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Figure 5.23: Orbit # 5  in the 3D analytical Cazes bar potential; each frame 
contains information as described in the caption to Fig. 5.19.
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Figure 5.24: Orbit # 6  in the 3D analytical Cazes bar potential; each frame 
contains information as described in the caption to Fig. 5.19.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

8:5
0.2 

=* 0.0 
- 0.2
=8:5

0.4 
0.2 

N 0 .0
- 0.2
-0 .4

1.0000 
^  0.1000 
c 0.0100 

0.0010 
0.0001 

11

Figure 5.25: Orbit # 7  in the 3D analytical Cazes bax potential; each frame 
contains information as described in the caption to Fig. 5.19.
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error is to blame for the correlation integral result. The two undisputed 

quasi-ergodic orbits have slopes «  7% greater than the nearest integer. So, 

even with the 3% systematic error, a similar orbit could, at best, display a 

slope 4% greater than the nearest integer slope. In fact, the measured slope 

in Fig. 5.23d is only 1.5% smaller than the nearest integer slope.

The reader may have noticed that some of the Lyapunov exponent plots 

shown in the preceeding figures display a tendency to “flatten out” at large tit 

values, as in Figs. 5.4 and 5.19. This behavior is due to numerical inaccuracy 

and can be remedied by reducing the timestep used in the integration scheme. 

However, even with the current timestep the Lyapunov exponent calculations 

take a considerable amount of time. Since there is a clear difference between 

the Lyapunov exponent behaviors of regular and quasi-ergodic orbits despite 

the fact that the slopes are not precisely equal to -1, there has been no 

attem pt to improve this situation.
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6. ANALYSIS OF ANALYTICAL 3D CAZES BAR ORBITS

With the correlation integral method validated, it is time to use it as a 

tool to fully analyze an astrophysically interesting potential, the 3D analyti

cal Cazes bar. This chapter contains a calculated study of one hundred orbits 

with specific values of t j .  Twenty-five RH orbits are chosen at each of the 

following ej levels: -0.96, -0.85, -0.75, -0.63. These values have been chosen 

to match the values used in connection with the investigation of equatorial 

Cazes bar orbits (see Chapter 4). The initial positions of these orbits have 

been chosen to cover surfaces of constant t j .  In practice, this coverage is 

determined by first identifying constant 2 planes that lie inside the constant 

t j  surfaces. Then, in each of these planes, ( i ,  y) positions are determined 

for grid points with the specific t j  value under investigation. If more than 

twenty-five points are identified for any t j  level, then a subsample of the 

points is used. The final sample of points for each t j  value covers one quad

rant of each surface. With the symmetries of the 3D analytical Cazes bar, 

this accurately represents fully covering the surface.

The results of the investigation of these orbits are summarized in the 

figures below. Figure 6.1 displays plots of the number of integrals of motion 

respected by each investigated orbit. The number of integrals of motion (/)  

has been obtained in each case by measuring the slope D in a C — r plot 

and then subtracting D from the total dimensionality of phase space, in this 

case /  =  6 — D.  Each frame shows the measured results for all 25 orbits
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Figure 6.1: Plots showing the number of respected integrals for each of 100 
different 3D analytical Cazes bar RH orbits, (a) The plus symbols mark 
orbits with t j  =  —0.96. (b) The asterisks mark orbits with t j  =  —0.85. (c) 
t j  =  —0.75 orbits are represented by diamonds, (d) t j  =  —0.63 orbits are 
marked with triangles.
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with the same t j  value. In each frame, the initial 2 position for the orbits 

increases to the right along the abscissa (however, the maximum value of 

z at the right edge is not the same for all frames). Figure 6.2 displays a 

histogram of the numbers of integrals of motion respected by each of the one 

hundred orbits studied here. The columns are centered on the values listed 

below them and extend ±0.125 to either side. There seems to be evidence 

of a bimodal distribution around the integer values 2 and 3. Figure 6.3 is 

a two-dimensional histogram that shows the number of integrals of motion 

respected by the orbits as a function of their t j  values.

