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STOCHASTIC CALCULUS FOR GAUSSIAN PROCESSES

AND APPLICATION TO HITTING TIMES

PEDRO LEI AND DAVID NUALART*

Abstract. In this paper we establish a change-of-variable formula for a class
of Gaussian processes with a covariance function satisfying minimal regularity
and integrability conditions. The existence of the local time and a version of
Tanaka’s formula are derived. These results are applied to a general class of
self-similar processes that includes the bifractional Brownian motion. On the
other hand, we establish a comparison result on the Laplace transform of the
hitting time for a fractional Brownian motion with Hurst parameter H <

1

2
.

1. Introduction

There has been a recent interest in establishing change-of-variable formulas for a
general class of Gaussian process which are not semimartingales, using techniques
of Malliavin calculus. The basic example of such process is the fractional Brownian
motion, and, since the pioneering work by Decreusefond and Üstünel [8], different
versions of the Itô formula have been established (see the recent monograph by
Biagini, Hu, Øksendal and Zhang [4] and the references therein).

In [1] the authors have considered the case of a Gaussian Volterra process of

the form Xt =
∫ t

0 K(t, s)dWs, whereW is a Wiener process and K(t, s) is a square
integrable kernel satisfying some regularity and integrability conditions, and they
have proved a change-of-variable formula for a class of processes which includes
the fractional Brownian motion with Hurst parameter H > 1

4 . A more intrinsic
approach based on the covariance function (instead of the kernel K) has been
developed by Cheridito and Nualart in [5] for the fractional Brownian motion. In
this paper an extended divergence operator is introduced in order to establish an
Itô formula in the case of an arbitrary Hurst parameter H ∈ (0, 1). In [13], Kruk,
Russo and Tudor have developed a stochastic calculus for a continuous Gaussian
process X = {Xt, t ∈ [0, T ]} with covariance function R(s, t) = E(XtXs) which
has a bounded planar variation. This corresponds to the case of the fractional
Brownian motion with Hurst parameter H ≥ 1

2 . In [12] Kruk and Russo have
extended the stochastic calculus for the Skorohod integral to the case of Gaussian
processes with a singular covariance, which includes the case of the fractional
Brownian motion with Hurst parameter H < 1

2 . The approach of [12] based on
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the duality relationship of Malliavin calculus and the introduction of an extended
domain for the divergence operator is related with the method used in the present
paper, although there are clear differences in the notation and basic assumptions.

In [15], Mocioalca and Viens have constructed the Skorohod integral and de-
veloped a stochastic calculus for Gaussian processes having a covariance structure
of the form E[|Bt − Bs|2] ∼ γ2(|t− s|), where γ satisfies some minimal regularity
conditions. In particular, the authors have been able to consider processes with a
logarithmic modulus of continuity, and even processes which are not continuous.

The purpose of this paper is to extend the methodology introduced Cheridito
and Nualart in [5] to the case of a general Gaussian process whose covariance
function R is absolutely continuous in one variable and the derivative satisfies an
appropriate integrability condition, without assuming that R has planar bounded
variation. The main result is a general Itô’s formula formulated in terms of the
extended divergence operator, proved in Section 3. As an application we establish
the existence of a local time in L2 and a version of Tanaka’s formula in Section
4. In Section 5 the results of the previous sections are applied to the case of
a general class of self-similar processes that includes the bifractional Brownian
motion with parameters H ∈ (0, 1) and K ∈ (0, 1] and the extended bifractional
Brownian motion with parameters H ∈ (0, 1) and K ∈ (1, 2) such that HK ∈
(0, 1). Finally, using the stochastic calculus developed in Section 3, we have been
able, in Section 6, to generalize the results by Decreusefond and Nualart (see [7])
on the distribution of the hitting time, to the case of a fractional Brownian motion
with Hurst parameterH < 1

2 . More precisely, we prove that if the Hurst parameter

is less than 1
2 , then the hitting time τa, for a > 0, satisfies E(exp(−ατ2Ha )) ≥

e−a
√
2α for any α > 0.

2. Preliminaries

Let X = {Xt, t ∈ [0, T ]} be a continuous Gaussian process with zero mean and
covariance function R(s, t) = E(XtXs), defined on a complete probability space
(Ω,F , P ). For the sake of simplicity we will assume that X0 = 0. Consider the
following condition on the covariance function:

(H1) For all t ∈ [0, T ], the map s 7→ R(s, t) is absolutely continuous on [0, T ],
and for some α > 1,

sup
0≤t≤T

∫ T

0

∣

∣

∣

∣

∂R

∂s
(s, t)

∣

∣

∣

∣

α

ds <∞.

Our aim is to develop a stochastic calculus for the Gaussian process X , assuming
condition (H1). In this section we introduce some preliminaries.

Denote by E the space of step functions on [0, T ]. We define in E the scalar
product

〈

1[0,t],1[0,s]

〉

H = R(t, s).

Let H be the Hilbert space defined as the closure of E with respect to this scalar
product. The mapping 1[0,t] → Xt can be extended to a linear isometry from H
into the Gaussian subspace of L2(Ω) spanned by the random variables {Xt, t ∈
[0, T ]}. This Gaussian subspace is usually called the first Wiener chaos of the
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Gaussian process X . The image of an element ϕ ∈ H by this isometry will be a
Gaussian random variable denoted by X(ϕ). For example, if X = B is a standard
Brownian motion, then the Hilbert space H is isometric to L2([0, T ]), and B(ϕ) is

the Wiener integral
∫ T

0
ϕtdBt. A natural question is whether the elements of the

space H can be indentified with real valued functions on [0, T ], and in this case,
X(ϕ) will be interpreted as the stochastic integral of the function ϕ with respect
to the process X . For instance, in the case of the fractional Brownian motion with
Hurst parameter H ∈ (0, 1), this question has been discussed in detail by Pipiras
and Taqqu in the references [18, 19].

We are interested in extending the inner product 〈ϕ,1[0,t]〉H to elements ϕ that
are not necessarily in the space H. Suppose first that ϕ ∈ E has the form

ϕ =

n
∑

i=1

ai1[0,ti],

where 0 ≤ ti ≤ T . Then the inner product 〈ϕ,1[0,t]〉H can be expressed as follows

〈ϕ,1[0,t]〉H =

n
∑

i=1

aiR(ti, t) =

n
∑

i=1

ai

∫ ti

0

∂R

∂s
(s, t)ds =

∫ T

0

ϕ(s)
∂R

∂s
(s, t)ds. (2.1)

If β is the conjugate of α, i.e. 1
α + 1

β = 1, applying Hölder’s inequality, we obtain

∣

∣〈ϕ,1[0,t]〉H
∣

∣ =

∣

∣

∣

∣

∣

∫ T

0

ϕ(s)
∂R

∂s
(s, t)ds

∣

∣

∣

∣

∣

≤ ‖ϕ‖β sup
0≤t≤T

(

∫ T

0

|∂R
∂s

(s, t)|αds
)

1
α

.

Therefore, if (H1) holds, we can extend the inner product 〈ϕ,1[0,t]〉H to functions

ϕ ∈ Lβ([0, T ]) by means of formula (2.1), and the mapping ϕ → 〈ϕ,1[0,t]〉H is

continuous in Lβ([0, T ]). This leads to the following definition.

Definition 2.1. Given ϕ ∈ Lβ([0, T ]) and ψ =
∑m

j=1 bj1[0,tj ] ∈ E , we set

〈ϕ, ψ〉H =

m
∑

j=1

bj

∫ T

0

ϕ(s)
∂R

∂s
(s, tj)ds.

