.14)

Use of the Proposition 5.2 then yields the ensuing result.

Proposition 5.3. Let p ∈ Hk. If l �= k + 2m + n − 2, m ∈ N, then

∇iPf

(
p (x)
rk+l

)
= Pf

(
r2p,i (x) − (k + l)xip (x)

rk+l+2

)
, (5.15)

while if m ∈ N

∇iPf

(
p (x)

r2k+2m+n−2

)
= Pf

(
r2p,i (x) − (n + 2k + 2m− 2)xip (x)

r2k+2m+n

)
(5.16)

+ (−1)k+1
C

Wn,k,m

(
2m∇ip (∇)∇2m−2 + p,i (∇)∇2m)

δ (x) .

Notice that when k = 0, so that p = 1, we recover the formula [9, (3.16)], namely,

∇iPf

(
1

r2m+n

)
= − (n + 2m)Pf

( xi

r2m+n+2

)
− πn/2

22mm!Γ
(
n
2 + m + 1

)∇i∇2mδ (x) . (5.17)
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Notice also the case m = 0, that yields for k ≥ 1

∇iPf

(
p (x)

r2k+n−2

)
= Pf

(
r2p,i (x) − (n + 2k − 2)xip (x)

r2k+n

)
+ (−1)k+1

C

Wn,k,0
p,i (∇) δ (x) . (5.18)

In particular,

∇iPf
(xj

rn

)
= Pf

(
r2δij − nxixj

rn+2

)
+ C

n
δijδ (x) . (5.19)

5.3. The Laplacian of Pf (Pl (x))

The ordinary Laplacian of Pl is easily obtained to be

ΔPl = (l + k) (l − k − n + 2)Pl+2 . (5.20)

Hence if we employ [29, Prop. 3.5] we obtain the thick distributional Laplacian of Pf (Pl (x)) as Δ∗Pf (Pl) =
(l + k) (l − k − n + 2)Pf (Pl+2) if l /∈ Z, while if l is an integer, then

Δ∗Pf (Pl) = (l + k) (l − k − n + 2)Pf (Pl+2) − C (2l − n + 2) p (ω) δ[l−n+2]
∗ . (5.21)

Therefore, use of Proposition 5.1 yields the ensuing result on the distributional Laplacian of Pf (Pl).

Proposition 5.4. Let p ∈ Hk. If l �= k + 2m + n − 2, m ∈ N, then

ΔPf (Pl) = (l + k) (l − k − n + 2)Pf (Pl+2) , (5.22)

while

ΔPf

(
p (x)

r2k+2m+n−2

)
= 2m (2k + 2m + n− 2)Pf

(
p (x)

r2k+2m+n

)
(5.23)

+ (−1)k+1
C (n + 2k + 4m− 2)

Wn,k,m
p (∇)∇2mδ (x) .

Notice that when k = 0, so that p = 1, we recover the distributional Laplacian of Pf
(
r−2m−n−2) as 

given in [8,9] and in [19, pg. 248]:

ΔPf

(
1

r2m+n−2

)
= Pf

(
2m (n + 2m− 2)

r2m+n

)
− C (n + 4m− 2)

Wn,0,m
∇2mδ (x) (5.24)

= Pf

(
2m (n + 2m− 2)

r2m+n

)
− (n + 4m− 2)πn/2

22m−1m!Γ (m + n/2)∇
2mδ (x) .

The particular case m = 0 of (5.23) deserves special mention.

Proposition 5.5. If p ∈ Hk then

Δp.v.
(

p (x)
r2k+n−2

)
= (−1)k+1

C (n + 2k − 2)
Wn,k,0

p (∇) δ (x) . (5.25)
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Observe that the distribution p.v.
(
p (x) /r2k+n−2) is harmonic in Rn \ {0} and homogeneous of degree 

− (k + n− 2) in the whole space Rn, and this information is enough to conclude that its Laplacian is of the 
form q (∇) δ (x) for some homogeneous polynomial of degree k, q ∈ Pk. The Proposition 5.5 yields much 
more, since it says that actually q = Mp for some constant M . In fact, one may simplify the formula for M
given in (5.25) to obtain the well known [12] identity Δp.v.

(
r2−n1

)
= C (2 − n) δ (x), and for k > 0,

Δp.v.
(

p (x)
r2k+n−2

)
= (−1)k+1

C

Wn,k−1,0
p (∇) δ (x) = (−1)k+1

πn/2

2k−2Γ
(
n
2 + k − 1

)p (∇) δ (x) . (5.26)

Example 5.6. When k = 1 then p (x) = a · x =aixi, where a = (ai)ni=1 is an arbitrary vector, and thus we 
obtain the Laplacian of the dipole p.v. (aixi/r

n),

Δp.v.
(aixi

rn

)
= Cai∇iδ (x) . (5.27)

The identity (5.27) can also be derived as follows,

Δp.v.
(aixi

rn

)
= − ai

n− 2Δp.v.
(
∇i

(
1

rn−2

))
= − ai

n− 2∇iΔ
(

1
rn−2

)
= − ai

n− 2∇i (−C (n− 2) δ (x)) = Cai∇iδ (x) .

A third alternative is to use [9, (3.19)], the n dimensional analog of Frahm formulas [13],

Δp.v.
(aixi

rn

)
= − ai∇j

n− 2

(
∇i∇j

(
1

rn−2

))
= −ai∇j

(
p.v.