A number of observations can be made from these figures. First, 39 ± 6% 

of the orbits investigated are regular ( /  >  3), 47 ±  4% are semiregular (2 < 

I  < 3), and 15 ±  4% are quasi-ergodic ( /  <  2). (These quoted fractions 

have been determined in the same way as those discussed in §4.2.2.) These 

numbers would most likely change if, for example, a small random velocity 

component were added to the RH velocities (as discussed in §4.4.1) or if 

all of the orbits originated near the shocks present in the 3D Cazes bar (as 

discussed for the 2D case in §4.4.2). Second, there is a clear trend for orbits 

with more negative ej  values to be regular. Third, there seems to be no 

correlation between the initial z  position of the orbits and the corresponding 

value of / .  The main inference to be drawn is that the effective energy of a 

star plays a  large role in determining what type of orbit it will follow. It is 

interesting to note that this same general behavior has also been observed for 

orbits in the Henon-Heiles potential (Henon & Heiles 1964). In both cases, 

the relative fraction of nonregular orbits increases with increasing energy.
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Figure 6.2: Histogram of the number of isolating integrals respected by the 3D analytical Cazes bar RH orbits. 
Note the clustering of values near 2 and 3. The columns are centered on the numbers below them and extend 
±0.125 to either side.
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orbits as a function of t j .  The integral of motion columns are the same as in Fig. 6.2. The t j  values increase 
from -0.96 in the front to -0.63 in the back.
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Since these are simply test particle orbits, the behavior of a realistic 

stellar distribution function (i.e., one in which the density of stars is related 

to the potential) is unknown. However, these results are the first step towards 

understanding the types of orbits that can be populated during the transition 

from gas to stars in a nonaxisymmetric galaxy. The next step will involve 

combining an N-body simulation with a hydrodynamics simulation in order 

to follow the proper evolution of the entire galaxy system. This is a large 

task that is only beginning to be tackled. Despite the preliminary nature 

of the results presented here, it seems fair to say that this study adds to 

the previously discussed evidence that nonregular orbits can play important 

roles in galaxies (sec §5.1).
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7. CONCLUSIONS

7.1 Equatorial-Plane Orbits in Barred Galaxies

In an effort to more fully understand the formation and evolution of 

barred galaxies, the properties of stellar orbits in a  rotating, gaseous bar- 

shaped system have been studied. The system that has been examined in 

detail is one of the steady-state models developed by Cazes (1999, see also 

Cazes & Tohline 2000) in a recent three-dimensional hydrodynamical simu

lation. Initially, a shooting technique along with surface of section diagrams 

have been used to probe the orbits tha t are supported in the equatorial 

plane of this “Cazes bar”. This analysis shows that the Cazes bar potential, 

^ c b (^ i1/)i supports a roughly equal mixture of regular and quasi-ergodic or

bits. There also are indications that the presence of a shock front increases 

the ratio of quasi-ergodic to regular orbits. Virtually all of the regular pro

grade orbits appear to belong to a single family tha t have a bow tie shape. 

These orbits tire almost certainly related to the 4/1 family of orbits described 

by Contopoulos (1988) because particles on bow tie orbits make four radial 

oscillations for each complete azimuthal cycle. But they differ from the 4/1 

orbit illustrated in, for example, Fig. la  of Contopoulos (1988) in that they 

pass very close to, and around, the center of the potential well twice each 

orbit cycle (see, for example, Fig. 4.3f). The equatorial Cazes bar poten

tial also supports a variety of regular retrograde orbits, including some that 

appear to be members of the X4 orbit family.
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The analysis indicates that, over a large range of energies, the Cazes 

bar does not support the family of xi orbits (see the characteristic diagram, 

Fig. 4.8). This is perhaps the most striking difference between y)

and the potential wells that have been generated through self-consistent N- 

body simulations. N-body simulations tend to produce bars with stellar 

distribution functions, such as that in Sparke & Sellwood (1987), that are 

dominated by x t orbits. One possible reason for this is that the Cazes bar 

has a higher ratio of rotational to gravitational potential energy Trot/\W \ 

than typical N-body bars and as a result, along its major axis, the Cazes 

bar potential is very shallow. In order to approximate this behavior, an 

analytical effective potential was designed that, while exhibiting a traditional 

quadratic dependence — i.e., changing as ( y / R u ) 2 — along the intermediate 

axis, changes as (x//?L2)4 from the center along the major axis.

