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KRYLOV–VERETENNIKOV EXPANSION FOR COALESCING

STOCHASTIC FLOWS

ANDREY A. DOROGOVTSEV*

Abstract. In this article we consider multiplicative operator-valued white
noise functionals related to a stochastic flow. A generalization of the Krylov–
Veretennikov expansion is presented. An analog of this expansion for the
Arratia flow is derived

Introduction

In this article we present the form of the kernels in the Itô–Wiener expansion
for functionals from a dynamical system driven by an additive Gaussian white
noise. The most known example of such expansion is the Krylov–Veretennikov
representation [11]:

f(y(t)) = Ttf(u) +

∞∑

k=1

∫

∆k(0;t)

Tt−τkb∂Tτ2−τ1 . . .

. . . b∂Tτ1f(u)dw(τ1) . . . dw(τk).

where f is a bounded measurable function, y is a solution of the SDE

dy(t) = a(y(t))dt + b(y(t))dw(t)

with smooth and nondegenerate coefficients, and {Tt; t ≥ 0} is the semigroup of
operators related to the SDE and ∂ is the symbol of differentiation.

A family of substitution operators of the SDE’s solution into a function can be
treated as a multiplicative Gaussian white noise functional. In the first section
of this article we consider a family {Gs,t; 0 ≤ s ≤ t < +∞} of strong random
operators (see Definition 1.1) in the Hilbert space which is an operator-valued
multiplicative functional from the Gaussian white noise. It turns out that the
precise form of the kernels in the Itô–Wiener expansion can be found for a wide
class of operator-valued multiplicative functionals using some simple algebraic re-
lations. The obtained formula covers the Krylov–Veretennikov case and gives a
representation for different objects such as Brownian motion in Lie group etc.

The representation obtained in the first section may be useful in studing the
properties of a dynamical system with an additive Gaussian white noise. On the
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other hand, there exist cases when a dynamical system is obtained as a limit in
a certain sense of systems driven by the Gaussian white noise. A limiting system
could be highly irregular [2, 5, 10]. One example of such a system is the Arra-
tia flow [2] of coalescing Brownian particles on the real line. The trajectories of
individual particles in this flow are Brownian motions, but the whole flow can-
not be built from the Gaussian noise in a regular way [13]. Nevertheless, it is
possible to construct the n−point motion of the Arratia flow from the pieces of
the trajectories of n independent Wiener processes. Correspondingly a function
from the n-point motion of the Arratia flow has an Itô–Wiener expansion based on
the initial Wiener processes. This expansion depends on the way of construction
(coalescing description). We present such expansion in terms of an infinite family
of expectation operators related to all manner of coalescence of the trajectories in
the Arratia flow. To do this we first obtain an analog of the Krylov–Veretennikov
expansion for the Wiener process stopped at zero.

This paper is divided onto three parts. The first section is devoted to multi-
plicative operator-valued functionals from Gaussian white noise. The second part
contains the definition and necessary facts about the Arratia flow. In the last sec-
tion we present a family of Krylov–Veretennikov expansions for the n-point motion
of the Arratia flow.

1. Multiplicative White Noise Functionals

In this part we present the Itô–Wiener expansion for the semigroup of strong
random linear operators in Hilbert space. Such operators in the space of functions
can be generated by the flow of solutions to a stochastic differential equation. In
this case our expansion turns into the well-known Krylov–Veretennikov represen-
tation [11]. In the case when these operators have a different origin, we obtain a
new representation for the semigroup.

Let us start with the definition and examples of strong random operators in the
Hilbert space. Let H denote a separable real Hilbert space with norm ‖ · ‖ and
inner product (·, ·). As usual (Ω,F , P ) denotes a complete probability space.

Definition 1.1. A strong linear random operator in H is a continuous linear map
from H to L2(Ω, P,H).

Remark 1.2. The notion of strong random operator was introduced by A.V.Skoro-
khod [14]. In his definition Skorokhod used the convergence in probability, rather
than convergence in the square mean.

Consider some typical examples of strong random operators.

Example 1.3. Let H be l2 with the usual inner product and {ξn; n ≥ 1} be an
i.i.d. sequence with finite second moment. Then the map

l2 ∋ x = (xn)n≥1 7→ Ax = (ξnxn)n≥1

is a strong random operator. In fact

E‖Ax‖2 =
∞∑

n=1

x2
nEξ21
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and the linearity is obvious. Note that pathwise the operator A can be not well-
defined. For example, if {ξn : n ≥ 1} have the standard normal distribution, then
with probability one

sup
n≥1

|ξn| = +∞.

