2003

From lime kilns to art galleries: a historical anthropogeography of the Maine Coast City of Rockland

William Francis Fagan

Louisiana State University and Agricultural and Mechanical College, wfagan1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Social and Behavioral Sciences Commons

Recommended Citation

https://digitalcommons.lsu.edu/gradschool_dissertations/208

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
again, for Barbara…

ease the sheets and rest the men
ACKNOWLEDGEMENTS

Thank you to the Department of Geography and Anthropology and the Graduate School for financial and other less tangible, but equally important, support during my Masters program at LSU, as well as the Doctoral program for which I wrote this work.

David R. Hoch, of Rockland, Maine and many other people contributed greatly to this project in varied ways; I have mentioned some in the body of this dissertation and others are merely listed (and thus, inadequately acknowledged) in Appendix A. I wish to thank all of them, along with the greater Louisiana State University community for creating such a wonderful environment in which to work and live. GEAUX TIGERS

Thanks again, Dina, this time for being such a good friend to Susan.

The anthropology and geography graduate students at LSU are the best anywhere; this is a widely recognized fact. The collegial, supportive, and non-competitive atmosphere in our department is a rarity and my experience at LSU has been enriched through my association with a number of colleagues (you know who you are), so thank you all.

In particular, though, I want to thank Frances Heyward Currin, fellow anthropogeographer and woman of strong character who, with Dina, took care of my girls during a crisis while I was in the field. Her willing help allowed me to continue my work and finish my dissertation in a timely manner; Frances is a great friend to my family.

Thank you to my dissertation committee; I have been fortunate and honored to learn from and work with:

Dr. John Grimes
Dr. Andrew Curtis
Dr. Carville Earle
Dr. Miles Richardson, my mentor through two degrees.
Most of all, thank you Susan and Mackenzie for your patience and steadfast love.

Some of this has been tough, but together, the three of us have accomplished things we never even imagined.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES .. ix

ABSTRACT ... xv

CHAPTER 1. ROCKLAND, MAINE AND ITS HISTORICAL ANTHROPOGEOGRAPHY ... 1
 1.1 The Project .. 1
 1.2 Onward Anyway ... 9
 1.3 Population ... 11
 1.4 Rock Land ... 13
 1.5 An Outline of the Chapters ... 16
 1.6 In the Field .. 20

CHAPTER 2. ANTHROPOGEOGRAPHY ... 23
 2.1 The Term ... 23
 2.2 An Introduction to Anthropogeography .. 25
 2.3 Anthropogeography to 1900 ... 30
 2.4 Anthropogeography in the Twenty-First Century ... 33

CHAPTER 3. CATAWAMTEAG, ROCKLAND’S PREHISTORY AND HISTORICAL BEGINNINGS ... 35
 3.1 Economic Activities and Watercraft ... 35
 3.2 The Earliest Mainers: Paleo-Indians .. 44
 3.3 Archaic Period .. 45
 3.4 Ceramic Period .. 49
 3.5 Aboriginal-European Contact ... 53
 3.6 Lermond’s Cove ... 62
 3.7 Notes on the Text, Chapter 3 .. 65

CHAPTER 4. TWENTY-FIRST-CENTURY ROCKLAND ... 67
 4.1 Art Galleries? .. 67
 4.1.1 You Can’t Eat the Scenery ... 68
 4.2 Credit Cards in Rockland ... 74
 4.3 Displacement, Resentment, and Some Resistance ... 76
 4.4 Not Just Art ... 79
 4.5 Vacationland and Blue-Collar Land .. 83
 4.6 Rockland Today .. 92
 4.7 Notes on the Text, Chapter 4 .. 103

CHAPTER 5. LIMESTONE NEAR THE HARBOR ... 105
 5.1 Long-Term Domination ... 105
5.2 The Early Lime Industry and Overview ... 113
 5.2.1 Lime Manufacture and Uses .. 114
 5.2.2 Kilns ... 120
 5.2.3 East Thomaston’s Focus on Lime ... 130
 5.2.4 Continued Expansion .. 138
 5.2.5 Kilnwood, Limers, and a Caution .. 140
 5.2.6 Casks ... 149
 5.3 Rockland Lime ... 151
 5.4 Rockland’s Urban Morphology .. 153
 5.4.1 Waterfront Morphology ... 159
 5.4.2 Consolidation ... 172
 5.5 Lime Falters ... 181
 5.6 Glimpses of Rockland’s Lime Industry .. 187
 5.7 Notes on the Text, Chapter 5 .. 191

CHAPTER 6. ON THE WATER: SHIPPING, SHIPBUILDING, AND FISHING 193
 6.1 Shipping Lime .. 193
 6.1.1 Lime Shipping after the Civil War ... 205
 6.2 Shipbuilding in Rockland .. 217
 6.3 Fish Rule .. 235
 6.3.1 Sardines .. 240
 6.3.2 Redfish ... 244
 6.4 Notes on the Text, Chapter 6 .. 257

CHAPTER 7. A FEW MORE ROCKLANDERS ... 260
 7.1 The Harbor ... 260
 7.1.1 Harbormaster Rich ... 264
 7.1.2 Harbormaster Trumble .. 265
 7.1.3 Captain David Allen ... 268
 7.2 Fishing .. 270
 7.2.1 Frank J. O’Hara .. 270
 7.2.2 Fishcutter Barbara Fournier ... 272
 7.3 The Lime Industry .. 277
 7.3.1 Lime-Burner Vern Raye ... 277
 7.4 A Few Words from Rockland’s Dead ... 280
 7.4.1 Historic Photographs ... 285

CHAPTER 8. THEORETICAL CONSIDERATIONS AND CONCLUSION 288
 8.1 The Construction of Histories .. 288
 8.2 Some Theoretical Considerations ... 289
 8.2.1 Sequent Occupance ... 289
 8.2.2 Comparative Advantage, Competitive Advantage 295
 8.2.3 A Brief Look at World Systems Theory .. 299
 8.2.4 Urban Morphology and Staple Theory .. 304
 8.3 A Final Thought ... 309
LIST OF FIGURES

1. Map of New England, 1856 .. 3
2. Map of area of interest ... 4
3. Population of Rockland, 1850 to 2000 12
4. Agricultural lime labels ... 22
5. Catawamteag or Lermond’s Cove .. 36
6. Abenaki territory ... 37
7. Rockland radial city street patterns .. 38
8. Catawamteag .. 43
9. Changes in the inner cove over time ... 65
10. Sewage treatment plant in Lermond’s Cove 65
11. North Sydney’s waterfront main street 69
12. Where is our view? ... 76
13. Giant dump trucks fill and abandoned quarry 82
14. Fisher Engineering ... 92
15. MBNA under construction at former site of Five Kilns 93
16. MBNA later in the summer ... 93
17. Fisher Engineering ... 94
18. MBNA .. 94
19. A summer home for otherwise homeless men 95
20. A business on the first corner of Main Street’s one-way section, 2001 96
21. The same building as in Figure 20, one year later 97
22. Dragon Cement Company .. 98
46. Schooner on the Penobscot River at Hampden, Maine................................. 140
47. Kilnwood boat in Rockport, 1890s ... 144
48. Kilnwooder from New Brunswick... 144
49. The limer Carrie G. Crosby .. 146
50. Limer ... 148
51. Lime casks on the way to the kilns ... 150
52. Rockland, 1855 ... 156
53. Rockland, 1916 ... 157
54. Gas plant .. 160
55. Crockett’s Point, detail of waterfront rail lines.. 163
56. The Five Kilns point .. 165
57. A section of Lime Rock Railroad trestle.. 165
58. The Steel bridge at Five Kilns .. 166
59. End of the Dragon rail line ... 169
60. A section of LRRR bed ... 169
61. Trestle remains.. 170
62. Gas Kilns site, 1896 .. 170
63. R-RLC operation at north end of Rockland Harbor, 1922...................... 174
64. Aerial photograph of R-RLC operation at north end of Rockland Harbor 175
65. North end gas kiln operation in 1922 ... 176
66. Bird Company shipping bill ... 176
67. Mile-long quarry in Rockland .. 187
68. Another abandoned Rockland quarry ... 187
69. Kiln remains at the north end ... 188
70. Kiln remains at the north end, arched firebox 188
71. Rockland quarry at work ... 189
72. Park Street Bridge .. 189
73. Gas Kilns site at north end ... 190
74. Rockland’s breakwater ... 190
75. The Rockland-built schooner Rebecca Palmer 195
76. Ships leaving Rockland area in December 1854 197
77. 1849 advertisement in Rockland, Maine newspaper 198
78. Manifest for shipment of 100 tons of hay on the ship Western Chief ... 198
79. Custom House records for port of New Orleans 200
80. Number of foreign vessels clearing Rockland for the month of June, 1890-1911 . 213
81. Shipbuilder’s letter .. 214
82. Table of shipbuilding in Rockland .. 219
83. Four-masted schooner launching in Rockland 221
84. Edward J. Winslow launching, Bath, Maine ... 222
85. Thomas W. Lawson built in Massachusetts 227
86. Rockland’s Cobb, Butler & Co. with four large vessels under construction . 228
87. Employment trends in lime and fishing industries 236
88. Edna L. lobster smack, Rockland, Maine .. 238
89. The hulk of the Squall .. 246
90. The deck of the Squall looking forward ... 246
91. Redfish landings, Maine, 1950-2001 .. 254
92. Lobster landings, Knox County and State of Maine

93. Knox County live lobster landings as percentage of total state landings

94. Rockland public docks during woodenboat gathering

95. Former sardine cannery, now office building

96. Front page of the lime company newsletter

97. Kiln tenders in Thomaston

98. Sparmakers on Rockland's waterfront

99. Quarrymen in one of Rockland's quarries

100. Rockland kiln workers

101. Coca Plug Tobacco advertisement

102. Burnett’s Report, page 1

103. Burnett’s Report, page 2

104. Burnett’s report, page 3

105. Burnett’s report, page 4

106. Burnett’s report, page 5

107. Rockland Harbor and Vicinity, 1863

108. Map of Rockland, 1906

109. Map of Rockland, 1979

110. Aerial Photograph, Rockland, Maine, 1996

111. Occupations Data, page 1

112. Occupations Data, page 2

113. Occupations Data, page 3

114. Occupations Data, page 4
115. Occupations Data, summary. ... 345
116. Ship .. 347
117. Bark .. 347
118. Barkentine .. 348
119. Brig ... 348
120. Brigantine .. 349
121. Schooner ... 349
ABSTRACT
This dissertation is a historical anthropogeography that focuses on the city of Rockland, Maine from its prehistoric beginnings to the present. Throughout the historic period, a series of single industries have dominated Rockland’s economy while its population has remained remarkably stable. Lime production, for mortar and plaster, was first, beginning with the earliest Europeans in the area in the eighteenth century and coming to its end in the 1930s. Shipping and shipbuilding were important outgrowths of the lime industry but shipbuilding ended by the early 1920s with the change from wood to steel as the favored material for shipbuilding.

Commercial fishing and fish processing followed lime as the main industry. Dominance by fishing was not nearly as long-lived as lime production; in Rockland, as elsewhere in New England, the collapse of commercial fishing took a great toll beginning in the 1980s; Rockland’s fishing industry virtually ended by 1990. After a relatively brief period of decline and depression, residents and outside interests have been able to transform Rockland into a tourist destination and fine arts center. In addition, manufacturing and service (outside of tourist-related service) are important, but smaller, components of the city’s economy today.

Part of Rockland’s transformation from an industrial city to a tourism/service economy depends upon the erasure of much of the past from the cultural landscape as well from Rockland’s resident’s social/geographical memory. While quarries hundreds of feet deep are permanent evidence of the lime industry, their existence is surprisingly unknown to tourists and visitors, and little acknowledged in current residents’ consciousness. In favor of tourism, some of the people of Rockland have made purposeful efforts to dismiss the unsightly, unpleasant remnants and memory of lime
manufacturing and commercial fishing. By shaking off the soot and smells of its industrial past, Rockland is being transformed, is experiencing a renaissance, some people claim… no longer the dirty, callused kitchen maid but another bright Princess of Summer on the coast of Maine.
1.1 The Project

This dissertation is a historical anthropogeography that focuses on the city of Rockland, Maine from its prehistoric beginnings to the present. Throughout the historic period, a series of single industries have dominated Rockland’s economy while its population has remained stable. Lime production, for mortar and plaster, was first, beginning with the earliest European settlers in the area in the eighteenth century. This came to its end in the 1930s. Shipping and shipbuilding were important outgrowths of the lime industry but shipbuilding ended by the early 1920s with the adoption of steel as the favored material for ships. Rockland shipyards were unable to convert to steel shipbuilding because of the high capital investment required, so commercial shipbuilding in Maine, the foremost shipbuilding state in the nation at the time, centralized in Bath, where it remains the leading industry today.

Commercial fishing and fish processing followed lime as the main industry. Dominance by fishing was not nearly as long-lived as lime production; in Rockland, as elsewhere in New England, the collapse of commercial fishing took a great toll beginning in the 1980s, with Rockland’s fishing industry virtually dead by 1990. After a relatively brief period of decline and depression, residents and outside interests have been able to transform Rockland into a tourist destination and fine arts center. In addition, manufacturing and service (outside of tourist-related service) are today important, but smaller, components of the city’s economy. The waterfront had been the industrial (not commercial) zone of the city until recently; Rockland’s limited manufacturing today takes place in the industrial park, one of few such projects in Maine that has been a long-
term success. Rockland city government is carefully trying to keep their economy diverse and expand their industrial park. They have completed a new, well thought-out, and carefully constructed city comprehensive plan (RCP 2002). In it, they recognize the city’s strengths: the harbor and waterfront, a good school system, high quality of life, and the area’s natural beauty (RCP 2002). The plan also acknowledges some of Rockland’s weaknesses: lack of public transportation and affordable housing, and high cost of living. On the list of opportunities is potential for waterfront development; among the threats to progress are strip development and a “lack of vision” (RPC 2002).

Part of Rockland’s transformation from an industrial city to a tourism/service economy depends upon the erasure of much of the past from the cultural landscape as well from Rockland’s resident’s social/geographical memory. While quarries hundreds of feet deep are permanent evidence of the lime industry, their existence is surprisingly unknown to tourists and visitors, and little known or acknowledged in current residents’ consciousness. In favor of tourism, some of the people of Rockland have made a conscious effort to dismiss the unsightly, unpleasant remnants and memory of commercial fishing. The closure of a fishmeal plant that was a fixture on the waterfront provided the green light to begin a reinvention of the city. By shaking off the soot and smells of its industrial past, Rockland is being transformed, is experiencing a renaissance, some people claim… no longer the dirty, callused kitchen maid but another bright Princess of Summer on the coast of Maine hoping to attract tourists and their money (see Figures 1 and 2).
Figure 1. Map of New England, 1856, adapted from unknown atlas, in possession of author, courtesy of John Anderson.
During times of transition from one industry to the next, rather than becoming a city mired in economic and social depression, such low points were relatively short-lived in Rockland. The turning point from industrial to service-sector dominance after the collapse of fishing is especially important. Other New England and Canadian Maritime towns that were dependent on fishing, mining, or steel production have had less success during the last decade. Rather than solely an inherent, collective, social characteristic such as “adaptability,” numerous contingencies and contestations have presented themselves during my research, and of the many possible outcomes of the end of...
Rockland’s industrial past, the present relative economic success may be transitory. The achievements of tourism are not without problems or sacrifice; there are those in Rockland who decry the loss of “real production.” One long-time resident is alarmed at what he sees as the city’s lack of effort in attracting manufacturing or industrial jobs in general. “Rockland’s not making anything, these businesses have no product; we need to get some businesses in here that make something, everything in Rockland now is recreation-related” (Rockland resident 2001). Some people object to “selling out to the tourists” and to the riskiness of a growing reliance on tourism. Not a few residents show their resentment of summer interlopers through words and action.

The residents of Rockland I have come to know through this project have a strong tie to their place, I address this issue elsewhere in this work because it is so powerful and compelling a characteristic. Rocklanders stayed in their place during the city’s transitional periods, even today many Rocklanders are underemployed, but stubbornly refuse to relocate where employment opportunities may be better. When I asked an ex-fisherman (1999) if he had ever considered moving somewhere that offered better employment, he was incredulous, “Where the hell would I go?”

They are resourceful, independent, willing to diversify and have multiple jobs, and are (not simply, however) adaptable. Seasonal tourist/service jobs that are developing at present may help employment figures but are not a cure for long-term underemployment. Rockland suffers with much of the rest of Maine under too many part-time jobs that provide no health insurance or other benefits. In 1980, with sardine and groundfish processors beginning to feel the consequences of decades of overfishing, Rockland’s unemployment rate was a staggering 11.8%. Nevertheless, by 1990, even as
the fishing industry was on its deathbed, more jobs were available and the employment situation in the city had improved slightly to 10.3%. By 2000, it was down to 3.2%, close to the state average (RCP 2002).

During my time in Rockland, I spent time with the working population as well as with owners and managers of Rockland’s industrial interests so I was able to interview some blue-collar residents. Their work experiences vary, their satisfaction with a particular job fluctuates, but, as elsewhere, Rocklanders gain identity from their work and they judge others by the work they do, or do not do. Surrounded by rural areas and being the social service center (welfare, food stamps, unemployment and social security offices) for the county, Rockland has a spectrum of workers and non-workers. Fitchen (1981 in Stofferahn 2000:312), while not discussing Maine, points out, “Although the rural working poor are strongly committed to work, their employment does not keep them out of poverty.” This has traditionally been the case in Rockland’s small urban center closely adjacent to and involved economically with extensive rural areas (few Rocklanders would consider themselves urbanites or “city people”). Many Mainers take seasonal (non-tourist-related) work and numerous part-time or temporary jobs during the year in an attempt to make ends meet. This is not a new trend; in the nineteenth and twentieth centuries, farmers worked in the woods or in the ice industry during winters. Fishermen took similar work during off-seasons or if fishing was slow. In the First Annual Report of the Bureau of Industrial and Labor Statistics for the State of Maine in 1887, Conditions and Views of Fishermen, one fisherman stated:

I go lobstering about three months each spring, from March to June, rest of time work at odd jobs. During March, April and May I earned $110. Business not so good as formerly. Could not get a living now (BILS 1887:112).
Stofferahn (2000:312) notes that today, among rural blue-collar workers,

… work is a central component of their self-concept: they believe that work is the respectable way to support oneself or one’s family. They judge a man harshly who can work but does not. Being a good worker is a matter of pride and recognition.

Finding such characteristics in Rockland’s residents would be difficult to avoid.

“Mainiacs are hearty people, you got to admit it, I mean they do anything; they cut wood, Christ, I been in the woods since I was ten years old cutting wood with my brother … dig clams, rake blueberries, I was one of ten, had to put myself through school” (Raye 2003). Certain Rockland men are regaled for their work ethic, company loyalty, and at times, foolhardy competitions to establish records for the most lime burned in a day, the largest amount of rock blasted from a quarry wall with one charge, or the best time for loading a truck with bags of lime weighing 80 pounds each. Vern Raye (see Chapter 7) is one of the men in a story widely told about a record time he and a friend established loading a truck with 35 tons of lime bound for Aroostook County. Some of these events took place 50 years ago but people enthusiastically repeat the stories as though they just happened. These same workers often hold welfare recipients in disdain. For example, the Maine State Prison operated in nearby Thomaston, beginning in 1854 until the state tore it down in 2001. Over the years, prisoners’ families have moved to Rockland to be close to the prison and take advantage of the social services available there. Some of the city’s residents can seem pompous about their work and good fortune that they are able-bodied; I experienced this more than once as during my time there I was not actually “working” either.
I have “worked” in the past, however, and my experiences in boatbuilding and commercial fishing made it easy for me to connect with some otherwise reticent members of the working class. I am a Mainer, tenth generation, born on the coast, in Bath; although I knew relatively little of Rockland in particular beforehand, this is a study of my own people. Although I recently moved away from Maine, I feel connected to this place, still mine, and along with the opportunities that belonging provided during this project, there were certain disadvantages as well. If my resentment about coastal Mainers losing their land (over the last 30 years) to comparatively wealthy, seasonal occupants from other states and losing their access to the sea itself comes across in this work, I apologize, though half-heartedly. Limón (1991:116) explains that he has found himself in a similar situation:

Unlike most anthropologists, however, it happens that I am born and bred of the place I study. Over the years, I have also become simultaneously of another place as well, a child of the Enlightenment, of high literary modernism, of classical anthropology.

During the summer of 2001, for the purpose of establishing an overview, I traveled in Nova Scotia, Cape Breton, and Newfoundland on small buses, in vans, and on ferries. Conversations turned, as they will, to work: “What do you do for work?” I learned that, like Limón, I was becoming of another place as well. Gaining the realization was not an altogether pleasant experience. Graduate student-ism is little understood outside the small academic world; attempted explanations worsen social situations rather than improve them. The liminality involved caused me a certain discomfort. I was aware, as during my previous fieldwork, that my background (along with that of the other) allowed them, the other, the people I worked with in the field, to define me in different ways. An archivist was most comfortable with me as a researcher,
in fact, I was surprised with the number of times archivists and librarians remarked that
they enjoyed helping someone who was not “doing genealogy.” Those in the fishing
industry easily saw me as an ex-fisherman. I have puzzled over whether I present myself
differently in varying situations and, like others before me, have wrestled with questions
of ethics if I have done this, even unconsciously. Abu-Lughod (1991:140) offers “two
useful reminders” from feminist theory:

First, the self is always a construction, never a natural or found entity,
even if it has that appearance. Second, the process of creating a self
through opposition to an other always entails the violence of repressing or
ignoring other forms of difference.

1.2 Onward Anyway

Above, I mention that Rockland is economically involved with its surrounding
rural spaces. This does not, however, mean that Rockland has ever had a functional
hinterland, although in the 1800s, farmers, some living up to 25 miles away, produced
wooden casks by the thousands for the lime industry (see section 5.2.6). Today,
Rockland city officials like to think that their city is a shopping and service center,
however, it has never drawn retail customers from any significant distance; Rockland
serves(d) itself. Rockland’s shipping interests sent their ships all over the world, but little
of their mixed cargo business involved Rockland. Ships like the Red Jacket that carried
expensive cargoes and earned the highest freights, never returned to the city of their
origin. Rockland considers itself a port; the United States Custom Service maintained a
Custom House in the city, and the Maine Central Railroad connected, for a time, to
steamer lines at their wharf at the south end of the harbor. Weigend (1958) defines port,
hinterland, and foreland, and many geographers cite his work as having contributed to the
study of their relationships. “The port is the place of contact between land and maritime space, and it provides services to both hinterland and maritime organization” (Weigend 1958:185). Whether Rockland is a port under Weigend’s definition depends upon its having a hinterland. A typical definition of hinterland comes from an introductory geography textbook:

Hinterland—Literally, “country behind,” a term that applies to a surrounding area served by an urban center. That center is the focus of goods and services produced for its hinterland and is its dominant urban influence as well. In the case of a port city, the hinterland also includes the inland area whose trade flows through that port (de Blij and Muller 2000:G5).

Boston has been described as “forsaking an unpromising hinterland” in favor of expanding its forelands (Earle 1992:159). Like its larger neighbor to the southwest, Rockland does not have a hinterland, but has, since the first Europeans arrived there, served varied forelands. Weigend describes forelands as “the land areas which lie on the seaward side of a port, beyond maritime space and with which the port is connected by ocean carriers” (Weigend 1958:195). I consider Rockland’s forelands to include the Canadian Maritime Provinces, Boston, New York, and the rest of the East and Gulf coasts. Lime production tied Rockland to many distant cities; in Chapter 6, I describe the relationship between Rockland and New Orleans that lime cemented. Weigend (1958:195) explains that a port’s hinterland is served with coastal craft and its forelands with seagoing ships; he might disagree that Boston or New York are Rockland’s forelands since coasters, coastal craft, were the vessels used in the coastwise trade that included the city’s lime output.

Rockland, if it is a port, is what Weigend called an exterior port, “directly on the coast” (Weigend 1958:186). It is not situated on a river, and does not have an interior
from which products flow. It is not the point of entry for goods supplied to the interior either, for example, Rockland’s ships and barges carried coal to its docks for decades, but that coal the city itself consumed. Considering the above, I have, nonetheless, throughout this work, presented Rockland as a port sending its products to its forelands via ocean-going, coastwise shipping.

1.3 Population

A compact city, with its development centered at the harbor, Rockland has had a stable population throughout its history. With some decline in numbers in the 1870s and 1980s, likely related to downturns in the lime and fishing industries respectively, Rockland’s population has been stable in the long term. Since 1880, the town has ranged between 7,500 and 9,500, and this is an important indication of Rockland’s capacity to adjust to economic and social change, unlike many inland farming towns, especially after the Civil War (see Figure 3).

Shipbuilding peaked in Rockland near the end of the nineteenth century. By 1920, it had become an industry of little importance. Lime production was at its highest in the 1880s, and by the early 1930s, it too had diminished to the point of being a minor contributor to Rockland’s economy. Granite companies shipped their record production in the first years of the twentieth century, but by the early 1930s, granite had become virtually obsolete as a building material, and all but a few of New England’s quarries closed. In Rockland, things happened quickly; by 1918, regarding Rockland’s largest granite company, the Granite Cutters Journal reported “nothing doing and no sign of
anything” (Grindle 1977:186). In the 1930s, Rockland turned whole-heartedly to fishing, but it was a short-term endeavor. People have not abandoned Rockland; in fact, they seem entrenched (see section 6.2). There was a small loss (3.3%) of population from 1860 to 1870, but by 1880, it had recovered. There was another significant gain by 1890, when lime production was at its height. Population peaked at 9,234 just after World War II and then fell to near 8,000 by the end of the century.

The gain in the 1950s may be related to the expansion of fish processing, while the drop in 1980 could well indicate the decline in groundfishing experienced throughout New England. Rockland, with its emphasis on redfish, was particularly hard hit. Considering the stability of Rockland’s population in the long term, however, not dropping below 7,500 nor rising above 9,500 since 1880, it would be risky to tie these
small fluctuations in this population to economic activities. Supplementing decennial census data with local census data and analyzing employment records would provide a basis for making more meaningful statements about correlations, however, such data are not available in a form that would render it useful for that purpose (see Chapter 5 regarding occupations records). Population trends in Rockland do, however, appear related to the rise and fall of the lime industry and redfish processing.

1.4 Rock Land

Interestingly, most visitors (and even some residents, it seems) do not know the source of the name Rockland. Maine is known for its rocky coastline and tourists usually assume that the rock in Rockland refers to the exposed, recently glaciated, submergent coast comprised of numerous picturesque granite peninsulas and islands. The cultural landscape of the port city of Rockland does offer clues about its name. Street names such as Lime Street, Limerock Street, and Limestone Place tell us about the character of the city as much as the still-used term “Shore Village.” The rock, then, is limestone, limerock, the resource upon which the area’s residents based its early development.

Examining this geographical resource in more detail, two limestone regions exist in the otherwise igneous bedrock underlying New England. One is along the western borders of Connecticut and Massachusetts. The other is in Knox County, Maine, of which Rockland is shire town or the county seat (see Figure 42, map of limestone deposits). While less extensive than its inland counterpart, the most important Maine deposits lie adjacent to the large coastal harbor of Rockland, a fortunate geographical relationship. Limestone was used locally earlier, but in the 1730s commercial production of lime for mortar and plaster began. Boston builders were the first buyers of large
amounts of lime; later, numerous Rockland lime companies supplied New York and New Orleans markets.

Throughout Rockland’s history, its geography has been a most important asset, with the harbor as its center and heart. Rockland’s vast limestone deposits would have been virtually worthless had they not been adjacent to a saltwater harbor. The fishing industry that replaced lime would not have existed without the harbor. Likewise, today’s yachting-related economy, the tourist business, and growing seasonal community depend completely on the harbor, the waterfront, the easily accessible and nearby islands, the beauty of Penobscot Bay itself and the “small towns/villages” that are the top “sightseeing” destinations of tourists visiting Maine (with this category at 67%, the next, “wilderness”, at 41%) (Longwoods 2001:82) make Rockland marketable.

After dominating for so long, the coastal lime industry fell into decline and eventual collapse by the 1930s because the high quality limestone that the city of Rockland was known for became scarce, as new building methods and materials were adopted in American urban centers; Rockland eventually lost the nickname “Lime City.”

By the 1950s, Rockland had become one of the four most productive fishing ports in New England, along with Boston, Gloucester, and New Bedford, Massachusetts. Processing groundfish (demersal or bottom dwelling species such as the cod, haddock, hake, various flatfish, and redfish, in which Rockland specialized), Rockland’s factories often surpassed all others in volume.

The United States established an exclusive economic zone (EEZ) 200 miles offshore in 1976. This law gave the U.S. control over some of the world’s (historically) richest fishing grounds. With competition from foreign fleets eliminated, New England’s
fishery had a chance to apply conservation measures that would assure a sustainable
groundfishery; unfortunately, Cold War competition and a gold-rush mentality drove
expansion of the industry. This resulted in increased fishing effort applied to stocks that
were already on the brink of collapse, causing the decline and virtual death of the
groundfishing industry in the western North Atlantic. By the mid-1980s, Rockland was,
again, in the familiar position of being a one-industry town whose industry was failing.
An infrastructure built to catch, process, and ship fish and fish products was quickly
becoming obsolete. The city slumped into an economic and social depression. During
the “good times” of the 1950s through 1970s, Rockland experienced a gold-rush-like
boom. “It was a kind of wild and wooly town in those days” (O’Hara 2001).

In contrast, by the early 1990s, Rockland was crime-ridden, with broken windows
in the stores on Main Street, motorcycle gangs, and a heroin problem; it was a town to
avoid (see Chapter 4).

The fishing industry in Rockland had long been blamed for keeping tourists away.
This is understandable, given the fact that a strong odor of decaying fish filled the air, and
a rendering plant operated for decades on the harbor’s edge. Water quality in the harbor
had suffered from industrial use, and sewage went into the harbor until the 1970s. It was
a murky, slurry of fish entrails, blood, and scales from the fish plants mixing with oil and
other industrial pollutants. The harbormaster explained that a British sailing magazine
had warned its readers to avoid Rockland at all costs (Trumble 2001).

With the development of a tourist economy, gentrification of the downtown area,
the waterfront, and dockage is well underway. Rockland’s elite (some of whom are
outsiders) support the move to a tourist economy, others, even today, continue to support
fishing; the city operates a commercial fishing dock that loses money but the industry’s small presence is no longer enough to hamper tourism.