In particular, this implies that for any ϕ and ψ as in the above definition,

〈ϕ1[0,t], ψ〉H =

∫ t

0

ϕ(s)d〈1[0,s], ψ〉H. (2.2)

3. Stochastic Calculus for the Skorohod Integral

Following the argument of Alós, Mazet and Nualart in [1], in this section we
establish a version of Itô’s formula. In order to do this we first discuss the extended
divergence operator for a continuous Gaussian stochastic process X = {Xt, t ∈
[0, T ]} with mean zero and covariance function R(s, t) = E(XtXs), defined in
a complete probability space (Ω,F , P ), satisfying condition (H1), and such that
X0 = 0. The Gaussian family {X(ϕ), ϕ ∈ H} introduced in the Section 2 is
an isonormal Gaussian process associated with the Hilbert space H, and we can
construct the Malliavin calculus with respect to this process (see [17] and the
references therein for a more complete presentation of this theory).
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We denote by S the space of smooth and cylindrical random variables of the
form

F = f(X(ϕ1), . . . , X(ϕn)), (3.1)

where f ∈ C∞
b (Rn) (f is an infinitely differentiable function which is bounded

together with all its partial derivatives), and, for 1 ≤ i ≤ n, ϕi ∈ E . The derivative
operator, denoted by D, is defined by

DF =
n
∑

i=1

∂f

∂xi
(X(ϕ1), . . . , X(ϕn))ϕi,

if F ∈ S is given by (3.1). In this sense, DF is an H-valued random variable. For
any real number p ≥ 1 we introduce the seminorm

‖F‖1,p = (E(|F |p) + E(‖DF‖pH))
1
p ,

and we denote by D
1,p the closure of S with respect to this seminorm. More

generally, for any integer k ≥ 1, we denote by Dk the kth derivative operator, and
D

k,p the closure of S with respect to the seminorm

‖F‖k,p =



E(|F |p) +
k
∑

j=1

E(‖DjF‖pH⊗j)





1
p

.

The divergence operator δ is introduced as the adjoint of the derivative operator.
More precisely, an element u ∈ L2(Ω;H) belongs to the domain of δ if there exists
a constant cu depending on u such that

|E(〈u,DF 〉H)| ≤ cu ‖F‖2 ,
for any smooth random variable F ∈ S. For any u ∈ Domδ, δ(u) ∈ L2(Ω) is then
defined by the duality relationship E(Fδ(u)) = E(〈u,DF 〉H), for any F ∈ D

1,2

and in the above inequality we can take cu = ‖δ(u)‖2. The space D
1,2(H) is

included in the domain of the divergence.
If the processX is a Brownian motion, then H is L2([0, T ]) and δ is an extension

of the Itô stochastic integral. Motivated by this example, we would like to inter-
pret δ(u) as a stochastic integral for u in the domain of the divergence operator.
However, it may happen that the processX itself does not belong to L2(Ω;H). For
example, this is true if X is a fractional Brownian motion with Hurst parameter
H ≤ 1

4 (see [5]). For this reason, we need to introduce an extended domain of the
divergence operator.

Definition 3.1. We say that a stochastic process u ∈ L1(Ω;Lβ([0, T ])) belongs

to the extended domain of the divergence DomEδ if

|E(〈u,DF 〉H)| ≤ cu ‖F‖2 ,
for any smooth random variable F ∈ S, where cu is some constant depending on
u. In this case, δ(u) ∈ L2(Ω) is defined by the duality relationship

E(Fδ(u)) = E(〈u,DF 〉H),

for any F ∈ S.
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Note that the pairing 〈u,DF 〉H is well defined because of Definition 2.1.

In general, the domains Domδ and DomEδ are not comparable because u ∈
Domδ takes values in the abstract Hilbert space H and u ∈ DomEδ takes values
in Lβ([0, T ]). In the particular case of the fractional Brownian motion with Hurst
parameter H < 1

2 we have (see [7])

H = I
1
2
−H

T− (L2) ⊂ L
1
H ([0, T ]),

and assumption (H1) holds for any α < 1
2H−1 . As a consequence, if β is the

conjugate of α, then β > 1
2H , so H ⊂ Lβ([0, T ]) and Domδ ⊂ DomEδ.

If u belongs to DomEδ, we will make use of the notation

δ(u) =

∫ T

0

usδXs,

and we will write
∫ t

0
usδXs for δ(u1[0,t]), provided u1[0,t] ∈ DomEδ.

We are going to prove a change-of-variable formula for F (t,Xt) involving the
extended divergence operator. Let F (t, x) be a function in C1,2([0, T ]×R) (the par-

tial derivatives ∂F
∂x ,

∂2F
∂x2 and ∂F

∂t exist and are continuous). Consider the following
growth condition.

(H2) There exist positive constants c and λ < 1
4 (sup0≤t≤T R(t, t))

−1 such that

sup
0≤t≤T

(

|F (t, x)|+ |∂F
∂x

(t, x)|+ |∂
2F

∂x2
(t, x)| + |∂F

∂t
(t, x)|

)

≤ c exp(λ|x|2). (3.2)

Using the integrability properties of the supremum of a Gaussian process, con-
dition (3.2) implies

E

(

sup
0≤t≤T

|F (t,Xt)|2
)

≤ c2E exp(2λ sup
0≤t≤T

|Xt|2) <∞,

and the same property holds for the partial derivatives ∂F
∂x ,

∂2F
∂x2 and ∂F

∂t . We need
the following additional condition on the covariance function.

(H3) The function Rt := R(t, t) has bounded variation on [0, T ].

Theorem 3.2. Let F be a function in C1,2([0, T ]×R) satisfying (H2). Suppose that
X = {Xt, t ∈ [0, T ]} is a zero mean continuous Gaussian process with covariance
function R(t, s), such that X(0) = 0, satisfying (H1) and (H3). Then for each
t ∈ [0, T ] the process {∂F

∂x (s,Xs)1[0,t](s), 0 ≤ t ≤ T } belongs to extended domain

of the divergence DomEδ and the following holds

F (t,Xt) = F (0, 0) +

∫ t

0

∂F

∂s
(s,Xs)ds+

∫ t

0

∂F

∂x
(s,Xs)δXs

+
1

2

∫ t

0

∂2F

∂x2
(s,Xs)dRs. (3.3)

Proof. Suppose that G is a random variable of the form G = In(h
⊗n), where In

denotes the multiple stochastic integral of order n with respect to X and h is a
step function in [0, T ]. The set of all these random variables form a total subset
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of L2(Ω). Taking into account Definition 3.1 of the extended divergence operator,
it is enough to show that for any such G,

E(GF (t,Xt))− E(GF (0, 0))−
∫ t

0

E(G
∂F

∂s
(s,Xs)ds−

1

2

∫ t

0

E(G
∂2F

∂x2
(s,Xs))dRs

= E(〈DG,1[0,t](·)
∂F

∂x
(·, X·)〉H). (3.4)

First we reduce the problem to the case where the function F is smooth in x. For
this purpose we replace F by

Fk(t, x) = k

∫ 1

−1

F (t, x− y)ε(ky)dy,

where ε is a nonnegative smooth function supported by [−1, 1] such that
∫ 1

−1
ε(y)dy = 1. The functions Fk are infinitely differentiable in x and their deriva-

tives satisfy the growth condition (3.2) with some constants ck and λk.
Suppose first that G is a constant, that is, n = 0. The right-hand side of