An interesting set of examples of strong random operators can be found in the
theory of stochastic flows. Let us recall the definition of a stochastic flow on R

[12].

Definition 1.4. A family {φs,t; 0 ≤ s ≤ t} of random maps of R to itself is
referred to as a stochastic flow if the following conditions hold:

(1) For any 0 ≤ s1 ≤ s2 ≤ . . . sn < ∞ : φs1,s2 , . . . ,φsn−1,sn are independent.
(2) For any s, t, r ≥ 0 : φs,t and φs+r,t+r are equidistributed.
(3) For any r ≤ s ≤ t and u ∈ R : φr,sφs,t(u) = φr,t(u), φr,r is an identity

map.
(4) For any u ∈ R : φ0,t(u) 7→ u in probability when t 7→ 0.

Stochastic flows arise as solutions to stochastic differential equations with
smooth coefficients. Namely, if φs,t(u) is a solution to the stochastic differential
equation

dy(t) = a(y(t))dt + b(y(t))dw(t) (1.1)

starting at the point u in time s and considered in time t, then under smoothness
conditions on the coefficients a and b the family {φs,t} will satisfy the conditions
of Definition 1.4 [12]. Another example of a stochastic flow is the Harris flow
consisting of Brownian particles [5]. In this flow φ0,t(u) for every u ∈ R is a
Brownian martingale with respect to a common filtration and

d〈φ0,t(u1), φ0,t(u2)〉 = Γ(φ0,t(u1)− φ0,t(u2))dt

for some positive definite function Γ with Γ(0) = 1.
For a given stochastic flow one can try to construct a corresponding family of

strong random operators as follows.

Example 1.5. Let H = L2(R). Define

Gs,tf(u) = f(φs,t(u)).

Let us check that in the both cases mentioned above Gs,t satisfies Definition 1.1.
For the Harris flow we have

E

∫

R

f(φs,t(u))
2du =

∫

R

∫

R

f(v)2pt−s(u − v)dudv =

∫

R

f(v)2dv.

Here pr denotes the Gaussian density with zero mean and variance r.

To get an estimation for the flow generated by a stochastic differential equation
let us suppose that the coefficients a and b are bounded Lipschitz functions and b

is separated from zero. Under such conditions φs,t(u) has a density, which can be
estimated from above by a Gaussian density [1]. Consequently we will have the
inequality E

∫
R
f(φs,t(u))

2du ≤ c
∫
R
f(v)2dv.

As it was shown in Example 1.3, a strong random operator in general is not
a family of bounded linear operators in H indexed by the points of probability
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space. Despite of this the composition of such operators can be properly defined
(see [3] for detailed construction in case of dependent nonlinear operators via Wick
product). Here we will consider only the case when strong random operators A

and B are independent. In this case both A and B have measurable modifications
and one can define for u ∈ H, ω ∈ Ω

AB(u, ω) := A(B(u, ω), ω)

and prove that the value AB(u) does not depend on the choice of modifications.
Note that the operators from the previous example satisfy the semigroup property,
and that for the flow generated by a stochastic differential equation these operators
are measurable with respect to increments of the Wiener process. In this section
we will consider a general situation of this kind and study the structure of the
semigroup of strong random operators measurable with respect to a Gaussian
white noise. The white noise framework is presented in [3, 6, 8], here we just recall
necessary facts and definitions.

Let’s start with a description of the noise. Let H0 be a separable real Hilbert
space. Consider a new Hilbert space H̃ = H0 ⊗ L2([0; +∞]), where an inner
product is defined by the formula

H̃ ∋ f, g 7→< f, g〉 =

∫ ∞

0

(f(t), g(t))0dt.

Definition 1.6. Gaussian white noise ξ in H̃ is a family of jointly Gaussian
random variables {〈ξ, h〉; h ∈ H̃} which is linear with respect to h ∈ H̃ and for
every h, 〈ξ, h〉 has mean zero and variance ‖h‖2.

Let H̃s,t be the product H0 ⊗L2([s; t]), which can be naturally considered as a

subspace of H̃. Define the σ-fields Fs,t = σ{〈ξ, h〉; h ∈ H̃s,t}, 0 ≤ s ≤ t < +∞.

Definition 1.7. A family {Gs,t; 0 ≤ s ≤ t < +∞} of strong random operators in
H is a multiplicative functional from ξ if the following conditions hold:

1) Gs,t is measurable with respect to Fs,t,

2) Gs,s is an identity operator for every s,

3) Gs1,s3 = Gs2,s3Gs1,s2 for s1 ≤ s2 ≤ s3.