Rockland is not yet a seasonal community. Seasonal residents, especially west of Rockland, dominate many coastal towns. Boothbay Harbor, is an example, where the population is 2,362 year-round residents. In the summer, it more than doubles to over 5,000. Approximately half of the residences are seasonal. Including transient visitors in hotels and cabins, the number of people in town often rises to more than 10,000 in August (Lewis 1999). While Rockland begins the transition to; at least a significant seasonal component, city officials have not begun to distinguish between year-round and seasonal properties (or residents).

1.5 An Outline of the Chapters

I approached the research for this project using primary/ethnographic and secondary sources. I conducted numerous loosely-structured, open-ended interviews with people who have experienced Rockland’s more recent economic fluctuations; their contributions are evident throughout, particularly in Chapters 4 and 7. I was able to assemble a vast amount of material from numerous libraries, archives, and two museums. Ethnographic efforts are never accomplished on the schedule of, or at the discretion of, the anthropologist; I found this true for my research. At times frustrating because of its nature, it was, otherwise, the most rewarding part of what I did in the field (although it is underrepresented in what follows); sometimes it was actually fun. I have included a list of people, places, agencies, and events that were among those contributing valuable information to this research in Appendix A.
Following this introductory chapter is a definition of the term *anthropogeography*, which appears in the title of this dissertation. Chapter 2 explains the history of the term and its usefulness today as a set of concepts and obligations. I fulfilled one responsibility of the anthropogeographical project in Chapter 3 through an examination of the native people of Rockland and Maine’s mid-coast area. Their subsistence practices and geography are outlined through information gathered by way of the archaeological and ethnographic investigations of others.

Chapter 4 looks at the city of Rockland today and in its recent past. I have included just three figures in the body of the text of Chapter 4. The last section, 4.6, is a brief photo essay with captions.

Rockland suffered its brief low point just a few years ago, and has been transformed. Rockland’s reinvention requires a romanticized and reconstructed past. I found it difficult to get residents to discuss Rockland’s depressed period of the early 1990s. Only two of my numerous informants would acknowledge the city’s colorful past as a service center of a different sort: one that served the less talked-about needs and desires of sailors, quarrymen, and fishermen through the lucrative provision of alcohol, drugs, gambling, and prostitutes. One resident reportedly has early photographs taken on Sea Street in front of a brothel. Among them is one that captured a Rockland prostitute of the late nineteenth-century lifting her shirt and leering at the camera. Unfortunately, I was never able to see, much less copy, the few images that document an important and compelling portion of Rockland’s rich heritage. Rather than embrace these elements in Rockland’s past, today’s residents deny them, at a loss to all of us.
The cultural landscape can hide as much as it reveals, while Rockland has had single dominant industries, it is not today, nor has it ever been, a place of uncomplicated economic and social/cultural issues and relationships. Chapter 5 focuses on the lime industry, looks at what has not been hidden, and exposes some of what has. Rockland got off to a slow and late start in comparison to other nearby towns. Rockland’s large, open harbor was not attractive to early Europeans in the region, especially given the existence of so many other smaller, protected harbors along that section of the coast. Beginning in the 1830s and continuing for nearly 100 years, the lime industry completely dominated the landscape, littoral scene, and daily lives of the people of Rockland. I describe the urban morphology in section 5.4; lime guided the morphology of the city and its kilns, wharves, elevated railroad, and ships wholly overshadowed the littoral district for decades. Rocklanders had strong bonds, both before and after the Civil War, with New Orleans and other cities in the South. These relationships were forged through business ties established by the trade in lime and related industries such as shipping and shipbuilding. As in Chapter 4, I have included a series of photographs that offer some evidence of Rockland’s industrial past. Early in Chapter 6, I reveal the strong ties between Rockland and New Orleans as evident in shipping records, manifests, and ship’s logs. The people of Rockland in the nineteenth century had connections with, and a knowledge of, New Orleans fully unknown by today’s residents. Businessmen who got their start in lime, built their own ships, and operated shipping companies that employed Rocklanders as crew, captains, and shipbuilders. The most famous and fastest Yankee Clipper Ship, the Red Jacket, was a product of Rockland, and her story is told in Chapter 6. With the decline of lime and shipbuilding, fishing gained prominence as, again, the
single industry on which most of Rockland depended. This chapter closes with the city’s commercial fisheries.

Chapter 7 is a collage of a small portion of the ethnographic data I collected over the last two years. Some Rockland residents were interested in my work and kindly gave their time to tell me about their Rockland. Everyone I spoke to about the lime industry advised that I get in touch with Dave Hoch, owner of the last lime company and keeper and enthusiastic reporter of lime history. Mr. Hoch spent untold hours sharing his knowledge, documents, photographs, maps, and hospitality. I consider him a friend. Dave’s story is in Chapter 5 with the lime industry to which he has so firmly tied himself. He led me to others who shared their lives with me as well. Not everyone who helped me understand their city appears in this chapter, but whether I have named them or not, their insights of, and acquaintance with, Rockland as a particular place, their place, appears throughout this work.

Last is Chapter 8. This project is an unapologetically descriptive, traditional, historical (anthropo)geography. While they are scattered throughout the work, as a concluding section, Chapter 8 brings together my few insights into this multifaceted city and its complex sets of contingencies that its humans and its geography have wrought during the last few hundred years.

Following Chapter 8 are several appendices that I refer to throughout the text. Most should prove useful, the others interesting. Hoping to use crime statistics as an indicator of social conditions in the city, I compiled arrest records for every year from 1850 to 2000. They did not prove valuable because no dramatic increases or decreases in arrests that coincided with economic trends are indicated. The records were particularly
interesting, however. The nineteenth and early twentieth century was a time of state-mandated morality and Rockland’s arrests for the period reflect this. As an unwieldy compilation of data of limited value, I have not included the 161-page spreadsheet with the appendices.

1.6 In the Field

One of my first days in the field, 2001:

In Rockland, looking at old lime kilns deteriorating into the hillside; it is easy to know that an industry once thrived here. Firebrick in the kilns from Brooklyn, New York, tells us that there was long-distance communication. What else, though? I asked an older man, a bait dealer, who was looking out at the breakwater, waiting for a herring boat, if he remembered the kilns. He did, and eventually told of the pall of kiln smoke that would hang over the harbor if a strong breeze did not move it away. He told of the boom days of fishing, and of the low point of the town when fishing died. He explained that there were many homeless people (hobos, he called them) around at times; Rockland was the end of the line for the Maine Central Railroad along the coast. There were “jungles” downtown, where scary men lurked about. “Go look at those art galleries on the far end of Main Street,” he told me, “look at those windows, they were all broken out and boarded up.” “Lots of fights and trouble at night.” I did go look at those windows. Like other informants I encountered, the bait dealer was loose with the temporal parameters of his story, but I appreciated his views about his home and I was fortunate to find other Rocklanders who were as generous with their time.

This project grew out of my thesis (Fagan 2000). During the summer of 1999, my fieldwork got me re-acquainted with Rockland, a place I had not seen for a few years. I
was taken by extent of the city’s transformation, particularly the absence of its traditionally industrial character. I returned to Rockland during the summers of 2001 and 2002 and stayed in or near Rockland for a period of more than five months allowing me to witness and catalog important changes in the city. For most of that time, I lived quite comfortably in a tent. The Rockland Public Library was a source of much material I have used herewith, and was, in addition, a pleasant place to spend so many days. The library is now also home to the city’s historical society. I had hoped to have access to the historical society’s extensive photographic collection. In 2002, however, a member of the society finally informed me that the director enforces a policy that photographs held by the society are not made available to researchers, or anyone else, because such materials are a potential source of income for the society; sharing them diminishes their value. I have found others sources; however, I was surprised and disappointed that a historical society, housed in a tax-supported public building, would deny public access to their holdings.

In my thesis on commercial fishing, I was careful to gender-neutralize. I used fishers rather than fishermen. In this work, however, I refer to fishermen as fishermen throughout. They were traditionally men, are, in overwhelming percentage, male today, and one female I know of would rather be referred to as a fisherman because the alternatives seem, well, silly. Boats and ships have long been referred to as “she.” That term is the custom and convention and I use it in this work as well.

Throughout this dissertation, in material quoted, I have not changed spelling, punctuation, or grammar in any way. I have not italicized the words of others; italics in quotes are original. I have left material taken from ships’ logs as original as possible.
during the transcription in order to convey some of the character of the original books themselves. Quotes from taped interviews have been treated similarly.

I have come to admire much about Rockland and its people; I have learned a great deal from them and their ancestors and predecessors. I have looked into the quarries of Rockland with awe; realizing that long-gone quarrymen dug much of the deep ravines with only hand tools, blasting powder, their perspiration, and too much blood. The men who worked in those quarries in 1855, their children, and the women toiling in Rockland’s homes and factories, all lived in a world much different from ours today. Through this project, I have learned something of that world; if you, reader, do too, even just a little, well … good.

Figure 4. Agricultural lime labels (R-R 1906).
CHAPTER 2. ANTHROPOGEOGRAPHY

2.1 The Term

As a term and concept, anthropogeography is not widely used in the social sciences today. Definitions are readily available, and I will address them below; however, most are inadequate, outdated, or overly complicated. The Department of Geography and Anthropology at Louisiana State University (LSU) is the only combined department offering graduate degrees in the two disciplines and doctoral studies in anthropogeography. Beginning my studies at the University of Farmington in anthropology, I realized early on (fortunately), that I would gain great benefit from an awareness of humanity’s spatial nature. While I was considering graduate schools, LSU’s Department of Geography and Anthropology seemed to be the right place for me to pursue my graduate studies, as I was reluctant to become detached from either anthropology or geography. Through two programs, the combined department at LSU has proven to be the correct choice. Larry Grossman (1977:126) quotes Marvin Mikesell, “Cultural geographers and anthropologists are like brothers separated in infancy and taught to speak different languages.” I have found that, at LSU, his statement does not apply, and the interdisciplinary nature of the department continues to be its most important, though, at times debated, strength.

As a student in this unique department, I have taken the opportunity to investigate the history of the term anthropogeography, its former and contemporary usage, and usefulness, and to define and refine the term itself in order to have anthropogeography again become a working term for geographers and anthropologists in the twenty-first
century. Whether or not I have met these important goals remains to be seen in what follows below.

In order to understand the history of anthropogeography, I conducted a large-scale journal search and looked to anthropologists and geographers who use or have used the term. The journal search parameters involved looking for references to anthropogeography itself: where, when, and how geographers and anthropologists use(d) it. Further, I identified the historical and contemporary intersections of the disciplines of anthropology and geography. Noting ways in which geographers have embraced anthropology and anthropologists have looked to geography for techniques, methods, and theory allow an understanding of the interdisciplinary connotations that anthropogeography might retain and allow a useful definition to be formulated.

I searched journals published as early as 1852 and up to the present for both the term anthropogeography and articles in which the disciplines intertwined. Logically, they included selections from archaeology and cultural ecology (nine journals), anthropology in general and ethnography specifically (fifteen), and geography journals in English, French, and German (ten and fifteen, twenty-five total). In the following list, the numbers in parentheses indicate a journal and its preceding title(s) published by the same organization. The journals listed represent 592 journal/years:

The Journal of Historical Geography, 1975 to present, 26 years.
Annales de Géographie, 1891 to present, 110 years.
Antipode, 1975 to present, 26 years.
Geographical Analysis, 1969 to present, 32 years.
Geografie, 1960 to 1976, 17 years.
Annals of the Association of American Geographers, 1911 to present, 90 years.
(2)*The Geographical Review*, 1916 to present, 85 years.
(1)*The Bulletin of the American Geographical Society*, 1852 to 1915, 64 years.
Economic Geography, 1925 to 1965, 41 years.
The journals I searched yielded numerous examples in which authors discussed anthropogeography and where the disciplines intertwined in various ways. Additionally, I looked to articles such as Mikesell’s *Geographic Perspectives in Anthropology* (1967) that explicitly discuss the relationship of the two disciplines.

For example, before 1901, the *American Anthropologist* published three articles that include the word *geography* in their titles. One is the article entitled *The Geographical Distribution of the Musical Bow* (Mason 1897). The *Geographical Journal* and its immediate predecessor had dozens of articles that addressed ethnology/ethnography, anthropology, and anthropogeography. These and other texts, particularly Speth (1999), Stocking (1996), and Raveneau (1892) informed my final concept of anthropogeography and its contemporary schema as it applies to my research and to geography and anthropology more widely.

2.2 An Introduction to Anthropogeography

My major professor during both my M.A. and Ph.D. programs, an anthropologist, Dr. Miles Richardson has spent his career among geographers and has embraced the ways in which geography informs anthropology.

Most of my academic life has been spent in the presence of geographers. I have taken classes from them, I have listened to them in the hallways and over coffee, and I have heard them argue with one another in meetings and read their debates in the Annals. I am richer from my associations (Richardson 1989:154).
He is not alone in this interdisciplinary approach and he explains that anthropology and geography share common elements:

One attribute that separates them from such single-minded pursuits as geology or sociology is that both draw from diverse fields. The earth science interest of the physical geographer is matched by the life science interest of the physical anthropologist, the lure of the statistical survey of social science calls to both perception geographer and applied anthropologist, and the attraction of the landscape geographer to the beguiling world of the humanities finds a counterpart among humanistic anthropologists (Richardson 1989:140).

An early anthropologist whose work consistently crossed the disciplinary boundaries between anthropology and geography was Clark Wissler (1870-1947). Freed and Freed (1983:800) characterize Wissler as “probably the least understood and appreciated of the major figures in American anthropology for the period from 1900 to the end of World War II.” They continue:

Wissler receives scant notice today although he was a major figure in American anthropology. During the decades when the historical particularism of Franz Boas dominated American cultural anthropology, Wissler’s theories provided a nomothetic alternative. His theories are in current use in various guises. The importance of Wissler has been obscured to some extent because he is often misclassified as a Boasian. However, he consciously worked outside of Boas’s influence (Freed and Freed 1983:800).

In an obituary in the *Annals of the Association of American Geographers*, George Carter wrote that the death of Wissler “was a loss not only to American anthropology but also to American geography” (1948:145).

Regarding the department at LSU, Richardson (1984:63) wrote:

First officially organized in 1944, with Dr. Fred B. Kniffen as its head, the Department of Geography and Anthropology at Louisiana State University has had a long tradition of creative, interdisciplinary research. The Department was founded and later augmented by geographers trained at the University of California, Berkeley by the geographer, Carl O. Sauer and by the anthropologist Alfred L. Kroeber. The dual training in both
geography and anthropology led to the emergence of a distinctive type of geography, a geography that used the concept of culture to explain the distribution of human activity, as expressed in material works, across the physical landscape.

Thus, in our department at LSU, anthropogeography is often linked with Dr. Kniffen. Jesse Walker, long-time member of the department, compiled a volume with the works of numerous contributors, as a tribute to Kniffen. Its title, *Fred Bowerman Kniffen and Anthropogeography Remembered* cements the association (the department published the book in June 1998, just one month before I arrived to begin the M.A. program, embarking on my quest to become an anthropogeographer). From the Graduate Student Manual, a brief description of the anthropogeography concentration in the Ph.D. program:

The anthropogeography concentration seeks to combine various components of geography and anthropology to address the transformation of particular natural landscapes into distinctive worlds within which people live. As such, it seeks to tie the concerns of geography with landscape to the anthropological concerns with culture. It seeks, too, to prepare the doctoral student for a career of research and teaching at those universities that value a cross-disciplinary approach to the human-environmental exchange (GSM 1999:42).

Outside LSU, among those not necessarily familiar with its interdisciplinary and bi-disciplinary efforts, anthropogeography is associated widely with Friedrich Ratzel (1844-1904) who published his *Anthropogeographie* in two volumes in 1882 and 1891. As a foundation for human geography, “His project was not an environmental determinism, as some later commentators have suggested, but it was distinguished by the attempt to conduct a nominally *scientific* study of the relations between society and nature through the elaboration of a system of concepts” (Gregory 1994:18). Later, Ellen Churchill Semple embraced anthropogeography and used it in ways fundamentally
different from Ratzel. It is in her work that anthropogeography came to gain the connotations of environmental determinism. “Again, [it was] Ellen Semple, who popularized or—according to some—vulgarized Ratzelian Anthropogeography in the New World …” (Livingstone 1992:213).

Another view of anthropogeography was offered by Carl Sauer in a paper entitled The Seminar as Exploration that he gave at an AAG meeting in 1948, in which he defined anthropogeography as the geography of non-commercial peoples. Given Sauer’s background, early, long-term relationship with Kroeber, and his later work, the definition he offers seems inadequate, limiting, and somewhat incongruous.

Early in the twentieth century, anthropogeography is nearly equivalent to today’s human geography as a broad spectrum of geographical studies. Whitehand (1981a:2), explains that others found the broad elements of Ratzel’s anthropogeography of the late nineteenth century to be something of a danger to the discipline,

… with its potentially polyhistoric perspective, [it] seemed likely to become a universal “science of relations” (Beziehungswissenschaft), boundless in its scope and extremely diverse in its objects. In Schlüter’s view this was not only philosophically unsound but threatened the unity of geography as a properly determined subject within the developing system of sciences.

A 1904 “Books Received” in the Bulletin of the American Geographical Society shows that anthropogeography is an everyday, working term in geography at the time.

Helps in the Study of Anthropogeography.—Among the most recent contributions of Dr. Ernst Friedrich, of Leipzig, to the study of man in his geographical relations are two that will be welcomed as facilitating the labours of students in this field. One of them is “Die Fortschritte der Anthropogeography” (1891-1902), which is printed in the Geographisches Jahrbuch (Vol. XXVI) for 1903 (Bulletin of the American Geographical Society 1904:548).
Under the heading “Anthropogeography” in the “Geographical Record” for 1913 in the same journal, a report on an inter-university conference on “Culture and the Environment” explains that it was organized by Boas and among the papers delivered were those by Professor Huntington, Boas himself, Spinden and Lowie, Professor Bowman, and Dr. Clark Wissler whose presentation was entitled “Culture and Environment” (Bowman 1913:203-204). In 1917, the report on the annual AAG meeting includes the following: “General anthropogeography was represented by a paper by Professor R. H. Whetbeck of the University of Wisconsin on the influence of geographic environment on primitive religions” (AAG 1910:142).

A clear, concise, and perhaps useful, but possibly determinist definition of anthropogeography appeared in an article by Tower (1910:812-813). He explained that it is the culminating, main division of geography; however, “various concepts of anthropogeography differ widely in the breadth of view.” Tower continues:

If anthropogeography is defined as the study of the relation of man to his environment, it is necessary to group under that general head the various subdivisions of the human aspect of geography, —a number of which are already extensively developed and distinguished by separate names. Economic, commercial, historical, and political geography, for example, thereby become merely specialized fields of investigation for the anthropogeographer (Tower 1910:812-813).

If anthropogeography is a combination of elements of the two disciplines, Mikesell’s later (1967), interesting, and informative article discusses the geographic perspectives and theoretical elements used in anthropology. He acknowledges the frequent reference to anthropology by geographers and laments the lack (until 1967 at least) of study of the relationships of the two disciplines. His paper does, however, appear in a geography journal, and I could not note an equivalent recognition of
geography/anthropology relations in anthropology publications. Later, Ellen (1988:233), in another geography journal, contributes further insight into interdisciplinary relationships specifically mentioning that “the most important collaborative links between geography and anthropology were forged at Berkeley under the guidance of Carl Sauer and Alfred Kroeber … .”

2.3 Anthropogeography to 1900

We now consider archaeology (in the United States) to be one of the four fields of anthropology; it is the first of the four to appear in a geography journal (at least among the number that I researched). Beginning in 1873, however, it seems that archaeology was included, by some, as a field within the discipline of geography. In the Bulletin of the American Geographical Society in both 1874 and 1875 within reports, entitled “The Geographical Work of the World” appear descriptions of archaeological discoveries. Another example of an article regarding archaeology appears in the same journal in 1876, and describes discoveries in Europe. As late as 1892, long after the American Anthropologist begins publication, the Bulletin continues to include such reports on archaeological discoveries and surveys. Similarly, the Bulletin published a special section in 1899 (v. 31) and 1900 (v. 32) entitled Notes on Anthropology in which information on anthropological endeavors was reported.

In his annual address to the American Geographical Society in 1880, its president, Chief Justice Charles Daly gave a detailed account of “The Geographical Work of the World in 1878 & 1879” (p.1-103). Within this extensive report are major headings under which he described such “work.” These headings include “Physical Geography”, where meteorology appears, and a category we would consider to be within anthropology,
“Ethnological,” where he says that “Geographical enquiries are not limited to the discovery of unknown countries or places, but embrace the discovery of the remains of lost civilizations or cities …” (p.19).

The term anthropogeography makes its first appearance in association with Ratzel, in June of 1882, in the Proceedings of the Royal Geographical Society. In the section “New Books” appears the following:

Ratzel, Friedrich. – Anthropo-Geographie, oder Grundzüge der Anwendung der Erdkunde auf die Geschichte. Stuttgart (Englehorn): 1882, sm 8vo., pp. xvi. nd 506. (Dulau: price 9s.)

The first of a proposed series of biographical handbooks under the editorship of Professor Ratzel, of Munich, to be continued at half-yearly intervals in the following order: – General Geography, by Dr. von Fritsch; Oceanography, by Dr. von Boguslawski; the Geographical Distribution of Animals, by Dr. von Graff; Climatology, by Dr. Hann; Glaciers, by Professor Heim; Volcanoes and Earthquakes, by Dr. von Fritsch; and Plant-geography, by Professor Drude. This commencement discusses the connection between history and geography, especially as regards the influence of natural conditions of the earth’s surface upon mankind.

While the Bulletin continued to report on studies in archaeology, anthropological expeditions, and ethnology in particular, anthropogeography eventually became a category for “New Books.” It is not until 1892 that anthropogeography as an undertaking again appears. In the July issue of the Proceedings of the Royal Geographical Society there is a review of Ratzel’s two-volume Anthropogeographie. Some excerpts:

In the first volume of this work, Professor Ratzel discussed the physical features of the earth’s surface and their influence on man, showing how different form of settlement and civilization were conditioned by differences in surroundings, whether of a physiographical or climatological nature. He spoke of the endless variety to be found within the human race.

In the second volume he works out his idea of a biogeography as the real geography, based on the essential unity of the human race.
In that same year the French journal *Annales de Géographie*, Tome Premier (v. 1), under the editorship of P. Vidal de la Blache and Marcel Dubois, published an article by Louis Raveneau entitled *L’Élément Humain dans la Géographie: L’Anthropogéographie de M. Ratzel* (The Human Element in Geography: The Anthropogeography of Mr. Ratzel).

H. J. Mackinder’s 1895 article in the *Geographical Journal* addresses anthropogeography and his own (borderline) environmental determinist philosophy that does recognize human agency as a powerful force. He begins his discussion of anthropogeography with a concise definition: “anthropogeography, or the geography of men.” He continues:

The anthropogeographer is in some sense the most typical and complete of geographers. His special department requires a knowledge of all the other departments. He must study geomorphology without becoming a geologist, geophysiology without becoming a physicist, biogeography without becoming a biologist. It has been recognized ever since the time of Strabo that geography culminates in the human element, but the difficulties in the way of precise thought in this branch of the subject are such that, while its claims have been constantly reasserted, the other branches have hitherto made greater progress. At all times each race exhibits a great variety of initiative, the product, in the main, of its past history. In each age certain elements of this initiative are selected for success, chiefly by geographical conditions. Sometimes human genius seems to set the geographical limitations as defiance, and to introduce an incalculable element into every problem of anthropogeography (p375).

The *Geographical Journal* published a book review in 1896 entitled “Two Books on Anthropogeography.” The editor describes them as “bearing on two separate and important aspects of the relation of man to the Earth.” One is a racial geography of Austria-Hungary; the second regards “the influence of the environment in producing varieties in a homogeneous people.” Some of the authors included as contributing to *anthropogeography* in the *Geographical Journal* are: Ratzel, as one would expect, along
with Guyot, de la Blache, Brunhes, Hettner, and C. Lombroso. Additionally, before 1901 there are dozens of articles indexed as *anthropology* in the Geographical Journal. Examples of the specific anthropology subjects include the titles: *History of Mankind, Living Races of Mankind, Origin of Mankind, Progress of Mankind, Negro Races, Races and the People of the Earth*, and *Varieties of Human Species*.

2.4 Anthropogeography in the Twenty-First Century

It is clear that, before 1901, the international geography community did not consider anthropology as a discipline separate enough to ignore in its most important journals. While there are many examples of anthropology in geography, as noted above, and there are cases in anthropology that reference geography, more specific statements in that regard would require further investigation beyond the scope of this project. Thus, whether anthropologists hold the interdisciplinary view as frequently as geographers remains to be determined.

Early on, geography owned *anthropogeography* as a working term and category of investigation. While scholars do not consider Ratzel an environmental determinist, it is clear that anthropogeography became associated with that theoretical view later, particularly through the determinist work of Semple. For the period before 1901, however, anthropogeography seems, overall, to be equivalent to today’s human geography; both were, at times, simply descriptions of the distribution of humans on earth. Why the term anthropogeography continued to remain out of favor after geographers discounted environmental determinism remains to be explained elsewhere. I have tried to avoid describing anthropogeography as nearly synonymous with human ecology. Considering it as such, human ecology being a multi-directional, multi-
level focus, is likely a useful idea. Anthropogeography exists at LSU today, as an interdisciplinary point of view, practical to both anthropologists and geographers. The anthropogeographer (trained in both disciplines) must be determined to look at culture and spatiality temporally. Anthropogeography is, then, the study of the fluid border between us and our place. It is the ways in which the exchanges happen that help us make our places that help make us. It needs to be an anthropology of landscapes, of the complexities and contingencies we make for ourselves and the way these show in our materialness. We can get to these rich layers only by embracing the physical place as well as the human place.

Part of the anthropogeographical project and among the anthropogeographer’s obligations to be Mackinder’s “most … complete of geographers,” (1895) or anthropologist, is the essential requirement that First Nation’s issues be considered and addressed in any project. In the area we now know as Maine, aboriginal people were present as the ice age closed, in fact, Paleo-Indian people followed the retreating ice sheet remarkably closely. While we find the aboriginal presence less well represented than the industrial past on the landscape in Rockland today, it is, nonetheless, there. The following chapter looks at the prehistory of Rockland and the mid-coast area.
CHAPTER 3. CATAWAMTEAG, ROCKLAND’S PREHISTORY AND HISTORICAL BEGINNINGS

3.1 Economic Activities and Watercraft

“The things that made [Rockland’s inner harbor] attractive to Europeans also made it attractive to Native Americans much earlier” (Cook 2002). Europeans had, however, largely ignored Rockland’s harbor as a whole for nearly 150 years after fishing and trading stations were established at smaller, more protected, harbors in the vicinity. Historical records and archaeology have confirmed that by the beginning of the 1620s Europeans maintained numerous fishing stations on Maine islands and peninsulas. Damariscove Island (just outside of Boothbay Harbor), was the site of a long-standing fishing and trade station. Fishermen built a shore settlement on nearby Monhegan Island but they abandoned the island after about a year in favor of Pemaquid, just a few miles southwest of Rockland. Pemaquid was in a better location from which to trade with the local aborigines (Harrington 1994:209-210).

Offering little protection from the wind and waves, Rockland is a large and open harbor. The headlands that enclose it are 2.2 nautical miles (nm) apart. In fact, early European inhabitants labeled it a bay, Owl’s Head Bay, which was appropriate for its size and shape, and that name stayed into the twentieth century. Within the larger harbor is a small cove called Catawamteag (the Great Landing Place) by Native Americans and Lermond’s Cove by later European inhabitants (Eaton 1972, orig.1865, v.1).1 This cove is well protected from all quarters and prehistoric peoples used it as a place to land canoes. From Catawamteag, a short portage took travelers to the Weskeag River where they could put in to continue a trip south through the protected Muscle Ridge Channel. Weskeag is a shortened form of the original name Wessaweskeag meaning “Carrying
Place” (Cook 2002). See Figure 5 for the Catawamteag portion of the earliest large-scale chart of Rockland Harbor.

![Figure 5: Catawamteag or Lermond’s Cove, adapted from a portion of 1836 Chart (U.S. Sec. of War 1836), courtesy of Dave Allen.](image)

A slightly longer carry, though not over a distance that would have challenged travelers accustomed to canoeing, would have taken them to the St. George River that would offer access to the interior. Those looking for the various materials and supplies that a vast meadow and bog offered (numerous animals, birds, sweetgrass for baskets, barks, roots, herbs, etc) would find them with just a short walk directly inland from Catawamteag, where they could leave their watercraft in safety (Cook 2002, Rich 2002).
The people using Catawamteag in prehistoric Maine were mostly the Penobscot, one group of the Abenaki, the *People of the Dawnland* (see Figure 6).

![Abenaki territory, adapted from Calloway (1991:2).](image)

Rockland has a number of knowledgeable amateur historians and a theory about the route from Catawamteag to the meadow was offered to me by one of them, Harold Simmons: Limerock Street meanders from the shore to the interior because it follows the old Native American path to the meadow; all the other streets in the city are straight because they were laid out by Europeans (Simmons 2002). This idea is likely correct, however, I found no positive proof in archaeological literature for this theory embraced by Mr. Simmons and other residents, some of whom report finding clamshell deposits in their gardens or other places they dig. Shell remains that may indicate refuse middens
left by aboriginal inhabitants are common elsewhere on Maine’s central coast. Unlike other nearby sites where archaeological investigation has been fruitful, Rockland’s littoral space was heavily developed for industrial use beginning with the first European occupants and, unfortunately, their activities have buried, removed or disturbed most obvious archaeological evidence left by prehistoric inhabitants. (See Figure 7 for Rockland’s radial street pattern and the less-than-straight Limerock Street.)

A four-year excavation in the 1970s at a shell midden adjacent to Rockland harbor, on the island of North Haven showed that the island had been occupied as early as 5,000 before present (B.P.) and into the historic period (Bourque 1995:19). While the
island provided a place for fishing, the hunting of marine mammals, and the collection of shellfish, it did not contain all that its aboriginal residents required or desired. The red ocher and dogs so valued by the Red Paint People or Moorehead Phase residents (ca. 4400 B.P.), the Susquehanna Tradition copper beads made from New Brunswick copper found in a cremation deposit (ca. 3700 B.P.), and lithic materials from all over New England that were found at the North Haven Turner Farm Site (Bourque 1995) indicate the mobility of the area’s aboriginal people. North Haven Island, in the middle of deep Penobscot Bay, has as its closest point on the mainland, Deadman Point in today’s Rockport, 5.7nm distant. From the protected water of the Fox Islands Thorofare, on which the site is located, a trip of less than 7nm over open water would take one into the relative protection of Rockland Harbor and then into the snug enclosure of Catawamteag.