Equality (3.4) vanishes. On the other hand, we can write

E(GFk(t,Xt)) = G

∫

R

Fk(t, x)p(Rt, x)dx,

where p(σ, y) = (2πσ)−1/2 exp(−x2/2σ). We know that ∂p
∂σ = 1

2
∂2p
∂x2 . As a conse-

quence, integrating by parts, we obtain

E(GFk(t,Xt))−GF (0, 0)−G

∫ t

0

∫

R

∂Fk

∂s
(s, x)p(Rs, x)dxds

=
1

2
G

∫ t

0

(∫

R

Fk(s, x)
∂2p

∂x2
(Rs, x)dx

)

dRs

=
1

2
G

∫ t

0

(∫

R

∂2Fk

∂x2
(s, x)p(Rs, x)dx

)

dRs

=
1

2
G

∫ t

0

E

(

∂2Fk

∂x2
(s,Xs)

)

dRs,

which completes the proof of (3.4), when G is constant.
Suppose now that n ≥ 1. In this case E(G) = 0. On the other hand, using the

fact that the multiple stochastic integral In is the adjoint of the iterated derivative
operator Dn we obtain

E(GFk(t,Xt)) = E(In(h
⊗n)Fk(t,Xt)) = E

(

〈h⊗n,
∂nFk

∂xn
(t,Xt)1

⊗n
[0,t]〉H⊗n

)

= E

(

∂nFk

∂xn
(t,Xt)

)

〈h,1[0,t]〉nH. (3.5)
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Note that E(GFk(t,Xt)) is the product of two factors. Therefore, its differential
will be expressed as the sum of two terms

d (E(GFk(t,Xt))) = 〈h,1[0,t]〉nHd
(

E(
∂nFk

∂xn
(t,Xt))

)

+ E(
∂nFk

∂xn
(t,Xt))d

(

〈h,1[0,t]〉nH
)

. (3.6)

Using again the integration by parts formula and the fact that the Gaussian density
satisfies the heat equation we obtain

d

(

E(
∂nFk

∂xn
(t,Xt))

)

= d

(∫

R

∂nFk

∂xn
(t, x)p(Rt, x)dx

)

=

(∫

R

∂n+1Fk

∂t∂xn
(t, x)p(Rt, x)dx

)

dt+
1

2

(∫

R

∂nFk

∂xn
(t, x)

∂2p

∂x2
(Rt, x)dx

)

dRt

=

(∫

R

∂n+1Fk

∂t∂xn
(t, x)p(Rt, x)dx

)

dt+
1

2

(∫

R

∂n+2Fk

∂xn+2
(t, x)p(Rt, x)dx

)

dRt

= E(
∂n+1Fk

∂t∂xn
(t,Xt))dt+

1

2
E(
∂n+2Fk

∂xn+2
(t,Xt))dRt. (3.7)

Equation (3.5) applied to ∂2Fk

∂x2 and to ∂Fk

∂t yields

E(G
∂2Fk

∂x2
(t,Xt)) = E(

∂n+2Fk

∂xn+2
(t,Xt))〈h,1[0,t]〉nH, (3.8)

and

E(G
∂Fk

∂t
(t,Xt)) = E(

∂n+1Fk

∂t∂xn
(t,Xt))〈h,1[0,t]〉nH, (3.9)

respectively. Then, substituting (3.8), (3.9) and (3.7) into the first summand in
the right-hand side of (3.6) we obtain

d(E(GFk(t,Xt))) = E(G
∂Fk

∂t
(t,Xt))dt+

1

2
E(G

∂2Fk

∂x2
(t,Xt))dRt

+ E(
∂nFk

∂xn
(t,Xt)))d

(

〈h,1[0,t]〉nH
)

. (3.10)

Therefore, to show (3.4), it only remains to check that

E(〈DG,1[0,t](·)
∂Fk

∂x
(·, X·)〉H) = n

∫ t

0

E(
∂nFk

∂xn
(s,Xs))〈h,1[0,s]〉n−1

H d
(

〈h,1[0,s]〉H
)

.

Using the fact that DG = nIn−1(h
⊗(n−1))h, we get

E(〈DG,1[0,t](·)
∂Fk

∂x
(·, X·)〉H) = n〈h,1[0,t](·)E(In−1(h

⊗(n−1))
∂Fk

∂x
(·, X·))〉H.

Then, taking into account (2.2), we can write

d(E(〈DG,1[0,t](·)
∂Fk

∂x
(·, X·)〉H)) = nE(In−1(h

⊗(n−1))
∂Fk

∂x
(t,Xt))d

(

〈h,1[0,t]〉H
)

.

Finally, using again that In−1 is the adjoint of the derivative operator yields

E(In−1(h
⊗(n−1))

∂Fk

∂x
(t,Xt)) = E(

∂nFk

∂xn
(t,Xt))〈h,1[0,t]〉n−1

H ,
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which allows us to complete the proof for the function Fk. Finally, it suffices to
let k tend to infinity. �

4. Local Time

In this section, we will apply the Itô formula obtained in Section 3 to derive a
version of Tanaka’s formula involving the local time of the process X . In order to
do this we first discuss the existence of the local time for a continuous Gaussian
stochastic processX = {Xt, t ∈ [0, T ]} with mean zero defined on a complete prob-
ability space (Ω,F , P ), with covariance function R(s, t). We impose the following
additional condition which is stronger than (H3):

(H3a) The function Rt = R(t, t) is increasing on [0, T ], and Rt > 0 for any t > 0.

The local time Lt(x) of the process X (with respect to the measure induced
by the variance function) is defined, if it exists, as the density of the occupation
measure

mt(B) =

∫ t

0

1B(Xs)dRs, B ∈ B(R)

with respect to the Lebesgue measure. That is, for any bounded and measurable
function g we have the occupation formula

∫

R

g(x)Lt(x)dx =

∫ t

0

g(Xs)dRs.

Following the computations in [6] based on Wiener chaos expansions we can get
sufficient conditions for the local time Lt(x) to exists and to belong to L2(Ω) for
any fixed t ∈ [0, T ] and x ∈ R. We denote by Hn the nth Hermite polynomial
defined for n ≥ 1 by

Hn(x) =
(−1)n

n!
e−

x2

2
dn

dxn
(e−

x2

2 ),

and H0 = 1. For s, t 6= 0 set ρ(s, t) = R(s,t)√
RsRt

. For all n ≥ 1 and t ∈ [0, T ] we define

αn(t) =

∫ t

0

∫ u

0

|ρ(u, v)|n√
n

dRvdRu√
RuRv

,

and we introduce the following condition on the covariance function R(s, t):

(H4)

∞
∑

n=1

αn(T ) <∞.

The following proposition is an extension of the result on the existence and
Wiener chaos expansion of the local time for the fractional Brownian motion proved
by Coutin, Nualart and Tudor in [6]. Recall that for all ε > 0 and x ∈ R,
p(ε, x) = (2πε)−1/2 exp(−x2/2ε).
Proposition 4.1. Suppose that X = {Xt, t ∈ [0, T ]} is a zero mean continuous
Gaussian process with covariance function R(t, s), satisfying conditions (H3a) and
(H4) and with X(0) = 0. Then, for each a ∈ R, and t ∈ [0, T ], the random
variables

∫ t

0

p(ε,Xs − a)dRs
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converge in L2(Ω) to the local time Lt(a), as ε tends to zero. Furthermore the
local time Lt(a) has the following Wiener chaos expansion

Lt(a) =

∞
∑

n=0

∫ t

0

R
−n

2
s p(Rs, a)Hn(

a√
Rs

)In(1
⊗n
[0,s])dRs. (4.1)

Proof. Applying Stroock’s formula we can compute the Wiener chaos expansion
of the random variable p(ε,Xs − a) for any s > 0 as it has been done in [6], and
we obtain

p(ε,Xs − a) =

∞
∑

n=0

βn,ε(s)In(1
⊗n
[0,s]), (4.2)

where

βn,ε(s) = (Rs + ε)−
n
2 p(Rs + ε, a)Hn(

a√
Rs + ε

). (4.3)

From (4.2), integrating with respect to the measure dRs, we deduce the Wiener
chaos expansion

∫ t

0

p(ε,Xs − a)dRs =

∞
∑

n=0

∫ t

0

βn,ε(s)In(1
⊗n
[0,s](·))dRs. (4.4)

We need to show this expression converges in L2(Ω) to the right-hand side of
Equation (4.1), denoted by Λt(a), as ε tends to zero. For every n and s we have
limε→0 βn,ε(s) = βn(s), where

βn(s) = R
−n

2
s p(Rs, a)Hn(

a√
Rs

).