Remark 1.8. Taking an orthonormal basis {en} in H0 one can replace ξ by a
sequence of independent Wiener processes {wn(t) = 〈en ⊗ 1[0; t]; ξ〉; t ≥ 0}. We
use ξ in order to simplify notations and consider simultaneously both cases of finite
and infinite number of the processes {wn}.

Example 1.9. Let us define x(u, s, t) as a solution to the Cauchy problem for
(1.1) which starts from the point u at the moment s. Using the flow property one
can easily verify that the family of operators {Gs,tf(u) = f(x(u, s, t))} in L2(R)
is a multiplicative functional from the Gaussian white noise ẇ in L2([0; +∞]).

Now we are going to introduce the notion of a homogeneous multiplicative func-
tional. Let us recall, that every square integrable random variable α measurable
with respect to ξ can be uniquely expressed as a series of multiple Wiener integrals
[8]

α = Eα+
∞∑

k=1

∫

∆k(0;+∞)

ak(τ1, . . . , τk)ξ(dτ1) . . . ξ(dτk),
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where

∆k(s; t) = {(τ1, . . . , τk) : s ≤ τ1 ≤ . . . ≤ τk ≤ t},

ak ∈ L2(∆k(0;+∞), H⊗k
0 ), k ≥ 1.

Here in the multiple integrals we consider the white noise ξ as Gaussian H0-valued
random measure on [0; +∞). In the terms of the mentioned above orthonormal
basis {en} in H0 and the sequence of the independent Wiener processes {wn} one
can rewrite the above multiple integrals as

∫

∆k(0;+∞)

ak(τ1, . . . , τk)ξ(dτ1) . . . ξ(dτk)

=
∑

n1,...,nk

∫

∆k(0;+∞)

ak(τ1, . . . , τk)(en1
, ..., enk

)dwn1
(τ1)...dwnk

(τk).

Define the shift of α for r ≥ 0 as follows

θrα = Eα+

∞∑

k=1

∫

∆k(r;+∞)

ak(τ1 − r, . . . , τk − r)ξ(dτ1) . . . ξ(dτk).

Definition 1.10. A multiplicative functional {Gs,t} is homogeneous if for every
s ≤ t and r ≥ 0

θrGs,t = Gs+r,t+r.

Note that the family {Gs,t} from Example 1.9 is a homogeneous functional.
From now on, we will consider only homogeneous multiplicative functionals from
ξ. For a homogeneous functional {Gs,t} one can define the expectation operators

Ttu = EG0,tu, u ∈ H, t ≥ 0.

Since the family {Gs,t} is homogeneous, then {Tt} is the semigroup of bounded
operators in H . Under the well-known conditions the semigroup {Tt} can be
described by its generator. However the family {Gs,t} cannot be recovered from
this semigroup. The following simple example shows this.

Example 1.11. Define {G1
s,t} and {G2

s,t} in the space L2(R) as follows

G1
s,tf(u) = Tt−sf(u),

where {Tt} is the heat semigroup, and

G2
s,tf(u) = f(u+ w(t) − w(s)),

where w is a standard Wiener processes. It is evident, that

EG2
s,tf(u) = Tt−sf(u) = EG1

s,tf(u).

To recover multiplicative functional uniquely we have to add some information to
{Tt}. It can be done in the following way. For f ∈ H define an operator which
acts from H0 to H by the rule

A(f)(h)
.
= lim

t→0+

1

t
EG0,tf(ξ, h⊗ 1[0; t]). (1.2)
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Example 1.12. Let the family {Gs,t} be defined as in Example 1.9. Now H =
L2(R) and the noise ξ is defined on L2([0; +∞) as ẇ. Then for f ∈ L2(R) (now
H0 = R and it makes sense only to take h = 1)

A(f)(u) = lim
t→0+

1

t
Ef(x(u, t))w(t).

Suppose that f has two bounded continuous derivatives. Then using Itô’s formula
one can get

Ef(x(u, t))w(t) =

∫ t

0

Ef ′(x(u, s))ϕ(x(u, s))ds,

and
1

t
Ef(x(•, t))w(t)

L2(R)
→ f ′(•)b(•), t → 0 + .

Consequently, for “good” functions

Af = bf ′.

Definition 1.13. An element u of H belongs to the domain of definition D(A) of
A if the limit (1.2) exists for every h ∈ H0 and defines a Hilbert–Schmidt operator
A(u) : H0 → H. The operator A is refereed to as the random generator of {Gs,t}.