Maine’s indigenous people used watercraft for millennia and for many purposes. They took fish and sea mammals including whales for food, oils, and their bone for tools and decorative items. One might argue that most of these could occasionally be scavenged; however, Snow (1980:197) concludes that:

Porpoise, seals, whales, and black fish are sometimes found beached, but the swordfish is a pelagic fish that virtually never floats to shore. Moreover, it is found off the coast of Maine only during the summer, and the remains we have found must come from fish that were speared or harpooned while they sunned themselves at the surface in quiet water. The sharp dorsal fin of the swordfish is still frequently seen off the coast of Maine, but the local folklore is liberally salted with stories of punctured dories and other near-fatal encounters with the creature. If Late Archaic Indians were taking this fish, as they must have been, they must also have been rather skilled sea hunters.

Archaeological evidence indicates that inhabitants used dugout canoes for such fishing and hunting on open water. Stone porpoise and killer whale effigies have been found and from the “sizes and frequencies of the heavy woodworking tools found in both
habitation and cemetery sites, [Snow] conclude[s] that sea hunting was carried on by relatively large bands of men in relatively large dugout canoes” in archaic times, more than ca. 4,000 years before present “for reasons of stability, strength, crew size, and seaworthiness” (Snow 1980:197). Maine’s white pine would, undoubtedly, have grown in large enough diameters to have made dugouts of considerable size. Such pines were known in historic times, and were highly prized by the British admiralty. Settlers were forbidden to harvest or harm the “King’s Pines” that were carefully cut, moved down straight “mast roads” to the sea, and sent to England for ships’ masts. Today, in several Maine (and New Hampshire) towns, roads named Mast Road still exist.

The best information about aboriginal Maine watercraft comes from Europeans who observed them. One who wrote about Native American lifeways that he observed early on was Daniel Gookin, an Englishman living in New England beginning in 1644. He had planned to write an eight-volume history of New England, but it is not known how much of it was completed by his death in 1687. Two of his books do survive, and in 1674, he wrote:

For their water passage, travels, and fishing, they make boats, or canoes, either of great trees, pine or chestnut, made hollow and artificially; which they do by burning them; and after with tools, scraping, smoothing, shaping them. Of these they make greater or lesser. Some I have seen carry twenty persons, being forty or fifty feet in length, and as broad as the tree will bear. They make another sort of canoes of birchen bark, which they close together, sewing them with a kind of bark, and then smearing the places with turpentine of the pine tree. These kinds of canoes are very neatly and artificially made, being strengthened in the inside with some few thin timbers and ribs; yet are they so light, that one man will, and doth, ordinarily carry one of them upon his back several miles, that will transport five or six people (Gookin 1970:18; orig. 1674).

Native Americans used the bark of the paper or white birch (Betula papyrifera) for a number of purposes because of its durable, oily, waterproof nature. At the Tracy
Farm site (69-11 ME, Maine Archaeological Survey System site designation) in Somerset County, Maine, I was fortunate to spend the summer of 1995 as part of a team excavating a riverside terrace long-used by Native Americans. The project was a University of Maine at Farmington summer field school run by the, now, director of the Archaeological Research Center, Ellen Cowie. “Unequivocal aboriginal remains indicate that it was certainly occupied from the Late Archaic period, ca. 4000-1000 B.C., onward throughout the remaining periods of prehistory and into the historic period” (Cowie, et al. 1999: ii).

One feature, a food storage pit, was lined with a cylindrical birch bark container sewn, in the way Gookin mentions, with spruce root. The most widely known use, though, was for canoes, and during the fur trade era, Fox Islands residents likely used such craft to get to Catawamteag on beaver hunting trips (Bourque 1995:219). Travel into the interior was easy and efficient with these light craft and north/south communication between coastal sites and interior villages was frequent. Whether a seasonal round between the coast and upriver locations took place is now under debate, although such was accepted for a time. Snow (1980) argued that prehistoric cultural relations were shaped by Maine’s river drainages.

As Europeans, especially the French, quickly adopted the canoe and its design influenced the style of their bateau, along with iron trade goods, Native Americans readily adjusted to using European style boats and adapted the boats themselves early after European contact.

In the spring of 1602 Bartholomew Gosnold’s expedition encountered Indians off the coast of southern Maine who showed unmistakable evidence of previous contact with Europeans. Early explorers in the Gulf of Maine found European manufactured goods among the natives and naturally assumed that the Indians got those goods direct from European sailors and traders … (Calloway 1991:33).
Borde and Whitehead (1985:327) explain that:

…before c.1610 that European goods first entered the region via Souriquois and eastern Etchemin middlemen. During the early 17th century and probably before, these shallop sailing native entrepreneurs began to barter furs for European goods in the Gulf of St. Lawrence, and European goods for more furs along the New England coast at least as far a Massachusetts Bay.

Although New England’s aboriginal residents quickly learned to sail, they continued to use their traditional craft. In 1723, the Jesuit priest Sébastien Rale, residing in Maine with the Kennebec at their villages at the Tracy Farm Site and across the Kennebec River at Norridgewock, wrote in a letter to his brother in France:

It is in these canoes made of bark—which has scarcely the thickness of an écu [a shield]—that they cross the arms of the sea, and sail on the most dangerous rivers, and on lakes from four to five hundred leagues in circumference. In this manner I have made many voyages, without having run any risk (JR v.67:139).

The Passamaquoddy, east of the Penobscot people (see Figure 8), had less easy access to the interior than those going up the Penobscot or Kennebec Rivers. They may have been more dependent on the sea than other groups and Snow (1980:51) explains that, in the “last century and a half, the Passamaquoddy have built and used sea-going birchbark canoes for fishing and even for sea hunting.”

In his ethnology on the Penobscot Nation, anthropologist Frank G. Speck also described the importance and utility of the bark canoe. He describes the ease with which early Penobscot people accessed remote parts of their interior territory and made their way to the coast.
From the principal village at Indian Island (Oldtown), a two days’ journey, with an overnight stop at Bucksport, brings the canoeman to Penobscot Bay, where former camps were numerous on the different islands. Seal and porpoise hunting, oysters and other shellfish and salt-water fish, besides the need of sweetgrass for basketry, led them continually in this direction (Speck 1940:56).

Canoes and dugouts were an integral part of a large cultural network, both prehistorically and historically, up and down river drainage systems, as well as east and
west, across the arms of the sea, along the coast with Catawamteag an important one of
many places of landing and portage (Cook 2002).

3.2 The Earliest Mainers: Paleo-Indians

Archaeologists have agreed on certain spatial and temporal concepts and
structures to facilitate comparative efforts from archaeological site to site and within a
single site that may have been occupied or used over a long period or at various times. In
Maine, the major periods begin with the first humans that migrated into the mostly tundra
region that is now Maine following the glacial retreat after 14,000 years B.P. This
earliest period is called the Paleo-Indian period and covers 11,500 to 9,000 years B.P.
with the first 1,500 years of human occupation in Maine called the Early (or Classic)
Paleo-Indian Period and from 10,000 to 9,000 years B.P. is referred to as the Late Paleo-
Indian.

Some commonly used terms that are helpful in Maine archaeology are:
component - a culturally homogeneous unit, remains left by one particular
occupation
phase - similar components found at more than one site but representing a
brief time
tradition - a set of phases that change or evolve within a specific culture
period - several phases over a wider area and a greater time span
horizon - a widely distributed set of cultural traits used especially in
seriation

Maine’s early Paleo-Indian landscapes were cold and dry, with tundra vegetation:
sedges, willows, and grasses. By 9,000 years B.P. the tundra had largely disappeared and
woodlands had developed. The climate was warmer and more humid and spruce and fir
trees dominated. The artifacts most widely associated with Paleo-Indians are the fluted
spear point and distinctive forms of scrapers. There are a number of sites in Maine
attributed to Paleo-Indian occupations and while all are inland locations and there are late
Paleo-Indian sites known in the Penobscot River drainage system, there are thought to be coastal sites that are now submerged due to sea level rise. At the Dam site at Wayne in the south-central part of the state investigators found lithic artifacts made from materials “believed to come from central New York, western Vermont, Pennsylvania, Nova Scotia, and Northern Maine” (Bourque 2001:31).

3.3 Archaic Period

The Archaic period is a much longer, similarly poorly-defined set of phases in Maine than what follows toward the contact and historic periods. The Archaic (overlapping Late Paleo-Indian) is divided into three somewhat arbitrary sub-periods based on artifact style evolution. Early Archaic is 10-8,000 years B.P., Middle Archaic: 8-6,000 years B.P., and Late Archaic is 6,000 to 3,000 years before present.

The millennia that follow the Paleo-Indian period, between about 10,000 and 3000 B.P., are referred to as the Archaic period, a term originally employed in 1932 by William A. Ritchie to denote some relatively early archaeological cultures. Today, it is conventionally applied to the long sequence of cultures that flourished prior to the appearance of ceramics. As used by archaeologists, the term “archaic” carries none of the negative connotations of primitiveness that sometimes accompany it in common parlance. In Maine, indeed, some of the most complex and intriguing archaeological cultures date to the Archaic period, and it is perhaps the most interesting and certainly the most intensively studied aspect of the area’s prehistory (Bourque 2001:38).

Early pollen evidence indicated that during the warmer, dryer period of the Early Archaic, Maine was wholly dominated by spruce and fir. For many years Northeast archaeologists thought that such boreal forest would have offered a low carrying capacity for large game animals and thus for humans. Petersen and Putnam (1992:15) explain that these thoughts have lead to “nearly 30 years of archaeological discussion about a major human occupation hiatus for some or all of this long period.” More recent evidence
shows that the boreal forest was not as extensive nor as long-lasting as scholars once thought. Additionally, and more importantly perhaps, further archaeological investigation has been undertaken in the state of Maine, especially due to cultural resource management law and more Archaic sites have been identified.

Our knowledge of Early and Middle Archaic people will always be limited, however. “Virtually all Early Archaic coastal sites, for example, must have been completely eroded by sea-level rise and attendant shoreline erosion” (Bourque 2001:39). Bourque (2001) considers virtually all Early and Middle Archaic sites to be on or near water. While a number of lakeside sites have been identified, it is likely that riverine sites have suffered from erosion and those on floodplains are deeply buried.

There are, even today, fewer diagnostic point types than for other periods. The bifurcate base point is the most widely recognized Early Archaic type, but other lithic tools of the period include adzes, celts, gouges on which the channel goes the full length of the tool, and quartz scrapers that are considered diagnostic. Tools identified with the Middle Archaic are, particularly, the axe, ulu, half-channel gouge, projectile points that are rough and crude compared to those of the Paleo-Indian period, and the atlatl weight. The atlatl, or spear-thrower was developed by Paleo-Indian people, but Middle Archaic hunters added a stone weight to the thrower to gain extra power. These atlatl weights were finely made from choice materials. Their makers invested heavily in these, obviously in hopes of a good return at the hunt. I have been fortunate to have held such weights in my hands; their often, winged shape, the way they are crafted from special stone with stripes or colors well-placed, and at times, long, tapered holes that would hold them in place, make their value obvious even these six or seven thousand years later.
One island less than 16nm to the east-northeast of Catawamteag, Deer Isle, has a, now submerged, Middle Archaic site that was first identified because scallop fishermen dragged up artifacts. It was further investigated by the Maine State Museum and divers “have since recovered additional artifacts at the same locality, which lies nearly 8 meters below mean low tide, within the depth range that would have been dry land during Middle Archaic times” (Bourque 2001:45-46).

The Late Archaic is another long period in Maine’s prehistory, but we know it better than earlier times. It may well have been a period of comparatively rapid population growth and its cultural complexities are obvious but not necessarily completely understood, especially New England-wide. A number of phases and traditions have been identified that include the Lake Forest Tradition in northern New Hampshire, Vermont, and New York, the Mast Forest in Massachusetts and lower New York State, and the Maritime Archaic in Maine. These traditions are identified with both artifact styles, that help illuminate subsistence patterns and social/cultural complexities, and with burial cults or complexes. For a comprehensive summary of the Late Archaic in New England one should look to Bourque (2001) and Snow (1980) for such summarization and to Robinson (1996) for the Moorehead Phase, however, there are sites close to Catawamteag that Maine’s first peoples used during the Late Archaic. In fact, of all Maine Moorehead Phase sites, Bourque (2001:53) says that the “geographic center of their distribution remains the area between the Kennebec and Penobscot Rivers.”

The Turner Farm site on North Haven Island is rich with artifacts from the Late Archaic and the subsequent Terminal Archaic or Transitional Periods (the transition being to the Woodland or Ceramic Period) that include bone items not usually preserved
in Maine’s acidic soils. Bone blades, fishhooks, swordfish rostrum bayonets, and harpoons are among those discovered there. Turner Farm site investigators found bone and stone effigies and decorative objects, and archaeologists have learned much from subsistence remains and cremations and burials (Bourque 1995).

The Moorehead Burial Tradition, represented at Turner Farm, is best known in Maine due to the numerous burial sites attributed to it by investigators beginning in the late 19th century. “The broad burial ‘tradition’ includes a series of related burial patterns or shorter term ‘complexes’ that show continuity through time” (Robinson 1996:98).

While I have been unable to find any reference to Catawamteag as important in the Moorehead Phase, as mentioned above, we know that there was casual and broad communication during the period, and there are numerous Red Paint sites at the foot of Penobscot Bay and up the Penobscot River from there. Another important Moorehead Phase burial site, Ellsworth Falls, is also nearby on the Union River.

Surprisingly, these highly successful maritime hunting peoples—innovative cultures that prospered by adapting to rich maritime resources—disappeared abruptly around 3800 B.P. and seem to have left no trace in the cultures that succeeded them locally. The Moorehead phase was replaced by a very different archaeological culture known as the Susquehanna tradition … (Bourque 2001:61).

The Susquehanna is known from Florida to Maine and its distinctive artifacts and uniformity over such a wide area have led some archaeologists to speculate about a migration into the northeast that produced a population displacement, however, there is insufficient evidence to support this theory. Turner Farm, again, is among the sites considered most important in Maine for the Susquehanna. “Unfortunately, evidence regarding Susquehanna tradition subsistence activities away from the coast are even scarcer than for the Moorehead phase” (Bourque 2001:64). This phase fades from the
archaeological record in Maine around 3,400 B.P. in a rather short time. “With the disappearance of the Susquehanna tradition, the prehistoric record in Maine enters a period for which no clear cultural models have been proposed” (Bourque 2001:72).

3.4 Ceramic Period

The Ceramic (or Woodland, elsewhere) Period covers, in Maine, the approximately 2,400 years from the Late Archaic to the Contact Period, about 1600 A.D. Rather than absolute dates, which are variously supplied by archaeological sites, the Ceramic Period indicates the adoption of certain important items of material culture and the likely social implications of these. Foremost is, as the name indicates, the change from using wooden or bark containers for cooking to pottery vessels that people could use to cook food directly over a fire. This would have been an improved convenience over heating rocks and transferring them to the food or liquid where they would impart their heat (and ash and sherds) to whatever was being cooked. Although there is ethnographic evidence of the Penobscot cooking meals directly over a reduced fire in birch bark pots, such containers would not last long and the cook would have to tend the fire carefully to reduce the risk of losing the meal (and the fire) if the bark began to burn (Speck 1940:102). Prehistoric cooks would, without doubt, have considered ceramics an important improvement to everyday life.

Knowledge of ceramics production reached Maine around 2,700 B.P. and the level of mobility of a cultural group may be related to whether or not its members adopted ceramics early. Highly mobile people would have resisted ceramics due to its fragile nature and the investment its production required.
It may be significant in this regard that Maine’s coastal and near coastal sites contain a greater relative abundance of pottery than most interior sites. This suggests that life on the coast was more sedentary than in the interior, probably because of the presence of marine resources, which were to become increasingly important to Ceramic-period peoples over time (Bourque 2001:76).

Regarding the Penobscot people upriver from the ocean Speck (1940:102-103) explained that “although pot sherds are archeologically abundant near the coast there was no tradition of pottery making in the memory of the people and that birch-bark vessels only were used.” Maine archaeologists have completed extensive investigation since Speck wrote this statement. They have identified numerous inland sites where ceramics are part of the record left; but why did the Penobscot not have any knowledge of pottery manufacture when they could, and did, readily produce other items of their ancestors’ prehistoric material culture for Speck such as hide and bark canoes, clothes, baskets, weapons, games, and others? Bourque (2001:81-82) explains that there are no historic accounts of Native ceramics production in Maine. He attributes this to the fact that as they “had earlier access to European trade goods than did those to the south, they may have been the first to stop making their own fragile wares in favor of trading furs for copper kettles” (Bourque 2001:82). Thus, along with so much other knowledge lost with the demise of so many through disease upon early contact with Europeans, the techniques of pottery manufacture did not survive from prehistory into the historic era.

Maine’s soil and climate are not as unkind to pottery as to organic remains, so the adoption of ceramics by aboriginal people in the northeast in general, adds much to the small selection of artifact materials that survive. While bone does not often appear, textiles and perishable fiber technology, in general, are even less often encountered in the archaeological record. Ceramic vessels carry many types of information, construction
techniques, style, decoration, and burned food remains that archaeologists can readily
date. Fortunately, as well, pottery affords a degree of knowledge of prehistoric textile
manufacture. The earliest ceramic vessel type in Maine was found at a site near
Catawamteag, the Knox site on Pell Island on the east side of Penobscot Bay, and has
also been identified at several other coastal locations.

Known to archaeologists as Vinette 1, after the site in Brewerton, New
York, where it was first recognized, this crude pottery was made by
building up coils or slabs of clay into vessels with cylindrical bodies and
slightly pointed bases. Both the inner and outer surfaces of Vinette 1 ware
are generally textured by the impressions of a cord or textile wrapped
around a paddle. The face of the paddle was then struck or pressed against
the vessel wall to help join its coils and create its shape (Bourque
2001:76).

Early and Middle Ceramic Period (2,700-2,000 and 2,000-1,200 B.P.
respectively) people lived on the small island now known as Pell Island directly east of
Catawamteag. They exploited varied marine resources and contended with, over
successive generations, a sea-level rise of more than two meters during the temporal span
mentioned above. They lived in semi-subterranean houses placed adjacent to the present
shoreline and left lithic and bone tools and faunal remains that tell us of their subsistence
activities, in addition to ceramics when the site was abandoned some time in the Late
Ceramic (1,200-950 B.P) (Belcher 1989:175-189).

The cord impressions left on ceramics have helped illuminate some of the basic
cultural characteristics of Maine’s first people. For example, a continuing discussion in
Maine archaeology regards whether pre-contact residents made seasonal trips from their
villages in the interior to the coast to exploit maritime resources. Transportation was not
an issue, but seasonality is difficult to establish due to the poor record of food remains
other than in shell middens. Cordage technology recorded in the plentiful “cord-
wrapped-stick-impressed” style has revealed that two distinct types of cordage weaving were used in Maine. The direction of twist, spin, or weft slant is to the right, S twist, or to the left Z twist. Petersen and Hamilton (1984:433-434) explain that the left or right twist in cordage are more than the result of an individual who may have been right or left-handed:

Whether derived from the archaeological or ethnographic record, one or the other of the binary attribute states (S or Z) typically dominates a site-specific or regionally derived sample. … Moreover, such preferences used in conjunction with other attributes have enabled spatial differentiation of archaeological complexes in both synchronic and diachronic dimensions [references provided]. The important point here is that once a population adopts a particular cordage twist or twined weft, they rarely if ever change it.

Maine’s archaeology has shown that, along the coast, the S cordage twist was the norm while interior peoples used the left, or Z twist in their cordage production. The separation of these cordage types is distinct and definite. S or coastal means on the coast or islands, not even just ten miles inland. Inland Z cordage is not found in coastal sites. “We suggest that differentiation of technological populations can be minimally interpreted as being indicative of different social groups, whether local or regional bands, or in this case, that previously unrecognized differences in ethnic populations may be ultimately detailed in Maine” (Petersen and Hamilton 1984:438).

The discussion continues, however, and while historic records indicate that the fur trade encouraged a seasonal round, some people consider that extended ethnic or other social groups existed on the north/south routes of easy transportation, Maine’s major rivers (Snow 1980). Others feel that cordage technology and historic evidence of canoe portage reveal that prehistoric Maine’s cultural affiliations were east/west (Cook 2002).
Further, subsistence remains indicate that coastal groups were more sedentary earlier than those in the interior.

Horticulture came late to Maine’s aboriginal population but the “holy trinity” of beans, corn, and squash were being cultivated before the first Europeans reported their observations of the Maine coast. Champlain saw corn there, west of Catawamteag however “one recently obtained date from a site in western Maine suggests that maize was cultivated there by 1000 B.P., and the full maize-bean-squash complex was present there about 460 B.P. (A.D. 1490)” (Bourque 2001:87).

3.5 Aboriginal-European Contact

On a peninsula of the mainland, at the Goddard site, northeast across Penobscot Bay from Catawamteag, archaeologists unearthed a Norse coin, a “penny issued by King Olaf Kyrre between A.D. 1065 and 1080 …” (Bourque 2001:113). While the Norwegian coin is not evidence of direct contact, it is an intriguing find and opens the possibility that further support for the theory that Vikings traveled into Maine waters from Newfoundland may be discovered. Until such information is forthcoming, and for the purposes of this project, I will consider 1524 A.D. the year of first recorded contact between Maine’s first people and European explorers. Verrazzano was the first to write of meeting Abenaki people on the coast of Maine, but his voyage was not the first in the area.

John Cabot is considered “the first discoverer of North America since the Northmen’s voyages almost five centuries earlier, and as the man who gave England her American title” (Morison 1971:157). We know little of Cabot; however, his first voyage in 1497 was considered a success. He sailed from Bristol, England on May 20 and
arrived at the northern tip of Newfoundland on June 24th of the same year. Cabot traveled the length of the island’s east coast and investigated the inshore edge of the Grand Banks of Newfoundland during this trip which lasted until August 6th, less than two and one half months. He took possession of his discovery for the Crown and upon his return to England announced that he had found the passage to China and a new island, which he thought was part of the Eurasian continent (Morison 1971:186). King Henry sponsored Cabot for a second trip across the Atlantic; the mission was to continue toward the East to the place of origin of all spices and set up a colony and trading factory. Cabot left England in May of 1498 with five ships, four of which were filled with goods meant to be traded with the aboriginal peoples he might encounter. Shortly after, one of his ships returned to Bristol, running from a storm, and the other four and Cabot were lost (Morison 1971:191).

While his second venture did not accomplish its goal, Cabot had made an important discovery during his first trip that would have a great impact on the development of the New World. He did not, in reality, find the passage to China, but he did report to Europe the abundance of sea mammals and fish, particularly cod, in the area along the shore of Terra Nova or Newfoundland. Cabot told of there being so many fish that his crew was able to catch large numbers of them by lowering weighted baskets into the water and hoisting them up heavily loaded (Morison 1971:180). There would soon be hundreds of ships fishing in the western North Atlantic.

Regarding the beginning of the sixteenth century Morison (1971:210) explains:

After the excitement over John Cabot’s first voyage and his disappearance on his second, there came a distinct letdown in northern voyages to America. The quarter-century after 1500 is a dark period in the history of North American discovery, faintly and doubtfully illuminated by old
maps. The brilliant success of the southern voyages turned men’s minds away from the northern region of ice, snow, and fog; only the fishermen kept coming, as did a few hopeful searchers for a strait to China.

Similarly, Sauer (1971:7) mentions, “The Bristol seamen who had taken Cabot to a North American coast continued to visit it yearly in the codfish trade, but the records are silent.”

“In 1500-1502 the Corte-Real brothers had explored the southern coast of Labrador and Newfoundland, claiming the area for Portugal” (Eccles 1998:1). Soon Breton, Norman, and Basque fishermen were working in the waters off New England and Newfoundland to supply the market created by “the 153 fish days a year of Catholic France” and soon the “Portuguese had established the first colony in the region, on Cape Breton, between 1520 and 1525” (Eccles 1998:2).

France had sent Verrazzano west across the Atlantic in 1524 to search for a passage to the East. His ship reached the east coast of North America and “He sailed north from South Carolina to Nova Scotia, giving a favorable account of the nature of natives and land, thereafter called New France” (Sauer 1980:18). Verrazzano, thus explored the coast from the Spanish territory of Florida to the Portuguese colony on Cape Breton; he claimed all the land between for France and finally “demonstrated that North America was a vast land barrier, a geographical nuisance, between Europe and the riches of Cathay” (Eccles 1998:2). Verrazzano had traded with aborigines before getting to Maine and found them easy to deal with. The Abenaki, however, were not as friendly as he might have expected; Calloway (1991) and others take this as evidence of them having had bad experiences or unpleasant trade dealings with earlier European visitors.
Calloway (1991:33) quotes Verrazzano on his first meeting with Abenaki, which, in my estimation, took place relatively near Catawamteag:

They gave us barter quickly, and would take in exchange only knives, hooks for fishing, and sharp metal. We found no courtesy in them, and when we had nothing more to exchange and left them, the men made all the signs of scorn and shame that any brute creature would make. Against their wishes we penetrated two or three leagues inland with 25 armed men, and when we disembarked on the shore, they shot at us with their bows and uttered loud cries before fleeing into the woods. … We departed, skirting the coast in a northeasterly direction.

Cartier undertook his first voyage in 1534 with the goal of finding such a way to the Far East and, hopefully, locating gold and other riches that could be taken back to the king of France. His first voyage took him through the Strait of Belle Isle between Newfoundland and Labrador. Cartier did not find a passage through, but did interact with natives who had obviously traded with others before him. France financed a second more ambitious trip and Cartier was to make a thorough investigation of the Gulf of St. Lawrence for the same purposes as on his first trip. They stayed too long in the area to risk returning to Europe in the poor weather of October, so they wintered over at Stadacona (Québec). “There was no intention to establish a permanent settlement, only to winter in the country. Cartier and his men were to be the first Europeans since the Vikings known to have done so” (Eccles 1998:5). The continental climate took its toll; they knew they were south of Paris, but were caught off guard by the length and severity of the winter, by its end 25 of the crew were dead and the rest were almost so. As with others who explored America and whose reports were probably exaggerated or embellished in order to gain more funding, Cartier had little to brag about upon his return to France, but he had kidnapped several Indians who confirmed the existence of a
mythical kingdom in an effort to get the French to return them to their homes (Eccles 1998:5,6).

The French and English made other voyages of discovery into the St. Lawrence region and along the coast of Maine. Cartier was still looking for the mythical Kingdom of Saguenay. The city of Norumbega, in the interior of Maine, was also supposed to be a place full of gold, silver, and pearls and was eventually meant to be the site of Sir Humphrey Gilbert’s colony (Eccles 1998). In 1576, Frobisher made his first trip for England looking for a Northwest Passage to the Far East and later, “Sir Humphrey Gilbert was given a patent [by England] to discover and found a colony, which he undertook to do in 1583, sailing to Newfoundland and then turning south, losing his life without getting beyond waters already familiar to European fishing ships (Sauer 1980:19).

“[English] interest in a northern colony revived during the reign of Henry III (1574-1589). At the time Humphrey Gilbert, Martin Frobisher, Sir Walter Raleigh, and John Davis were engaged in English exploration and colonization from Davis Strait to Newfoundland and Virginia” (Sauer 1980:75). “Then followed a long interval marked only by the summer visits of traders and fishermen; and the first period of Acadian history, the period of exploration, drew to a close with the end of the sixteenth century” (Denys 1968:2).

After Cabot’s news about such abundant fish in the waters off Newfoundland and Maine, it was not long before hundreds of fishing vessels were involved in a lucrative enterprise supplying fish to European markets. Later, of course, fish became part of the triangular trades. Early fishing trips were largely unrecorded, unlike the official voyages made by Cabot or Verrazzano that required reports to their governments. “Official voyages … merely confirmed a knowledge of the region already held by the numerous fishermen who dried their catch on shores adjacent to Newfoundland. It may be [for
example] that members of Cartier’s crew knew these well, that they had more experience
than their commander, and that they returned to the Gulf of St. Lawrence with personal
profit in mind” (Morrison 1984:17).

There have been claims that “Normandy and Brittany did not wait for the Cabot
voyages to be taught the existence of the Newfoundland fisheries, but had learned the
lesson for themselves even before the crossing of the Sea of Darkness by Columbus”
(Fiske 1902:3). There is no real evidence that there were fishing voyages to the western
North Atlantic that early, and Fiske goes on to argue that the abundance of cod made
such an impression on Cabot that is seems unlikely that he or his crew had known of it
before. “The first authentic record we have of Breton ships in Newfoundland waters is in
the year 1504, and from that time forward we never lose a year” (1902:4).

The French developed their inshore fishery first; they caught huge numbers of fish
in shallow water with hook and line. Crews took the cod ashore to be processed, dried,
and stored, to be taken to France at the end of the season. Shore facilities for this fishery
consisted of sheds and drying flakes as well as temporary shelters to accommodate the
shore crew. Drying flakes were huge platforms build on stakes to hold them up off the
ground. They were made of brush: small branches collected from bushes and trees. The
crews removed the leaves from these branches and wove them loosely together to form a
light surface through which air would readily circulate. The fish, cod, were headed and
split: their internal organs were removed, their heads were cut off, and their backbones
were given a longitudinal cut that allowed the carcass to be opened up like a book to be
laid out in the sun. Workers needed a number of sunny, dry days for this process. Rain
or fog would stop the drying, cause preservation problems, and provide an opportunity for maggots.

Typical shore facilities were temporary and subject to being torn down during the winter by local people or the weather. Denys (1968:278, 280) wrote in the 1630s:

Concerning that which is customary when the ships are approaching the place where the fishery is to be made: Arrived on shore, some of them set to work at the lodging for the fishermen, which is like a hall covered with a ship’s sail. The sides at the bottom all around are lined with branches of Fir, interlaced into pickets or stakes of four to five feet in height driven into the ground; and the sail completes the two sides.

