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COVARIANCE IDENTITIES AND MIXING OF RANDOM
TRANSFORMATIONS ON THE WIENER SPACE

NICOLAS PRIVAULT

ABSTRACT. In this paper we derive criteria for the mixing of random trans-
formations of the Wiener space. The proof is based on covariance identities
for the Hitsuda—Skorokhod integral.

1. Introduction and Notation

In this paper we derive sufficient conditions for the mixing of random transfor-
mations on the Wiener space (W, u) where W = Co(Ry, Rd) is the Banach space of
continuous functions started at 0. Recall that a measure preserving transformation
T:W — W is said to be mixing (here of order 2) if

lim Cov(F,GoT™) =0,

for all F,G € L?(W). The mixing property implies the ergodicity of T : W — W,
i.e. the relation

FoT=F, W —a.s.,
holds if and only if F' is constant, or equivalently,

1 n
lim — Y FoT* = E[F],
k=1

n—oo n

for all F € LY(W), cf. e.g. [1] for a survey.

As noted above, the mixing and ergodicity properties rely on the invariance of
the Wiener measure g under the transformation T : (W, u) — (W, p). It is well
known that when (By)icr, is a standard Brownian motion and (R;);er, is an

adapted process of isometries of R?, the process (By)ier . defined by
dB; = RydB;
remains a standard Brownian motion. The associated transformation
T:W—W, (Bt)t€R+ = (Bt)t€R+7
called the Lévy transform, preserves the Wiener measure and defines a distribution-
preserving mapping
R*: LP(W) — LP(W), p>1,
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that sends any functional F' of the form

sz(/ooo hl(t)dBt,...,/Ooo hn(t)dBt>, (1.1)

hi,...,hn € L*(Ry;RY), f € CL(R™), to

R F:=FoT=f </ Rlhy(t) - dBt,...,/ Rl hn(t) - dBt) :
0 0
Next, consider a random and possibly anticipating isometry of H = L2(R4;R%)
denoted by
R:L*(Ry;RY) — L*(Ry;RY)
and denote by § the extension in Hitsuda—Skorokhod sense of the It6 integral. It
has been shown in [7] that sending F' as in (1.1) above to

R*F := f(5(Rhy),...,0(Rhy)),

defines a law preserving mapping R* : LP(W) — LP(W), p > 1, provided the trace
condition

trace (DRh)" =0

holds for all h € L?(R4; R?), cf. Proposition 2.3 below.

In case R : L*(Ry; Rd) — L?(Ry; Rd) is deterministic, necessary and suflicient
conditions for the mixing and ergodicity of T : W — W have been given on the
spectral type of R using Wiener chaos, cf. [2] Chapter 14, § 2, Theorems 1 and 2,
and [9], Theorem 2.

Although the question whether the Lévy transform 7' : W — W is ergodic is
still open in case the process (R;);er, of isometries is adapted, cf. [3], sufficient
conditions for the mixing of R* have been obtained in the random case using the
anticipating Girsanov identity, cf. [8] and Theorems 3 and 4 of [11]. However these
conditions are too strong to be satisfied by the Lévy transform.

In this note we recover the latter results using covariance identities for the
Hitsuda—Skorokhod integral, and our proofs do not rely on the anticipative Gir-
sanov theorem and the associated HC' smoothness hypotheses, cf. [10].

More precisely, the next proposition recovers and extends Theorem 4 of [11] as
a consequence of Proposition 3.1 below.

Proposition 1.1. Let (R,,)m>1 be a sequence of random mappings with values in
the isometries of H = L*(Ry;R%), such that (Rpyh)m>1 is bounded in D, o(H)
for somep>1 and

trace (DR, h)F =0, k>2 heH m>1.
Then the law preserving transformation R, that maps any F of the form (1.1) to
R F := f(6(Rmh1),...,0(Rmhn))
is mizing provided

lim (h, Rph) =0

m—00

in probability for all h € H.
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We refer to Section 5 of [11] for examples of transformations T,, : W — W of
the Wiener space W, such that

§(Rmh) =6(h) o Ty, m>1 heH,

and satisfying the hypotheses of Proposition 1.1.

We proceed in two steps to prove Proposition 1.1. In Section 2 we derive
covariance identities for the Hitsuda—Skorokhod integral and in Section 3 we prove
Proposition 1.1 as an application of those identities.