There are several interesting points to be made about the bow tie orbit 

family and about stars that might be injected into bow tie orbits. Although 

bow tie orbits should certainly be classified as a prograde orbit family, stars 

that move along bow tie orbits will appear to be moving in a retrograde sense 

on the portions of their orbits that are nearest the center of the bar. It is 

interesting to note that such counterrotation has been seen in at least one 

barred galaxy (Prada & Gutierrez 1999). Also, any star tha t moves along a 

bow tie orbit will (a) spend most of its time near the “four corners” of the 

orbit and (b) pass very close to the center of the potential well twice each 

orbit. When coupled with the discovery that a significant fraction of stars 

that form from gas in the Cazes bar will be injected into bow tie orbits, the
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first of these points suggests that a gaseous bar should produce a distribution 

function, DFban that is rather boxy or peanut-shaped. This is in contrast 

to distribution functions like DFss that are dominated by the x t family of 

orbits and are therefore more elliptical in shape.

The second of these points has led to the suggestion that star formation 

in a primarily gaseous bar may provide a mechanism for funneling m atter in 

toward the center of a galaxy in situations where gas dissipation alone does 

not work efficiently. As noted by Norman k  Silk (1983), triaxial potentials 

can provide a means of transporting stellar mass to a central black hole. 

Stars (or the dense cores of molecular clouds) that travel close to a central 

black hole can become tidally disrupted, and the resulting gas can form an 

accretion disk that fuels an active galactic nucleus (AGN) (c.f., Evans k  

Kochanek 1989; Ho, Filippenko, k  Sargent 1997). Admittedly, the present 

model has not examined to what extent a central point mass will scatter 

and, thereby, disrupt the regular bow tie orbit (Gerhard k  Binney 1985). 

However, the existence of orbits that travel near the center of the potential 

over such a large range of energies (—0.96 <  ej < —0.63) is intriguing. 

Rough calculations show that it may be possible for objects on bow tie orbits 

to transport enough mass to the central mass to power an AGN, but more 

detailed work must be done to solidify this idea.

7.2 Fully Three-Dimensional Orbits

Building on the work of Grassberger k  Procaccia (1983) and Camevali 

k  Santangelo (1984), a  flexible technique known as the correlation integral 

method also has been developed for characterizing orbits in 3D potentials.
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This method analyzes phase space orbits and returns a single number, the 

dimensionality of the phase space orbit. From this number and the dimen

sionality of the underlying phase space, the number of isolating integrals of 

motion respected by an orbit can be determined. This number can then be 

used as a quantitative characterization attribute.

The implementation of the correlation integral method has been tested 

for a variety of previously studied systems. In all cases, more familiar charac

terization tools, such as surfaces of section and Lyapunov exponents, support 

the results obtained with the correlation integral method. The advantages 

of the correlation integral are most apparent when used to characterize or

bits in 3D potentials because more traditional characterization techniques 

become much less useful when applied to 6D phase spaces associated with 

realistic models. Despite the fact that the analytical Cazes bar has no obvi

ous geometrical symmetries that give rise to analytical integrals of motion, 

the correlation integral method demonstrates that it does support regular 

orbits. Additionally, the correlation integral method distinguishes between 

orbits tha t respect two integrals of motion and those that respect only one 

integral.

The simple fact that the correlation integral method can reproduce the 

results of other characterization methods is not enough to warrant its adop

tion. Here the various categorizing methods used in Chapters 4 &c 5 are 

compared and contrasted.

•  When analyzing orbits in a 4D phase space, surface of section diagrams 

are the simplest and clearest way to characterize orbits. However, there
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is no simple quantitative measure that describes quasi-ergodic orbits in 

surface of section diagrams. Also, these diagrams are not easily trans

lated to 6D phase spaces. The correlation integral method addresses 

both of these problems.

•  Lyapunov exponents provide quantitative measures of orbital regular

ity in arbitrary 2D and 3D potentials. Unfortunately, all regular orbits, 

closed and unclosed, share the same signature in Lyapunov exponent 

plots. For orbits in 3D potentials, the behavior of the Lyapunov expo

nent is also the same for all nonregular orbits. T hat is, no distinction 

is made between orbits that respect only one integral of motion and 

those that respect two. The correlation integral method distinguishes 

between these types of regular (periodic and unclosed) and nonregular 

(respecting one or two integrals of motion) orbits.