A second method of processing and storing fish allowed a separate, different fishing enterprise later on. “The offshore fishery on the banks developed in the second half of the 16th century and was conducted by ships equipped to fish without landing in the New World” (Harris 1990:66). This was the wet or green method of curing fish, which involved layering fish with large amounts of salt in the hold of the ship aboard which they were caught. This method required more than twice the amount of salt as drying, and was less reliable and quality varied widely. Dry fish, therefore, consistently brought a better price. The French, however, were known to produce a better product than the English who adopted the green preservation method in the late 1500s. The advantage to the wet fishery was largely in the fact that only one crew was needed, that aboard the boat; no one was required on shore. The vessel would fish until it had a full hold and then return to Europe to unload, re-provision, and, if the summer season were still a few weeks from ending, it would return to the fishing grounds to continue work.

The fishing stations on shore were more important in the development of Acadia, and although they were used only during the summer season, they constituted the first
modification of the landscape by Europeans. Sauer (1980:77) attributes the naming of Acadia to Verrazzano. Denys (1968:1) defined Acadia as:

 most of that huge peninsula which is nearly encircled by the great River Saint Lawrence, the Gulf, and the Atlantic Ocean with a Western limit at the River Penobscot. To-day it is parted into five political divisions: the Provinces of Nova Scotia, New Brunswick, Prince Edward Island and a portion of Québec, together with a part of the State of Maine.

In the twenty-first century, however, Rockland is not considered at the western edge of Acadia, it is farther east, and whether or not Acadia (as a cultural region) still extends into Maine would be questionable even though place names still reflect the time when the Penobscot River was its border with New England.

 “The number of fishermen in one place was often considerable— and their trade goods could attract sizable Indian communities” (Prins 1996:90). Harris (1990:67) explains “… the inshore fishery drew Europeans and natives into contact, and trade in furs began early in the 16th century.” Fishermen began taking furs back to Europe with them, along with their fish. “The profits fishermen made from even casual fur trading soon drew the avid interest of French investors” Morrison (1984:17).

 The English did not stay out of the competitive fisheries or the fur trade. “Richard Hakluyt, an Englishman aware of the French maritime exploits in the Northeast enviously observed 20,000 crowns of fur in Paris in 1583” (Morrison 1984:18). This information was used to get willing investors in England to quickly build their fishing fleets to a larger force. “Although the English faced stiff competition—100 Spanish, 50 Portuguese, and 150 French ships visited the Grand Banks in 1578—they [the English] prevailed against all rivals” (Morrison 1984:18). Bernard Drake, an English privateer “attacked twenty Portuguese vessels in 1585, taking ten as a war prize” (Morrison
Such activities, in the late sixteenth century, and the growing strength of the English fishing fleet “won the English all that they desired and produced something more: French and Basque fishermen abandoned eastern Newfoundland and joined the already numerous trading vessels in direct contact with the American mainland” (Morrison 1984:18). Thus began the fur trade, of which so much has been written regarding its effects on the landscape of North America, its influence and changes in the cultures and lifeways of indigenous peoples, and its influence on the economic geography of Europe.

While it seems probable that Verrazzano at least glimpsed Catawamteag or what we now call Rockland Harbor, the French explorer Samuel de Champlain surely did.

In September 1604, after passing Mount Desert and Isle au Haut, Champlain sailed boldly up the Penobscot to the head of navigation at the site of Bangor (Morison 1971:469).

The French, Champlain included, tried to establish a friendly, working relationship with the Abenaki in order to foster trade (especially for furs) and eventually use their help in fighting the English in the battle between New England and New France. Morrison (1984:32) quotes Champlain writing about the Abenaki and Micmac (Mi’kmaq) in 1604:

In course of time we hope to pacify them, and to put an end to the wars which they wage against one another, in order that in the future we might derive service from them, and convert them to the Christian Faith.

In addition to trade goods that Native Americans welcomed, at first, Europeans brought diseases that decimated aboriginal populations throughout the New World; and Maine’s first people did not escape. Epidemics, the worst being in 1616 and 1633, killed as much as 75-98% of the population in Abenaki villages (Snow 1980:34). Prehistoric
and early historic Native population figures are difficult to assess with certainty but the pre-epidemic Eastern Abenaki, the Penobscot among them, are estimated by Snow (1980:34) to have numbered 11,900 with just 3,000 of them surviving the early epidemics. These diseases, what is thought to have been a hepatitis virus, cholera, and smallpox, cleared the way for the English to settle and colonize all of New England; although they ignored Rockland for a time, the first Europeans to use Catawamteag were three Lermond brothers who stayed there in a temporary camp and “got out a cargo of oak staves and pine lumber there” (Eaton 1972:93, orig. 1865, v.1).

3.6 Lermond’s Cove

Eaton wrote about the cove in 1865 (1972:19, orig. 1865, v.1) as the end of one of two important carrying-places used by the Abenaki even in the nineteenth century or “within the last thirty years, and perhaps at times even now.” Many of today’s residents know that the little cove inside their harbor was an important geographical feature for a long time, and it is still an important place, however, the use of most of its area is unrelated to watercraft, a fact numerous Rocklanders now lament. One life-long resident explained that Native Americans had put the cove to its best use for hundreds of years, but in the 1970s, the city made a shortsighted mistake by filling most of the inner cove and building a sewage treatment plant there. The plant was finished in 1978; it was located in the cove because there it would be at the lowest point in the city and the sewage would require less pumping than if the plant was placed in a less central position. Until the plant became operative, Rockland piped its raw sewage directly into the harbor. The new plant ended that practice (except in times of torrential rains) and eliminated one objectionable element that was keeping Rockland’s harbor heavily polluted. At the time,
Rockland’s waterfront was an industrial one, and few citizens objected to filling the south end of Catawamteag and building the treatment plant downtown, just a few yards off the center of the Main Street shopping district. In a city planning report entitled “Rockland Maine: Home Port of Industry” Griffin (1977:35) wrote, “Industrial development is a way of life along the harbor and new and inventive developments are always welcomed. Rockland is a city with an industrial heritage.” That industrial heritage has gotten in the way, however, and what should be the most valuable piece of waterfront in today’s tourist/service/pleasure boating Rockland, remains a downtown sewage plant because the cost of moving it is prohibitive. I spoke with a few Rocklanders who look at that cove and plant and imagine numerous big, expensive yachts tied up there, right in their downtown.

Europeans coming to Rockland early used the cove and in 1769 and 1770 some families settled at its edge and trade began with lime-burning soon undertaken for the first time in Rockland by George Ulmer in 1785 (Eaton 1972:96, 180, orig.1865, v.1).

In an initial waterfront survey report for a proposed breakwater for the town of East Thomaston, as Rockland was known before May 1850, Lt. W. Burnett (U.S. Sec. of War 1836:4) wrote about the cove:

The village of East Thomaston is located at the head of the harbor. Its population is from 1,500 to 2,000. There are twenty-five or more valuable wharves at the village, some of which are secured from all winds by a point of land called Crockett’s Point, which forms a small harbor for vessels of light draught. This harbor, however, is perfectly dry at low water, and so inconsiderable in its extent and inconveniences, that it cannot be regarded as sufficient for any maritime purposes whatever.

As happened in so many places along Maine’s coast and tidal rivers, Catawamteag’s inner protective harbor was filled with silt by the time Burnett was there.
in 1835. Development and indiscriminant clearing for agriculture led to erosion that changed the depths of coves and small harbors in numerous locations. The chart accompanying Burnett’s report indicates that Lermond’s Cove was dry at low tide as far out as the northwest section of Crockett’s Point (this chart is reproduced as Figure 5, above, also see Figures 52 and 55 below). The harbor chart from 1863 indicates the inside cove to be dry at low tide, but the 1916 chart portrays it in a slightly better light with four feet along the eastern and southern edges and two feet at low tide on the west side. In 1959, the federal government completed the blasting and dredging of channels within the harbor and the cove itself was eventually dredged. The 1969 harbor chart portrays a clear channel into the inner cove that allows soundings of 13 to eight feet well inside at low tide (see Figure 9).

The sewage plant project of the 1970s buried most of the south end of Catawamteag, surely, it is a likely place for archaeological evidence, however, it will remain under deep fill into the foreseeable future (see 1996 aerial photo above in Figure 9 and Figure 10 below). Interest in Maine’s archaeology is much more recent than Rockland’s industrial development and I could not find records of an archaeological investigation being done there before the plant was built. This is not surprising for the mid-1970s; however, a more extensive section of Rockland’s waterfront was buried recently by a credit card company, MBNA. Under the fill used there, in addition to any unknown prehistoric record, lie the remains of Rockland’s lime-burning, shipbuilding, and fish processing past.
3.7 Notes on the Text, Chapter 3

As is the case with many words of Native American origin anglicized by Europeans, Catawamteag has more than one spelling. The most common ends with “g” as I have used throughout, however, “k” is also used. A wooden schooner built in Rockland in 1864 carried the name *Catawamteak*. She was
148 tons, 81 feet in length, 23 feet abeam, and drew 9 feet (Fairburn 1955:3422).
CHAPTER 4. TWENTY-FIRST-CENTURY ROCKLAND

4.1 Art Galleries?

Driving into Rockland or arriving by boat, today, one would likely notice quickly that the waterfront dominates the city and is its focus. Even before venturing along Main Street and looking into the shops with names like “Fine Things,” “Art of the Sea,” the “Gallery at 357 Main,” “The Farnsworth Art Museum,” and “George Fine Jewelry,” one would surely park in the town lot and enjoy the waterfront activities from the city dock. A recent addition to the water’s edge, MBNA, a credit card company, shares dominance with long-time Rockland employer of 150 workers, FMC BioPolymer, manufacturer of seaweed extractives (MCRPC 2002). Rockland’s waterfront is one of mixed-use today. The state ferry terminal, some boat storage yards, the city fish pier, a couple of marinas, machine shops, and some stretches of unused waterfront present a confused picture. Residents know that the harbor has saved them from oblivion more than once, and some fear that their city government is not grasping the opportunities it offers today. At the harbor’s north end a large parcel of land with deep-water access goes virtually unused and along much of the extensive waterfront, large and small parcels are underutilized or ignored, ripe for rapid development by individuals or corporations with their own interests rather than Rockland’s larger interests at heart.

Lewiston, Maine is a city similar to Rockland in many ways. Although Lewiston is much larger, with a population exceeding 35,000, industrial interests built both, and both remain largely blue-collar. Lewiston grew because of the waterpower available to industry from the Androscoggin River; Rockland has its harbor. Textile mills, similar to those in Lowell, Massachusetts took advantage of the river and a canal system and
employed thousands for many years. The Lewiston landscape offers the social structure of its heyday through architecture and the spatial arrangement of its material culture. The finest homes were located closest to the river and mills, the workers homes were farther away, in rings of diminishing value. Unfortunately, when the textile industry went south, its waterpower became completely unimportant and Lewiston went into decline. Its main street, Lisbon Street, is an example of the worst of America’s defunct main street economies. It is much like Rockland’s Main Street just a few years ago. In a single insightful phrase, a former Rockland harbormaster got to the heart of both cities. He told me, “Without the harbor, Rockland would be Lewiston” (Rich 2002). The harbor is Rockland’s most valuable and vital resource. City officials must look to other coastal cities that have made serious mistakes on their waterfronts. Examples of poor planning, or no planning abound and Rockland has the opportunity to learn from mistakes made in Portland, Boothbay Harbor and other coastal towns.

4.1.1 You Can’t Eat the Scenery

Figure 11 is not Rockland or Lewiston, but could be easily taken as either Rockland in 1995, or Lewiston today. The image is a photo I took in 2001 on the waterfront main street, downtown, in North Sydney, Cape Breton Island, Canada. Sydney and North Sydney were, until the end of the twentieth century, thriving industrial ports. Sydney residents ran a steel mill in their city; coal mining dominated Sydney Mines and North Sydney, although the region as a whole engaged in coal mining; and both cities (on the same large, open harbor similar in character to that of Rockland) were home to commercial fishing fleets. Sydney’s fishing vessels evolved as Rockland’s did; small sailing vessels in local waters, dory trawl fishermen offshore, then with the internal
combustion engine, otter trawling and longlining dominated. Today, fishing has less of a presence there than in Rockland, just one processor opens on a part-time basis, serving a single arctic surf-clam boat as it lands its catch. Workers, otherwise unemployed, stand on-call and when the ship arrives, they have a few days’ work opening the clams, removing and cutting the meat, cooking it, and preparing the product for shipment to Japan. North Sydney is a ferry terminal for ships serving Newfoundland, and a dozen small lobster boats work out of the harbor, once so filled with fishing vessels that wharfage and mooring space was difficult to find; a scene hard to imagine today with the huge harbor empty, docks, and wharves falling apart, and businesses on the waterfront boarded up.²

Fishermen working out of North Sydney made a good living in the past, but many draw welfare today, a situation that embarrasses them and causes social problems in their
city. Draggermen or groundfishers averaged $80,000-90,000 CDN (dollars, Canadian) a year (similar to, if not more than those men on Rockland’s redfish boats). Miners averaged $50,000 CDN, enough to live comfortably. One ex-miner explained that just a couple of years before, he was making “better than average money” since he had been working in the mines for many years. Today he is one of a few people he knows from his mining days that has a job. He is a security guard and makes $7.00 CDN per hour, part-time, 20 hours per week maximum. The miner/now guard has taken the collapse of mining and fishing hard and considers himself typical in that way. “People were doing well, but didn’t put anything away, so when the coal, steel, and fishing jobs ended, it was really bad” (2001).

Rockland survives in better condition than North Sydney because it is close to a large population center, eastern Massachusetts, from which tourists can readily drive to Mid-coast Maine. The northern coast of Cape Breton Island is one of the most beautiful places I have ever seen, and a few tourists visit the area, but not enough to transform the city of Sydney. There will likely never be enough tourism there to replace the resource-based economy that so recently failed; despite the landscape; it is simply too far from major population centers. Other areas of the Maritimes that are close to major cities have similar scenery and natural areas and are in competition with one another for a limited Canadian and American “scenic tourism” market.

Rockland has the harbor and scenery, and a population with disposable income close enough to help drive the city’s reinvention and economic turnaround. Massachusetts residents comprise 40% of all visitors to Maine that make overnight stays,
with Boston alone sending 36% of visitors who live in “urban sources” (Longwoods 2001:49-50).

During the summer, Rockland’s Main Street and waterfront are busy, and the city makes efforts to keep it that way. Events such as the lobster festival and blues festival draw locals and the wooden boat show, for example, attracts visitors from long distances. Friendship Sloop Days, a celebration of one of Maine’s most popular sailboat forms takes place in Rockland Harbor. The sloops were workboats, lobster and fishing vessels with large cockpits and small houses, big rudders and easily-handled gaff sloop rigs. Their name is from the town, Friendship, where their designs evolved and boatshops built a great many. Friendship held the celebration for years, but as it grew to attract tourists and outsiders, Friendship, whose residents hold such people in disdain, no longer wanted to sponsor the event. In an effort to control, or really eliminate tourism, Friendship remains a “dry town,” one of just a few on the coast today where one may not purchase or consume alcohol in a public place. Restaurants and hotels in dry towns have little chance to thrive in the short tourist season, with no place to stay or eat; tourists spend little time in Friendship.

Rockland, with an alert and energetic chamber of commerce and harbormaster, was glad to host the boats and their many admirers (see Harbormaster Rich in Chapter 7). A former member of the chamber explained that the art museum and festivals drove Rockland’s recovery from its low point after the collapse of the fishing industry. A number of “outsiders and some forward-looking insiders” brought in some money and talent to get the “always hard-working” city turned around. “Rockland is a bootstrap
community, it doesn’t wait for the government to bail us out; we never got state money for schools, for example” (Merriam 2002).

With the waterfront as the stage for summer events, outsiders know nothing of the backstage. Visitors, even those on extended vacation stays in the city or nearby, know nothing of the quarries or of Rockland’s industrial heritage. As discussed in Chapter 5, there is little to see of lime’s long-term domination of the city and only a few residents, Dave Hoch and Gil Merriam foremost among them, would like to share that part of their home with tourists and newcomers.

The Maine summer is short; traditionally July 4th to Labor Day is the tourist season. While other towns get progressively busier during June, Rockland is still rather quiet until into July. On June 24, 2002, the harbor was surprisingly empty of boats, restaurants were quiet, and vacancies in motels, hotels, and campgrounds were in abundance. As in previous summers, that situation ended abruptly as July unfolded.

During the summer of 1999, when I first returned to Rockland to investigate its remnant New England fishing industry, I was astonished at the transformation the city had undergone during the dozen or so years I had not visited. When there last, the Rockland I had always known still showed; it was an industrial city, an industrial waterfront. The harbor was polluted, smelled horrible even in the cold of winter, and Main Street and Tillson Avenue were places to avoid at night.

My 1999 efforts to record the fishing-related cultural landscape revealed striking changes in Rockland. Yachts had replaced fishing boats in Rockland, a sight I would never have expected to see given the town’s traditional image as a working class, groundfishing town. Main Street’s businesses thrive, they are not boarded up as some
were ten years earlier, and the shops catering to Knox County’s working class were gone, moved to the edge of town; expensive jewelry stores, coffee shops, and seven art galleries had taken their places.

Main Street, Rockland, is U.S. Highway 1. The heart of the commercial zone, Rt. 1 is a one-way street for several blocks, and heads north past the ferry terminal where it becomes two-way again. As mentioned elsewhere, drivers usually found it convenient to miss Rockland’s downtown. In 1951, the state completed Business Route 1, or Route 1 By-pass so that traffic traveling north or south on the coastal highway could avoid most of the city. Rocklanders were mostly pleased with the idea of lessening traffic through the busy waterfront area. In other towns along the coast, however, residents (merchants particularly) fought harsh battles to defeat proposed by-passes. Camden, where Route 1 is a bottleneck in the winter and traffic disaster all summer. The citizens prefer these traffic problems over visitors and spenders missing their town. Similarly, Route 1 in Wiscasset is without doubt the worst traffic problem in the State of Maine, largely because merchants have successfully fought by-passes for decades. Again, Rockland’s industrial interests considered the “cutoff” a good idea; however, today, Rockland’s tourist interests do not. While one may still see small signs for the by-pass, the signs encouraging drivers to use it to avoid Rockland on the way to Camden, especially, are now gone (see section 4.7 below). Although many of Rockland’s working-class citizens complain bitterly about the summer traffic, the city’s merchants, harbormaster, tourist information bureau, and others want the occupants of all those cars seeing their waterfront and downtown, not avoiding it.
4.2 Credit Cards in Rockland

I returned to the area in 2001 to begin work on this project and found even more profound changes, especially on the waterfront. Rockland harbor had lost its industry and industrial look and was becoming a place of leisure and recreation. One lifelong resident explained, “It’s beginning not to look like Rockland anymore” (Rockland resident 2001). Another man who laments the loss of the city’s industrial base told me that he is concerned that the city does not make anything, has no real products like it did in the past (Rockland resident 2001, 2002). He referred me to a new, expansive, and expensive waterfront telephone-call-center complex built by a credit card company, MBNA. Fisher Engineering, a snowplow manufacturer, was on the site in 1999, but that company moved into new, more efficient facilities at the industrial park. MBNA, with a speed that alarmed many citizens, filled in a long section of the waterfront and buried some old industrial sites. MBNA has both supporters and detractors. Members of both groups wonder, however, why a credit card company would locate such a large facility on Rockland’s waterfront. They question whether a call-center like MBNA is the best use of their most valuable asset and the heart of their city. One man offered, “It’s our harbor, and it’s not locals who are doing this, except for a few maybe, it’s people from outside.” He added that he did not think that MBNA would be around long in the twenty-first century economy; “We can get that fill out of there and move some industry back in just as fast as they got in here” (2001).

MBNA has a strong presence in other coastal Maine towns, Camden and Belfast especially; however, their facilities are not on the waterfront. Wondering why they located there when they could have taken advantage of the same workforce in transition
in the industrial park, residents told me it was “because they can.” The MBNA grounds are lavish; the building is filled with fine art along with reminders that each worker should “Think of Yourself as a Customer” (MBNA signs over doors, etc., 2002). MBNA hosted a historical society meeting that I attended (see Chapter 5) one Sunday in June 2002. Upon leaving, an elderly man asked me what I thought about the lavish furnishings, finishes, and art in the building and the manicured grounds outside where crews had recently planted hundreds of mature trees. He had a cane in one hand and took my arm in the other. I do not know him and never saw him again after that afternoon, but he asked me “How many people did they bankrupt to do this?” I said, “You should have asked them.” He responded, “They’d have thrown me out” (2002).

A few think that MBNA is central to Rockland’s transformation, bringing money and a good business attitude to town in addition to changing Fisher’s industrial site to a park-like setting with a harborside boardwalk open to the public during daylight hours. Residents reminded me often that the company had been generous with public projects, schools, libraries, museums, etc. A few others wanted me to know that with MBNA, “image is everything” and that the company got involved in local projects to ingratiate themselves with locals. “They have the waterfront because they can—it’s all about power,” neighbors to the facility told me. Residents in the gentrifying working-class neighborhood at the edge of MBNA property are concerned about their property values and future displacement issues, especially because, they said, Rockland city officials “… gave them [MBNA] everything they wanted.” “We had meetings; they put on a show of concern, but steamrolled the neighbors” (2001). A representative of MBNA told me that
they currently have 300 employees at the Rockland facility, but will eventually increase that number to 600 (2002).

Figure 12. *Where is our view?* A sign reflecting the sentiments of a group of neighbors whose view of the sea was blocked by a screen of evergreen trees MBNA planted across the street from their homes (2001).

4.3 Displacement, Resentment, and Some Resistance

MBNA is accelerating the gentrification of the Rockland waterfront, although the process was underway to a small degree before the credit card company arrived. Some nearby residents are hoping that their homes will gain enough value that they can sell them and “take the money and run.” Others, like the man who made the sign in Figure 12, fear that he will be unable to keep his home due to its rising value and the resulting increased property tax.

As in other places where a tourist industry brings people who have more wealth than the native population (Haiti and other Caribbean Islands where cruise ships land wealthy visitors), the gap between the rich and poor is becoming a problem in Rockland. The city has experienced a number of troubled times, especially in the last decade of the
twentieth century, and has continually managed to survive. Today, less obvious at first look, and fully unacknowledged by residents, the new, re-invented Rockland has some social problems that, going unaddressed, will have a profound and negative effect on the city’s future, particularly if tourism becomes the dominant focus of the economy. During Rockland’s industrial past, the blue-collar population dominated, but the business owners and operators were Rocklanders as well; they lived among the workers, on a year-round basis and they faced the workers whose lives depended on their businesses and decisions every day. Today, in the emerging service economy, Rockland’s workers occupy a city with multiple personalities, one of which feels the need to fight the others; it is a community at odds with itself, at its own expense.

“We’re artsy in Rockland now, the Farnsworth [art museum] and the Wyeths; art galleries instead of taverns and bars, up-scale shops—the museum draws busloads and they have money to spend” a city employee explained (1999). This is what many of Rockland’s residents have wanted for a long time, and along with the collapse of the groundfishery, these changes permitted the transformation of Rockland into more of a tourist town.

Waterfront property is at a premium, in Maine as elsewhere in the U.S. Steep, rocky bluffs where people would not have considered building 50 years ago now serve as sites for seasonal homes. Taxes on properties on the water or those with a water view have risen so sharply that, over the last 25 years, fishing families and others who made their living at the edge of the sea are now unable to afford to keep their family land. Along most of the coast, people sold out long ago, but Rockland was industrial. It is experiencing pains that other towns dealt with in the 1970s and 1980s. Rockland’s new
(artsy) image and the income gained by merchants and hotel owners, some of whom are outsiders or might live elsewhere during the long winter, cause the under-employed working class to feel resentment and anger. These issues surface regularly during the tourist season. Tourists have choices about where they go and spend their money, and many of Rockland’s year-round residents would prefer that summer tourists and visitors choose somewhere else. I do not think it will take long for the work of the chamber of commerce to become nullified by angry residents who do their best to be insulting, unfriendly, and, at times, even dangerous in their “us” against “them” efforts. During the two summers I recently spent in Rockland I witnessed dozens of situations in which tourists were abused by locals, verbally or through gestures and other actions. Coastal residents should realize that, unfortunately, their fellow Mainers inland have even fewer choices and less chance for positive change in their economic situations. This community would benefit from recognizing and addressing resentment issues if tourism is to be a meaningful factor in their economy, but the problem of the “haves” and the “never-will-haves” will likely continue to haunt Rockland as it does other towns and cities where the working class has been, or feels displaced, and where year-round employment opportunities are limited and some formerly independent and self-sufficient workers feel forced to cater to tourists (outsiders/interlopers).

Main Street and the commercial side streets that intersect with it and comprise the city’s downtown have 75 retail shops.

The Rockland downtown is changing its complexion reacting to changes in the community and the competition. Rockland’s downtown has shifted away from supplying daily need goods to more specialty shops and increasingly oriented towards tourism (RCP 2002:19).
Not everyone in the city thinks that the trend is good and some residents resent feeling excluded from their own downtown. “Well, it isn’t all good, you know; the locals, working people, can’t shop on our own main street, it isn’t all good” (Rockland resident 2001).

4.4 Not Just Art

A casual tour of Rockland today would belie its blue-collar nature as well as its industrial heritage. The waterfront and Main Street, the residential section, and much of the landscape on the highways into Rockland would give the first-time visitor the impression that Rockland is “artsy.” The quarries and industrial park are easily overlooked; the yacht storage and repair yards blend in with the recreational setting the harbor offers in summer, while the shipyard where workers haul and repair commercial vessels is at the south end of the harbor out of sight (see map, Figure 53 in Chapter 5).

A more careful look at the city will reveal that its working class is a significant and important sector of Rockland. A visitor can see the south end shipyard from an underused city park nearby. On the periphery of the residential area, one can find older mobile homes and dilapidated housing, but there is little in Rockland as a whole. The industrial park, one of the few successful ones in Maine, is on the edge of town, out of sight and not a place that is easy to find or that a car full of tourists might happen upon. The city first developed the park in 1974; it covers just over 90 acres, and was, in May 2002 fully occupied (RCP 2002). Fisher Engineering is a recent addition to the park with 180 employees, and most of the city’s other major employers are there as well. In June 2002, the 29 businesses in the park employed 989 workers; however, unfortunately, the largest employer there, Nautica, a clothing business, is presently moving out of Rockland,
leaving 308 people to find other work (MCRPC 2002) The year-round jobs Nautica supplied to that many people will be difficult to replace; tourism, even at its best, will not benefit Nautica’s unemployed. Despite losing one large company, the industrial park has allowed Rockland to move away from the single-industry focus that made it vulnerable to difficult economic times such as it suffered when lime sales fell due to lack of building in distant cities, and when fishing stocks collapsed. Rockland officials and residents consider Rockland a service center for the surrounding area, but this role is limited. Fortunately, 70% of Rockland’s working population work in Rockland, the remainder travel to nearby Rockport and Camden, and a few travel as far as Bath to work in the Iron Works shipyard (RCP 2002).

Dragon Products Company, just over the border in Thomaston, is a major employer in Knox County with 125 employees. The plant, a cement manufacturer, is located adjacent to the area limestone deposit (see Chapter 5). Dragon property covers 1,200 acres and the plant is a long-time fixture on Highway 1, the region’s largest and most busy road. When I was a child traveling Highway 1 in the family car, flagmen would often stop traffic and make us wait when quarry workers were ready to blast. After the explosion, they let us proceed through the dust; even in summertime, we would roll up the car windows to limit the white powder collecting on us. Both sides of the road were white, year round. The dust from blasting and from the plant itself blanketed the buildings and vegetation nearby. Today, there is little dust in the area; Dragon has greatly reduced the dust that escapes through their activities.

Dragon is presently (December 2002) awaiting word from their parent company in Spain about a decision to expand and renovate the aging plant that was built in 1927.
The kiln they operate is known as a rotary kiln (see Chapter 5). The renovation would allow the plant to reduce kiln length by half and thus require considerably less fuel to burn their lime. At present, they run 24 hours per day and burn approximately 10.5 tons of coal/coke per hour. The increased efficiency would keep the plant competitive and assure its operation in the foreseeable future. Dragon is the only cement plant in New England, but is threatened by competition from a plant in New York. Distance to markets is a problem for Dragon, as it was for earlier businesses using the same limestone deposits. They currently own a 4,000 ton capacity barge in which they send cement to Boston on a regular basis. The company has a diesel locomotive and some railcars that take the product, in bulk, from the plant, along Highway 1, into Rockland and through that residential district along a railbed that has carried limestone, and now cement, for more than one hundred years, to the old Maine Central Railway wharf, where their barge lays. The short trip to the dock is the only rail travel that Dragon’s product experiences. A company official explained that they have, unfortunately, found rail transportation to be unreliable, so aside from the small portion of their output that goes by barge, most cement they manufacture is carried by trucks. They sell approximately half of the cement they manufacture in Maine and the rest goes to Massachusetts (Curtis 2001).

Dragon does sell agricultural lime, but it is a small part of their business. Most farmers in Maine now hire fertilizer contractors who drive tank trucks equipped with sprayers over the fields. They apply a liquid mixture that includes lime and other agents. Other lime companies (see Chapter 5) produced agricultural lime and it was the last product made from limestone on the Rockland waterfront. The Rockland-Rockport Lime Company produced a 32-page booklet to promote their agricultural lime business in
1906. Entitled *Liming of Soils and Spraying: A Practical Treatise for Farmers, Gardeners, and Crop Specialists*, it provided tips on many uses for lime in addition to liming soil. Mixtures of lime made fungicides, insecticides, disinfectants, and “washing compounds” for use in “henneries” and milkrooms (R-R 1906:5).

In the earlier history of our country, when the soil was rich from the gathered compost of ages, a person of limited intelligence could plow, scatter seed, plant and hoe, with good assurance of abundant Harvest. But the exhaustion of years has changed all this, *and the farmer who hopes to exceed must bend every energy to acquire a knowledge of the soils he has to deal with, the seed he uses, the necessary plant foods, the implements and appliances* (R-R 1906:2).

Dragon’s quarry workers number 13; they work five days per week, but 10 hour days in order to keep the kiln fed with raw materials. Some of the limestone Dragon now quarries is of less than desired quality, even for cement (see Chapter 5). The quarrymen blast stone out of the ground and must sort it, sending the useful stone to the plant and the

![Figure 13. Giant dump trucks fill an abandoned quarry on Dragon property (2002).](image-url)
poor quality stone to a mountainous waste pile adjacent to the plant and to abandoned quarries nearby (Hoch 2002). In the photograph above, huge dump trucks carry the overburden or soil/rock mix removed from a new section of the limestone deposit that Dragon plans to quarry. They rapidly fill an old quarry that men opened by hand, with shovels and picks, over one hundred years ago. Horse-drawn wagons carried their stone down to the waterfront. The trucks shown move an amount of material in each load that would have astonished the quarrymen of 1850 (see Figure 13).