We close this section with some facts and notation on the Malliavin calculus,
cf. e.g. [4], [6], [12]. For any separable Hilbert space X, consider the Malliavin
derivative D with values in H = L?(R,, X ® R?), defined by

DtF:Zhi(t)a—xi (/0 hl(t)dBt,...,/O hn(t)dBt>, t€ Ry,
=1

for F of the form (1.1). Let ID), ,(X) denote the completion of the space of smooth
X-valued random variables under the norm

k

lulp, , ) = llzowe) + 3 1Dl owxomery, — p> 1,
=1

where X ® H denotes the completed symmetric tensor product of X and H. For
all p,g > 1such that p~' 4+ ¢ ' =1and all k > 1, let

6: Dy (X ®H) — Dgp-1(X)
denote the bounded Hitsuda—Skorokhod integral operator adjoint of
D:Dyi(X)— Dgr1(X ®H),
with
E[(F,6(u))x]| = E[(DF,u)xgnl, FeD,r(X), ueD,i(X®H).
Recall the relations
Did(u) = ug + 6(Dju), teRy, weDyy(H),
and
Fé(u) = 6(uDF) + (u, DF), FeDsy, uelDyy(H), (1.2)

and that §(u) coincides with the It6 integral of u € L?(W; H) with respect to
Brownian motion, i.e.

5(11,) = / UtdBt,
0

when u is square-integrable and adapted with respect to the Brownian filtration,
and in particular when v € H is deterministic.
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2. Covariance Identities

In this section we state several covariance identities in the next lemmas, which
will be used to prove Proposition 1.1.

Before that we describe the application of covariance identities to mixing in case
R : H — H is deterministic. By polarization of the Gaussian moment identity

( /O h h(t)dBt) "

where !! denotes the double factorial, we find that for any family of sequences

E = 2k)||A)I*,  heL*Ry;RY, keN,

(Fim)m>15 -5 (Fnm)m>1,
such that

kim < Kis1,m, m,l > 1,
the joint Gaussian moment

E [§(RFmhy) - §(REm by )]

li,...,ln > 1, hy,..., hy, € H, can be written as a linear combination and product
of terms of the form

(RFm ha, R¥m hy) = (RMem =R by, hy),

1 < a < b < n, which tend to zero whenever a # b and kp , — kq,m tends to +o00
as m goes to infinity. It follows that

lim E [§(R*hy) - 5B hy )] = E[5(hi)"] - E[6(hn)™],

m—00

when kp . — ka,m tends to +o00 as m goes to infinity, 1 < a < b <n, provided

lim (R"h,h) =0,  he H, (2.1)

n—oo

showing that R* is mixing of order n for all n > 2.

This type of argument will be applied in Section 3 to prove mixing of order 2
in the anticipating case using the covariance identities for the Hitsuda—Skorokhod
integral stated in the following lemmas.

For u € Dy 1(H) we identify Du = (Dyus)scr, to the random operator Du :
H — H almost surely defined by

(Du)v(s) = / (Dyus)vidt, s € Ry, veL*(W;H),
0

where the product of Dyus € X ® H with v; € H is defined in X via
(a ®@b)e = alb,c), a®@be X®H, ceH.
The adjoint D*u of Du on H ® H is defined as

(D*u)v(s) = / (Dlug)vedt, s€Ry, vel*(W;H),
0

where Dlut denotes the transpose matrix of Dsu; in R¢ @ R
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Lemma 2.1. For anyn > 1 and u,v € IDy11 2(H) we have
Cov (6(v),0(uw)™) (2.2)
= Dy i!k)!E [5(u)"—]C ((u, (Du)*~1v) + (D*u, D((Du)k_lv)))} )

k=1

Proof. We use the same argument as in the proof of Theorem 2.1 of [5] which deals
with the case u = v. We have

E

[6(

v)6(u)"] = E[{v, Dd(u)")]

nE[é(u)"_1<v, Dé(u))]
nE[5(u)" v, u)] + nE[6(u)" " (v, §(D*u))]

nE[6(u)" " v, u)] + Z (n%!k)'E[(S(u)"k((Du)klv, 0(D*u))]
k=1 )

n—1
> #!_WEW“)""“‘l (Du)*v,8(D"u))
k=1 :
RE[S(w)" ™ (0, u)] + Z 0 ﬁ!k)!E[(D(é(u)"‘k(DU)k_lv),D*u>]

>
Il
—

n—1

- (71+!—1)'E[5(u)"’“ (Dw)* 1o ® §(D*u), Du)]
k=1 :

n!

0D (D)), D)

nE[5(u)" v, u)] + Z

n—1

n!
+Z(n—k—1)!

k=1

1S

§(uw)" " H(Du)* v @ (Dé(u) - 6(D*w)), D*u)]

k=2
Z (n ﬁ!k)'E [5(u)nik ((D*u, D((Du)kflv» + (u, (Du)kilv»]
k=1 !



304 NICOLAS PRIVAULT

For k > 2 the trace of (Du)¥ is defined by
trace (Du)* = (Du, (D*u)* Y peon
/OOO e /OOO<DZklutk,Dtk2utkl -+ Dy, gy Dy s, Ypagradty - - - diy
The next result is a consequence of Lemma 2.1.
Lemma 2.2. Let u € D41 2(H) such that ||u| g is deterministic and
trace (Du)® = 0, k> 2.
Then for anyn > 1 and v € Dyy12(H) we have

Cov(6(v),6(w)™) = nE[6(u)" (u,v)]

_|_

E [6(u)" " trace (Du)"Dv)] . (2.3)

NE
3

n—'k)!