Now we can formulate the main statement of this section, which describes the
structure of homogeneous multiplicative functionals from ξ.

Theorem 1.14. Suppose, that for every t > 0, Tt(H) ⊂ D(A) and the kernels of

the Itô-Wiener expansion for G0,t are continuous with respect to time variables.

Then G0,t has the following representation

G0,t(u) = Ttu+

∞∑

k=1

∫

∆k(0;t)

Tt−τkATτk−τk−1
. . . ATτ1udξ(τ1) . . . dξ(τk). (1.3)

Proof. Let us denote the kernels of the Itô–Wiener expansion for G0,t(u) as
{atk(u, τ1, . . . , τk); k ≥ 0}. Since

at0(u) = EG0,t(u),

then
at0(u) = Ttu.

Since
G0,t+s(u) = Gt,t+s(G0,t(u)),

and Gt,t+s = θtG0,s, then

at+s
1 (u, τ1) = Tsa

t
1(u, τ1)1τ1<t + as1(Ttu, τ1 − t)1t≤τ1≤t+s. (1.4)

Using this relation one can get

at1(u, 0) = Tt−τ1a
τ1
1 (u, 0),

at1(u, τ1) = at−τ1
1 (Tτ1u, 0).

(1.5)

The condition of the theorem implies that for v = Tτ1u and every h ∈ H0 there
exists the limit

A(v)h = lim
t→0+

1

t
EG0,t(v)(ξ, h ⊗ 1[0; t])
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= lim
t→0+

1

t

∫ t

0

at1(v, τ1)hdτ1.

Now, by continuity of a1,

a01(Tτ1u, 0) = A(Tτ1u).

Finally,

at1(u, τ1) = Tt−τ1ATτ1u.

The case k ≥ 2 can be proved by induction. Suppose, that we have the representa-
tion (1.3) for atj , j ≤ k. Consider at+s

k+1. Using the multiplicative and homogeneity
properties one can get

at+s
k+1(u, τ1, . . . , τk+1)1{0≤τ1≤...≤τk≤t≤τk+1≤t+s}

= as1(a
t
k(u, τ1, . . . , τk), τk+1 − t)

= Ts+t−τk+1
ATτk+1−ta

t
k(u, τ1, . . . , τk)

= Ts+t−τk+1
ATτk+1−tTt−τkA . . . ATτ1u

= Ts+t−τk+1
ATτk+1−τkA . . . ATτ1u.

The theorem is proved. �

Consider some examples of application of the representation (1.3).

Example 1.15. Consider the multiplicative functional from Example 1.9. Sup-
pose that the coefficients a, b have infinitely many bounded derivatives. Now it
can be proved, that x(u, t) has infinitely many stochastic derivatives [15]. Con-
sequently for a smooth function f the first kernel in the Itô–Wiener expansion of
f(x(u, t)) can be expressed as follows

at1(u, τ) = EDf(x(u, t))(τ). (1.6)

Indeed, for an arbitrary h ∈ L2([0; +∞))
∫ t

0

at1(u, τ)h(τ)dτ = Ef(x(u, t))

∫ t

0

h(τ)dw(τ)

= E

∫ t

0

Df(x(u, t))(τ)h(τ)dτ,

which gives us the expression (1.6). The required continuity of a1 follows from a
well-known expression for the stochastic derivative of x [8]. As it was mentioned
in Example 1.12, the operator A coincides with b d

du
on smooth functions. Finally,

the expression (1.3) turns into the well-known Krylov–Veretennikov expansion [11]
for f(x(u, t))

f(x(u, t)) = Ttf(u) +

∞∑

k=1

∫

∆k(0;t)

Tt−τkb∂Tτ2−τ1 . . .

. . . b∂Tτ1f(u)dw(τ1) . . . dw(τk).

Remark 1.16. The expression (1.3) can be applied to multiplicative functionals,
which are not generated by a stochastic flow.
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Example 1.17. Let L be a matrix Lie group with the corresponding Lie algebra
A with dimA = n. Consider an L-valued homogeneous multiplicative functional
{Gs,t} from ξ. Suppose that {G0,t} is a semimartingale with respect to the filtra-
tion generated by ξ. Let {Gs,t} be continuous with respect to s, t with probability
one. It means, in particular, that {G0,t} is a multiplicative Brownian motion in L
[7]. Then G0,t is a solution to the following SDE

dG0,t = G0,tdMt,

G0,0 = I.