Applying the correlation integral method analysis to a large sample of 

Restriction Hypothesis orbits in the 3D analytical Cazes bar potential has 

revealed that semiregular orbits dominate (by number) the types of orbits 

that are supported by the Cazes bar. Also, the value of t j  appears to be 

the major factor in determining whether or not a given orbit will be regular. 

Specifically, orbits near the bottom of the potential well (lower energy) are 

much more likely to be regular than orbits with higher energy. The initial 

z  position of an orbit apparently has no significant influence on the orbit’s 

regularity.

The correlation integral method should prove useful as a tool for charac

terizing the properties of orbits in a wide variety of Hamiltonian dynamical
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systems. However, there are three specific cases of astrophysical interest to 

which the correlation integral method seems particularly well suited: ana

lyzing stellar distribution functions in analytically and numerically specified 

models of steady-state galactic potentials (especially those with Hamiltonian 

chaos); investigating the orbits that are supported by galactic potentials 

formed in cosmological simulations; and quantifying the response of stellar 

systems to potentials that contain central point masses.

7.3 Gasdynamical Versus Stellar-Dynamical Bars

The possibility that galaxies form central bar-like structures while still 

in a predominantly gaseous state is the idea underlying this study. Because 

it has been constructed in a self-consistent manner, the Cazes bar presents 

a reasonable representation of such a newly formed, gaseous galaxy config

uration. If stars form from the gas in such a barred galaxy, the proposed 

Restriction Hypothesis illustrates the orbits into which the stars would be 

injected at the time of their formation. The analysis presented herein indi

cates that the distribution function DFbar of such a system of stars would 

contain no retrograde orbits, but it would consist of a reasonable mixture of 

quasi-ergodic orbits and regular prograde orbits predominately related to the 

bow tie (4/1) orbit family. It is important to emphasize that these stellar 

orbits are distinctly different from the orbits that gas particles follow in the 

Cazes bar. Elements of gas are accelerated by local pressure gradients as well 

as by gradients in the underlying gravitational potential; also, unlike stellar 

orbits, gas particle orbits do not cross one smother. As illustrated by Cazes 

(1999), within the steady-state Cazes bar the gas moves along closed stream
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lines that are approximately elliptical in shape. It is safe to say that no stars 

that form from such a gas flow will have similarly elliptical orbits. Searching 

many different initial conditions for particles in $ cb> do orbits were found 

that even approximated the gas streamlines.

Finally then, the following question must be raised: If a purely gaseous 

galaxy were to initially evolve into the form of a steady-state Cazes bar, then 

slowly create stars from the gas, injecting them according to the Restriction 

Hypothesis into the orbits that make up DFb«r, could a smooth evolutionary 

transition be made between the purely gaseous bar and one that is entirely 

made up of stars but that otherwise exactly resembles the Cazes bar? Using 

a technique similar to Schwarzschild’s method (Schwarzschild 1979,1982) or 

that of Contopoulos & Grosbpl (1988), it is conceivable that the right com

bination of regular, semiregular, and quasi-ergodic orbits could be assembled 

to produce a steady-state stellar-dynamical bar1. And this configuration 

may even closely resemble the Cazes bar. (Given that an analytical function 

$ efr has been found that closely approximates $ cb» it should be relatively 

straightforward to conduct such a study.) However it seems unlikely that a 

system of stars that forms according to the Restriction Hypothesis from the 

Cazes bar could lead to such a configuration because the specific distribution 

of gas in the Cazes bar is unlikely to produce the required proportion of bow 

tie and quasi-ergodic orbits. For example, if in order to create a steady-state

‘These methods have been designed to produce self-consistent potential-density pairs 
for N-body systems. First, the types of orbits supported by a given potential are investi
gated. Then, these orbits are populated to produce a density distribution. This density 
distribution is exactly that needed to provide the original potential. These methods are 
designed to provide model stellar distribution functions for any given potential.
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stellar bar one needs NtJ bow tie orbits with energy cj, then there must be 