~
Il
—

Proof. For all 1 <k < n we have
(Du)" v € D(yy1y/m,1 (H), 6(u) € D(ng1y/(n—k+1),1(R),

and

(D*u, D((Du)*"'v))

/ / tk 1utk7Dtk(Dtk—2utk—1 o 'Dtoutlvto)>dt0' - dty
/ / tk l’utk,Dtk72’U/tk71 e DtoutlDtkvt())dto s dfk

/ / tk 1utk7Dtk(‘Dtk—2utk—l "'Dtoutl)vt0>dt0"'dtk

_ trace((DU)kDU)+§/ooo'”/ooo

<Dzk,1utk l Dtkutk+1 ! th+1 tit2 (Dt Dtkut1+1)Dti—luti T Dtoutlvto>dt0 o diy
_ 1 oo oo
—  trace (Dw)* Do) + Z — /0 . /O
<Dt <Dtk L Wty Dtkutk+1 ! Dt1+1 1+2Dtkut1+1>7 Dti—lu’ti e Dtoutlvt0>dt0 iy,
o ‘ ‘
= trace ((Du)*Dv) + ((Du)"v, D trace (Du)*~?)
-
=0
= trace ((Du)*Dwv).
Hence (2.2) shows that
" n n! n—Fk k—1 k
Cov(§(v),d(u)™) = Z mE [6(u)™ " ((u, (Du)*~"v) + trace ((Du)*Dv))] .

k=1
(2.4)
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On the other hand the relation
D{u,u) = 2(D*u)u

shows that
2((Du)* o, u) = 2w, (D*u)*tu)
= (v, (D*uw)* 2D (u,u))
0, k>2
hence the conclusion from (2.4). O

Note that Lemma 2.2 recovers the following consequence of Corollary 2.2 in [5].

Proposition 2.3. Let u € ID, o(H) for some p > 1, such that ||u|| g is determinis-
tic and trace (Du)**1 =0, k > 1. Then 6(u) has a centered Gaussian distribution
with variance ||ul%.

Proof. When w = v € IDy41,2(H) we have

n

Ep(u)"™] = nFE [6(u)"™ 1||u||H u)"_k trace (Du)k"'l]
k:l
= nlulLE [§(w)™ ], n>1.
The conclusion follows by density of IDy41,2(H) in D, 2(H), p < n+ 1, and
induction on n > 1. O

Proposition 2.3 above also recovers Theorem 2.1-b) of [7] by taking w of the
form w = Rh, h € H, where R is a random mapping with values in the isometries
of H, such that Rh € D, »(H) and trace (DRh)**1 =0, k > 1,

We will also need the following covariance identity. Let

[k/2]-1

K= ] (k- 20),

i=0
denote the double factorial of k € N, where [k/2] denotes the integer part of k/2.
Lemma 2.4. For all k,n >0 and h € H, u € D, 412(H), we have

[k/2)
Cov (5(h)*F1, 6(u)™) = (kfi!;i)”m,h)iCov(é(hé(h)k_Zi),5(u)"). (2.5)

=

Proof. We will show by induction on k > 0 that

E[(n)**6(w)"] = E[§(h)* ] Ed(u)"] (2.6)
& k! k—2i n
+ ; W@ ShYE [5(hS(R)E20)6(u)"] .

Clearly this identity holds when k = —1 and when k£ = 0. On the other hand by
(1.2) we have

5(h)Ft2 = 5(ho(h)*1) 4 (b, DS(h)FTT)
= (k4 1)(h, h)6(h)* + 6(ho(h)**1), (2.7)
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hence, assuming that the identity (2.6) holds up to the rank k£ > 0 we have, using
(2.7),
B[5(h)*26(u)"] = (k + 1){h, h)E [5(h)*8(u)"] + E [6(hd(h)" )8 (u)"]
= (k+1)(h,hE [6(h)] E[5(w)"] + E [§(h6(h) +1)6(u)"]
)

[(k-1)/2

+(k+ 1) h) Y %(h,hYE[5(h5(h)’“_1_2i)6(u)"}
= E[p(n)*]E [(1)(’)’]+E [6(ha(R)*1)o(w)"]

+ Bl %m, h)' E [§(ho(R)"172)6(u)"]
= E[5 h)l’““} E[5(u)"]

+ [(k:j/z] 7@;(5 1+—1)2z>!! (b, Y E [5(h6 ()12 )5(u)"]

O

Finally we will need the covariance identity stated in Lemma 2.5 below, which
is proved using Lemmas 2.2 and 2.4.