Here {Mt; t ≥ 1} is an A-valued Brownian motion obtained from G by the rule [7]

Mt = P - lim
∆→0+

[ t
∆ ]∑

k=0

(Gk∆,(k+1)∆ − I). (1.7)

Since G0,t is a semimartingale with respect to the filtration of ξ, then Mt also has
the same property. The representation (1.7) shows that Mt − Ms is measurable
with respect to the σ-field Fs,t and for arbitrary r ≥ 0

θr(Mt −Ms) = Mt+r −Ms+r.

Considering the Itô–Wiener expansion of Mt −Ms one can easily check, that

Mt =

∫ t

0

Zdξ(τ) (1.8)

with a deterministic matrix Z. We will prove (1.8) for the one-dimensional case.
Suppose that Mt has the following Itô-Wiener expansion with respect to ξ

Mt =

∞∑

k=1

∫

∆k(t)

ak(t, τ1, . . . , τk)dξ(τ1) . . . dξ(τk).

Then for k ≥ 2 the corresponding kernel ak satisfies relation

ak(t+ s, τ1, . . . , τk) = ak(t, τ1, . . . , τk)1{τ1,...,τk≤t}

+ ak(s, τ1 − t, . . . , τk − t)1{τ1,...,τk≥t}.

Iterating this relation for t =
∑n

j=1
t
n
one can verify that ak ≡ 0. For k = 1 the

same arguments give ak ≡ const.

Consequently, the equation for G can be rewritten using ξ as

dG0,t = G0,tZdξ(t). (1.9)

Now the elements of the Itô–Wiener expansion from Theorem 1.14 can be deter-
mined as follows

Tt = EG0,t, A = Z.

Consequently,

G0,t = Tt +

∞∑

k=1

∫

∆k(0;t)

Tt−τkZTτk−τk−1
. . . ZTτ1dξ(τ1) . . . dξ(τk).
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2. The Arratia Flow

When trying to obtain an analog of the representation (1.3) for a stochastic
flow which is not generated by a stochastic differential equation with smooth co-
efficients, we are faced with the difficulty that there is no such a Gaussian random
vector field, which would generate the flow. This circumstance arise from the pos-
sibility of coalescence of particles in the flow. We will consider one of the best
known examples of such stochastic flows, the Arratia flow. Let us start with the
precise definition.

Definition 2.1. The Arratia flow is a random field {x(u, t); u ∈ R, t ≥ 0}, which
has the properties

1) all x(u, ·), u ∈ R are Wiener martingales with respect to the join filtration,
2) x(u, 0) = u, u ∈ R,

3) for all u1 ≤ u2, t ≥ 0

x(u1, t) ≤ x(u2, t),

4) the joint characteristics of x(u1, t) and x(u2, t) equals

〈x(u1, ·), x(u2, ·)〉t =

∫ t

0

1{τ(u1,u2)≤s}ds,

where

τ(u1, u2) = inf{t : x(u1, t) = x(u2, t)}.

It follows from the properties 1)–3), that individual particles in the Arratia flow
move as Brownian particles and coalesce after meeting. Property 4) reflects the
independence of the particles before meeting. It was proved in [4], that the Arratia
flow has a modification, which is a cdlg process on R with the values in C([0; +∞)]).
From now on, we assume that we are dealing with such a modification. We will
construct the Arratia flow using a sequence of independent Wiener processes {wk :
k ≥ 1}. Suppose that {rk; k ≥ 1} are rational numbers on R. To construct the
Arratia flow put wk(0) = rk, k ≥ 1 and define

x(r1, t) = w1(t), t ≥ 0.

If x(r1, ·), . . . , x(rn, ·) have already been constructed, then define

σn+1 = inf{t :

n∏

k=1

(x(rk , t)− wn+1(t)) = 0},

x(rn+1, t) =

{
wn+1(t), t ≤ σn+1

x(rk∗ , t), t ≥ σn+1,

where

wn+1(σn+1) = x(rk∗ , σn+1),

k = min{l : wn+1(σn+1) = x(rl, σn+1)}.

In this way we construct a family of the processes x(r, ·), r ∈ Q which satisfies
conditions 1)–4) from Definition 2.1.
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Lemma 2.2. For every u ∈ R the random functions x(r, ·) uniformly converge

on compacts with probability one as r → u. For rational u the limit coincides with

x(u, ·) defined above. The resulting random field {x(u, t); u ∈ R, t ≥ 0} satisfies

the conditions of Definition 2.1.