the right proportion of gas with energy cj at the proper positions within the 

Cazes bar to form stars for these orbits. W ith this additional constraint, it 

seems unlikely that there would be a clean transformation between a  gaseous 

and a stellar system. It is suspected, instead, that after more than half of 

the gas has been converted into stars, the entire configuration would dy

namically relax to a  new configuration that is dominated by the collective 

dynamics of the stars. Since such an evolution would begin from a relatively 

high Trot/|W | configuration that contains a large number of stars in bow tie 

orbits, it would be interesting to know whether this final state has a more 

boxy or peanut shape than the stellar dynamical configurations tha t have 

been created via N-body simulations from initially axisymmetric distribu

tion functions. It may be necessary to answer this question before being 

able to state with any certainty whether barred galaxies form from initially 

axisymmetric (DFax^ym) or nonaxisymmetric (DFbar) stellar distributions.
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APPENDIX A: ORBIT INITIAL CONDITIONS

Table A .i. Orbit Initial Conditions

Orbit yo -0 x'o yo *0
Henon map 0.0 0.0 ... ... ... ...
2D Richstone #1 0.5 0.0 ... 0.0 0.4
2D Richstone #2 0.5 0.0 ... 0.2 0.2
2D Richstone #3 0.5 0.0 ... 1.12 0.23
2D Richstone #4 0.136 -0.532 ... 0.0 0.0
Henon- Heiles #1 0.0 0.3 ... 0.422 0.0
Henon-Heiles #2 0.0 0.14 ... 0.481 0.0
Henon-Heiles #3 0.0 0.24 ... 0.402 0.2
Henon-Heiles #4 0.0 0.24 ... 0.281 0.35 ...
2D Cazes bar #1 0.67 0.0 ... 0.0 0.611
2D Cazes bar #2 0.65 0.0 ... 0.0 0.628
2D Cazes bar #3 0.5 0.0 ... 0.0 0.712
2D Cazes bar 4 0.5 -0.5 ... 0.0 0.507 ...
3D Richstone #1 0.5 0.0 0.0 0.4 0.4 0.7
3D Richstone #2 0.6 0.0 0.2 0.5 0.2 -0.05
3D Richstone #3 0.5 0.0 0.3 0.4 0.5 0.01
3D Richstone #4 0.5 0.0 0.0 0.4 0.5 0.4
3D Richstone #5 0.3 0.3 -0.1 0.2 0.6 -0.5
3D Cazes bar #1 -0.282 -6.92(-2) -0.147 2.34(-2) -1.85(-2) -4.95(-4)
3D Cazes bar #2 0.658 0.0 -7.35(-2) -1.23(-2) 0.126 4.68 (-4)
3D Cazes bar #3 -0.679 -0.504 -0.11 5.88(-2) -l.67(-2) 3.01 (-3)
3D Cazes bar #4 -0.679 -0.504 -3.68(-2) 5.7(-2) -1.97(-2) 1.14(-3)
3D Cazes bar #5 -0.271 0.384 0.11 -0.363 1.97(-3) -2.73(-3)
3D Cazes bar # 6 0.408 0.389 -G.M7 -0.254 3.23(-2) -2.87(-4)
3D Cazes bar #7 0.222 -0.173 0.331 0.276 -1.6(-2) 3.3(-3)
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APPENDIX B: LETTER OF CONSENT

From: keith.dodson@brookscole.com

To: Eric Barnes jbarnes@baton.phys.lsu.edu,;,

Date: Thu, 1 Mar 2001 18:14:21 -0800 

Subject: Re: permission to reproduce figure 

Dear Eric,

Please consider this e-mail permission to use the figure in your thesis. 

However, please indicate the source either in the legend or immediately be

neath the figure. Thank you.

Keith Dodson Editor

From: Eric Barnes jbarnes@baton.phys.lsu.eduj, on 03/01/2001 12:38:20 PM 

To: Keith Dodson/BCP/International Thomson Publishing@ITP 

Subject: permission to reproduce figure

My name is Eric Barnes and I am trying to get permission to reproduce 

Figure 24-20 from the on-line textbook "Astronomy: The Cosmic Journey” 

in my Ph.D. dissertation. I contacted Dr. Impey (one of the authors) and he 

told me that only the publisher could give consent. This will not be published 

in any journal. Please let me know if there is anything that I can/need to 

do. Thank you for your time.
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