4.5 Vacationland and Blue-Collar Land

Industrial Rockland was not the tourist destination so many Maine Coast cities and towns were. Tourism has long been an important industry in Maine; Bar Harbor, for example, is widely known to have been the summer playground of the extremely wealthy beginning in the late 1800s. Yachts have brought business to Maine since the late nineteenth century as well; Mainers built them, sailed them, and served them by supplying food, fuel, and maintenance. Today, the owner of a large motor yacht stopping in Camden for a few days may spend thousands of dollars on fuel alone. Rockland, with its harbor cleaner than anytime during the last one hundred years would like to get a more meaningful portion of the yacht business (see Chapter 7, harbormasters). While the coast has been the destination of many, the interior had its share of “rusticators” as well; hunting and fishing has brought visitors to Maine since railroads began making inland areas of the state accessible in the 1870s.

In 1882, the Maine Mining Journal published a column “From an Occasional Correspondent” that recognized the growing industry of tourism in the state.
Instead of being a good place to emigrate from, it is attracting visitors from all parts of the Union. The future geography will say: Maine is not only noted for lumber and men, but also for mines, ice, and summer resorts (MMJ 1882b).

Mines never amounted to much in Maine, the ice industry died abruptly with the advent of mechanical refrigeration, but summer resorts thrived for many years. Grand resorts at Poland Spring, Boothbay, Bar Harbor, Moosehead Lake, and Rockland had visitors who arrived by rail or steamer, often with their own servants; they stayed for the entire summer. The Samoset, Rockland’s only resort, stood on the north headland of Rockland’s harbor was far enough out of the industrial zone to attract and keep visitors. The hotel was built in 1902, expanded in 1906 and had 200 rooms, 700 feet of veranda, and a dining hall that seated 310 (Thomas 1910). The Samoset is adjacent to the breakwater and has had a golf course since it began operation and it continues today. The original hotel burned in 1972 and after some false starts, the new Samoset has become a popular destination for the well-to-do.

“In 1893 the commissioner of industrial and labor statistics estimated ‘the pecuniary result to the state’ from its summer resort business is not less than $10,000,000 annually” (MacDonald 1897). From the same article, Maine in Summer, published in 1897:

The future of Maine as a summer resort is a matter of vital consequence to the people of the state. There can be no question that the summer-resort business is already nearly, if not quite, the leading industry in Maine; and there seems to be good reason for thinking that its rank in this respect will be maintained for a long time to come (MacDonald 1897).

The state continued to court tourists and promote its summers. In 1927, the state legislature created the Maine Development Commission to do just that and one idea that became a reality was to have the word “Vacationland” on the motor vehicle license plates.
for the state. A bill to do this was signed into law on April 6, 1935 and the 1936 license
plates declared Maine as “Vacationland” (Thomas 2002). To the dismay of not a few
underemployed residents, it remains on every plate today.

“Unlike so many other Maine coast towns, Rockland is not particularly impressed
with tourists and summer trade money” (Rich 1962:227). That was true when it was
written; Rockland had its hands full with the fishing industry, an endeavor not compatible
with summer visitors given the smells and polluted harbor, as well as the rough nature of
some of its residents. Rockland resident and journalist Meara (2001) wrote of the
changed character of Rockland and its Lobster Festival, bemoaning (not wholly tongue-
in-cheek, I think) the cleanup and social sanitization of his city (see Appendix B for
entire article), he begins:

The Maine Lobster Festival has come a long way, as has the city of
Rockland, unfortunately. They both used to be wild and wooly and they
would give you as much trouble as you wanted. Even if you didn’t want.
One festival night we walked down the stairs to the Red Jacket Lounge
with some effete visitors from Plymouth, Mass. Out the door came a gang
of locals, bleeding and bandaged. The Plymouth types stopped in their
tracks, refusing to go in. We wondered what the problem was.3

Rockland was proud of its tough image, for a time. A letter from the city manager
included as a greeting for a business guide, Rockland Maine: Home Port of Industry
(Devine 1977:2), offered the reader a quote from another journalist, Caldwell:

This is a muscle town filled with beauty—the mixture makes Rockland
one of the most fascinating towns in Maine.

Caldwell (1981:186) wrote later about Rockland in the early years of the
twentieth century:

Rockland was a boom town, Barbary Coast style, in those days of the
quarry boom. Special boats ran out to the quarry workers on Hurricane,
Swan’s, Vinalhaven, Crotch, Dix and High Islands to bring the big
spenders into town for Saturday night. Several hundreds of lonely men, with lots of money for a fling, descended on Rockland’s waterfront. It was a blazing place. More than thirty steamships and hundreds of coasting vessels, plus the ships of Rockland’s huge lime trade, crowded the harbor. Bars, whorehouses, gambling joints, and dance halls catered to sailors and quarrymen. Fights blazed, and jails filled. And the money poured in.

The “wild and wooly” is not in Rockland’s distant past; I remember it; I spoke with fishermen who helped make it that way; Meara and Caldwell wrote of it; there are few residents in the city who acknowledge that character. Just as new landscape elements hide Rockland’s industrial past, its social memory (in denial) hides much of its most interesting cultural character.

By the early 1990s, the fishing industry was collapsing, and Rockland had some economic and social problems. The air smelled better, the fish meal, rendering plant at the north end was gone and Rockland could begin to shake its image, but it would take some time. During my thesis research in the summer of 1999, many people mentioned that the fish smell was an ever-present element of Rockland life. The port agent noted that, in the past, one would often hear: “That’s the smell of money,” and a worker at the Rockland tax assessor’s office was one of several people to mention another old saying about Rockland and its up-scale resort-town neighbor Camden. “It used to be Camden-by-the-sea,” she noted, “and Rockland-by-the-smell” (Fagan 2000:79). They were showing pride in their busy, industrial town, however, not disdain.

Rocklanders are still sensitive about the smell issue. Waterfront zoning regulations in Rockland do not prevent the building of hotels or restaurants, but even in the zones designated as primarily commercial and maritime areas “any use which is obnoxious or offensive by reason of odor, fumes, vapor, dust, smoke, gas, noise, or
vibration is prohibited…” (Rockland 1996:290). FMC, the seaweed plant, has a waste product from its processes that it takes to the Rockland city dump. It is particularly aromatic, especially in warm weather, and dump workers apply hydrogen peroxide to the material in an effort to neutralize the smell. They bury it as promptly as possible, however, it is potent and, if the wind is wrong, objectionable widely. One resident told me that “they even have big air freshener sprayers” (2001), however, I interviewed the dump manager in 2002, and although he knows the odor is a problem that keeps people away and property values nearby the dump low, he can not eliminate it; there are no giant air fresheners (Rich 2002).

The downtown shopping area is a tourist-friendly section of Rockland, but it was not always such. One of Rockland’s post-fishing problems was a declining main street. In May 1992, the mayor reluctantly gave in to pressure from citizens who wanted the benches along Main Street removed because of rowdy local residents. Merchants had been pressuring the city government to remove the benches because they “give people who misbehave a base for their troublemaking” and that “if there were no benches, they would have to keep on moving” (Betts 1992a:22). Various business interests explained about the ways that rowdy loiterers were intimidating potential customers and driving away business. Conditions deteriorated further after dark along the business section. A restaurant owner explained: “Many patrons who eat lunch downtown will not eat dinner there because of the activity on Main Street.” He continued, “The language used by the trouble-makers is terrible” (Betts 1992a:22). Another resident “said he refuses to allow his teen-age daughter to walk on Main Street in the evenings because of the rowdiness” (Betts 1992a:22). Just a few years earlier, locals had “taken over” Main Street after dark,
virtually shutting down all business for months (Rockland resident 2001). The problem
then was that Dobermans, Pit Bulls, and Rottweilers, large, vicious dogs often trained as
fighting or guard dogs, had become popular in Rockland and other urban centers.
Adolescent and young adult owners of these dogs congregated on Main Street with their
pets and residents were reluctant to enter the area. Eventually, the city passed and
enforced an ordinance banning all dogs from the downtown area. Today, one might see
the occasional fluffy pet at the end of a leash held by a tourist walking on Main Street,
with local law enforcement personnel ignoring the infraction. But, quick action would
result if someone entered the reinvented “Historic Shopping District” of downtown with a
snarling, drooling Rottweiler.

On May 11, 1992, the city council voted unanimously to remove the downtown
benches and by the 14th, crews began the task (Betts 1992b:1). The council wanted the
benches removed on a temporary basis while a design could be produced that would
“make them less attractive to people who use them to watch traffic and shout
obscenities,” however, the mayor explained that redesigning the benches could “take a
long time” (Betts 1992b:1). Police had to enforce a curfew in the commercial zone,
especially on Main Street, unfortunately, curfews do not stimulate business; Rockland
had some serious problems.

Unemployment and economic distress drove Rockland’s social troubles, and the
superintendent of a drug enforcement unit who worked in Rockland for five years in the
early 1990s explained that when fishing was good, the “binge mentality” fishermen are
known for (and that I have written of elsewhere) brought cocaine into the city in large
quantities (RDEA 2002).4 Some fishermen and truckers, known as the “Rockland Mafia”
had built a significant cocaine business and were not averse to violent acts, including firebombing, when they perceived it necessary. After a short time, the city “made a transition to heroin” and Rockland led the region in heroin use and processing in 1993-1994 (RDEA 2002).

Unfortunately, Rockland was on the receiving end of a big marketing push by Colombians to develop a big heroin market. It came to Rockland very pure and very inexpensive, this was a nationwide effort, and it reached Rockland (RDEA 2002).

Fishermen, working out of one New England port south of Maine, transported the illegal drugs into Rockland.

It was pure enough to snort, but the end result is the same as with needles; it was part of a continuum and the time was ripe for it. The blue collar and marine industry took to it (RDEA 2002).

“Motorcycle clubs spring up where economic decline has taken place” (RDEA 2002). Two motorcycle clubs ruled parts of Rockland at different times. During the 1970s the NSKK (named for Hitler’s motorcycle troopers) were at their peak in Rockland and in Augusta, the state capital, but vigilante residents wanting them out of the area firebombed and burned their clubhouse. Later, into the late 1990s, the Saracens Motorcycle Club had a place in the city, but did not stay long, just two years. In between, another short-lived club affiliated with the Hell’s Angels had a presence in Rockland, but were “not so much a Rockland club” (RDEA 2002).

The 1990s were not the first time Rocklanders had used cocaine. The substance was an ingredient in many patent medicines, especially late in the nineteenth century, and Rocklanders used these potions as much as anyone else did. “Dr. Kings Pills” and others with large amounts of cocaine among their ingredients, kept quarrymen and shipbuilders at work and helped them work through minor injuries. In 1884, the *Mining and
Industrial Journal published in Bangor, Maine, carried an advertisement aimed at workers and industry management for “Coca Plug Tobacco” and “Cocarettes” (see Appendix C):

Coca Plug Tobacco
This tobacco is made from the finest selected Kentucky White Burley Leaf, and the extract of genuine BOLIVIAN COCA. Coca is a great NERVE TONIC and when combined with tobacco it counteracts the injurious effects of the NICOTINE upon the system. COCA PLUG is the finest piece of tobacco ever placed upon the market.

Cocarettes
These are a new brand of cigarettes, made by mixing in proper proportions the Coca leaves and the finest Virginia Tobacco, making a most pleasant and agreeable smoke. They have a pleasant, genial, excitant influence, removing fatigue and languor.

Try COCA PLUG and COCARETTES and you will always use them. Manufactured by the Drummond Tobacco Co. St. Louis, Mo.

A.R. GOULD AND CO.,
Wholesale Agents, Bangor [Maine]

Grog was another important substance on the manufacturing scene, especially on Rockland’s waterfront where shipbuilders considered it part of their pay. I worked with a boatbuilder whose father had considered it such and Rowe (1948:127) explains the custom in the early part of the twentieth century:

On frosty mornings, before work was begun, the men gathered in the shipyard store. There they were served their portion, consisting of a tumbler of rum and two of water. Sometimes “long sweetening” or molasses was added. This mixture was known as blackstrap. This was repeated at eleven in the forenoon and four in the afternoon.

I am not sure that I would have wanted to work around men running saws and handling sharp tools after they had consumed three glasses of rum.

A few weeks after his article describing bench removal and social problems in the city, Betts (1992c) outlined some of the economic problems that led to Rockland’s social difficulties. Some people who had lost manufacturing jobs that were year-round
and provided worker benefits were forced to take service sector jobs that were part-time or lacked benefits.

Eric Hagen, president of the Midcoast Development Corporation agreed. “You can’t buy a home, you can’t put kids through college on most service jobs.” Hagen said (Betts 1992c).

Rockland’s turnaround, as described above, was not painless, although it took place rather quickly. By 1999, Rockland’s motorcycle clubs were gone, bloodthirsty Rottweilers were out of the downtown, the industrial park was thriving, more than a few local yachts took moorings in the harbor, and Wal-Mart was crushing the other retailers that catered to the working class. Main Street was safe, if not from rude gestures and obscenities offered to those with out-of-state plates on their cars, but mostly from anything worse. Rowdy teens do collect on the new benches, and most shops close early in the evening. Unemployment, at least for those who want to work, is not a problem in summer. The city has made vast improvements in a short time. It is a city with great resources, especially its people, who are not willing to leave, even when going elsewhere might make better economic sense. Surely, some young people go; one mother told me that two of hers had left, but “they come back after a while” (2002). As a community, Rockland has some important choices to make; determining the best uses for underutilized space in the harbor and waterfront being the most critical and needing attention immediately. Good decisions in this area will insure prosperity for the city; poor decisions will doom Rockland to an unhappy mediocrity, having given away their most valuable possession, as have so many other Maine towns.
4.6 Rockland Today

The following are photographs I took in 1999, 2001, and 2002. I present them here to offer a view of Rockland today, and as an accompaniment to the above text; brief captions are included.

Figure 14. Fisher Engineering, moved from the waterfront to the industrial park, replaced by MBNA in 2001 (1999).
Figure 15. MBNA under construction at former site of *Five Kilns*, Fisher, and others, early summer (2001).

Figure 16. MBNA later in the summer, note appearance of numerous trees (2001).
Figure 17. Fisher Engineering, note smokestack (white with black top) in center background (1999).

Figure 18. MBNA, the same view as immediately above (2001).
Figure 19. A summer home for otherwise homeless men. This is a bench made from a board and some driftwood that marks the front of the beachside summer home of five men. They live in the space enclosed by the trees and brush where the rocky beach meets the steep embankment of the terrace where the Lime Rock Railroad once ran (see Chapter 5). Dark openings leading into their home can be seen to the left of the bench. They do not have a tent or other dwelling within; their only protection from the weather is the foliage, their sleeping bags, and plastic bags and sheeting. Many local people know they reside here each summer; the police do not bother them as long as they keep a low profile. Some nearby businesses object because of their toilet habits, but not strongly enough to have the men moved away. They stay drunk as much as possible and their loud, drunken arguments will scare away the rare tourist who might occasion by while beachcombing or just walking along the water’s edge (2002).
Figure 20. A business on the first corner of Main Street’s one-way section (U.S. Highway 1 north). Compare this to the next figure below. I took this photograph in 2001, T. Reed’s Billiards with a hand-written sign offering POOL, cold BEER, CIGS. In Maine, smoking in public places is banned. Reed’s Billiards shows some resistance by inviting pool players inside for beer and cigarettes (2001).
Figure 21. The same building as in Figure 20, one year later. No pool here; certainly no beer or cigs here now. T. Reeds is replaced by a more friendly news stand and video rental store. Note the benches in front, an “open” flag, and expensive overhead sign (with a “mom, dad, little boy, and little girl” painted on it telling us that it is now a “family place”) just behind the flag. This business portrays a character more desirable on today’s Main Street Rockland than the billiard parlor with its signs of resistance. T. Reeds still operates in a less noticeable place away from Main Street (2002).
Figure 22. Dragon Cement Company. Their entrance from U.S. Highway 1 just south of the Rockland/Thomaston border.

Figure 23. A busy yachting day in Rockland during the Woodenboat Show (2002).
Figure 24. The Rockland City Dump. Rockland has been dumping trash in this old quarry for more than 50 years. Current environmental regulations would not allow this type of dump, but Rockland’s customary use of this “grandfathers” this operation as legal (2001).
Figure 25. Main Street at Limerock Street, Rockland (see Chapters 2 and 5) (2001).

Figure 26. Main Street benches are back, but not very comfortable or inviting (2002).
Figure 27. U.S. Highway 1 north. A left turn here onto the by-pass would be the easiest route to Camden. A few years ago, signs at this intersection told the traveler as much. Today, however, Rockland wants the traffic to move along its main street, not by-pass it. At the foot of the gentle slope pictured here is the waterfront and Rockland’s Main Street (2002).
Figure 28. The Lauren I, the white boat, is one of Rockland’s working vessels. She is a herring carrier of traditional design and wood construction (2002).
Figure 29. The three-masted schooner *Victory Chimes*. She was one of the first to carry passengers in the “skin boat” or “dude schooner” trade in Maine. Her previous life was in the guano trade. She has many competitors today and Rockland is now the primary port for these boats that take people out along the coast for three, four, or six-day trips (2002).

4.7 Notes on the Text, Chapter 4

1 FMC was portrayed as a locally owned sardine plant in the recent film by Todd Field “In the Bedroom” (2001) filmed in Rockland, Rockport, and Camden. The “Spear Kiln” discussed in Chapter 5 is pictured in the opening minutes of the film. Rodney Lynch, Rockland Community Development Director who kindly supplied Rockland’s current labor and economic data for this project was acknowledged in the film for having loaned the film company some artifacts to lend authenticity to the work.

2 The North Sydney Historical Society, whose members were willing to share any materials they possess, displays enlarged photographs of Sydney Harbor at it height. Dozens of crowded wharves served hundreds of fishing vessels of all description, along with their crews who took advantage of their brief time ashore in ways similar to those landing in Rockland.
On May 10, 2002, I wrote to Meara at the Bangor Daily News. In my letter, I explained my project and how Rocklanders were reluctant to talk to me about some qualities of their city: the low point in the 1990s, and the rough, Sea Street, bar fight Rockland that I myself knew. I had hoped to meet with and interview him. He never responded.

The name of this informant and the date and location of our communications are, of course, withheld for security reasons.
5.1 Long-Term Domination

David R. Hoch, last president of the Rockland-Rockport Lime Company, had promised the city that he would have the massive waterfront gas-kiln plant torn down when the company finally closed their last operation there in 1975 (Hoch 2001) (see Figure 30 below). By doing so, he ended the era of lime manufacturing and processing in Rockland that had been a presence (in varying degree) on Rockland’s littoral landscape for 190 years. Dave kept his word, demolished the gas kilns, and sold them for scrap.

Figure 30. Postcard of gas kilns, ca. 1924, courtesy of Andrew Curtis.

With the kilns gone, Dave had opened up a 12-acre parcel of waterfront owned by the lime company; it was ready for new development. Dave had started another business, R&R Engineering, as a subsidiary of the lime company, but R&R took up just a small part of the land. For the rest of it that was going unused, Dave envisioned marine related recreational facilities and businesses that would use the property to its maximum
potential. Unfortunately, Seapro, a fish waste rendering plant was already on one corner of the large lot that reaches out into the harbor. Seapro needed cold salt water in their processing and production of fishmeal and fish oil and thus required such a waterfront location. Trucks delivered most of the fish waste from other fish plants, although at times, some arrived by boat at Seapro. “The plant processes up to four million pounds of fish and fish waste a week…” (Langley 1974:13). Fish waste trucks leaked and slopped-over at corners and stoplights. The un-refrigerated slurry they carried had a strong odor at anytime of year and the plant itself produced a strong “rotten fish smell” that drifted over the entire waterfront much of the time. The plant operated in Rockland to serve numerous nearby fish processing plants, but many residents objected to its presence. The plant originally received a warm reception; in 1959, the “Harbor and Waterfront Department” statement in the city’s annual report read: “Another new firm, SEA-PRO, Inc., has established itself along the waterfront north of the Lime Company dock and is a welcome marine industry added to our harbor front” (COR 1959:35). The company was not a welcome neighbor forever, especially after most of the other fish plants were closing and the city stopped dumping raw sewage into the harbor. Seapro began getting the blame for holding Rockland back from a bright future: “They stunk up the whole damned city;” the harbor “stunk like hell” (Rockland residents 2001).

A few months before he tore the kilns down, The Maine Times, a statewide weekly newspaper, sent a reporter to interview Dave for an article that explained the dilemma he was in, owning a huge piece of property on Rockland’s waterfront but getting no direction from the city, or help from its master plan.

Hoch looks at a mile-long strip of Rockland waterfront that soon will house virtually no buildings but Seapro and feels, “With the land almost
bare, someone should have been able to tell me what the highest use of the land should be” (Langley 1974:12).

Dave Hoch realized that the lime company property would be difficult to sell with Seapro there, and he was afraid that his dream for mixed use that included recreation would never materialize because of the strong smell of decaying fish; it never did. He continued to seek advice and support from the city, but none was forthcoming. Again, the 1974 newspaper:

No one seems sure what residents think. “If industrialization is the will of Rockland, then the people should know it, know it is the Pittsburgh of Maine,” said one southern Maine man who has closely watched the Rockland Harbor situation. Why, he asked, does the city bother to maintain the Farnsworth Art Museum or produce the Rockland Seafood Festival if it wants only industry on its harbor? “If they have condemned Rockland to complete industrialization, people should know it … Rockland may be environmentally corrupt and contented” (Langley 1974:12).

Dave began working at the Rockland-Rockport Lime Company in 1957. An ambitious man, he had, shortly after marrying, vowed never to leave Rockland and to do his best by it always. Ten years later, he had amassed 51% of the company stock and taken control. He was convinced that there was tremendous potential in the company’s holdings, if not in burned lime, then in other products. He had resources at his disposal: the quarries and their millions of tons of limestone, the waterfront property, wharves, buildings, trucks, laboratory, and a loyal and capable workforce. With some creative guidance, all this was sure to lead to successful years for the company. Dave proved he was capable of providing that direction and he managed to keep it all going for many years, but for much of the time, it was a struggle.

Rockland-Rockport Lime Company built the modern gas-fired kilns in 1922. They were designed in Germany and cost over $1 million to construct on the Rockland
waterfront (Hoch 2002). Within the mostly-steel structure of the plant, six large kilns heated (or burned) limestone to produce lime for mortar, plaster, and cement. The burners that produced the heat consumed gas rather than coal, oil, or wood. The gas was coal gas produced by a gas generator within the plant itself. Coal had been a fuel that kiln tenders used in the older, stone and masonry kilns; some were converted to burn oil, but wood was the predominant fuel during most of Rockland’s lime-burning period. Even as late as 1889, wood was the lime-burners choice. “There have been a number of experiments tried, and a great deal of money lost by the experimenters, to find a cheaper substitute for wood in the production of lime, such as soft coal, crude petroleum, etc., but without success up to the present time” (BILS 1889:64).

Later, in 1932, George Wasson, a historian from Massachusetts wrote (p.195-195):

Lime is now shipped in huge steel barges, towed by powerful tugs, all belonging to one great concern, and in spite of the fact that the best lime was made in kilns burning wood exclusively, coal or oil is now used.

Wasson failed to mention that the single largest plant used gas; it was known locally as the gas kilns and people still speak of it thus, although it is long gone. The concern Wasson mentions was the Rockland-Rockport Lime Company, a consolidation of numerous local lime interests formed in 1900. The lime company owned the tugs; they had had two steam tugs built in the early years of the twentieth century, and were using six steel ocean-going barges that each had a capacity of 1,600 tons of lime in bulk plus a deckload of large barrels of 280 pounds net each (see Figure 31).
The idea that the best lime for plaster or mortar came from wood-burning kilns is false. In reality, a gas kiln should produce good lime more consistently, as the kiln tenders can easily regulate the heat applied to the raw limestone, and the resulting product would not be discolored by wood ash or coal ash. Oil was also favored for the less discolored product that the kiln tenders were able to make. Unfortunately, the Rockland gas kilns never proved a satisfactory design; they never did operate efficiently long-term (Hoch 2002). The wood and coal-fired kilns continued to produce burned lime, however, and in 1943, the lime company shut down the troublesome gas kilns. Thereafter, the complex plant was underutilized and operated only as a crushing plant, reducing the rock into pulverized limestone, mostly for application to the acidic soils of Maine to correct the pH and improve agricultural yields and soil conservation.
During the 1940s and 1950s, the number of active kilns diminished until the end of burned lime’s long run in August 1958 when R-R Lime Company put the last brick and masonry kilns out forever. The decision to stop burning lime was, undoubtedly, a difficult one for the company’s officers; they were well aware of the industry’s history in Rockland.

The opening remarks of the report (R-R 1959) (see Figure 32):

To Our Stockholders:

The operations of your company for the year ended December 31, 1958 resulted in a net profit of $11,773.56 after depreciation, interest of 3% on the First Mortgage Bonds outstanding, an increase of $5,000. in our contingent reserve and expenditures for quarry development of $8,904.80. We have again been awarded a contract to furnish the United States Department of Agriculture with its requirements of agricultural limestone in the State of Maine for 1959, with the exception of one county, which was awarded to a low bidder from outside of the State. Competition is beginning to be felt in this portion of our business.

For several years the lime-burning portion of our business has proved unprofitable and in August of this year the Directors voted to discontinue this operation. The governing factor in the Board’s decision was the fact that our lime-burning kilns, that were constructed nearly half a century ago, require much higher labor costs than a modern lime plant.

It is the opinion of your Directors that there is need for a modern lime-burning plant in the State of Maine, producing chemical quicklime and hydrated lime for the paper and tanning industries. With this in mind, we are planning to start extensive core drilling on our properties the coming year to determine our reserves of high calcium limestone. If, as we believe, a sufficient quantity is found on our properties to warrant the construction of a modern lime plant, we think that ways and means can be found to finance its construction.

Through the efficiency and fine cooperation of our employees we have been able to overcome many problems that have faced management the past year and to those employees, the management takes pleasure in acknowledging their appreciation for their devoted service.

For the Directors,
H. Nelson McDougall, Chairman of the Board.
Ardrey E. Orff, President.
The company bought a core-drilling machine and Dave Hoch, among others, had the job of looking for the high-calcium deposits they would need to resume lime-burning. While they identified immense quantities of lime suitable for the production of cement and for agricultural uses, they did not find the high quality lime they sought near the surface. Some of the known veins, in quarries that they had been using for many years, still held unknown amounts of high-calcium lime, but it was at such a depth that further
quarrying was impractical. In places, the company had already exceeded 400 feet and they were unable to go deeper (Hoch 2002).

As the lime company directors mentioned in their report for 1958, they had the contract for supplying agricultural lime in most of the state. The northern county of Aroostook was the destination for much of their product. Known simply as The County, Aroostook was, at times, among the top potato producing regions of the country. The County is the largest county east of the Mississippi River with an area larger than the state of Connecticut. Tilling naturally acidic soils, Aroostook farmers used large amounts of lime, with most of it produced in Rockland. “With the government subsidizing it, we sold 75,000 tons of ag lime at the peak, and it was all in bags; it was the potato farmers of Aroostook, there would be dozens of trucks waiting for lime and we couldn’t load it fast enough” (Hoch 2001).

When the Department of Agriculture ended its lime soil conservation program, however, at $2.00 per 80-pound bag and Rockland being hours by truck south of the County, the agricultural lime business suffered. To help the situation, Dave Hoch began a moderately successful Sakrete plant. He produced concrete mix in small bags (a sack of concrete—sakrete) for home-use. The consumer needed only to add a specified amount of water and could easily mix small amounts of concrete for projects at home. The company used trucks to get the limestone from the quarry to the crusher and concrete plant, a costly inefficiency in a business producing these heavy, bulky, inexpensive products. Unfortunately, a nearby competitor started with modern equipment crushing limestone right in their quarry. With lower labor and transportation costs, they were able to take most of what remained of the lime company’s agricultural lime business.
The years of 1973 and 1974 were difficult for Hoch’s company. People had lodged complaints about the lime dust in the air for a decade: “Our business was making lime dust” Dave explained to me, agricultural lime is lime dust and he was making it “right there on Main Street, Rockland” (Hoch 2001). People had tired of the pollution, although it was not toxic, and the lime company was no longer the important employer it had once been, however, “They never did shut us down because of the dust” (Hoch 2001).

Although he had ended lime processing on the waterfront in 1975, Dave Hoch struggled on with the Rockland-Rockport Lime Company until October 10, 1981 when the remnant industry failed for good. “These resources don’t exist anywhere else like this: the quarries, the waterfront… up until the last day, the morning of the last day, when our financing was cut off—the possibilities of the assets, of all that waterfront property and millions of tons of lime—but finally, that was it… it ended” (Hoch 2001).

5.2 The Early Lime Industry and Overview

Rockland incorporated as a city in 1854. It was part of Thomaston prior to 1848 when residents created the separate town of East Thomaston, renamed Rockland two years later. Unfortunately, there is a dearth of information about Rockland, or the Shore Village itself in the way of lime industry production figures before 1855. Even as part of the larger town of Thomaston though, Rockland and its harbor, Owl’s Head Bay, were a distinct entity quite removed from the rest of the settlement.

Lime was first quarried and burned in mid-coast Maine in Thomaston, in the 1730s. Thomaston, although not far inside its border from Rockland, is today, the location of the last enterprise, Dragon Cement, using Knox County limestone out of
quarries that straddle the two towns (see Chapter 4). “George Ulmer, a young man from Waldoboro’, was now also here as a trader near Lermond’s Cove, and was engaged from 1785 to 1789 in the business of lime-burning;—so that to him probably, belongs the honor of being the first lime-burner in what is now Rockland” (Eaton 1972:180, orig. 1895, v.1). The last lime-burner in Rockland is Vern Raye; his story is in Chapter 7.

5.2.1 Lime Manufacture and Uses

A chimney made of wood and lined with mud is a satisfactory, if temporary, way to vent a fireplace or stove. In Maine, where hypothermia takes lives even today, in the twenty-first century, having a durable, functional means of heat that would last through the long winter is a necessity. Europeans settling along the Maine coast on a permanent basis, after the seasonal fishing stations, needed mortar to build stone, and later, brick fireplaces for cooking and heating their homes. Many farmers burned small amounts of lime to make mortar for local use, but in Rockland and Thomaston commercial lime-burning began early.