Proof. Consider a sequence of rational numbers {rnk
; k ≥ 1} which converges to

some u ∈ R \ Q. Without loss of generality one can suppose that this sequence
decreases. For every t ≥ 0, {x(rnk

, t); k ≥ 1} converges with probability one as a
bounded monotone sequence. Denote

x(u, t) = lim
k→∞

x(rnk
, t).

Note that for arbitrary r′, r′′ ∈ Q and t ≥ 0

E sup
[0; t]

(x(r′, s)− x(r′′, s))2 ≤ C · (|r′ − r′′|+ (r′ − r′′)2). (2.1)

Here the constant C does not depend on r′ and r′′. Inequality (2.1) follows from
the fact, that the difference x(r′, ·)− x(r′′, ·) is a Wiener process with variance 2,
started at r′ − r′′ and stopped at 0. Monotonicity and (2.1) imply that the first
assertion of the lemma holds. Note that for every t ≥ 0

Ft = σ(x(r, s); r ∈ Q, s ∈ [0; t])

= σ(x(r, s); r ∈ R, s ∈ [0; t]).

Using standard arguments one can easily verify, that for every u ∈ R, x(u, ·) is a
Wiener martingale with respect to the flow (Ft)t≥0, and that the inequality

x(u1, t) ≤ x(u2, t)

remains to be true for all u1 ≤ u2. Consequently, for all u1, u2 ∈ R, x(u1, ·) and
x(u2, ·) coincide after meeting. It follows from (2.1) and property 4) for x(r, ·)
with rational r, that

〈x(u1, ·), x(u2, ·)〉t = 0

for

t < inf{s : x(u1, s) = x(u2, s)}.

Hence, the family {x(u, t); u ∈ R, t ≥ 0} satisfies Definition 2.1. �

This lemma shows that the Arratia flow is generated by the initial countable
system of independent Wiener processes {wk; k ≥ 1}.

From this lemma one can easily obtain the following statement.

Corollary 2.3. The σ-field

Fx
0+ :=

⋂

t>0

σ(x(u, s); u ∈ R, 0 ≤ s ≤ t)

is trivial modulo P.

The proof of this statement follows directly from the fact that the Wiener
process has the same property [9].
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3. The Krylov–Veretennikov Expansion for the n-point

Motion of the Arratia Flow

We begin this section with an analog of the Krylov–Veretennikov expansion for
the Wiener process stopped at zero. For the Wiener process w define the moment
of the first hitting zero

τ = inf{t : w(t) = 0}

and put w̃(t) = w(τ ∧ t). For a measurable bounded f : R → R define

T̃t(f)(u) = Euf(w̃(t)).

The following statement holds.

Lemma 3.1. For a measurable bounded function f : R → R and u ≥ 0

f(w̃(t)) = T̃tf(u)

+

∞∑

k=1

∫

∆k(t)

T̃t−rk

∂

∂vk
T̃rk−rk−1

. . .
∂

∂v1
T̃r1f(v1)

dw(r1) . . . dw(rk). (3.1)

Proof. Let us use the Fourier–Wiener transform. Define for ϕ ∈ C([0; +∞), R)
⋂

L2([0; +∞), R) the stochastic exponential

E(ϕ) = exp

{∫ +∞

0

ϕ(s)dw(s) −
1

2

∫ +∞

0

ϕ(s)2ds

}
.

Suppose that a random variable α has the Itô–Wiener expansion

α = a0 +

∞∑

k=1

∫

∆k(t)

aj(r1, . . . , rk)dw(r1) . . . dw(rk).

Then
EαE(ϕ) = a0

+
∞∑

k=1

∫

∆k(t)

ak(r1, . . . , rk)ϕ(r1) . . . ϕ(rk)dr1 . . . drk. (3.2)

Consequently, to find the Itô–Wiener expansion of α it is enough to find EαE(ϕ)
as an analytic functional from ϕ. Note that

Euf(w̃(t))E(ϕ) = Euf(ỹ(t)),

where the process ỹ is obtained from the process

y(t) = w(t) +

∫ t

0

ϕ(r)dr

in the same way as w̃ from w. To find Euf(ỹ(t)) consider the case when f is
continuous bounded function with f(0) = 0. Let F be the solution to the following
boundary problem on [0; +∞)× [0; T ]

∂

∂t
F (u, t) = −

1

2

∂2

∂u2
F (u, t)− ϕ(t)

∂

∂u
F (u, t), (3.3)

F (u, T ) = f(u), F (0, s) = 0, s ∈ [0; T ],
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F ∈ C2((0; +∞)× (0; T )) ∩ C([0; +∞)× [0; T ]).