We claim that

|βn,ε(s)| ≤ c
2n/2

n!
Γ

(

n+ 1

2

)

R
−n+1

2
s . (4.5)

In fact, from the properties of Hermite polynomials it follows that

Hn(y)e
−y2/2 = (−1)[

n
2
]2n/2

2

n!
√
π

∫ ∞

0

sne−s2g(ys
√
2)ds,

where g(r) = cos r for n even, and g(r) = sin r for n odd. Thus, |g| is dominated
by 1, and this implies

|Hn(y)e
−y2/2| ≤ c

2n/2

n!
Γ

(

n+ 1

2

)

.

Substituting this estimate into (4.3) yields (4.5). The estimate (4.5) implies that,

for any n ≥ 1, the integral
∫ t

0 βn(s)In(1
⊗n
[0,s])dRs is well defined as a random

variable in L2(Ω), and it is the limit in L2(Ω) of
∫ t

0 βn,ε(s)In(1
⊗n
[0,s])dRs as ε tends
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to zero. In fact, (4.5) implies that
∥

∥

∥

∥

∫ t

0

βn(s)In(1
⊗n
[0,s])dRs

∥

∥

∥

∥

2

≤
∫ t

0

|βn(s)|
∥

∥

∥In(1
⊗n
[0,s])

∥

∥

∥

2
dRs

≤ c
√
n!2n/2Γ

(

n+ 1

2

)∫ t

0

R
−n+1

2
s R

n
2
s dRs

≤= c
√
n!2n/2Γ

(

n+ 1

2

)

√

Rt.

For n = 0, βn,ε(s) = p(Rs + ε, a), and clearly
∫ t

0 p(Rs + ε, a)dRs converges to
∫ t

0 p(Rs, a)dRs as ε tends to zero. In the same way, using dominated convergence,
we can prove that

lim
ε→0

∥

∥

∥

∥

∫ t

0

(βn,ε(s)− βn(s)) In(1
⊗n
[0,s])dRs

∥

∥

∥

∥

2

= 0.

Set

αn,ε = E

(∫ t

0

βn,ε(s)In(1
⊗n
[0,s])dRs

)2

.

To show the convergence in L2(Ω) of the series (4.4) to the right-hand side of (4.1)
it suffices to prove that supε

∑∞
n=1 αn,ε <∞. Using (4.5) and Stirling formula we

have

αn,ε =

∫ t

0

∫ t

0

E(In(1
⊗n
[0,u])In(1

⊗n
[0,v]))βn,ε(u)βn,ε(v)dRvdRu

= 2n!

∫ t

0

∫ u

0

R(u, v)nβn,ε(u)βn,ε(v)dRvdRu

≤ c
2n

n!
Γ

(

n+ 1

2

)2 ∫ t

0

∫ u

0

|R(u, v)|n(RuRv)
−n+1

2 dRvdRu

≤ c

∫ t

0

∫ u

0

|ρ(u, v)|n√
n

dRvdRu√
RvRu

= αn(t).

Therefore, taking into account hypothesis (H4), we conclude that

sup
ε

∞
∑

n=1

αn,ε <

∞
∑

n=1

αn(T ) <∞,

and this proves the convergence in L2(Ω) of the series (4.4) to a limit denoted by
Λt(a).

Finally, we have to show that Λt(a) is the local time Lt(a). The above esti-
mates are uniform in a ∈ R. Therefore, we can deduce that the convergence of
∫ t

0 p(ε,Xs − a)dRs to Λt(a) holds in L2(Ω × R, P × µ), for any finite meausre µ.
As a consequence, for any continuous function g with compact support we have
that

∫

R

(∫ t

0

p(ε,Xs − a)dRs

)

g(a)da
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converges in L2(Ω), as ε tends to zero, to
∫

R
Λt(a)g(a)da. Clearly, this sequence

also converges to
∫ t

0
g(Xs)dRs. Hence,

∫

R

Λt(a)g(a)da =

∫ t

0

g(Xs)dRs,

which imples that Λt(a) is a version of the local time Lt(a) �

Corollary 4.2. Condition (H4) holds if
∫ T

0

∫ T

0

1− ln(1− |ρ(u, v)|)√
RvRu ·

√

1− |ρ(u, v)|
dRvdRu <∞. (4.6)

Proof. We can write

∞
∑

n=1

αn(T ) =
1

2

∫ T

0

∫ T

0

ϕ(|ρ(u, v)|)dRvdRu√
RvRu

,

where ϕ(x) =
∑∞

n=1
xn
√
n
. If we define g(x) = ϕ(x)

√
1− x for every x ∈ [0, 1), then

g(x) =

∞
∑

n=1

xn√
n

√
1− x =

∑

n(1−x)<1

xn√
n

√
1− x+

∑

n(1−x)≥1

xn√
n

√
1− x

≤
∑

n(1−x)<1

xn

n
+

∞
∑

n=0

xn(1− x) ≤ 1− ln(1− x),

and the result follows. �

Notice that the Wiener chaos expansion (4.1) can also we written as

Lt(a) =

∞
∑

n=0

In

(∫ t

s1∨···∨sn

R
−n

2
s p(Rs, a)Hn(

a√
Rs

)dRs

)

.

In the particular case a = 0, the Wiener chaos expansion of Lt(0) can be written
as

Lt(0) =

∞
∑

k=0

∫ t

0

R
−k− 1

2
s

(−1)k√
2π2kk!

I2k(1
⊗2k
[0,s])dRs.

Using arguments of Fourier analysis, in [3] it is proved that if the covariance
function R(s, t) satisfies

∫ T

0

∫ T

0

(Ru +Rv − 2R(u, v))
− 1

2 dRudRv <∞, (4.7)

then for any t ∈ [0, T ] the local time Lt of X exists and is square integrable, i.e.
E
(∫

R
L2
t (x)dx

)

<∞. We can write

Ru +Rv − 2R(u, v) = Ru +Rv − 2ρ(u, v)
√

RuRv

= (
√

Ru −
√

Rv)
2 + 2

√

RuRv(1− ρ(u, v))

≥ 2
√

RuRv(1 − ρ(u, v)).
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Therefore, condition (4.7) is implied by
∫ T

0

∫ T

0

1
4
√
RuRv ·

√

1− ρ(u, v)
dRudRv <∞, (4.8)

which can be compared with the above assumption (4.6). Notice that both con-
ditions have different consequences. In fact, (4.8) implies E

(∫

R
L2
t (x)dx

)

< ∞;

whereas (4.6) implies only that for each x, E(L2
t (x)) <∞.

We can now establish the following version of Tanaka formula.