As early as 1733 William McIntyre erected the first kiln near the site of the present state prison in Thomaston. Here he burned lime in considerable quantities for shipment to Boston. At this time Brigadier Waldo also had two sloops carrying lime to Boston. After the Revolutionary War, as settlers came into the country, the business increased by leaps and bounds (Rowe 1948:255-256).

Lime is the result of the calcination (heating or burning) of limestone, calcium carbonate, to approximately 1,650 degrees Fahrenheit. The chemical reaction caused by heating drives off carbon dioxide and leaves calcium oxide. The product left is quicklime, the adhesive in mortar, plaster, cements, and concrete.
Rockland’s quarries supplied its lime-burners with both “hard rock” and “soft rock.” Hard rock was the highest calcium carbonate limestone (see Figure 33). When burned, it became a soft, smooth, bright-white quicklime that was used to make high quality plaster, sought by builders in New York, Boston, and New Orleans (see Figure 34). When quarrymen got into a seam of hard rock, they kept it separate as plaster rock. Soft rock had a higher magnesium oxide content and was considered best for the production of mortar (Hoch 2001).

Calcining limestone reduces its weight by 44%, an important consideration in shipping. Processing was carried out as near as possible to the quarry and, under fortunate circumstances as in Rockland, close to transportation facilities, the shipping
After a calcination sufficient to disengage the carbonic acid gas, the limestone will be found to have diminished considerably in weight, and the resulting material possesses the property of absorbing water, either with or without a disengagement of heat. It cracks and falls to pieces whilst thus combining with the water, or slacking, as the workmen call the process of passing into the state of a hydrate of lime (Burnell 1910:10, orig. 1856).

When hydrating lime, a worker must use care. It can, as Burnell mentions above, disengage a tremendous amount of heat when it is slaked. Quicklime that becomes wet inadvertently, especially if it is freshly burned and not partially hydrated from ambient moisture, can produce enough heat to ignite wood. Problems arising from this characteristic will be discussed below; however, numerous building and ship fires were caused by this reaction to water. I hydrated some lime to make whitewash for a demonstration recently and the small lumps I used to make a paste became too hot to hold. Dave Hoch uses fresh quicklime to demonstrate this property; his samples will
steam and break apart noisily. One can imagine a cask of 185 pounds of this material being dangerous.

Builders have used lime mortar for thousands of years; it is considered “the oldest industrial process of mankind” … (Davey 1961 in Speweik 1995:2). Shells, as well as limestone, produce lime as was used in ancient Egypt, Greece, and Rome, and in the western hemisphere, for at least 2,000 years on the Yucatan Peninsula (Burnell 1910, orig. 1856, Speweik 1995, McKee 1973).

“The primary reason for producing lime was to make mortar” (Speweik 1995). Mortar holds brick and stone together for structural purposes and keeps moisture out, stabilizing walls and other portions of construction. Today, with masonry building materials less favored for lighter, less labor-intensive modern replacements, the most common use for calcined lime is in the cement of concrete mix. Other uses for quicklime were in plaster, especially, and whitewash. Plaster was made by adding water and fine sand to “slaked” lime. Slaking (or slacking) quicklime is simply adding water or moisture to it; this action forms calcium hydrate and produces heat. There are four methods of slaking outlined by McKee (1973:63):

1) sprinkling or drowning, quicklime lumps crack open and form powder.
2) immersion, quicklime is lowered into water and removed at timed interval
3) exposure, least satisfactory, quicklime absorbs ambient moisture
4) making lime paste, excessive water poured over quicklime and the mixture is allowed to stand, the resulting paste can be used immediately or stored for years.

Someone needing whitewash would slake lime to make the lime paste and add enough water to thin it to a runny paint consistency in order to apply it by brush to whatever surface required the coating. Farmers commonly used whitewash in barns and
especially milkrooms to keep surfaces white and clean. Agricultural (unburned) lime will not make whitewash; it would not possess an adhesive quality.

Another use for lime, in the eighteenth century, surprised me at first, but given some thought, it makes perfect sense and we have equivalents today. “If water is poured upon slaked lime in large quantities, that water dissolves a certain portion of the saline calx, which forms the solution called lime-water, that has been much praised by physicians” (Anderson 1799:15). Two lifelong Rockland residents explained to me, independently, that they and others are convinced that lime has specific health benefits. Quicklime and dust from burned lime is caustic and an irritant to skin and mucous membranes, however, raw limestone dust produced during quarrying or crushing was a nuisance but not a toxic pollutant. Workers who were exposed to limestone dust long-term were healthier than their counterparts in shipyards or other businesses. They were simply “never sick”; these workmen did not get colds, the flu, allergies, or other respiratory problems. Eaton (1972, orig.1865, v.1) acknowledged that earlier citizens of Rockland held similar beliefs:

Probably the different sections of the old town differ but little in the health and longevity of the people; though an opinion is somewhat prevalent that Rockland, especially the lime-burning district, is in great measure exempt from diphtheria, and perhaps other putrid diseases, on account of the copious exhalations of carbonic acid from the lime-kilns.

Speweik (1995:4) explains that before 1932 lime was slaked at the job site where masons readied it for mortar or plaster, but after that date, hydrated lime became common and is the form available most widely today. Speweik seems mistaken as this was obviously going on long before; Eckel (1922:126) wrote much earlier:

Under the names of “new-process lime,” “hydrated lime,” “limoid,” etc., a large number of lime-plants have within recent years placed a ready-
slaked lime on the market. When this product is carefully prepared, it does away with all the trouble, waste, and unsatisfactory results entailed by the old method of slaking lump lime on the work.

On a job-site, a mason would ready quicklime for mortar by adding approximately three times the weight in water to that of lime, 300 lbs. of water would slake 100 lbs of quicklime (three to one, water to lime). After a few days, he would pour the water off and the paste was ready. For hydrate lime, the manufacturer hydrates it in a mechanized section of the lime plant. Quicklime is ground to a uniform size and water is added at the reduced ratio of approximately two to one, lime to water. To hydrate 1,000 pounds, for example, an operator would begin with 400 lbs of quicklime, add 450 to 500 lbs. of water, and then mix in the remaining 600 lbs. of lime making a paste from which any final product could be made by adding the material required (sand, gravel, or other temper) and a final amount of water (Eckel 1922). Manufacturers sold hydrated lime in woven bags of 100 lbs. net or paper bags of 40 lbs.

Portland cement is the base for cement and concrete products. It is a formula developed in England by Joseph Aspdin, a bricklayer, in 1824. Aspdin named this cement after stone quarried on the Isle of Portland, as the color was similar. He made his cement by mixing quicklime with clay, grinding it, adding water making a fine slurry, and heating it a second time (Speweik 1995:5). Today, Portland cement is made in the same way; Dragon Cement Company uses the “wet” method, but is hoping to convert their kiln to the “dry” method, which mixes and heats the cement components dry rather than making a slurry. The dry mix is more fuel-efficient (Curtis 2002).

Another lime product I encountered during this project is hydraulic lime. It is not, as I thought, a cement that can be pumped through piping to reach difficult places on a
construction site. Rather, hydraulic lime is made from limestones that naturally have a high silica (clay) content. Hydraulic lime is burned, hydrated, and mixed with various media for final use in the same manner as other quicklime; however, the final product (mortar, concrete, etc) has the important quality of setting, or hardening under water. An English engineer, John Smeaton first used hydraulic lime in 1756 in the construction of the Eddystone Light off the coast of England and it was important in North America in building canals, bridges, and construction projects exposed to or in water or seawater (Burnell 1910:4-5, orig. 1856, Eckel 1922, Speweik 1995:4).

5.2.2 Kilns

Heating, burning, or most properly, calcining limestone to make lime has been done in kilns of various design through most of its history, although lime-burning in “open fires” was also undertaken (McKee 1973:62-63). “Some limestone was burned on large heaps of logs during the fall and winter of 1818-19 for the construction of the Erie Canal” … and “the traditional method of lime burning in Yucatan was comparable” (McKee 1973: 63). In the early days of the Shore Village, residents produced lime by building a pile of split hardwood with lumps of limestone mixed within. While this method would leave pieces unburned or only partially burned with a large percentage wasted as “core,” they were able to make enough for local use (Hoch 2001). Even later, in masonry kilns, there was a certain amount of core left by the burning process. In Rockland, although not ideal for the purpose, this material was used in places along the waterfront as fill to increase wharfage (see Figure 64 for an example). In nearby Rockport on the Goose River, lime-burners dumped thousands of tons of core creating an alkaline mountain upon which the town built a park (see Figure 35).
The earliest kilns in Rockland were an intermittent type similar to that depicted in Figure 36. As with the open fire process, wood and limestone were intermixed. The kiln tender lit the wood and when the fire eventually burned out, “after a period of one and a half to two days and cooling for an equal length of time,” the kiln was emptied of quicklime, core waste, and wood ash (McKee 1973:63). Naturally, the lime rendered was “discolored and contaminated by the fuel ash” (Grindle 1971a:21).

In order to facilitate loading these kilns from the top, lime manufacturers built them into hillsides or terrace edges wherever possible (McKee 1973:63); such locations were available in Rockland.

Blatchley (1904 in Eckel 1922:101-102) provided a description of the process of lime-burning in similar early kilns in which he, too, mentioned that they were, like those
to follow as kiln design evolved, built into hillsides if possible,

… so that the top was easily accessible for charging the kiln with stone and the bottom for supplying fuel and drawing out the lime. In charging, the largest pieces of limestone were first selected and formed into a rough dome-like arch with large open joints springing from the bottom of the kiln to a height of five or six feet. Above this arch the kiln was filled from the top with fragments of limestone, the larger pieces begin used in the lower layers, these being topped off with fragments of smaller size. … In all these intermittent kilns there was an enormous loss of heat at each burning, for the quantity of fuel necessary to raise the contents of the kiln and the thick stone and brick walls to the necessary degree of heat had to be repeated each time the kiln was charged.

A kiln that could be kept burning continuously would be an important improvement in fuel and labor costs. Lime-burners called these running kilns. The kiln tender would carefully arrange small and large pieces of limestone in the top of the kilns, add coal or coke within spaces between the rocks, and allow room for airflow or draft.
through the rock and fuel. The tender would carefully remove lime, waste, and ash from the bottom, the mass would move slowly downward, and he could put more material in the top (Burnell 1910:33-34, orig. 1856).

Running kilns, or those in which the stone and coal, or coke, are mixed in alternate layers, are the most difficult to manage with certainty, although when established under favourable conditions they are the most economical. A mere change in the direction of the wind, a falling in of the inner parts of the kiln, an irregularity in the size of the pieces of limestone, are any of them causes sufficient to retard or accelerate the draught (by producing irregular movements in the descent of the materials), and thus give rise to either excessive or defective calcination (Burnell 1910:33, orig. 1856).

By the 1840s, patent kilns were being developed; their designs being “actually patented in Washington” (Grindle 1971a:21). There were numerous configurations, but they were slow to be adopted. “Most of the one hundred and thirty-two kilns in East Thomaston in 1846 were of the old-fashioned or intermittent type” (Grindle 1971a:21). Most design changes were to improve fuel efficiency and a number of Rockland lime manufacturers held kiln patents and exported their ideas widely (see discussion of Rockland Lime and Lumber Company, below). Still, most lime-burners on the Rockland waterfront were too busy in their manufacturing of quicklime, or were reluctant because of unpredictable markets, to build modern kilns. “A Massachusetts editor visiting Rockland in 1860 counted approximately one hundred and thirty kilns. Thirty-five of these were patent kilns, and only five [of these] were [still] in operation in January of 1865” (Grindle 1971a:23).

Fuel was as important as the limestone, but in Rockland and the surrounding area, fuel was in shorter supply than lime rock. As early as the 1820s, lime-burners were having large amounts of kilnwood shipped in from remote areas (Grindle 1971a:5). The
intermittent kilns in the region needed “thirty cords of wood to burn each ‘charge’ of rock,” producing approximately 45 tons of lime (Grindle 1971a:20). A cord, still the standard measure of fuelwood in the United States, was the measure for kilnwood throughout Rockland’s lime-burning era. A carefully constructed pile of wood four feet wide, four feet high, and eight feet long makes a cord. The 128 cubic foot cord naturally includes some air space that varies with the diameter of the pieces comprising the pile. Grindle’s (1971a) figures show that approximately 85 cubic feet of firewood was needed per ton of lime calcined. Grindle does not specify the type or species of wood used at the time these figures were compiled. Later, when local supplies were exhausted and Rockland lime-burners imported kilnwood from New Brunswick, Canada, softwood (spruce and fir) was used exclusively (the importation of kilnwood is discussed below). Burnell (1910:35, orig. 1856) gives further figures for wood consumed to produce 35 cubic feet of lime, or approximately one ton, in intermittent kilns: 60 cubic feet of oak, 117 cubic feet of fir, or 9 cubic feet of coal. Running or perpetual kilns used about 20% less. Oak is a hardwood; if Burnell was writing about white oak (Quercus alba), which seems likely, it is a hot-burning firewood that lasts longer than others and leaves heavy, glowing coals. Fir, a resinous softwood, burns hot, quickly, and leaves no coals and little ash. Oak is especially slow growing and valued for its uses in shipbuilding while fir and other softwoods grow relatively quickly, even in the northern latitudes. No wood was growing fast enough to supply the voracious kilns on the coast of Maine. Although lime-burners turned to importing their supplies, the industry in Thomaston had suffered from a fuelwood shortage and competition from Rockland, a city enjoying the nearly ideal geography for lime-burning. “With the increase of ship-building, however, the
manufacture of lime was greatly on the decline, if not altogether abandoned [by 1853], in Thomaston, on account of scarcity of wood, and the superior advantages for that business in Rockland” (Eaton 1972:427, orig. 1865, v.1).

The state geologist’s report for 1839 describes the first perpetual lime kilns in Maine (see Figure 37). At that time, there were three, one at the State Prison in Thomaston and two at the Shore Village. They were fired with coal, in layers with lime rock, as described elsewhere, with the quicklime selling, “packed handsomely in legal sized casks, at seventy-five cents per cask” (Jackson 1839:65). The early casks were 100 gallons; this was reduced, in 1810, to the more manageable size of 50 gallons (MB 1876:80). The state eventually regulated lime sales by weight, not the less uniform volume, and the standardized weight was set at 185 lbs. net for a cask (3.1 cubic feet),
285 lbs. net for a barrel (4.7 cubic feet) (Lazell 1915:81) (as mentioned and shown above in Figure 31). Later, even in the twentieth century when the lime company sold quicklime in bulk, transported in R-R barges, the measure for shipping as well as kiln output was still the cask. Figure 38, shows two photos of a patent kiln model of late design. The builder of this type of kiln incorporated a blower used by the kiln tender to facilitate the proper draft. The steam pipe into the upper reaches of the kiln supplied steam from the saddle boiler above the hearth where the tenders shoveled coal into the kiln. The jet of steam improved combustion and the draft as well, by driving the carbon dioxide produced through calcination up and out of the kiln. Lime-burning produces large amounts of carbon dioxide. Eckel wrote in 1922 (p.112):

To put the matter in another way, for every ton (2,000 lbs.) of lime made 1571 lbs. of carbon dioxide are thrown into the atmosphere. During recent years, therefore, over one an a half million tons of carbon dioxide were produced—and wasted—from the lime-works of the United States. Few attempts have been made to utilize this valuable by-product, though the manufacture of carbonic acid, as an independent industry, has become of great importance.

The lime industry also dominated Rockport, just to the north of Rockland and named for the same rock. Little evidence remains of the small town’s industry other than the mountain of core waste mentioned above. Running kilns still exist on the waterfront there and the town has made an important effort to stabilize them. Unfortunately, they were in poor condition before, but the Rockport community has provided informative signs that explain something of the site’s industrial past and the process of lime manufacture (see Figure 39). Dave Hoch and some other Rockland residents would like to see something similar done on Rockland’s waterfront. The city’s efforts thus far,
Figure 38. Perpetual patent kiln model, courtesy of Dave Hoch (2001).
however, have been directed at removing evidence of Rockland’s vibrant industrial past rather than protecting it. They have a unique opportunity, at present, to save from harm an intact, pre-patent, perpetual kiln built ca. 1840s. While there were dozens of similar kilns at one time, this relic is the only one left in the area and is, at present, in fine condition, needing little work to keep it thus. Its location is just off Main Street where its tenders loaded it with limestone from above; they had built it near the bottom of a natural embankment. It stands free, out away from the terrace surface and kiln tenders used a wooden platform to gain access to the kiln top, however the Lime Rock Railroad served this kiln as well as most others on the waterfront in the 1890s (see Figure 40).
Figure 40. Vulnerable intact historic kiln (known as the “Spear Kiln” on Rockland’s waterfront (2002).

Its location, adjacent to salt-water wharfs once helped make it a profitable kiln. Today, that same site is a place in which the kiln is vulnerable to destruction unless the city government or community members make an effort to protect it. This important industrial artifact could easily fall victim to a bulldozer; the large, open site is prime for development and is presently for sale. Land deals and development often happen fast on the coast of Maine and a potential buyer may see the expense of stabilizing the old kiln as liability while its removal would be a small, one-time expense. Just as the city buried the south end of Catawamteag and a credit card company buried the site known as “The Five Kilns,” the “Spear Kiln,” could be removed in a matter of minutes, before anyone could prevent its loss.
Most kilns that produce quicklime for cement and other uses today are rotary kilns. They are constructed of tubular shaped steel and are on a slight angle from horizontal.

This cylinder is set in a slightly inclined position, the inclination being approximately one-half inch to the foot. … The cement mixture is fed in at the upper end of the kiln, while fuel (which may be either powdered coal, oil, or gas) is injected at its lower end (Eckel 1922:421).

A rotary kiln may be 60 feet long or as large as several hundred feet in length.

The only kiln of any type in operation in the Rockland area today is the large rotary kiln at the Dragon Cement plant (see Figure 41 below and Chapter 4).

Figure 41. Rotary kiln in operation at Dragon Cement (2001).

5.2.3 East Thomaston’s Focus on Lime

The Shore Village became East Thomaston when a post office opened there “about 1820” (Varney 1881:481). Lime manufacturers had established operations on a large scale in East Thomaston by the 1830s. The proximity of the “inexhaustible supply” (U.S. Sec. of War 1836:3) of limestone to the harbor at East Thomaston was critical in the rapid development of the lime industry. Throughout the industry’s history in the region, limestone near the water was valuable for manufacture of quicklime and agricultural lime, while limestone (some of even higher quality) located farther inland
was less desirable and quarrying it for processing and shipment was less practicable. The fortuitous geography of East Thomaston’s quarries and harbor made the industry possible, but transporting the rock from the quarries to the kilns was always a consideration, even up to the end when Dave Hoch lost critical business to another company, in nearby Union, Maine, that had a rock crusher right in their quarry (Hoch 2001, 2002).

The Maine state geologist described an extensive limestone deposit in Searsmont and Appleton less than 11 miles inland from saltwater:

All the beds of Azoic limestone now described, either have been, are now or are capable of being quarried extensively for the manufacture of quicklime. The manufactured lime must be equal of not superior, as a general thing, to that made in Rockland. Being at a distance from the sea-shore it cannot be furnished to the market so cheaply, and hence the inland quarries are not worked with so much vigor as those in Thomaston and Camden (Holmes 1862:240).

Due to their less favorable location, industrial interests have never exploited the Searsmont-Appleton deposits in any measure compared to those in Thomaston and Rockland. While the geological survey economic geology map below (see Figure 42) was surveyed in 1905 and published in 1908 (U.S. Geological Survey), the extent of the Rockland limestone deposit depicted was described much earlier (see Jackson 1837, 1839, see also Figure 53 showing the working quarries adjacent to the harbor). The quarry closest to the harbor is less than 1.5 miles (mostly downhill) along Limerock Street.

Before the age of steam equipment in the quarries, quarrymen blasted the limestone out of the deposit using explosives in hand-drilled holes. This raw material was broken up with mauls (large, long-handled hammers) and loaded into horse-drawn
wagons to make the trip up inclines cut into the quarry sides, then along a rutted road to the kilns (see Figure 43). Teams of four horses were used to get the limestone to the waterfront, but at times they would “double team” the wagons out of the quarry as their depth increased or in inclement weather. Teamsters would hitch six or eight horses to a wagon, making two trips out. They would then put the teams back on their own wagons for the easier, though longer, trip to the kilns. A two-horse team hauled 12 casks of raw limestone per load while a four-horse wagon took 18 (BILS 1889:62). The short distance from the quarries to the kilns at the deep-water wharves was crucial; the raw material was
heavy, bulky, and the lime manufacturers of East Thomaston were producing an inexpensive product, little of which was used locally.

By the mid-1830s East Thomaston had already become an economic force with enough political influence to get an expensive, federally funded project (at least) considered. With such an open harbor, East Thomaston offered its inhabitants and the wider maritime community both assets and liabilities; their plan was to improve the harbor as a whole with a breakwater that would reduce wind-driven waves and storm surge.

Second Lieutenant Ward B. Burnett of the Second Regimental Artillery on Topographical Duty in 1835 sent his report and proposal for a breakwater along with a chart of the harbor at East Thomaston to his superiors in Washington D.C. from Concord, New Hampshire. Burnett’s report gives us the most, early information regarding the lime
industry in East Thomaston, apart from Thomaston, as well as the earliest chart of the harbor and proposed breakwater.

Flooding in the lime sheds was a more costly problem that it might seem at first look. Waves or storm surge, especially, flowing into the sheds, many of which were built on docks, would cause uncontrolled hydration of any quicklime stored there for shipment. Costly fires resulted; sections of waterfront burned because of lime fires in both Rockland and Rockport. The breakwater was intended to create a safer harbor for vessel traffic, but it was hoped that its construction would eliminate the fire hazard that storm surge created.

As may be seen in Figure 44, these sheds were extensive and made of wood, vulnerable to fire. Such sheds were needed to keep the finished product out of the weather, to protect it from rain and snow rather than to provide comfort for the workmen. East Thomaston’s harbor is open to the east and while the wind is seldom easterly in the region, when it is, especially during the winter months, it blows hard and East Thomaston (now Rockland) suffered. Burnett’s investigation in 1835 led to his description the harbor and of conditions, that he thought his breakwater would help.

It is an indentation in the main land of about thirty-five hundred acres, formed by two headlands that extend into the Penobscot, called Jamieson’s point and Owl’s head. These headlands are two miles nine hundred yards from each other, and may be said to form the entrance of the harbor; which is thereby exposed to the winds that range between N.N.E. and S.S.E. The wind being E.N.E. traverses thirteen to sixteen miles of the Penobscot bay before entering the harbor, which, with the great depth of the Penobscot, occasions a very heavy sea (U.S. Sec. of War 1836:3).

When the wind is more easterly, Burnett explained, the Fox Islands protect the harbor from such high seas as are produced by wind from slightly different directions.
Sea state (the height, frequency, direction, and shape of waves) depends on a number of factors such as landforms in an area that may change their direction or reflect them, the depth of the water, the shape of the bottom, etc. One important factor is called *fetch*.

Fetch is the distance that wind can travel uninterrupted over water. From one side of a river to another, for example, the fetch would be small, perhaps a mile or less. Islands offshore of a harbor reduce the fetch and diminish the sea. A place with a large fetch out in the direction that winds prevail from or from which gales originate would be subjected to larger waves or even storm surge. A long fetch usually produces tall, regular seas and swells in deep water. These are the conditions that Burnett was attempting to reduce for the city with his proposed breakwater. Eaton (1972:409, orig.1865, v.1) gives an example of the destruction caused by high water “… in the first week of November
[1845], a lime shed at East Thomaston, containing 1200 casks of lime belonging to Jos. Hewett and Wm. Perry, was burnt in consequence of water reaching the lime.”

Burnett’s 1835 report also indicates the importance of East Thomaston as a potential harbor of refuge. “It is said to be the only harbor for the larger classes of vessel, between Herring-gut [now Port Clyde] and Belfast, embracing an extent of coast of near sixty miles” (U.S. Sec. of War 1836:3). This first proposed breakwater would have produced an anchorage with a depth of “from two to four and a half fathoms at the lowest spring tide, and secure from all winds, [that] would have [had] a surface of about 190 acres (U.S. Sec. of War 1836:4). Burnett’s 2,475 foot long breakwater never materialized, but Rockland’s influential residents did not let the idea rest; subsequent proposals were made and it was eventually built in a different, more extensive form than Lt. Burnett imagined (see Figure 45, Burnett’s full report is included in Appendix D).

East Thomaston had an advantage over other places for which breakwaters were being designed or built; the cost of stone (granite) for the East Thomaston breakwater would be less “on account of the facilities for obtaining it in great abundance, in the immediate vicinity of the harbor” (U.S. Sec. of War 1836:5). As part of his proposal report, Burnett described East Thomaston as a village of “from 1,500 to 2,000” inhabitants. There were “twenty-five or more valuable wharves at the village” that was engaged in the manufacture of lime (U.S. Sec. of War 1836:3,4).

Lime is the principal article of trade at East Thomaston, and is shipped at this place for almost every port in the United States. I am credibly informed, that there was an aggregate of 450,000 barrels made and shipped at East Thomaston during the year 1834. … A railroad is projected from the lime region to the harbor, which it is expected will tend to increase the trade of the place (U.S. Sec. of War 1836:3,4).
Figure 45. Chart of harbor and proposed breakwater, adapted from U.S. Sec. of War (1836), courtesy of Dave Allen (compare to Figures 109, 110, and 1996 aerial photograph in Appendix E).
Just as the lime industry of East Thomaston/Rockland eventually got a breakwater, finished in 1899-1900 and 4,346 feet in length, the railroad that Burnett mentions was completed in 1891 and served the kilns with limestone from the quarries.

5.2.4 Continued Expansion

Ten years after Burnett’s survey (U.S. Sec. of War 1836:5) East Thomaston continued developing and lime production had increased significantly. Eaton (1972:408, orig.1865, v.1) reported that, in 1845, “at the East village, innumerable houses, stores, and kilns were going up—so that it was already predicted ‘that the kilns on City Point would meet those at the South end, and make one mile of uninterrupted lime kilns.’” He continues, “It was estimated that in one day alone, the 21st of April, more than 10,000 lime casks were brought to market” (Eaton 1972:408, orig.1865, v.1).

Fortunately for those of us to come later, the editor of the newly established local newspaper, the Lime Rock Gazette saw that residents of East Thomaston knew little of the scale of the lime industry in their town. On Thursday, January 29, 1846 an article summarizing the lime business at the time, “The Manufacture of Lime” appeared:

The manufacturing of Lime, is well known to be the principal business of this town. Very little is known of the actual amount manufactured here, or the number of laborers employed, and hence we have made some estimates based on information received from those who have been long engaged in the business, which we feel confidant will not exceed the quantity of lime returned in the official statement, should we ever see such a document.

There are in the town, one hundred and thirty two Lime Kilns, which during the summer season are in continual operation. Each kiln will yield, on an average, at every separate burning, four hundred casks of lime, and is burned, during the course of a season, twelve times. About twenty seven cords of wood are consumed in burning a kiln, the price of which, during the past season, has been three dollars per cord delivered at the kiln-shed.
In the process of manufacturing the rock into merchantable lime, a large number of laborers are continually employed. The owners of the Quarries of Lime Rock usually sell to individuals the privilege to dig rock, (called stump-leaf) which is worth three cents per cask. The person digging sells the rock at six cents per cask to the manufacturer; who hires it hauled to his kiln at the rate of seven cents a cask. Thus, during the year, a large number of men are employed in preparing the rock to be manufactured into lime. The Casks, into which the lime is put for exportation are made in Union, Waldoboro, Hope, and adjacent towns, and are worth at the kilns, sixteen cents each. The burning or the manufacturing of the rock into lime, requires on an average, three men to a kiln and is worth eight cents per cask. In addition to the number of laborers already enumerated, a large number are employed in the wood-coasters (for all the wood is brought by water from the regions east of us,) and in carrying the lime to market in the lime coasters. But we have no means of ascertaining the number of men thus employed (Lime Rock Gazette 1846a).

East Thomaston lime-burners manufactured 633,000 casks of lime in 1845 and the article concludes with a table of the total costs including 42,768 cords of wood (Lime Rock Gazette 1846a). The system of stump-leaf (stump lease) is still used in Maine. As quarrymen paid the owner of a quarry by the cask for the limestone they removed, loggers still pay stumpage for wood they cut from land owned by someone else. For example, a logger will pay a landowner $10-12 per cord for softwood pulp that sells for $70 at a nearby paper mill. It must be green (cut recently) and of a specific maximum diameter at the butt, a minimum diameter at the top, and of a length a multiple of four feet with four inches extra length to allow for angled cuts, etc. Until recently, loggers cut and sold most pulp in four-foot lengths; today they cut it “tree length” which often means 24 feet. Stumpage on logs, wood cut and sold for lumber, varies according to species and quality. Rock maple suitable for veneer commands a better price, and therefore pays higher stumpage to the landowner, than hemlock that will end up as rough lumber. In Maine today, even though tree length is favored, one may still see four-foot pulp piled along the roadside awaiting trucking to a paper mill. It is the same material that was, in
the past, measured and sold in the same way, and piled in the same manner to await
kilnwood schooners and shipment to East Thomaston/Rockland as fuel to produce lime.

5.2.5 Kilnwood, Limers, and a Caution

Lime manufacturers used some coal during the early years of lime-burning and
mining companies searched in vain for local supplies. Wood was the dominant fuel for
lime production in Maine and after stripping the neighboring countryside, kiln tenders
used wood brought in by boat. Maine was, in the nineteenth century as it is today,
heavily forested, and woodcutters operated along the major rivers getting wood out for
shipment to coastal lime-burners (see Figure 46). As mentioned in the newspaper article
above, it was mostly brought from the east, meaning farther “downeast” in Maine.

Figure 46. Schooner on the Penobscot River at Hampden, Maine being
loaded with kilnwood (Wasson 1932: plate between pages 192-193).