Then F (u, 0) = Euf(ỹ(T )). To check this relation note, that F satisfies the relation

∂

∂u
F (0, s) =

∂2

∂u2
F (0, s) = 0, s ∈ [0; T ].

Consider the process F (ỹ(s), s) on the interval [0; T ]. Using Itô’s formula one can
get

F (ỹ(T ), T ) = F (u, 0) +

∫ T∧τ

0

(
1

2

∂2

∂u2
F (ỹ(s), s

)

+ϕ(s)
∂

∂u
F (ỹ(s), s))−

(
1

2

∂2

∂u2
F (ỹ(s), s

)
+ ϕ(s)

∂

∂u
F (ỹ(s), s))ds

+

∫ T∧τ

0

∂

∂u
F (ỹ(s), s)dw(s).

Consequently

F (u, 0) = Euf(ỹ(T )).

The problem (3.3) can be solved using the semigroup {T̃t; t ≥ 0}. It can be
obtained from (3.3) that

F (u, s) = T̃T−sf(u) +

∫ T

s

ϕ(r)T̃r−s

∂

∂u
F (u, r)dr. (3.4)

Solving (3.4) by the iteration method one can get the series

F (u, s) = T̃T−sf(u)

+

∞∑

k=1

∫

∆k(s; T )

T̃r1−s

∂

∂v1
T̃r2−r1 . . .

∂

∂vk
T̃T−rkf(vk)ϕ(r1) . . . ϕ(rk)dr1 . . . drk.

The last formula means that the Itô–Wiener expansion of f(w̃(t)) has the form

f(w̃(t)) = T̃tf(u) +

∞∑

k=1

∫

∆k(t)

T̃r1

∂

∂v1
T̃r2−r1 . . .

∂

∂vk
T̃t−rkf(vk)dw(r1) . . . dw(rk). (3.5)

To consider the general case note that for t > 0 and c ∈ R

∂

∂v
T̃tc ≡ 0.

Consequently (3.5) remains to be true for an arbitrary bounded continuous f. Now
the statement of the lemma can be obtained using the approximation arguments.
The lemma is proved. �
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The same idea can be used to obtain the Itô–Wiener expansion for a function
from the Arratia flow. The n-point motion of the Arratia flow was constructed in
Section 2 from independent Wiener processes. Consequently, a function from this
n−point motion must have the Itô–Wiener expansion in terms of these processes.
We will treat such expansion as the Krylov–Veretennikov expansion for the Arratia
flow.

Here there is a new circumstance compared to the case when the flow is gene-
rated by SDE with smooth coefficients. Namely, there are many different ways to
construct the trajectories of the Arratia flow from the initial Wiener processes, and
the form of the Itô–Wiener expansion will depend on the way of constructing the
trajectories. In [2] Arratia described different ways of constructing the colliding
Brownian motions from independent Wiener processes. We present here a more
general approach by considering a broad class of constructions, and find the Itô–
Wiener expansion for it. To describe our method we will need some preliminary
notations and definitions.

Definition 3.2. An arbitrary set of the kind {i, i+1, . . . , j}, where i, j ∈ N,i ≤ j

is called a block.

Definition 3.3. A representation of the block {1, 2, . . . , n} as a union of disjoint
blocks is called a partition of the block {1, 2, . . . , n}.

Definition 3.4. We say that a partition π2 follows from a partition π1 if it co-
incides with π1 or if it is obtained by the union of two subsequent blocks from
π1.

We will consider a sequences of partitions {π0, . . . , πl} where π0 is a trivial
partition, π0 = {{1}, {2}, . . . , {n}} and every πi+1 follows from πi. The set of all
such sequences will be denoted by R. Denote by Rk the set of all sequences from R

that have exactly k matching pairs: πi = πi+1. The set R0 of strongly decreasing

sequences we denote by R̆. For every sequence {π0, . . . , πk} from R̆ each πi+1 is
obtained from πi by the union of two subsequent blocks. It is evident, that the
length of every sequence from R̆ is less or equal to n. Let us associate with every

partition π a vector ~λπ ∈ Rn with the next property. For each block {s, . . . , t}
from π the following relation holds

t∑

q=s

λ2
πq = 1.