Theorem 4.3. Suppose that X = {Xt, 0 ≤ t ≤ T } is a zero-mean continuous
Gaussian process,with X0 = 0, and such that the covariance function R(s, t) sat-
isfies conditions (H1), (H3a) and (H4). Let y ∈ R. Then, for any 0 < t ≤ T ,

the process {1(y,∞)(Xs)1[0,t](s), 0 ≤ s ≤ T } belongs to DomEδ and the following
holds

δ
[

1(y,∞)(X·)1[0,t](·)
]

= (Xt − y)+ − (−y)+ − 1

2
Lt(y).

Proof. Let ε > 0 and for all x ∈ R set

fε(x) =

∫ x

−∞

∫ v

−∞
p(ε, z − y)dzdv.

Theorem 3.2 implies that

fε(Xt) = fε(0) +

∫ t

0

f ′
ε(Xs)δXs +

1

2

∫ t

0

f ′′
ε (Xs)dRs.

Then we have that f ′
ε(Xs)1[0,t](s) converges to 1(y,∞)(Xs)1[0,t](s) in L

2(Ω×R) and

fε(Xt) converges to (Xt−y)+ in L2(Ω). Finally, by Proposition 4.1,
∫ t

0
f ′′
ε (Xs)dRs

converges to Lt(y) in L
2(Ω). This completes the proof. �

5. Example: Self-Similar Processes

In this section, we are going to apply the results of the previous sections to the
case of a self-similar centered Gaussian process X . Suppose that X = {Xt, t ≥ 0}
is a stochastic process defined on a complete probability space (Ω,F , P ). We say
that X is self-similar with exponent H ∈ (0, 1) if for any a > 0, the processes
{X(at), t ≥ 0} and {aHX(t), t ≥ 0} have the same distribution. It is well-known
that fractional Brownian motion is the only H-self-similar centered Gaussian pro-
cess with stationary increments. Suppose that X = {Xt, t ≥ 0} is a continuous
Gaussian centered self-similar process with exponent H . Let R(s, t) be the co-
variance function of X . To simplify the presentation we assume E(X2

1 ) = 1. The
process X satisfies the condition (H3a) because

Rt = R(t, t) = t2HR(1, 1) = t2H .

The function R is homogeneous of order 2H , that is, for a > 0 and s, t ≥ 0, we
have

R(as, at) = E(XasXat) = E(aHXsa
HXt) = a2HR(s, t).

For any x ≥ 0, we define

ϕ (x) = R(1, x).
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Notice that for any x > 0,

ϕ(x) = R(1, x) = x2HR(
1

x
, 1) = x2Hϕ

(

1

x

)

.

On the other hand, applying Cauchy-Schwarz inequality we get that function ϕ
satisfies |ϕ(x)| ≤ xH for all x ∈ [0, 1]. The next proposition provides simple
sufficient conditions on the function ϕ for the process X to satisfy the assumptions
(H1) and (H4).

Proposition 5.1. Suppose that X = {Xt, t ≥ 0} is a zero mean continuous
self-similar Gaussian process with exponent of self-similarity H and covariance
function R(s, t). Let ϕ(x) = R(1, x). Then

(i) (H1) holds on any interval [0, T ] for α > 1 if α(2H − 1) + 1 > 0 and ϕ is
absolutely continuous and satisfies

∫ 1

0

|ϕ′(x)|αdx <∞. (5.1)

(ii) (H4) holds on any interval [0, T ] if for some ε > 0 and for all x ∈ [0, 1]

|ϕ(x)| ≤ xH+ε. (5.2)

Proof. We first prove (i). We write
∫ T

0

|∂R
∂s

(s, t)|αds =
∫ t

0

|∂R
∂s

(s, t)|αds+
∫ T

t

|∂R
∂s

(s, t)|αds.

For s ≤ t, R(s, t) = t2Hϕ( st ) and ∂R
∂s (s, t) = t2H−1ϕ′( st ). Applying (5.1) and the

change of variables by x = s
t , we have

∫ t

0

|∂R
∂s

(s, t)|αds =
∫ t

0

tα(2H−1)|ϕ′
(s

t

)

|αds

= tα(2H−1)+1

∫ 1

0

|ϕ′(x)|αdx. (5.3)

For s > t, R(s, t) = s2Hϕ( ts ) and

∂R

∂s
(s, t) = 2Hs2H−1ϕ(

t

s
)− s2H−2tϕ′(

t

s
).

Then,

∫ T

t

|∂R
∂s

(s, t)|αds ≤ C

(

∫ T

t

s2H−1|ϕ
(

t

s

)

|αds+
∫ T

t

s2H−2t|ϕ′
(

t

s

)

|αds
)

.

With the change of variables x = t
s we can write

∫ T

t

s2H−1|ϕ
(

t

s

)

|αds ≤ ‖ϕ‖α∞t(2H−1)α+1

∫ 1

t
T

xα(1−2H)−2dx,

=
‖ϕ‖α∞

α(1 − 2H)− 1
[t(2H−1)α+1 − T (2H−1)α+1] (5.4)
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and
∫ T

t

s2H−2t|ϕ′
(

t

s

)

|αds ≤ t(2H−1)α+1

∫ 1

t
T

|ϕ′ (x) |αx(2−2H)α−2dx

≤ t(2H−1)α+1

(

t

T

)(2−2H)α−2 ∫ 1

t
T

|ϕ′ (x) |αdx

≤ tα−1

T (2−2H)α−2

∫ 1

t
T

|ϕ′ (x) |αdx. (5.5)

Now, (H1) follows from (5.3), (5.4) and (5.5).
In order to show (ii) we need to show that

∞
∑

n=1

αn(T ) =

∞
∑

n=1

∫ T

0

∫ u

0

1√
n

|R(u, v)|n

(RuRv)
n+1

2

dRvdRu <∞.

For any 0 < v < u, we have R(u, v) = u2Hϕ( vu ), and the change of variable x = v
u

yields

αn(T ) =
(2H)2√

n

∫ T

0

∫ u

0

|R(u, v)|n(uv)H(1−n)−1dvdu

=
(2H)2√

n

∫ T

0

∫ 1

0

|R(1, x)|nu2H−1xH(1−n)−1dvdu

=
2HT 2H

√
n

∫ 1

0

|ϕ(x)|nxH(1−n)−1dx

≤ 2HT 2H

√
n

∫ 1

0

xnε+H−1dx

=
2HT 2H

√
n

1

nε+H
.

Therefore, we have
∞
∑

n=1

αn(T ) ≤
2HT 2H

ε

∞
∑

n=1

n− 3
2 <∞. (5.6)

This completes the proof of (ii). �

Example 5.2. The bifractional Brownian motion is a centered Gaussian process

X = {BH,K
t , t ≥ 0}, with covariance

R(t, s) = RH,K(t, s) = 2−K((t2H + s2H)K − |t− s|2HK), (5.7)

whereH ∈ (0, 1) andK ∈ (0, 1]. We refer to Houdré and Villa [10] for the definition
and basic properties of this process. Russo and Tudor [20] have studied several
properties of the bifractional Brownian motion and analyzed the case HK = 1

2 .
Tudor and Xiao [21] have derived small ball estimates and have proved a version
of the Chung’s law of the iterated logarithm for the bifractional Brownian motion.
In [14], the authors have shown a decomposition of the bifractional Brownian
motion with parameters H and K into the sum of a fractional Brownian motion
with Hurst parameter HK plus a stochastic process with absolutely continuous
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trajectories. The stochastic calculus with respect to the bifractional Brownian
motion has been recently developed in the references [13] and [12]. A Tanaka
formula for the bifractional Brownian motion in the case HK ≤ 1

2 by Es-Sebaiy
and Tudor in [9]. A multidimensional Itô’s formula for the bifractional Brownian
motion has been established in [2].