The source of much of the softwood burned in Rockland’s kilns for a relatively
brief period in the late nineteenth century, however, was New Brunswick, Canada. This
is one aspect of the lime industry that is remembered widely in Rockland’s social memory and is much romanticized. *Johnny Woodboats* were the vessels that carried the vital product from New Brunswick’s boreal forest to Maine’s kilns and there is a folklore about the boats and their crews. The name Saint John Woodboat or more often just Johnny Woodboat is derived from the Saint John River that was one of the main points of departure for kilnwood schooners loaded with wood bound for the Maine lime kilns. Roger Grindle (1971a:105-128) wrote a carefully researched chapter “The Kilnwood Fleet” in his comprehensive book about the Maine lime industry up to the year 1900. While there is no need to reproduce it here, I did hear numerous stories from Rockland residents about the Johnny Woodboats. Some of these were obviously fictionalized though presented as fact. More than 25 years earlier, Grindle had similar thoughts about what he heard and read about the kilnwood trade. “Unfortunately, many of the twentieth-century accounts of the kilnwood trade and the awkward-looking craft associated with it are non-scholarly and over-romanticized” (Grindle1971a:105).

One tale in Rockland about Johnny Woodboats is that they were built by New Brunswick farmers and sailed to Rockland during the season between planting and harvest. They carried wood that the farmers cut during the winter and were so crudely built that they often made only one trip. The kilnwood was unloaded and then the farmer/sailor would break up the vessel to add to his cordage. Presumably, he and his crew, usually just one boy (likely a son forced to make the trip) would get passage back to the Saint John River valley on a vessel built for more permanent use.

Another story tells that they were sometimes just a pile of kilnwood with sails. While this cannot be true, Grindle explains that these schooners were heavily loaded.
With prospective profits running as high as $3.50 a cord it is small wonder that woodboat skippers often piled on the deckloads until the midships were awash. The buoyancy of the cargo and the relatively short run, however, reduced the dangers from such a practice (Grindle 1971a:108).\(^1\)

The Johnny Woodboat stories and descriptions of the Rockland schooners that carried lime to distant ports exemplify one of the difficulties that the anthropologist or geographer must be aware of when involved in historical research. Casual comments or anecdotes written by historians of any type can easily develop into “facts” over time that may become further distorted each time they are retold. There is a children’s party game called “telephone” in which a short story or phrase is whispered to the first child of a group that is seated in a circle. That child then quietly tells the next child, who tells the next. The fun is when the story reaches the last child and everyone learns how much it has changed by being retold. My intention is not to devalue or criticize the works of the writers quoted below, but to mention that I have tried, throughout this project, to use the best sources and to be aware of such historical pitfalls. I hope that I have not repeated any inaccuracies.

Here, some writers of maritime history have played a version of the telephone game, Wasson (1932) is the first player, followed by Rowe (1948), with Rich (1964) being the last.

Wasson (1932) wrote “Sailing Days on the Penobscot: The River and Bay as they were in the Old Days.” His work was for a wide audience and he was honored with a World War II liberty ship christened in his name.

Wasson (1932:196-200) explains that kilnwood boats were inexpensively built but serviceable because of the nature of their cargo:
Many wood-boats had no bowsprits, one alleged reason being that they often loaded wood in such remote sylvan spots that bowsprits were likely to get mixed up with trees on the steep banks! In such craft the foremast was stepped forward as far as possible, or “in the eyes of her,” and topmasts were lacking … and the rudder hung unblushingly “out-of-doors.” …

A very noticeable feature of wood-boats, in the kiln wood business, was the towering deck loads, which unusual breadth of beam and the comparatively short run to Rockland enabled them to carry with more or less impunity. So high was this cordwood piled that often the helmsman could not see over it, and under certain circumstances steering was directed by a man stationed forward on top of the load, who bawled instructions aft. …

There was always risk of losing part of or even the whole deck load in a rough sea, no matter how well secured, but such a craft could not actually sink, even when completely water-logged through some hopeless leak. In this submerged condition vessels not infrequently sailed slowly into port with the man at the helm standing knee-deep in water, buoyancy of the cargo alone preventing sinking. …

Running kiln-wood to Rockland was the last ditch for many an old coaster so worn out in all respects as to be deemed unfit for longer trips. Often in charge of sick or superannuated captains, with mere boys and half-wits for crew, such vessels, after many years of visiting all Atlantic ports of those of the West Indies, ignominiously ended their days a kiln-wooders from nearby points.

While one of the boats below happens to have a bowsprit and both are in good repair, note other features Wasson described (see Figures 47 and 48).

In his comprehensive “The Maritime History of Maine: Three Centuries of Shipbuilding and Seafaring,” Rowe (1948:256-257) mentions the kilnwood boats that kept fuel supplied to Rockland kilns:

As a rule these boats hailed from Maine, but among them were the famous St. John woodboats, which were built of spruce and put together in the roughest possible manner with a cheapness which only the unsinkable character of the cargoes they were to carry allowed. The local wood boats were not much better. Many a one lacked a bowsprit lest it become piled on deck that the helmsman could not see over it. He would steer according to the directions bawled back to him by a man stationed forward on the top of the load.
In her “State O’ Maine” Louise Rich (1964:103-104) also describes the kilnwood schooners:
Any old slapped-together sort of boat would do. It didn’t have to be very seaworthy since it never left the safe inshore waters, and in any event, its buoyant cargo would keep it afloat. The wood was piled so high on the decks of these makeshift craft that they looked more like floating wood plies than anything else. The helmsman could seldom see over the pile to steer his course, so he hired a boy for a few pennies to sit on top and shout directions.

A more formal report, issued by the state Bureau of Industrial and Labor Statistics, regarding “St. Johns’ wood boats” appeared in 1889:

There were, in Knox county, in 1888, 92 patent kilns which produced 1,800,000 casks of lime, and in this production the kilns consumed 85,000 cords of wood. Of the 85,000 cords of wood, about 52,173 were imported from our neighbors of the Maritime Provinces. The wood was invoiced for about $1.50 per cord.
Our domestic manufacturers paid on an average $3.50 per cord. The gross sum paid to foreign producers of kiln wood was $195,648.75. To freight this 52,173 cords of wood there were 604 foreign arrivals at Rockland alone. This wood was brought in what is known as St. John’s wood boats. These boats will carry from 50 to 60 cords on an average, per load. The crew generally consists of three to four men to a vessel (BILS 1889:63).

While the Johnny Woodboat stories may be engaging, it seems unlikely that an operation of this scale, involving such capital, was undertaken by the ragged boats and crews so often described.

The three authors quoted above also wrote about the schooners that carried lime to distant markets. The lime fleet or limers were numerous and of varied description. They were inexpensive to operate, carried a small crew, and their captains often owned them, although the lime companies owned them as well. Wasson (1932:199-200) explained that, again, the nature of the cargo governed the type and condition of the vessel to a large degree.

Here was no place for leaky craft. … The slightest leak might start a fire among the casks of lime in the hold and this fire, instead of being fought and possibly extinguished by water, as in ordinary cases, was only increased by its use. … All were schooners of moderate size, and former
fishing vessels, if still in good condition, were preferred by many, as their sharper floors gave better chance for building stout platforms in the hold, and so raising the lowest tier of lime casks from possible contact with bilge water. After filling the hold with lime casks, many yielded to the dangerous practice of carrying a tier of casks on deck, though “dunnaged up” several inches, and covered as well as might be with tarpaulins. Fire here, however, was by no means so serious a matter as fire in the hold. It was easy of detection and, if necessary, any or all of the casks could be thrown overboard. To do away with such risky exposure on deck, vessels were built with a second deck raised above the main deck, high enough to take lime casks and running well forward with open rails. Many old craft were thus remodeled and such vessels, though comparatively few in number, may be called ideal, if not typical Rockland lime schooners (Wasson 1932:199-200).

Figure 49. The limer Carrie G. Crosby ashore at Kennebunk, Maine, September 1893 (Bunting 1997:339).²

Wasson continues to explain that many limers were lost to fire, although some crews managed to extinguish burning lime by making plaster from some of their cargo and sealing the hatches and other places that might provide air to the fire in hopes that it would eventually be smothered; a process that could take months. As the cargo burned, it
expanded and further damaged the vessel. “If not burned, she was commonly so damaged as to be beyond repair, and there is scarcely a harbor on the coast that does not contain the grisly remains of at least one ‘limer’” (Wasson 1932:202-203) (see Figure 49, above).

Rowe (1948:257) continues, again after Wasson:

Schooners of moderate size were used. A stout platform would be built in the hold to avoid as far as possible any chance of contact with bilge water. Sometimes a deck load was carried, although this was regarded as a dangerous practice. For this purpose a second deck with open rails running well forward was built above the main deck.3

Rich (1964:104) again, on limers:

These vessels were built with great care, because lime, if it got wet, would smolder and smudge and finally burst into flame. So the bottoms of the schooners were built double to keep the cargo out of the bilge, and the decks were double to prevent seepage from above.

The platform above the bilge has become a double bottom; such schooners were never built. The second deck that Wasson (1932:200) mentions as added to vessels “comparatively few in number” sounds like standard form for these ships in Rowe (1948); it then changes from a covering to protect a deckload to a double deck, again this is incorrect. Lime was an inexpensive, bulky, (and dangerous) cargo; other Rockland vessels carried mixed cargoes of far greater value. I question the idea that anyone built limers with greater care than schooners built for other purposes, their construction and design were not unique, and Wasson (1932) explains above that they were often ships that had seen other uses; others complained that they had seen better days.

The ideal lime coaster was said to be old, cheap, and tight. Unfortunately, the first two qualifications were easier met than was the third (Bunting 1997:338) (see Figure 50).
With the interests of Rockland’s shipbuilders and the safety of Maine’s sailors in mind, the editors of a local newspaper wrote the following paragraph that appeared in “The Rockland Opinion” on Friday morning, April 19, 1889:

Schooner Carrie C. Miles, 109.39 tons, gross, and built in Boston in 1871, has been purchased by Cobb, Wight & Co of this city, and her hail changed from Provincetown Mass. They will employ her in the lime carrying trade. Again we are led to express our regret that our business men, for some reason, buy so many old vessels abroad, instead of having them built here.

Figure 50. Limer, adapted from a shipping bill of Frances Cobb & Company, lime manufacturers (1895), courtesy of Andrew Curtis.

Certainly, some kilnwood boats operated exclusively in the Penobscot River and Bay. These probably did not leave “inshore waters” (Rich 1964:103) very often, however, I have sailed in those waters and know that, in the right (or I suppose, wrong) conditions, they can be treacherous and demanding of the vessel and crew. Seas can build quickly in the bay, thick fog rolls in faster than any kilnwood boat could have sailed, and there are ledges lurking in unlikely places. I have also made the trip across the Bay of Fundy and, again, with the tidal currents there and contrary winds, the 165nm
trip from Saint John to Rockland, in waters again considered inshore, would have been an adventure more often than not.

5.2.6 Casks

From the beginning, lime-burners shipped quicklime in wooden casks and barrels and cask production was an important support industry. Coopering, making barrels or casks, requires particular skills and some specialized tools; certainly, gathering the materials required and producing some 450,000 casks as were needed to send the year’s production to market in 1834 was no small undertaking. Lime casks were roughly made from the least expensive materials possible. Unlike oak wine casks or water storage barrels, lime casks were of spruce or fir (softwoods) and were not liquid tight. Some Rockland residents believe, and explained to me, that the caustic nature of lime required a tight cask and that for shipping purposes the casks that the lime-burners used were watertight. This is not the case; they were the cheap, heavy, cardboard boxes of their time. “Any resemblance between a fir lime cask and a tight, hardwood barrel for liquids was purely superficial” (Bunting 2000:86). Poles or saplings were used as hoops. Alder or any other fast-growing wood was suitable and the cooper split them and wrapped them around the staves, hooking the ends together with notches cut for the purpose. Later in the nineteenth century with production expanding, more casks were required.

With Knox County lime manufacturers producing nearly two million casks of lime per year, obviously there was a need for as many casks. Some manufacturers maintained their won cooperage shops, but the vast majority of casks were made by back-country farmers, mostly during the winter, and were hauled from as far as twenty-five miles (Bunting 2000:86) (see Figure 51).
By 1888, Knox County’s lime industry required “about 460 coopers” working year-round” (BILS 1889:63). With cask production at its height toward the latter half of the century the process was improved by machinery; cask parts were brought in and in addition to actual coopers making casks, part-time workers such as farmers assembled what amounted to “kits” (Hoch 2001).

Casks for shipping quicklime were as important a component of the industry as were the limestone itself and the fuel to burn it. The lime industry so dominated the area that the welfare of the community was tied directly to lime markets and prices. In 1846, quicklime sold for $0.85 per cask, 0.65 “at the kilns,” plus 0.20 for shipping. The casks themselves cost the lime manufacturers $0.16, a price that changed little over the following decades (Lime Rock Gazette 1846a). In 1851, they sold at between sixteen and seventeen cents (Rockland Gazette 1851). In acknowledgement of the wider

Figure 51. Lime casks on the way to the kilns (Bunting 2000:87).
community’s concern for the lime industry, local newspapers kept residents informed of details regarding the kilns, quarries, railroad (later), management, and prices in regular columns. Alden Ulmer, the Knox County lime inspector issued public reports: “Lime, Wood, Cask Market” (Ulmer 1861, for example). By 1861, lime was selling for $0.65 per cask, kilnwood was at $3.50-3.75 per cord, and casks varied from $0.17 to 0.18 (Ulmer 1861). In the early twentieth century, the “Courier-Gazette” (1926, for example) had a regular column “Quarry and Kiln, Latest Bulletintes Concerning Knox County’s Chief Industry” that let people know about repairs taking place, who was out of work on sick-leave, and that the “drinking fountain has been changed from the kiln platform to shed floor back of the boiler” at the Gregory Sheds (Courier-Gazette 1926a).

5.3 Rockland Lime

The city of Rockland came into being, officially, at the town meeting on Saturday June 3, 1854 when the “act of the legislature to incorporate the city of Rockland was accepted by a vote of 238 against 110” (Rockland Gazette 1854). The lime industry center had incorporated as a town on July 28, 1848 and remained named East Thomaston just two more years until residents changed the name to Rockland on July 17, 1850 (Fillmore 1922:36, Eaton1972:4, orig.1865, v.2). Thomaston and Rockland were part of Lincoln County until 1860 when they, seven other towns, and two plantations joined five towns separating from Waldo County to form Knox County, part of mid-coast Maine in March 1860; Rockland became the county seat, vying for the honor with Camden (Fillmore 1922:7). Eaton (1972:4-5, orig.1865, v.2) wrote of its citizens changing the town’s name to Rockland in 1850 and noted that “it has rejoiced in its chosen name, which, when it is considered that its quarries of lime-rock are the foundation on which the
prosperity of the place rests, all must acknowledge [the name Rockland] to be an appropriate one.” He also summarized the lime industry, for 1850: it had shipped 800,000 casks, employed “120 coasters, and as many more in bringing the wood from the eastern coast and islands” (Eaton1972:4, orig.1865, v.2).

Its lime, heretofore known as that of Thomaston, now took the name of Rockland lime in the market; and the place has since by common consent been considered the principal manufactory and depot of lime for the United States (Eaton1972:4, orig.1865, v.2).

In 1855, the “Maine Register” (p.357-358) lists 145 lime dealers in the entire state, with 79, or 54.5% being in Rockland alone. While limestone deposits were exploited elsewhere on a smaller scale, many of the lime dealers outside of Rockland sold Rockland lime. The same “Register” (1855:375) lists 32 suppliers of lime casks, 30 of which were located in Belmont, more than 26 miles north of Rockland on today’s roads. “Lime Casks” was not a business or industry category in following editions of the “Maine Register” and I have been unable to determine if the men listed for 1855 were part-time farmer/cask makers or if they were year-round coopers with shops located in Belmont. The towns of Warren, Union, and others, much closer to Rockland were the source of farm-made casks; Belmont was (is) a small town and 30 cask makers being located in such a place is an intriguing bit of historical geography that will have to wait for another time.

By the time Rockland appeared in the “Maine Register” set apart from Thomaston in 1855, it was heavily developed and, as seen above, dominated by lime burning almost completely. There were support industries such as cask making and shipbuilding, another important portion of Rockland’s economy for a time (discussed below), but Rockland had become a city in every sense of the word. The population had risen from Burnett’s (U.S.
Sec. of War 1836:3) estimate of between 1,500 and 2,000 in 1834 to 7,316 in 1860, the
first year for which a census recognized Rockland independently. The businesses and
services one would expect in a city of its size and time had appeared and its morphology
has changed little since. While Rockland never was, or is today, the service center for a
significant hinterland (despite the desires or claims of some residents), with its outward
ties and industrial focus, its residents and those of nearby, more rural areas, had access to
merchants of many types and widely varied services (some of these are outlined below in
section 5.4).

5.4 Rockland’s Urban Morphology

Burnett (U.S. Sec. of War 1836:3) drew one large-scale chart from a survey he
conducted in 1835, however, there were no large-scale maps drawn before 1855. I
learned of the existence of Burnett’s chart on June 24, 2002, when I attended a program
by the Rockland historical society. MBNA, a credit card company, hosted the meeting in
a conference room in one of the buildings they had recently built on the waterfront. A
number of people contributed materials for the presentation that consisted of a slide show
with comments from a few knowledgeable residents; Dave Hoch talked about the lime
industry, Bertram Snow spoke of shipbuilding, etc. The specific subject of the program
was the site where we gathered for the event, the property now owned by MBNA. Before
becoming a telephone call center, a series of other businesses occupied the location;
Fisher Engineering was the previous occupant, however, they relocated to Rockland’s
industrial park. Earlier, a fish processing plant operated there and it was the place of the
Five Kilns for many years preceding. In 1855, there were actually seven kilns on the
property (earlier called South Point). The company with two kilns on the point, and
numerous others on the waterfront, was that of Francis Cobb, the major figure in Rockland’s lime industry and related businesses. By 1873, there were just the five kilns on the point and Cobb owned them all, with the wharf now labeled Cobb Wharf. On an 1892 map, it was, again, South Point Wharf, with “about 100 cords of wood piled here” and an elevated section of the new Lime Rock Railroad serving the five kilns from above (Sanborn 1892).

The historic photographs shown by the historical society that day would have been a welcome addition to this project; however, as mentioned above, I eventually learned that their policy is that they do not share materials with researchers. One slide was of the early harbor chart (U.S. Sec. of War 1836) mentioned elsewhere (see Figure 45 above). I learned that, fortunately, it belonged to a resident, Dave Allen rather than to the historical society. Capt. Allen was willing to share it and his other documents with me for this project. The chart and report (U.S. Sec. of War 1836) have proven valuable and I appreciate his help.

During the program, several participants discussed the fact that Rockland (East Thomaston) had developed rapidly during the 20 years before Osborne (1855) produced the first complete map of the city. Considering Eaton’s (1972:408, orig.1865, v.1) comments of 1845 about houses and kilns going up, and the increase in population over the period (noted above), Rockland, without doubt, had developed rapidly. However, Burnett’s early chart (U.S. Sec. of War 1836) does not accurately represent the state of the city’s morphology at the time. With the population at 1,500 to 2,000 and the output of the lime industry for 1834 being 450,000 casks, it is unreasonable to suggest that the chart includes all the facilities ashore. Burnett’s chart shows just 65 buildings, two main
roads, and 18 of the “twenty-five or more valuable wharves at the village” (U.S. Sec. of War 1836:3-4). Charts, by nature, focus on the seascape and a narrow strip of the littoral scene with shore features for reference purposes only. In most cases, chartmakers will draw a few buildings and will indicate water towers or the tallest buildings for navigators to use for compass bearings leaving out the balance of inshore features although, at times, charts tended to include cultural and topographic information as well.

The 1855 map indicates numerous wharves along the shoreline. Lime sheds dominate the waterfront and the city’s streets radiate out from the half-moon shaped harbor. Residents concentrated their building near the harbor and it is apparent that they, like their industry and businesses, looked to the sea. The quarries west of the city development were the backstage, just as they are today; with the harbor being the stage and focus of attention and activity (see Figures 52 and 53).

Rockland did not develop in the same way as other New England manufacturing cities. Rockland was a late bloomer for reasons described in Chapter 3, but the city did have elements in common with other larger and older New England cities. Vance (1990) describes the mill towns that were developing at waterpower sources at the same time as Rockland’s lime industry was at its peak. The brick mills in places such as Lowell, Massachusetts were likely built with mortar made from Rockland lime (Boston and New York City were consistently the main destinations for the product). Rockland had a hand in industrialization, but had developed with a unique structure. The wharves at Rockland were, like those at Boston, Providence, and Portsmouth “the point of initiation of the town,” (Vance 1990:262) but were mostly engaged in industrial rather than mercantile activity. Vance (1990) offers two models for small New England merchant towns, the
Figure 52. Rockland, 1855. Adapted from Osborne (1855).

“Five Kilns” Property (with 7 kilns in 1855)

Lime Kilns (typ.)
Figure 53. Rockland, 1916, adapted from Tripp (1916), courtesy of Rockland City Hall. Note electric Rockland, Thomaston, and Camden Street Railroad (RT&C), and Crockett’s Point, detailed in Figure 55, below.
linear form, developed on a river terrace or coastal strand-line, and the bastide. Rockland is of a form combining the two. The strand-line controlled the overall shape of the city that is a grid pattern molded around the curved shoreline, providing ready access to the harbor for most of the city. The radial street pattern with cross streets curved to reflect the overall shape of the waterfront (a slightly misshapen grid), again, indicates the heart of the city at the harbor. Main Street is just off the harborside and follows the waterline for much of its length. Rockland is compact, and compacted, with little area between the quarries and the harbor. Behind the deeply quarried area outside of town lie some hilly farmland and a wetlands known locally as “the bog.” The city is 12.9 square miles in area (U.S. Census Bureau 2000:821), however, even today, with farming and the bog, Rockland does not sprawl; dense development is concentrated in a relatively small arc at the harbor. The industrial and business sections have traditionally been at the water’s edge, often on wharfage, and inland one or two streets. Rockland’s main street, lined with substantial, mostly brick commercial blocks built in the nineteenth century, faces in on itself, with its back to the harbor. Outside the narrow commercial band, mostly along Main Street, were residences and some service buildings, schools, the library, courthouse, armory, and churches. Lately, the waterfront is seeing other uses and there is an industrial park on the edge of town toward Thomaston. Some strip-development along the main roads has taken place: gas stations and convenience stores as one would expect in any American city of similar size today.

Although Rockland’s population grew significantly over the period from Burnett’s early estimate to Rockland’s first census, there has been comparatively little change since (see Chapter 1). Using the mean of Burnett’s range, 1,750 people, the
population density was 136 people per square mile (ppm²) in 1835. This increased dramatically by 1860 to 567 ppm², an increase of 417% in 25 years, if Burnett’s estimate was correct. Lime production increased only slightly during the same period but approached 1 million casks by 1882, with the population at 7,599 in 1880, only 3.7% higher than in 1860. Since the number of people engaged in lime production is virtually unknown until the city directory first listed the occupations of individuals in 1897 (and this helps little), Burnett’s figures seem high for lime production or low for population.

While the waterfront evolved, expanded, and saw varied uses especially from 1855 into the 1930s, the commercial zone as the first ring on shore from the harbor, the residential zone or second ring, and third, wider zone of agricultural use and limestone quarries have changed little. In the residential zone, some infilling took place as the population rose, however, street patterns and extent of developed area have remained relatively constant and much like that depicted on the 1855 and 1916 maps (see Figure 53, and refer to the series of maps, charts, and aerial photograph in Appendix E: Rockland in the years, 1863, 1906, 1979, and 1996).

5.4.1 Waterfront Morphology

From the “twenty-five or more” wharves in 1835, Rockland’s industrial and business interests increased that number to more than 60 by 1855 (U.S. Sec. of War 1836, Osborne 1855). Lime manufacturers were operating 148 kilns on the waterfront in 1855; that number was never exceeded. Eleven shipyards were producing vessels of various types and sizes. At the south end of the harbor, one shipyard maintained ships as well as built them. The yard had one railway to haul ships out for repair in 1855, but by 1873,
the owner had built a second and the yard operated both with horse-powered windlasses until 1904 when they installed an engine (Osborne 1855, Sanborn, various years).

A long-term fixture on Rockland’s waterfront, the Gas Works, is now gone and almost completely forgotten. It was located on the southeast corner of Lermond’s Cove and changed hands and form over the years until it was demolished in the late 1940s or early 1950s. Osborne’s 1855 map shows the Gas Works and Sanborn maps indicate that it was in “constant operation” for many years (see Figure 54). The gas works in downtown Rockland indicates the wealth, power and influence, and scientific awareness of its elite. Gas was common in larger cities in the latter part of the nineteenth century; however, 1855 was early for such an installation, particularly in a small city. Rockland’s

Figure 54. Gas plant. Note cannery at left and Livingston Manufacturing at right, adapted from Sanborn (1922).
early use of gas also tells of the connections its residents had by sea, to larger, sophisticated cities, and that Rockland was in no way culturally isolated by its location. The gas was coal gas, town gas, or just gas, generated by the “distillation” of coal (Webber 1907). Residents used town gas primarily for lighting, but later, they used it for heating and eventually, cooking purposes. In some places, people used coal gas for motive power (including the generation of electricity), although I have not found evidence of this in Rockland (Webber 1907).

Rockland was mapped at a large-scale once again in 1873 (Roe and Colby). Fewer shipyards are noted on the newer map, and just 97 kilns were on the waterfront at the time. Kilns were such a common feature in Rockland that the cartographers drew the lime sheds and simply indicated the number of kilns within, in some cases not seeing it necessary to use the word *kiln*.

Quarrymen had the benefit of improved technology in the latter 1880s. Steam drills replaced star drills saving time and effort for workers drilling holes for blasting. Dynamite had replaced gunpowder and while quarrying was still a dangerous occupation, the new blasting practices did make improvements.

There is a very great advantage, the quarrymen say, in using dynamite over powder, in their work. A quarryman of 32 years’ service says: “I will tell you the advantage of the giants [dynamite] over powder in our work. You take 50 lbs. of giant, costing $16.00, (best,) same amount of powder at $5.50; the powder will blow 400 casks of rock; the giant will average 2000 casks of rock; also we can depend on the giants to be more sure in blowing. Sometimes we are hours working over a hole, charged with powder, which at times is very dangerous, but in the use of the giants, accidents are lessened one-half” (BILS 1889:60).

Another improvement for the men and for horses was the widespread use of steam derricks and tramways. The new equipment allowed workers to hoist rock vertically
rather than use inclined roads carved into the quarry walls for the horsedrawn wagons to climb. Mechanization of the quarries allowed the quarrymen to go ever deeper into the veins of high-quality limestone. In 1888, the deepest quarry was at 150 feet, but steam power eventually got the quarrymen closer to 400 feet down. Quarrymen made an average of $13.50 per week in the late 1880s; kiln tenders, $14.00 (for a seven day week); and coopers, $10.00 (BILS 1889:66-67).

Rocklanders continued to expand their waterfront facilities and some of their wharves saw different uses as the nineteenth century progressed. The city was developing as a commercial and industrial center; long-distance ties developed in enterprises related to lime.

Its leading business, growing out of its inexhaustible lime formation, [that] furnishes regular employment directly and indirectly to at least 2000 men, several hundred horses and a large fleet of vessels in bringing the wood from the seacoast towns for burning the lime and distributing the manufactured product along the entire coast of the United States (MIJ 1883).

An iron foundry, employing 15 men, manufactured metalwork, including anchors, for the shipbuilders in the city and wider region and a brass foundry cast “bells, pumps, water closets for ships, rudder braces and a very numerous line of first class regular goods, most of which are made for the wholesale trade in New York …” (MIJ 1883). Four shipyards were building large vessels; five sail lofts employed an average of 15 men each; a block manufacturer kept six men busy; two carriage makers built wagons, buggies and sleighs and employed five and eight hands, and one cigar maker kept four hands employed (MIJ 1883). In 1910, Rockland had three cigar manufacturers producing “hundreds of thousands of the finest five and ten cent cigars in the world” (Thomas 1910).
Lime production remained high; manufacturers had dramatically increased kiln efficiency with ten Rockland lime companies burning 1,435,570 casks of lime in 1892 in fewer kilns; just 70 were in operation in that year (BILS 1899:29, Sanborn 1892).\(^6\) The lime industry dominated the waterfront, but other businesses continued to take the places of former lime sheds and fit in-between others. By the early 1890s, lumber companies had large wharves and a gristmill, coal warehouses, numerous cooper’s shops, and freight and shipping offices and warehouses were at the harbor (Sanborn 1892).

The most dramatic change on the waterfront was the construction of the Lime Rock Railroad (LRRR), built to haul limestone from the quarries to the kilns downtown (see Figures 53 and 55). Ten miles of the new railroad was in service in 1888. “This road is at present employing two engines, 264 cars, and about 20 men in the transportation of rock from the quarries to the kilns” (BILS 1889:61). Upon its
completion in 1891, it was over 12 miles long with numerous spurs to kilns and wharves although it never joined ends.

Nearly three miles of the Lime Rock Railroad was elevated on trestle that varied from 20 to 30 feet above ground in order to deliver the raw limestone to the tops of the kilns (Industrial Journal 1909:14) (see Figures 56 and 57). In 1898, the railroad still employed 20 men, paying them an average wage of $1.71 per ten-hour day (BILS 1899:97). At its peak, the railroad had nearly 500 side-dump cars pulled through the city and out to the quarries by four steam locomotives (Industrial Journal 1909:14). Coal replaced wood in many kilns; the LRRR carried coal from the coal docks (the largest of which was at the north end) to the kilns. The local railroad long supplied the raw materials and the fuel but never carried the finished product; however, the Knox and Lincoln Railroad (K&LRR) did transport lime. In 1888, the K&LRR carried 114,000 casks, a small amount compared to what went under sail. Later, as fish processing plants came into operation, the Lime Rock Railroad delivered coal for their boilers (Hoch 2001).

The K&LRR had made its way to Rockland in 1871, crossing the tidal Kennebec River (from Bath to Woolwich) on a ferry for more than 50 years until a railroad/car bridge was finished in 1927 (Merriam 2002). I was born not far from the old ferry dock and, as a youth, walked across the high Carlton Bridge and watched it open for river traffic, then mostly herring carriers heading for the Bath cannery. A story told in Woolwich then was about the difficulties the railroad had with the river before they finished the bridge. During the summer, the ferry ran, but it could only hold a few cars at a time; in the winter, the river iced over and railroad workers laid tracks down on
Figure 56. The Five Kilns point. Note LRRR tracks and the “steel bridge” section of the trestle to the kilns (see also, Figure 58). Adapted from Sanborn (1922).

Figure 57. A section of Lime Rock Railroad trestle with dumpcars at waterfront kilns, courtesy of Dave Hoch.
the thick ice. The fall and spring were the worst, and schedules were impossible to keep.