We will use the mapping ~λ as a rule of constructing the n−point motion of the
Arratia flow. Suppose now, that {wk; k = 1, . . . , n} are independent Wiener
processes starting at the points u1 < . . . < un. We are going to construct the
trajectories {x1, . . . , xn} of the Arratia flow starting at u1 < . . . < un from the
pieces of the trajectories of {wk; k = 1, . . . , n}. Assume that we have already built
the trajectories of {x1, . . . , xn} up to a certain moment of coalescence τ . At this
moment a partition π of {1, 2, . . . , n} naturally arise. Two numbers i and j belong
to the same block in π if and only if xi(τ) = xj(τ). Consider one block {s, . . . , t} in
π. Define the processes xs, . . . , xt after the moment τ and up to the next moment
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of coalescence in the whole system {x1, . . . , xn} by the rule

xi(t) = xi(τ) +
t∑

q=s

λπq(wq(t)− wq(τ)).

Proceeding in the same way, we obtain the family {xk, k = 1, . . . , n} of continuous
square integrable martingales with respect to the initial filtration, generated by
{wk; k = 1, . . . , n} with the following properties:

1) for every k = 1, . . . , n, xk(0) = uk,

2) for every k = 1, . . . , n− 1, xk(t) ≤ xk+1(t),
3) the joint characteristic of xi and xj satisfies relation

d〈xi, xj〉(t) = 1t≥τij ,

where τij = inf{s : xi(s) = xj(s)}.
It can be proved [10] that the processes {xk, k = 1, . . . , n} are the n−point

motion of the Arratia flow starting from the points u1 < . . . < un. We constructed
it from the independent Wiener processes {wk; k = 1, . . . , n} and the way of

construction depends on the mapping ~λ. To describe the Itô–Wiener expansion for
functions from {xk(t), k = 1, . . . , n} it is necessary to introduce operators related

to a sequence of partitions π̃ ∈ R̆. Denote by τ0 = 0 < τ1 < . . . < τn−1 the
moments of coalescence for {xk(t), k = 1, . . . , n} and by ν̃ = {π0, ν1, . . . , νn−1}
related random sequence of partitions. Namely, the numbers i and j belong to the
same block in the partition νk if and only if xi(t) = xj(t) for τk ≤ t. Define for a
bounded measurable function f : Rn → R

T π̃
t f(u1, . . . , un) = Ef(x1(t), . . . , xn(t))1{ν1=π1,...,νk=πk, τk≤t<τk+1}.

Now let κ be an arbitrary partition and let u1 ≤ u2 ≤ . . . ≤ un be such, that
ui = uj if and only if i and j belong to the same block in κ. One can define
formally the n−point motion of the Arratia flow starting at u1 ≤ u2 ≤ . . . ≤ un,
assuming that the trajectories that start at coinciding points, also coincide. Then
for the strongly decreasing sequence of partitions π̃ = {κ, π1, . . . , πk} the operator
T π̃
t is defined by the same formula as above.
The next theorem is the Krylov–Veretennikov expansion for the n−point motion

of the Arratia flow.

Theorem 3.5. For a bounded measurable function f : Rn → R the following

representation takes place

f(x1(t), . . . , xn(t)) =
∑

π̃∈R̆

T π̃
t f(u1, . . . , un)

+
n∑

i=1

∑

π̃∈R1

λπ1i

∫ t

0

T π̃1

s1
∂iT

π̃2

t−s1
f(u1, . . . , un)dwi(s1)

+

n∑

i1,i2=1

∑

π̃∈R2

λπ1i1λπ2i2

∫

△2(t)

T π̃1

s1
∂i1T

π̃2

s2−s1
∂i2T

π̃3

t−s2

f(u1, . . . , un)dwi1 (s1)dwi2 (s2)
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+

n∑

i1,...,ik=1

∑

π̃∈Rk

k∏

j=1

λπj ij

∫

△k(t)

T π̃1

s1
∂i1T

π̃2

s2−s1
...∂ikT

π̃k+1

t−sk

f(u1, . . . , un)dwi1 (s1)...dwik (sk) + · · · · · ·

In this formula we use the following notations. For a sequence π̃ ∈ Rk partitions

π1, ..., πk are the left elements of equalities from π̃ = {...π1 = ...π2 = ...πk = ...}
and π̃1, ..., π̃k+1 are strictly decreasing pieces of π̃. The symbol ∂i denotes differ-

entiation with respect to a variable corresponding to the block of partition, which

contains i. For example, if i ∈ {s, ..., t} then ∂if =
∑q=t

q=s f
′
q.

The proof of the theorem can be obtained by induction, adopting ideas of
Lemma 3.1. One has to consider subsequent boundary value problems and then
use the probabilistic interpretation of the Green’s functions for these problems.
The corresponding routine calculations are omitted.
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