Lemma 2.5. Let u € D, o(H) for some p > 1, assume that ||u|| g is deterministic
and

trace (Du)* = 0, k> 2.
Then for any k,n > 1 and h € H we have

Cov (611,50 =n 3 e
0<2i<k v

> Z n_z _”Z Ty (b WY E [(u, )0 (8(w)"~'6(h)* 7 (Du) " h)]

0<2i<k =1

Proof. Applying Lemmas 2.2 and 2.4 to u € ID,,+12(H) and to v := h§(h)*~% we
have

Cov (§(h)* L, §(u)") = Z (kL!,m, R)iCov (§(hd(h)*=2), 6(u)™)

: — 20!l
0<2i<k

WY E [5(h)F26(uw)" (hou)]  (2.8)

= n Z LB E [(h,w)d(h)F =28 (u) ]

0<21<k

+ Z _an )

0<21<k =1

n

)L (h)F 2 trace (Du)'h @ h)] .

Finally we note that
E [5(u)" 15 (h)?* ! trace (Du)'h @ h)]
— E |:5(u)nfl5(h)2k7ifl
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/ .. / <DIZ,1utl7Dtlf2utzfl - Dtout1 hto ® htl>dt0 o dty
0 0

=B [5(u)n—l5(h)2k—i—l

/ / <DIZ,1<ut17ht1>7Dt172ut171 "'Dtoutlht0>dt0"'dtl
0 0

—F {5(u>nfl5(h)2k7ifl

/ (D, / (e, b )b, (D) by )yt
0 0

= B [6(w)" 5 (h)* =1 (D(u, h), (Du)" " h)]
= E [(u,h)d (6(u)" " 6(h)**~ "1 (Du)'~'h)],

which proves (2.8) for u € D, 41 2(H).
Next, for any p,q > 1 such that p=! + ¢~

E[I5(h) =2 6(uw)" by ul] < [18(A)" 2 aglla ()™ l2q (B )1
< 18R 2 l2g 18 ()™ Hlzg Il e llllp, (2.9)

1 =1 we have

and
FE [|<u, h)é (5(u)”*l5(h)k*2i*1(Du)lilh) H
< (18 (8(w) o (R) HH(Dw) ' R (gl (s )l
< 6w) 1o () (Du) " | |12 - (2.10)

Hence we can extend Relation (2.8) from v € Dy4+12(H) to u € D, 2(H) by
density using (2.9), (2.10), and the fact that d(u) ~ N(0, ||ul|%) from Proposi-
tion 2.3. 0

3. Mixing

The goal of this section is to prove the following result, from which Proposi-
tion 1.1 follows by density.

Proposition 3.1. Let (4m)m>1 be a bounded sequence in IDy, o(H) for somep > 1,
such that for all m > 1, ||um||g is deterministic and
trace (Duy,)* =0, k> 2.
Then for all h € H such that
lim (h, upy,) =0

m—00

in probability we have

lim Cov (§(h)**, 6(unm)™) =0,

m— 00

for all k,n > 1.

Proof. From Lemma 2.5 we have

Cov (6(h)**L, 5(um)™)
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Z -y ” (hy WY E [6(R)* 216 ()"~ (B )]
2i<

Now for any p,q > 1 such that p~! + ¢~! = 1, the bounds (2.9) and (2.10) show
that

kN

T)”<

B 1) E [(m, h)6 (8(um)" '8 (R)F 21 (Duy, )~ h)]

E [5(h) 26 ()™ (hy um)]

and
E [(tm, )5 (8(um)™ ' 6(R)* 21 (Duyy, ) =1 h)]
tend to zero as m goes to infinity since (h, u,,) is bounded by
(R )| < (Bl lumll, — m =1,
and tends to zero in probability on the one hand, and
H(S(um)n_l&(h)k_%_l(Dum)l_lh”p,l

is bounded in m > 1,1 =1,...,n, on the other hand. O
Proof of Proposition 1.1. By Proposition 3.1, for all h, f € H we have

Jim_ Cov (3()*H, 6(Ron f)") =

k,m > 1, and by density of the polynomial functionals in L?(W) this shows that
lim Cov(F,R;,G) =0,

for all F,G € L?(Q2). Indeed, recall that in order for mixing to hold it suffices
to prove the property on a dense subset of L*(W) since if |F — F|[ < ¢ and
IG — G2 < e, &> 0, then

|Cov (F, R;,G)| = |Cov(F — F,R!,G) + Cov (F, R}, (G — G)) 4 Cov (F, R}, G)|

< ||F = F|2Var[R},G]"/? + Var[F]V/2||R;, (G — )2 + |Cov (F, R}, G)]

< g(Var[G]Y? 4 Var[F]*/?) + |Cov (F, R}, G)|.
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