Note that, if K = 1 then BH,1 is a fractional Brownian motion with Hurst
parameter H ∈ (0, 1), and we denote this process by BH . Bifractional Brownian
motion is a self-similar Gaussian process with non-stationary increment if K is not
equal to 1.

Set

ϕ(x) = 2−K((1 + x2H)K − (1 − x)2HK).

Then

ϕ′(x) = 21−KHK[x2HK−1(1 + x2H)K + (1 − x)2HK−1],

which implies that (i) in Proposition 5.1 holds α such that α(2HK − 1) > −1.
Notice that

ϕ(x) ≤ 1

2K
[1 + x2H − (1− x)2H ]K . (5.8)

Then, if 2H ≤ 1

1 + x2H − (1− x)2H ≤ 2x2H , (5.9)

and when 2H > 1,

1 + x2H − (1− x)2H ≤ x+ x2H ≤ 2x. (5.10)

From the inequalities (5.8), (5.9) and (5.10) we obtain

ϕ(x)

xHK
=

(1 + x2H)K − (1 − x)2HK

2KxHK
≤ xmin(H,1−H)K . (5.11)

Then condition (ii) in Proposition 5.1 holds with ε = min(H, 1 − H)K. As a
consequence, the results in Sections 3, 4 and 5 hold for the bifractional Brownian
motion.

Bardina and Es-Sebaiy considered in [2] an extension of bifractional Brownian
motion with parameters H ∈ (0, 1), K ∈ (1, 2) and HK ∈ (0, 1) with covariance
function (5.7). By the same arguments as above, Proposition 5.1 holds in this case
with ε = min(H, 1−H)K in condition (ii). Thus, the results in Sections 3, 4 and
5 hold for this extension of the bifractional Brownian motion.

6. Hitting Times

Suppose that X = {Xt, t ≥ 0} is a zero mean continuous Gaussian process with
covariance function R(t, s), satisfying (H1) and (H3) on any interval [0, T ]. We
also assume that X(0) = 0. Moreover, we assume the following conditions:

(H5) lim supt→∞Xt = +∞ almost surely.
(H6) For any 0 ≤ s < t, we have E(|Xt −Xs|2) > 0.
(H7) For any continuous function f ,

r 7→
∫ t

0

f(s)
∂R

∂s
(s, r)ds

is continuous on [0,∞).
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For any a > 0, we denote by τa the hitting time defined by

τa = inf{t ≥ 0, Xt = a} = inf{t ≥ 0, Xt ≥ a}. (6.1)

The map a 7→ τa is left continuous and increasing with right limits.
We are interested in the distribution of the random variable τa. The explicit

form of this distribution is known only in some special cases such as the standard
Brownian motion. In this case the Laplace transform of the hitting time τa is
given by

E(e−ατa) = e−a
√
2α,

for all α > 0. This can be proved, for instance, using the exponential martingale

Mt = eλXt− 1
2
λ2t,

and Doob’s optional stopping theorem. In the general case, the exponential process

Mt = exp(λXt −
1

2
λ2Rt). (6.2)

is no longer martingale. However, if we apply (3.2) for the divergence integral, we
have

Mt = 1 + λδ(M1[0,t]) = 1 + λδt(M). (6.3)

Substituting t by τa and taking the expectation in Equation (6.3), Decreusefond

and Nualart have established in [7] an inequality of the form E(e−αRτa ) ≤ e−a
√
2α,

assuming that the partial derivative of the covariance ∂R
∂s (t, s) is nonnegative and

continuous. This includes the case of the fractional Brownian motion with Hurst
parameter H > 1

2 . The purpose of this section is derive the converse inequality in
the singular case where the partial derivative of the covariance is not continuous,
assuming ∂R

∂s (t, s) ≤ 0 for s < t (which includes the case of the fractional Brownian

motion with Hurst parameter H < 1
2 ), completing the analysis initiated in [7].

As in the case of the Brownian motion we would like to substitute t by τa in both
sides of Equation (6.3) and then take the mathematical expectation in both sides
of the equality. It is convenient to introduce also an integral in a, and, following
the approach developed in [7], we claim that the following result holds.

Proposition 6.1. Suppose X satisfies (H1), (H3), (H5), (H6) and (H7), then
∫ ∞

0

E(Mτa)ψ(a)da = c−

lim
δ→0

λE

∫ ST

0

dτy

∫ 1

0

ψ(y)dη

∫ ∞

0

pδ((τy+ ∧ T )η + τy(1− η)− s)Ms
∂R

∂s
(τy, s)ds,

(6.4)

where p is an infinitely differentiable function with support on [−1, 1] such that
∫ 1

−1
p(x)dx = 1, ψ(x) be a nonnegative smooth function with compact support

contained in (0,∞) such that
∫∞
0
ψ(a)da = c and we use the notation pε(x) =

1
εp(

x
ε ).

Before proving this proposition we need several technical lemmas. The first
lemma is an integration by parts formula, and it is a consequence of the definition
of the extended divergence operator given in Definition 2.1.
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Lemma 6.2. For any t > 0 and any random variable of the form
F = f(Xt1 , . . . , Xtn), where f is an inifinitely differentiable function which is
bounded together with all its partial derivatives, we have

E(Fδt(M)) = E

(

n
∑

i=1

∂f

∂xi
(Xt1 , . . . , Xtn)

∫ t

0

Ms
∂R

∂s
(ti, s)ds

)

, (6.5)

where δt(M) is given in Equation (6.3).

Proof. Using the Definition 2.1 of the extended divergence operator and Equation
(2.1) we can write

E(Fδt(M)) = E(〈DF,M1[0,t]〉H)

= E

(

n
∑

i=1

∂f

∂xi
(Xt1 , . . . , Xtn)〈1[0,ti],M1[0,t]〉H

)

= E

(

n
∑

i=1

∂f

∂xi
(Xt1 , . . . , Xtn)

∫ t

0

Ms
∂R

∂s
(ti, s)ds

)

,

which completes the proof of the lemma. �

For any a > 0, we know that P (τa <∞) = 1 by condition (H5). Set

St = sup
s∈[0,t]

Xs.

We know that for all t > 0, St belongs to D
1,2 and DSt = 1[0,τSt

] (see [7] and

[11]). Following the approach developed in [7], we introduce a regularization of
the hitting time τa, and we establish its differentiability in the sense of Malliavin
calculus.

Lemma 6.3. Suppose that ϕ is a nonnegative smooth function with compact sup-
port in (0,∞) and define for any T > 0,

Y =

∫ ∞

0

ϕ(a)(τa ∧ T )da.

The random variable Y belongs to the space D
1,2, and

DrY = −
∫ ST

0

ϕ(y)1[0,τy ](r)dτy .

Proof. First, it is clear that Y is bounded because ϕ has compact support. On
the other hand, for any r > 0, we can write

{τa > r} = {Sr < a}.
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Apply Fubini’s theorem, we have

Y =

∫ ∞

0

ϕ(a)

(

∫ τa∧T

0

dθ

)

da =

∫ ∞

0

∫ ∞

0

ϕ(a)1{θ<τa∧T}dθda

=

∫ ∞

0

∫ ∞

0

ϕ(a)1{θ<τa}1{θ<T}dadθ =

∫ T

0

∫ ∞

0

ϕ(a)1{Sθ<a}dadθ

=

∫ T

0

∫ ∞

Sθ

ϕ(a)dadθ.