(
nxixj − δijr

2

rn+2

)
− Cδij

n
δ (x)

)
= ∇j

(
p.v.

(
n(aixi)xj − ajr

2

rn+2

))
− C

n
ai∇iδ (x) ,

and thus we get the “apparent paradox” mentioned by Parker [22], since in order to obtain (5.27) the 
derivatives of p.v.

((
n(aixi)xj − ajr

2) /rn+2), a distribution with zero delta part, should have a delta part 
equal to a derivative of the delta function (and, of course, this is not a paradox, since it is true, as (5.16)
shows).

Example 5.7. For k = 2 then p (x) = aijxixj , where A = (aij)ni,j=1 is a symmetric matrix with null trace, 
tr (A) = aii = 0, and hence

Δp.v.
(aijxixj

rn+2

)
= −C

n
aij∇i∇jδ (x) if aii = 0 . (5.28)

Actually for a general matrix A with arbitrary trace we can write aij = (tr (A) /n) δij+(aij − (tr (A) /n) δij), 
and use (5.24) with m = 1, to obtain

ΔPf
(aijxixj

rn+2

)
= Pf

(
2 tr (A)
rn+2

)
− C

n
aij∇i∇jδ (x) − tr (A)C

n
∇2δ (x) . (5.29)

5.4. General second order derivatives

The distributional derivatives ∇i∇jPf (Pl) can be obtained by iteration of (5.15) and (5.16) or, as we 
now explain, by projecting the formula for the thick derivatives [29, Prop. 3.5]. The thick derivatives have 
a non-zero delta part only if l ∈ Z, and in this case,
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∇∗
i∇∗

jPf (Pl) = Pf (∇i∇jPl) + C

(
δijp− (2l + 2) pninj + ni

δp

δxj
+ nj

δp

δxi

)
δ
[2−n+l]
∗ , (5.30)

or since δp/δxi = p,i −nidp/dn = p,i −knip,

∇∗
i∇∗

jPf (Pl) = Pf (∇i∇jPl) + C (δijp− (2l + +2k + 2) pninj + nip,j +njp,i ) δ[2−n+l]
∗ . (5.31)

Notice that the ordinary part ∇i∇jPl is given by

r4p,ij (x) − r2 (k + l) (δijp (x) + xip,j (x) + xjp,i (x)) + (k + l) (k + l + 2)xixjp (x)
rk+l+4 . (5.32)

Employing the Propositions 5.1 and 5.2 we obtain that the distributional derivatives ∇i∇jPf (Pl) have 
a non-zero delta part precisely when l = k + 2m + n − 2 for some m with m + 1 ∈ N, and in this case we 
obtain the ensuing formulas.

Proposition 5.8. Let p ∈ Hk. Then the delta part of ∇i∇jPf
(
p (x) /rk+2m+n−2) is given as

{
ZIp,ij (∇)∇2m+2 + ZII (p,i (∇)∇j + p,i (∇)∇j)∇2m (5.33)

+ ZIIδijp (∇)∇2m + ZIII∇i∇jp (∇)∇2m−2} δ (x) ,

for m + 1 ∈ N, where

ZI = 2 (−1)k C
Wn,k,m+1

, (5.34)

ZII = (−1)k+1 (n + 2k + 2m− 2)C
Wn,k,m (n + 2k + 2m) , (5.35)

ZIII = (−1)k+1 4m (n + 2k + 2m− 1)C
Wn,k,m (n + 2k + 2m) . (5.36)

Proof. We employ (5.31) with l = k + 2m + n − 2 and the projection formulas (5.5), (5.9), and (5.10) and 
simplify. �

Observe that when we put i = j and sum in (5.33) we recover the delta part of (5.23).
It is interesting that the formulas for the distributional Laplacian of p (x) /rk+2m+n−2 give a non-zero 

delta part when m ∈ N, but one may obtain a non-zero delta part for ∇i∇jPf
(
p (x) /rk+2m+n−2), namely 

ZIp,ij (∇) δ (x), even for m = −1. For example, Δp.v. (x1x2/r
n) does not have a delta part, but the delta 

part of ∇2∇1p.v. (x1x2/r
n) is 2Cδ (x) /Wn,2,0 = 2Cδ (x) /n (n + 2). It is instructive to derive this last 

expression by iteration of (5.15) and (5.16); indeed,

∇1p.v.
(x1x2

rn

)
= Pf

(
r2x2 − nx2

1x2

rn+2

)
. (5.37)

We cannot apply (5.16) to compute ∇2 of this expression since the third order polynomial r2x2 − nx2
1x2 is 

not harmonic, but we can write

r2x2 − nx2
1x2 = 2r2x2

n + 2 + p3 , where p3 = −n

(
x2

1x2 −
1

n + 2r
2x2

)
∈ H3 , (5.38)
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and now employ (5.16) to obtain the delta part of ∇2∇1p.v. (x1x2/r
n) as (2/(n + 2)) times the delta part of 

∇2p.v. (x2/r
n), which (5.19) gives as (2/(n + 2)) times Cδ (x) /n, plus the delta part of ∇2Pf

(
p3 (x) /rn+2), 

which is 0. Summarizing, the delta part of ∇2∇1p.v. (x1x2/r
n) is 2Cδ (x) /n (n + 2), in agreement 

with (5.33).
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