The function ψ(x) =
∫∞
x ϕ(a)da is continuously differentiable with a bounded

derivative, so ψ(Sθ) ∈ D
1,2 for any θ ∈ [0, T ] because Sθ ∈ D

1,2 (see, for instance,

[17]). Finally, we can show that Y =
∫ T

0
ψ(Sθ)dθ belongs to D

1,2 approximatig
the integral by Riemann sums. Hence, taking the Malliavin derivative of Y , we
obtain

DrY = −
∫ T

0

ϕ(Sθ)DrSθdθ

= −
∫ T

0

ϕ(Sθ)1[0,τSθ
](r)dθ = −

∫ ST

0

ϕ(y)1[0,τy](r)dτy ,

where the last equality holds by changing variable Sθ = y, which is equivalent to
θ = τy. �

The following lemma provides an explicit formula for the expectation
E(p(Y )δt(M)), where p is a smooth function with compact support.

Lemma 6.4. Suppose X satisfies (H1), (H3), (H5), (H6) and (H7). Then, for
any infinitely differentiable function p with compact support,

E(p(Y )δt(M)) = −E
(

∫ t

0

Msp
′(Y )

∫ ST

0

ϕ(y)
∂R

∂s
(τy , s)dτyds

)

, (6.6)

Proof. Consider the random variable

Y =

∫ ∞

0

ϕ(a)(τa ∧ T )da =

∫ T

0

∫ ∞

Sθ

ϕ(a)dadθ

=

∫ T

0

ξ(Sθ)dθ,

where ξ(x) =
∫∞
x
ϕ(a)da. Let {DN , N ≥ 1} be an increasing sequence of finite

subsets of [0, T ] such ∪∞
N=1DN is dense in [0, T ]. Set DN = {σi, 0 = σ0 < σ1 <

· · · < σN = T } and Dθ
N = DN ∩ [0, θ], and

SN
θ = max{Xt, t ∈ Dθ

N} = max{Xσ0
, . . . , Xσ(θ)},
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where σ(θ) = supDθ
N . We also write SN

k = SN
σk
. Define

YN =

∫ T

0

ξ(SN
θ )dθ =

N
∑

k=1

(σk − σk−1)ξ(max{Xσ0
, . . . , Xσk−1

})

=

N
∑

k=1

(σk − σk−1)ξ(S
N
k−1).

Then, taking into account that Xσ0
= X0 = 0, p(YN ) is a Lipschitz function F of

the N − 1 variables {Xσ1
, . . . , XσN−1

}, namely,

p(YN ) = F (Xσ1
, . . . , XσN−1

) = p

(

N
∑

k=2

(σk − σk−1)ξ(S
N
k−1)

)

,

and, for all 1 ≤ i ≤ N − 1 the derivative of F respect to xi is

∂F

∂xi
= −p′(YN )

N
∑

k=i+1

(σk − σk−1)ϕ(S
N
k−1)1{SN

k−1
=Xσi

}.

By (6.5), we have

E(p(YN )δt(M))

= E

(

−p′(YN )
N−1
∑

i=1

N
∑

k=i+1

(σk − σk−1)ϕ(S
N
k−1)1{SN

k−1
=Xσi

}

∫ t

0

Ms
∂R

∂s
(σi, s)ds

)

= −E
(

p′(YN )

N
∑

k=2

(σk − σk−1)ϕ(S
N
k−1)

∫ t

0

Ms(

k−1
∑

i=1

∂R

∂s
(σi, s)1{SN

k−1
=Xσi

})ds

)

= −E
(

p′(YN )

∫ T

σ1

ϕ(SN
θ )

∫ t

0

Ms
∂R

∂s
(σθ,N , s)dsdθ

)

+RN ,

where

σθ,N =
N
∑

k=1

k−1
∑

i=0

σi1(σk−1,σk](θ)1{max(Xσ0
,...,Xσk−1

)=Xσi
},

and the reminder term RN is given by

RN = −ϕ(0)
N
∑

k=2

(σk − σk−1)E

(

p′(YN )1{max(Xσ0
,...,Xσk−1

=0}

∫ t

0

Ms
∂R

∂s
(0, s)ds

)

.

As N tends to infinity, RN converges to

−ϕ(0)
∫ T

0

E

(

p′(YN )1{Sθ=0}

∫ t

0

Ms
∂R

∂s
(0, s)ds

)

dθ = 0,

because Sθ has an absolutely continuous distribution for any θ > 0. On the other
hand, we claim that for all θ, σθ,N converges to τSθ

almost suterly as N goes to
infinite. This is a consequence of the fact that X is continuous and the maximum
is almost surely attained in a unique point by condition (H6). In addition, p′(YN )
converges to p′(Y ) and ϕ(SN

θ ) converges to ϕ(Sθ) almost surely. Therefore, by
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condition (H7),
∫ t

0
Ms

∂R
∂s (s, τSN

θ
)ds converges pointwise to

∫ t

0
Ms

∂R
∂s (s, τSθ

)ds. On

the other hand, by condition (H1),

∣

∣

∣

∣

∫ t

0

Ms
∂R

∂s
(τnSθ

, s)ds

∣

∣

∣

∣

≤
(

∫ T

0

Mβ
s ds

)
1
β

sup
0≤t≤T

(

∫ T

0

∣

∣

∣

∣

∂R

∂s
(s, t)

∣

∣

∣

∣

α

ds

)
1
α

,

so by the dominated convergence theorem, we obtain

E(p(Y )δt(M)) = −E
(

p′(Y )

∫ T

0

ϕ(Sθ)

∫ t

0

Ms
∂R

∂s
(τSθ

, s)dsdθ

)

.

Finally, the change of variable Sθ = y yields

E(p(Y )δt(M)) = −E
(

∫ t

0

Msp
′(Y )

∫ ST

0

ϕ(y)
∂R

∂s
(τy , s)dτyds

)

,

which completes the proof of the lemma. �

Proof of Proposition 6.1. Define

Yε,a =

∫ ∞

0

ϕε(x − a)(τx ∧ T )dx =
1

ε

∫ a

a−ε

(τx ∧ T )dx =

∫ 1

0

(τa−εξ ∧ T )dξ,

where ϕε(x) =
1
ε1[−1,0](

x
ε ), and by convention τx = 0 if x < 0. Lemma 6.4 can be

extended to the function x 7→ ϕε(x − a) and to the random variable Yε,a for any
fixed a. Therefore, from (6.3) and Lemma 6.4 we optain

∫ ∞

0

E(pδ(Yε,a − t)Mt)dt

= 1 + λ

∫ ∞

0

E(pδ(Yε,a − t)δ(M1[0,t]))dt

= 1− λ

∫ ∞

0

E

(

∫ t

0

Msp
′
δ(Yε,a − t)

∫ ST

0

ϕε(y − a)
∂R

∂s
(τy , s)dτyds

)

dt

= 1− λ

∫ ∞

0

E

(

pδ(Yε,a − s)Ms

∫ ST

0

ϕε(y − a)
∂R

∂s
(τy , s)dτy

)

ds, (6.7)

where the last inequality holds by integration by parts. Multiplying by ψ(a) and
integrating with respect to the variable a yields
∫

R

ψ(a)

∫ ∞

0

E(pδ(Yε,a − t)Mt)dtda

= c− λE

(

∫

R

∫ ST

0

dτy

(∫ ∞

0

pδ(Yε,a − s)Ms
∂R

∂s
(τy, s)ds

)

ϕε(y − a)ψ(a)da

)

= c− λE

(

∫ ST

0

dτy
1

ε

∫ y+ε

y

ψ(a)da

(∫ ∞

0

pδ(Yε,a − s)Ms
∂R

∂s
(τy, s)ds

)

)

= c− λE

(

∫ ST

0

dτy

(∫ ∞

0

(∫ 1

0

dηψ(y + εη)pδ(Yε,y−εη − s)

)

Ms
∂R

∂s
(τy , s)ds

)

)

,
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where the last equation holds by the change of variable a = y+ εη. Next, consider

Yε,y+εη =

∫ 1

0

(τy+εη−εξ ∧ T )dξ =
∫ η

0

(τy+εη−εξ ∧ T )dξ +
∫ 1

η

(τy+εη−εξ ∧ T )dξ.

Taking the limit as ε goes to zero, and using the fact that τ is left continuous and
with right limit, we obtain

lim
ε→0

∫ η

0

(τy+εη−εξ ∧ T )dξ =
∫ η

0

(τy+ ∧ T )dξ = (τy+ ∧ T )η,

lim
ε→0

∫ 1

η

(τy−εη+εξ ∧ T )dξ =
∫ 1

η

(τy ∧ T )dξ = τy(1− η).

This implies that

lim
ε→0

∫ 1

0

ψ(y + εη)pδ(Yε,y+εη − s)dη =

∫ 1

0

ψ(y)pδ((τy+ ∧ T )η + τy(1− η)− s)dη.

This allows us to compute the limit of the right-hand side of Equation (6.7) as ε
tends to zero, using the dominated convergence theorem. In fact,

∫ 1

0

ψ(y + εη)pδ(Yε,y+εη − s)dη ≤ K,

whereK is a constant, and assuming supp(pδ) ⊆ [0, T+δ], we have using condition
(H1),

E

(

∫ ST

0

dτy

∫ T+δ

0

∣

∣

∣

∣

Ms
∂R

∂s
(τy , s)

∣

∣

∣

∣

ds

)

≤ E





∫ ST

0

dτy

(

∫ T+δ

0

|Ms|βds
)

1
β
(

∫ T+δ

0

|∂R
∂s

(τy, s)|αds
)

1
α





≤ TE





(

∫ T+δ

0

|Ms|β
)

1
β

ds



 sup
z∈[0,T+δ]

(

∫ T+δ

0

|∂R
∂s

(z, s)|αds
)

1
α

<∞.

On the other hand, we know that limε→0 Yε,a = τa ∧ T = τa since τa ≤ T .
Therefore,
∫

R

ψ(a)

∫ ∞

0

E(pδ(τa − t)Mt)dtda

= c− λE

∫ ST

0

dτy

∫ 1

0

ψ(y)dη

∫ ∞

0

pδ((τy+ ∧ T )η + τy(1 − η)− s)Ms
∂R

∂s
(τy , s)ds.

(6.8)

Finally, for the left hand side of (6.8) we have

lim
δ→0

∫

R

ψ(a)

∫ ∞

0

E(pδ(τa − t)Mt)dtda =

∫ ∞

0

E(Mτa)ψ(a)da,

which implies the desired result. �

Proposition 6.1 implies the following inequalities which are the main result of
this section.
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Theorem 6.5. Assume that X satisfies (H1), (H3), (H5), (H6) and (H7).

(i) If ∂R
∂s (t, s) ≥ 0 for all s > t, then for all α, a > 0, we have

E(exp(−αRτa) ≤ e−a
√
2α. (6.9)

(ii) If ∂R
∂s (t, s) ≤ 0 for all s > t, then for all α, a > 0, we have

E(exp(−αRτa)) ≥ e−a
√
2α. (6.10)

Proof. If we assume ∂R
∂s (t, s) ≥ 0, Proposition 6.1 implies

∫ ∞

0

E(Mτa)ψ(a)da ≤ c.

Therefore, E(Mτa) ≤ 1, namely,

E(exp(λa− 1

2
λ2Rτa)) ≤ 1,

for any λ > 0, which implies (6.9).
To show (ii), we choose pδ such that pδ(x − y) = 0 if x > y. Then, in the

integral with respect to ds appearing in the right-hand side of (6.8) we can assume
that s > (τy+ ∧ T )η + τy(1− η) ≥ τy , which implies ∂R

∂s (τy, s) ≤ 0. Then,
∫ ∞

0

E(Mτa)ψ(a)da ≥ c,

which allows us to conclude the proof as in the case (i). �

Theorem 6.5 tells that the Laplace transform of the random variable Rτa can
be compared with the Laplace transform of the hitting time of the ordinary Brow-
nian motion at the level a, under some monotonicity conditions on the covariance
function. This implies some consequences on the moments of Rτa . In the case (i),
the inequality (6.9) implies for any r > 0,

E(R−r
τa ) =

1

Γ(r)

∫ ∞

0

E(e−αRτa )αr−1dα

≤ 1

Γ(r)

∫ ∞

0

e−a
√
2ααr−1dα =

2rΓ(r + 1
2 )√

π
a−2r. (6.11)

On the other hand, for 0 < r < 1,

E(Rr
τa) =

r

Γ(1− r)

∫ ∞

0

(1− E(e−αRτa ))α−r−1dα

≥ r

Γ(1− r)

∫ ∞

0

(1− e−a
√
2α)α−r−1dα. (6.12)

As a consequence, E(Rr
τa) = +∞ for r ∈ (12 , 1).

In the case (ii), the inequality (6.10) implies for any r > 0

E(R−r
τa ) =

1

Γ(r)

∫ ∞

0

E(e−αRτa )αr−1dα

≥ 1

Γ(r)

∫ ∞

0

e−a
√
2ααr−1dα =

2rΓ(r + 1
2 )√

π
a−2r. (6.13)
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On the other hand, for 0 < r < 1,

E(Rr
τa) =

r

Γ(1− r)

∫ ∞

0

(1− E(e−αRτa ))α−r−1dα

≤ r

Γ(1− r)

∫ ∞

0

(1− e−a
√
2α)α−r−1dα, (6.14)

and, hence, E(Rr
τa) <∞ for r ∈ (0, 12 ).

Example 6.6. Consider the case of a fractional Brownian motion Hurst parameter
H > 1

2 . Recall that

RH(t, s) =
1

2
(t2H + s2H − |t− s|2H).

Conditions (H5), (H6) and (H7) are satisfied. We can write

∂RH

∂s
(t, s) = H(s2H−1 + sign(t− s)|t− s|2H−1)

for all s, t ∈ [0, T ].

If H > 1
2 , then ∂RH

∂s (t, s) ≥ 0 for all s, t, and by (6.9) in Theorem 6.5,

E(exp(−ατ2Ha )) ≤ e−a
√
2α. This implies that E(τpa ) = +∞ for any H < p and τa

has finite negative moments of all order.
If H < 1

2 , then ∂RH

∂s (t, s) ≤ 0 for s > t, and by (6.10) in Theorem 6.5,

E(exp(−ατ2Ha )) ≥ e−a
√
2α. This implies that E(τpa ) < +∞ for any p < H .

In ([16]), Molchan proved that for the fractional Brownian motion with Hurst
parameter H ∈ (0, 1),

P (τa > t) = tH−1+o(1),

as t tends to infinity. As a consequence, E(τpa ) >∞ if p < 1−H and E(τpa ) = ∞
if p > 1−H , which is stronger than the integrability results mentioned above.

Acknowledgment. We would like to thank an anonymous referee for this helpful
comments.
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