During the research for this project, I tried to discover facts about tracks on the ice, but could not confirm the story although I did hear an anecdote about the practice. The Kennebec River (see map, Figure 1) was a formidable obstacle for all coastwise land transportation before the Carlton Bridge. In 1846, the editor of the Lime Rock Gazette penned a column complaining of poor mail service, it being “24 to 28 hours behind time” (Lime Rock Gazette 1846b).

Having made enquiries for the causes of the delay, we are satisfied that there is no legitimate reason why we should not have our mail when it is due. The reason set forth, as we understand it, is “the difficulty in crossing the Kennebec River, in the night.” Now it is well known that this
difficulty is not greater in the evening, when proper exertions are made, than in the day time, excepting the darkness (Lime Rock Gazette 1846b).

The railroad from the outside world ran tracks to the harbor in Rockland and joined it to steamboat passenger and freight services in 1873. The tracks to the harbor and the Knox and Lincoln Railway Wharf appear on the map published by Roe and Colby (1873). The LRRR was a standard gauge line, not a two-footer or narrow gauge. Narrow gauge railroads operated in many parts of Maine at the time; logging railroads were often narrow gauge and the railroad from the Rockport quarries to the kilns was a narrow gauge line (BILS 1889:61). Other two-foot lines carried passengers and freight.

The LRRR shared a portion of the K&LRR and later, Maine Central tracks. One section of the railway in Rockland is still used; it carries cement from the Dragon plant in Thomaston to a small wharf terminal where they fill barges mostly heading for Boston (see Figure 59). The Rockland railroad station is without tracks near it today, however, the Maine Department of transportation has plans to reconnect rail and marine transportation during the summer months and reopen the Rockland railroad station (Merriam 2002).

In addition to the LRRR serving the city’s industries and the Maine Central that connected Rockland to the outside world over land, the Rockland, Thomaston, and Camden Street Railroad, a light electric car line, served local needs from the 1890s until after the first World War when automobiles and buses replaced it (see Figure 53 above). Unlike other cities, nearby Boston for example, the electric rail line in Rockland did not contribute to a “re-ordering of space” or encourage the suburbanization of the mostly agricultural regions along its paths (Vance 1990:399). Rockland’s land-use patterns have
remained virtually fixed throughout its history, until the recent decline and transformation of the industrial sections of the waterfront.

Little evidence of the lime industry that so dominated Rockland remains today and the Lime Rock Railroad that loomed above the commercial and industrial district and ran through the residential and open zones of the city has mostly disappeared (see Figures 60, 61, and 62). Dave Hoch (2001) explained that, by World War II, the remaining lime kilns were using rock carried from the quarries by truck, not unlike the way the industry began with horse-drawn wagons. With the decline of lime manufacturing, the LRRR was no longer profitable and the Rockland-Rockport Lime Company let it fall into disrepair. In 1942, the wartime need for steel brought about the end for the small rail line. “They took it all up for scrap, burned the rock cars,—left the steel” (Hoch 2001). The hundreds of dumpcars used steel wheels, axles, and chassis, while the bodies were made of wood; burning the wooden bodies left the metal portions for the war effort.

The railroad from the quarries to the kilns improved the efficiency of the industry as much as it transformed the landscape of the harborside part of town. I came across many complaints about Rockland’s roads being “cut up” by the lime wagons and the condition of the city’s roads improved with the railroad in operation. The number of horsedrawn wagons dropped, and teamsters had to find employment elsewhere.

The Rockland City Directory, in various forms (RCD 1869-1950), was a business directory such as many cities had before the widespread adoption of “Yellow Pages” telephone directories. For many years, the city directory listed the residents’ names and addresses as well as their occupations. Not all residents are represented in the directories; in 1869 for example, there were 2,291 entries of individuals in the directory out of a
Figure 59. The end of the Dragon rail line, note concrete silos in background (2001).

Figure 60. A section of LRRR bed that has not yet completely disappeared (2001).
Figure 61. Trestle remains. A few timbers from the extensive trestle remain on the waterfront above decaying kiln remnants (2001). See next figure below for location of this trestlework.

Figure 62. Gas Kilns site, 1896. Trestle remains in previous figure are depicted in use in this map. Blue squares are kilns. This site later became the location of the Gas Kilns (Sanborn 1896).

population of 7,074 (1870) or 32.4% of the whole. In 1929, however, 62.9% of the population appeared in the city directory (see Appendix F, Occupations in Rockland
1869-1950 and accompanying explanatory notes). The number of teamsters employed was clearly at its height in the 1880s but began to drop off in 1892 with the railroad in operation. In the early years of the twentieth century, the number appears more stable but by the late 1920s, the teamster was disappearing from Rockland.

Lime sales were still strong in 1890s, however, the future of Rockland’s harbor and next dominant industry made a quiet entrance onto the scene that decade and Tillson’s Wharf, at the end of Sea Street was the location (see Figure 55 above). Today, the outer end of the wharf is a United States Coast Guard installation, and it is home to O’Hara’s marine businesses. In 1885, however, the wharf was a small portion of what it became; there was stone cutting shed, a blacksmith shop, boathouse, and coal and wood, and iron and steel warehouses. Over the next few years, Tillson expanded far out into the harbor, to deep water (for Rockland), $8 1/2$ to 13 feet at low tide (see 1979 chart in Appendix E). A steamer wharf, express office and freight storage spaces occupied the outer end of Tillson’s in 1892. One of Rockland’s sail lofts operated above the freight company, and on another finger of the wharf a fish packing company offered fish, salt, and ice, and had drying facilities under cover, although the city had had fish peddlers and curers throughout the years (see Appendix F, Occupations). Four years later, a lobster dealer had moved in with the fish dryer on Tillson’s Wharf, but more significantly, the E.T. Russel and Co. Sardine Factory was in operation there as the first of its kind in Rockland. Although Russel and Co. was short-lived, closing in 1903, there were many similar firms to follow (Sanborn 1896).
5.4.2 Consolidation

At the turn of the new century, the largest lime manufacturer, Cobb Lime Company, of Francis Cobb and descendants, and the two other largest companies, consolidated Rockland’s lime interests, including the Lime Rock Railroad, into the Rockland-Rockport Lime Company (R-RLC) (Grindle 1971a:259).

Cobb had been involved in several other enterprises for many years. Shipping and shipbuilding were two in Rockland, but Francis Cobb had investments as far away as the California coast. He and some investors acquired a piece of steep land on the Pacific Ocean in Big Sur. The land had a sizable limestone deposit and Cobb and company incorporated the Rockland Lime and Lumber Company in San Francisco on May 20, 1887. He and his partners built a lumber mill and four large kilns of Cobb’s design. Today, the state of California protects and maintains the area as Limekiln State Park. The kilns remain on the hillside facing the Pacific Ocean, and the mile-long road, down to Rockland Landing where casks of lime were loaded on schooners bound for west coast ports, is now used as a hiking trail and, in part, as an access road for the park (Hoch 2001). Such uses insure that industrial landscapes of the past will remain in evidence and be available for research as well as recreation.

In Maine’s Rockland, the R-R Lime Company, also known as the Syndicate and referred to thus even today, was able to gather together most of the numerous quarry owners and kiln operators. One quarry was often owned by several people; small slices of the operation complicated business and drove costs up. In an effort to control costs and the lime market to better advantage, after trying, unsuccessfully for years to get manufacturers to cooperate, the R-RLC began to concentrate its manufacturing at the
harbor’s north end, where they eventually built the gas kilns, and on another property north of there (both are shown in Figures 62, above and 63, 64, and 65).

Grindle (1971a:365) commented on the early twentieth century efforts:

Maine’s answer to the economic problems faced by the industry in the 1890’s was consolidation. But, that consolidation was incomplete, defensive in nature and, perhaps, too late. A Cobb Lime Company, or a Knox Lime Manufacturers Association, with equivalent powers and capitalization and led by a businessman or men of vision might have made Knox County a regional or national center of the lime industry, instead of a case study in local business leadership.

Egos and politics drove some poor decision-making in R-RLC and by “1900 the big money-making days were over anyway” (Rockland resident 2001). A few families comprising Rockland’s elite continued to prosper and expand their wealth in other activities and diversified interests such as banking, shipping, shipbuilding, water and electric utilities, and others (Grindle 1971a). One of today’s Rocklanders explained to me that some members of a few of those families are still influential in the area and that “all the big names made their money from lime—on the backs of those poor devils up to the quarries” (Rockland resident 2001).

Lime kilns still numbered 71 in 1904, however, by that time many were not being used; 14 were abandoned with their sheds gone, torn down, or burned (Sanborn 1904). Just a few years later, the kilns that were not in sheds in 1904 were gone from the waterfront, along with a few more.

When I first saw the A.J. Bird & Co. shipping bill, the name of the company was familiar, they were one of a few independent lime manufacturers after Cobb and his partners formed the Syndicate. What became interesting was the “lime pencil,” one of Bird’s products; I had not seen this product mentioned elsewhere (see Figure 66).
Figure 63. R-RLC operation at north end of Rockland Harbor, 1922. Adapted from Sanborn (1922). The aerial photo in Figure 64, next, is this property.
Figure 64. Aerial photograph of R-RLC operation at north end of Rockland Harbor (ca. early 1920s). Note retaining wall at left being filled with core waste, coal gantry and coal piles at center, and R-R barges at dock near crane. Note numerous LRRR spurs. Courtesy of Dave Hoch.
Figure 65. North end gas kiln operation in 1922. This property is shown with conventional kilns in Figure 62 in 1896. The remains of those kilns are in photograph below, Figure 69. Adapted from Sanborn (1922).

Figure 66. Bird Company shipping bill. Note price and Bird’s lines of products including lime pencils (1906).
After trying to discover what Bird manufactured these pencils for (markers for leather or steel?) with no success, I asked Dave Hoch, the last president of R-RLC. Dave did not know, however, he promised to look into it. We corresponded about the topic over the winter of 2001-2002, and Dave discovered, eventually, that lime pencils produced a brilliant white light in a burner employed in “magic lantern” shows, searchlights, lighthouses, and theatrical spotlights. The expression “in the limelight” comes from their use in the theatre. Among his records Dave found a letter from one of R-RLC’s directors, H.L. Shepherd in Rockport to the company president Fred Richards in Portland, Maine, dated July 25, 1902 in which Shepherd wrote of a number of topics, including lime pencils:

In relation to the pencils, we are having quite a good many inquiries and are filling the orders. In fact, the business has taken such shape that we feel that we are working to disadvantage by having the pencil plant at Rockport when we are obliged to burn the lime at Rockland, because the lime in order to make the best pencils should be used as soon as possible after it is burnt and necessarily there is a two or three days delay, in addition to the extraordinary expense, in getting it to Rockport, consequently, we have moved the plant to Rockland to-day and will set it up immediately and begin very soon to manufacture the pencils within one hundred feet from the kiln in which the lime is burnt, which will save time, labor and expense.

In that same year, the Bureau of Industrial and Labor Statistics reported on the manufacture of lime pencils, and explained that “A.J. Bird & Co. of Rockland have made a specialty of this line” (1902:69). The report continues that “the successful production of this new article requires a reversion to the old style of burning lime” as modern kilns produced small pieces of quicklime, preferred for mortar or plaster, but pencils were “sawed into strips of the required size and then rounded by machinery,” so workers
needed large pieces of lime to work with; an intermittent kiln provided the right material (BILS 1902:69).

Kilns remaining on Rockland’s waterfront in 1912 numbered only 55, most on the north end and owned by R-RLC. Firms moving onto the waterfront, into spaces previously occupied by lime manufacturers, were largely concentrated in the fishing industry. Drying facilities, lobster companies, salt houses, canneries, and sardine factories joined expanded coal docks and coal storage on the waterfront. The Arthur McMullen Company “one of the largest granite concerns in the county” built an ambitious granite cutting and polishing facility at the south end of the harbor (Thomas 1910). McMullen used granite quarried at their facilities in Stonington, on Deer Isle, shipped to Rockland by water. While no granite quarries existed in Rockland and only McMullen had facilities to carve and finish stone in the city, Rockland was the business center for the granite industry.

Rockland is an important centre of the granite business, and while many of the quarries are located on nearby islands, this city is the natural center of the business and most of the concerns have their offices in Rockland (Industrial Journal 1909:14).

Granite companies had their offices on Main Street and the Granite Cutters Union was founded and headquartered there beginning in 1877 (Grindle 1977:3). Livingston Manufacturing, later Bicknell Manufacturing, the country’s foremost granite-working tool manufacturer was also on Rockland’s waterfront (see Figure 54). Bicknell is still in business in Rockland and in Elberton, Georgia; David Bicknell, grandson of the manager of Livingston Manufacturing runs the company.

The Maine granite industry was at its peak in 1910, but quickly faded and failed. Railroads had made other granite quarries, located away from saltwater, practical,
changes in building materials, and the advent of the automobile contributed to granite’s
decline. Granite paving blocks (sometimes called cobblestones) were a staple product,
well suited for streets used by horses, however, they are not a good surface for motor
vehicles (Bicknell 2001). Even before the decline of the lime industry, granite companies
were closing. “Not only has concrete taken the place of granite in the construction of
total buildings, but, where buildings are largely made of material other than granite,
concrete has taken the place of granite for foundations and trimmings” (Packard
1916:340). Near McMullen’s cutting sheds the south end’s marine railway continued to
operate just south of a small, but new, grain elevator on a LRRR spur (Sanborn 1912).

The lime industry would never again see the prosperity it had in the 1880s.

By 1912, despite predictions that cement and “other like materials” would
replace lime in building construction, the consumption of lime in New
York had increased two hundred percent. But, Knox County sales in the
New York market were down fifty percent. These were the conditions the
Rockland-Rockport Lime Company had been formed to guard against
(Grindle 1971a:266).

Ten years later, the six gas kilns were in operation and a total of 37 kilns burned
lime on the waterfront. The R-RLC owned all of them including the Five Kilns, except
the two northernmost kilns that Edward Bryant operated. Abandoned kilns remained on
the landscape, 13 are noted on the 1926 Sanborn map. The Lime Rock Railroad was
beginning to disappear as well; just as Dave Hoch did later, owners removed what had
become obstructions to changing land uses (Sanborn 1926). One large lime shed became
a lumber shed, a pants factory operated on the waterfront, a small mill produced doors,
sashes, and blinds, and fish processors expanded. Deep Sea Fisheries, with the most
extensive facilities, McLoon Lobsters, Penobscot Fish Company, J.A. Young Lobsters,
Sea Products Company, Thorndike and Hix Lobster Company, and some smaller lobster
houses were now taking the place of the lime industry as the dominant activity on the waterfront, except at the north end (Sanborn 1926).

R-RLC owned all the working kilns in 1931, however, their operation had diminished dramatically. The Lime Rock Railroad was still in operation, but had fewer destinations than a few years earlier. All ten of the company’s kilns on Crockett’s Point were in disuse, and they had abandoned the Five Kilns earlier, leaving just 22 kilns at the north end running.

The company produced a newsletter “published every-other-week” beginning ca. 1920, devoted mainly to safety issues, moral advice, humor with lessons on the work ethic, and news items (gossip, really) of interest to the company’s workers (LB 1922). The newsletter included a stock list for the company store that sold food and household supplies; later, by the mid-1920s they also offered tools, gardening supplies, and other hardware for home use. In the November 15, 1923 bulletin the usual reports from various sections of the plant appear: news from the Point Kilns, the Rockport operation, the Gregory Sheds, the Quarries, the LRRR, and the Five Kilns. This issue is the last that mentions the Five Kilns, although the report would not lead the reader to believe they would never resume operation.

Five Kilns Kiln 4 filled out last Thursday and 1 and 2 did the same thing Saturday, closing production at this point for the season. The lime in the shed will be shipped as soon as barges arrive, and the shed closed for the winter. Operation of kilns began April 8 this year, making a runoff seven months and two days. Last year only two months’ run was had (LB 1923).

Numerous buildings and wharves were empty and abandoned. Oil facilities had joined coal docks and three refineries, Shell, Standard Oil, and Gulf, were in operation along with a fish rendering plant, the Curtiss Wright Flying Service (seaplane facility),
and the sardine industry. One dry-fish packing facility had become an indoor miniature golf course.

The 1930s saw sections of Rockland’s waterfront as places of decline and disuse as the lime industry centralized at the north end, however, the resulting inexpensive waterfront facilities and real estate were just what an expanding, industrialized fishing industry needed.

5.5 Lime Falters

The Rockland-Rockport Lime Company, at the north end and the Five Kilns, was a vast and complex organization with significant holdings in the city. The syndicate operated on the properties shown in figures above, ran the railroad, and operated the quarries, steam tugs and barges, and lime schooners. The major figures in the company also had interests in related businesses such as shipping and shipbuilding. The kilns, elevated rail line, and quarries were all dangerous places to work and the lime company managers eventually took worker-safety seriously, reminding workers about safety concerns in the company bulletin. The safety department reported injury records and published results of meetings in which they made decisions about equipment changes and improvements with safety in mind. On May 24, 1923, the Quarries news carried a report of an unfortunate accident involving Tobias H. Seavey, 65 years of age. “Foreman Petrie while crossing the Pleasant street bridge observed a man rolling over edge of quarry and fall to bottom, a distance of 150 feet” but the cause of Seavey’s fall was never determined (LB 1923). For the month of November in the same year, there were few injuries causing lost time and the committee reported that belt guards, railings, and other safety equipment would soon be installed (LB 1923). The same newsletters promoted competition
between and among workers to increase production, and surely, in some cases, injuries. They kept track of who moved the most rock, who loaded the most bags in a day, who loaded a truck most quickly, the largest volume of rock moved by a single explosion, the most dynamite used in one blast, and more mundane records as well. At the Five Kilns in April:

Records on two kilns were broken last week, No. 4 with 1280 barrels beating all previous productions and No. 5, known as the coffee pot, coming across with 1172 1-2 barrels broke a previous high record of 1171 1-2 which had been considered the limit for this kiln (LB 1923).

Employees took pride in these accomplishments and R-RLC got more labor for the same pay. The next month, workers broke another record; this time employees appear in the report.

The longest train ever hauled on the Lime Rock railroad went south one day last week, in charge of conductor Ross Carlette with locomotive No. 5, Jesse Smith engineer. The train consisted of 91 loaded cars, 72 of rock and 19 of coal. Long trains and heavy hauls, however, are an every day occurrence with this train, which is known as the “work train.” Why it is called that will be explained by any member of the crew upon request (LB 1923).

Although the kilns had been out for years, Rocklanders told me stories about records held by ex-lime workers. One man loaded a truck with agricultural lime faster than the next; a kiln tender could produce more than the other, etc. They also remember tragic events, injuries and deaths, of which there were many. For example, from the bulletin of January 8, 1925 a cold report of a good year.

What 1924 did to the Safety Department
For the record of lost time injuries and first aid dressing reference may be had to the statistics printed on this page. Of the 117 lost time injuries for the year, only two were of a serious nature, being classed as partial permanent disability, one being for loss of finger an one for loss of toes. The total number of days lost for the year was 2,423, which includes 600 days classed as “penalty days” ---300 days each for the two cases of
partial permanent disability. This total of days lost is way below that of previous years, that of 1923 being 38,501 days, owing to six deaths at 6,000 “penalty days” each and one partial disability of 300 days, and that of 1922 being 13,291 days, including one death at 6,000 days and one loss of arm at 4,500 (LB 1925).

Rockland felt the Great Depression while other parts of Maine were isolated and unaffected. My grandmother, born in 1884, remembered the Depression well, from newspapers and other sources; however, on her inland farm, life continued as usual. She told me that the cows still gave milk, the chickens laid eggs, hay grew, and they bartered with the neighboring farms as they always had. Rockland’s ties to and reliance on distant markets and economic conditions in other cities made them vulnerable. With no new buildings going up in Boston, New York, Richmond, or New Orleans, lime sales fell. Lime’s low cost and bulk put Rockland in the position of being one of the few places that could make profits on its production due to the location of the quarries adjacent to the ocean. Improving transportation networks in the United States made Rockland vulnerable, and the depression was a difficult time for the R-RLC. Geographers Finch and Howe wrote in 1930 (p.390): “In more recent years the growing competition of the developing West, aided by excellent transportation facilities, has cut off many of the distant markets, but Boston and New York have always remained large centers of consumption of Rockland lime.” Lime sold for $2.00 per cask in the early days of East Thomaston’s industry (BILS 1905). As time passed, however, lime prices dropped to $0.85 in 1846 and to $0.65 in 1861. Into the twentieth century lime was still a low-priced commodity selling for just $.70, including shipping, by 1906 (see Figure 66).

The conventional wisdom in Rockland regarding the collapse of the lime industry is that the adoption of wallboard and plywood as lighter, more labor-efficient building
materials critically wounded Maine’s lime industry. “Rockland lime was shipped to all parts of the country until the Depression and the building industry’s adoption of wallboard caused the lime industry’s downfall” (SVHS 1996:12). Certainly, the city’s lime was shipped widely, but hardly to all parts of the country. The Depression and wallboard were contributors to lime’s decline; however, other important factors were involved. Everyone involved thought that Rockland’s limestone supply would last forever; “The supply is simply inexhaustible” (BILS 1902:27). Limestone suitable for agricultural purposes abounds in the area, but, again, its low price and distance from markets renders it of little value. Although R-RLC searched, prospects of new veins of high-quality limestone for quicklime were not forthcoming. Some in the lime industry found the idea difficult to believe, without going even deeper in existing quarries, which was not a practical option; Rockland’s renowned lime was, in fact, running out (Hoch 2002). A lower quality of limestone is acceptable for cement, but Dragon Cement Company is, today, moving large amounts of rock unacceptable for cement out of their quarries in order to get to the limestone they need. Early geologists and lime manufacturers were convinced of hundreds of years’ supply of the highest quality lime; they were wrong.

“Gypsum and cement are taking the place of lime in some places today” (Finch and Howe 1930:397). Wallboard is heavy and unwieldy in large sheets, but is lighter and less labor-intensive than plastering. Through the 1930s especially, “the cement industry took over the masonry mortar market, and there was little plastering, but … Rockland ran out of the high quality lime [it needed] to burn” (Hoch 2002). The lack of lime for
mortar and plaster was thought to be temporary, R-RLC searched, as mentioned above, though in vain.

Finch and Howe (1930:397) asked:

What will happen to Rockland if the lime production declines, since that is the chief industry in the town? Many New England towns have had to face this same problem. Some have survived and some have had to give up the struggle. It is a question which cannot be answered offhand as there are too many factors involved and the ultimate test will be whether Rockland, like New England as a whole has the adaptability to maintain her position in a changing industry against newer and possibly more logical industrial centers.

We know the answer to their question; Rockland turned to fishing, then, upon the collapse of that industry, struggled for a time, but reinvented itself for tourism and service, proving that Rockland’s people did have the adaptability to survive and not “give up the struggle.”

Considering the dominance of the lime industry in Rockland, and its long run, I was continually surprised by how little physical evidence of it I could find. The railroad, kilns, and other significant structures disappeared slowly, but are virtually gone. Perhaps the person that most laments the disappearance of this important industry from the landscape is Dave Hoch. Dave is now involved in some projects that would help people remember (or learn about) Rockland’s most important industry. He gladly spent days with me, over two summers, conducting a guided tour of Rockland’s lime related relict landscapes, sharing his vast knowledge of the industry, and allowing me to copy documents, maps, letters, and other materials. At the time, he was doing what he considered best for the company and the harborside, but Dave helped erase significant portions of the industry from Rockland’s waterfront. In 1961, Dave had the Gregory Sheds, some kilns, and portions of what remained of the LRRR removed. The Courier-
Gazette interviewed Dave about the process of clearing away unused, but historic elements of Rockland’s industrial landscape on January 10, 1961. The small headline declared, “End of Era as Last of Lime Kilns is Demolished.”

The tearing down of the trestle will remove an eye sore from the lower side of Front Street, said Hoch. The company also has other landscaping changes in the offing which will improve the company’s operation and appearance, he added (Courier-Gazette 1961).

Lime has numerous uses in industry today, in sugar refining, petroleum refining, water and sewage treatment, the manufacture of steel, rubber, paving, and bricks, as well as in the pulp and paper industry. Steel makers and processors use lime (flux stone), as do leather processors and farmers who still apply lime to their fields. Rockland’s location does not give it an advantage today; 31 states have lime plants, Alabama alone has seven (National Lime Association 1998).

As he removed the last of the lime industry from the north end of Rockland harbor, Dave saw possibilities for new land use.

Hoch can see a dramatically new future for Rockland. He wants to “change the direction of a community” and its “fantastic harbor” with its long and colorful history of shipbuilding and fishing (Langley 1974:14).

On October 10, 1981, when the lime industry finally, completely, died in Rockland, Dave’s wife Isabel was relieved that it was over. Some of what Dave dreamed of for Rockland has materialized 25 later, but he continues to wonder if Rockland is using its greatest asset, its harbor, to its best potential. The harbor continues to present opportunities, but the city takes advantage of just a few of these. The Rockland community must be careful to avoid turning a deaf ear to people like Dave, people with vision and Rockland’s best interests at heart.
5.6 Glimpses of Rockland’s Lime Industry

Figure 67. Mile-long quarry in Rockland (2001)

Figure 68. Another abandoned Rockland quarry, looking north (2001).
Figure 69. Kiln remains at the north end (2001).

Figure 70. Kiln remains at the north end, arched firebox (2001).
Figure 71. Rockland quarry at work, date not known. Note bridge in background, left (SVHS 1996:13).

Figure 72. Park Street Bridge, noted above, as it appears today. Dave Hoch dynamited the bridge because of safety/liability concerns for his company (2001).
Figure 73. Gas Kilns site at north end. Rockland maintains a commercial fisheries wharf, but this open location provides more room for trucks to maneuver. The herring being unloaded in this photo is mostly for lobster bait (2002).

Figure 74. Rockland’s breakwater, built in the late 1800s to protect the lime industry. Looking NNW back toward land (2001).
5.7 Notes on the Text, Chapter 5

1 For further details regarding the kilnwood trade, both within Maine and that carried on by the British schooners of New Brunswick, see Grindle (1971a).

2 This burning limer, the Carrie G. Crosby was built in 1869 in Chelsea, Massachusetts. She was of 55.39 net tons, 76 feet in length, 22 feet abeam (wide) and drew 7.5 feet. The Crosby’s homeport was Rockland at the time of her demise, but was, earlier, out of Wellfleet, Massachusetts (U.S. Dept. of the Treasury 1885, 1887, 1893). She was twenty-four years old when lost; perhaps she was one of the Rockland limers complained about by the editors of the “Rockland Opinion.”

3 Rowe (1948: 263-264) cites Wasson (1932) for a quote he used about schooners that took a further step down from carrying kilnwood to hauling granite; this was considered the worst duty for an old wooden vessel, but at least granite does not catch fire. Rowe also acknowledges Wasson in a foreword (p. 11-12), but neither Rowe nor Rich (1964) cite Wasson in their sections regarding kilnwood boats or limers.

4 The “Maine Register” was first published in 1822. It has consistently been a business directory for the state, but has taken different forms over time. The “Maine Register” is still published, however, it has not appeared continuously. For Rockland, I used only the years 1855 to 1947.

5 In Quarry and Kiln: The Story of Maine’s Lime Industry, Grindle (1971a) devotes two chapters to Francis Cobb and his varied business interests in Rockland and elsewhere.

6 Lime production in Rockland for the late nineteenth century in “no. of casks of lime burned” (BILS 1899:29):

<table>
<thead>
<tr>
<th>Year</th>
<th>Lime Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>1887</td>
<td>1,388,413</td>
</tr>
<tr>
<td>1888</td>
<td>1,211,366</td>
</tr>
<tr>
<td>1889</td>
<td>1,348,187</td>
</tr>
<tr>
<td>1890</td>
<td>1,267,915</td>
</tr>
<tr>
<td>1891</td>
<td>1,415,117</td>
</tr>
<tr>
<td>1892</td>
<td>1,435,570</td>
</tr>
<tr>
<td>1893</td>
<td>1,248,570</td>
</tr>
<tr>
<td>1894</td>
<td>1,064,747</td>
</tr>
<tr>
<td>1895</td>
<td>1,265,740</td>
</tr>
<tr>
<td>1896</td>
<td>1,188,948</td>
</tr>
<tr>
<td>1897</td>
<td>1,179,302</td>
</tr>
<tr>
<td>1898</td>
<td>1,022,382</td>
</tr>
</tbody>
</table>

7 The Lime Rock Railroad used this bridge at the Five Kilns property as a portion of the elevated trestle. The R-R Lime Company gave it to the city to use as access to the public floats at the town dock. Dave Hoch would like to see a plaque of some type on the bridge acknowledging the LRRR and informing visitors of its first, long-term use and its place in Rockland’s industrial past.

8 Off to the left of the photo is the Dragon dock. The silos are abandoned grain silos that were part of Maine’s once thriving poultry industry.
Sanitation vs. Romance
How dear to my heart is the new drinking fountain
That squirts its cold juice with diagonal flow;
As I drink I feel sure that all germs I’m escaping
For the water is loaded with chlorine, I know.

Some Poet has sung of the old oaken bucket
That hung o’er the well with the barnyard nearby
Where he used to imibe when he felt rather thirsty
Though each typhoid filled drink was a challenge to die.

So give me the fountain, the hygienic fountain,
Where I drink without peril whenever I’m dry.
CHAPTER 6. ON THE WATER: SHIPPING, SHIPBUILDING, AND FISHING

6.1 Shipping Lime

The lime industry connected Rockland to distant markets from the beginning. “It is claimed that the first cargo of lime ever shipped to New York, was by Samuel Rankin in 1823, from East Thomaston, now Rockland, on board the schooner ‘Leo,’ Capt. Josiah Spaulding” (BILS 1889:63). Area manufacturers shipped lime to Boston long before, however, as early as the 1730s (Eaton 1972:180, orig. 1895, v.1). Almost to the end, the Rockland-Rockport Lime Company maintained offices in their biggest market areas. RRLC had a space at “101 Park Ave. New York City” (RCD 1921) and “The company own and lease about eight acres of land with a water frontage of 1200 feet on Newtown Creek, in Brooklyn, N.Y. The company also has an office in the Penn Mutual Building, Boston” (Thomas 1910). Newtown Creek is a narrow but deep channel lined with wharves, off the East River halfway between the southern tip of Manhattan Island and Hell’s Gate.

Rockland’s lime markets were along the East and Gulf coasts. New York was consistently the leading consumer, but in 1858 and 1859 New Orleans was the destination for the second largest number of casks loaded in Rockland by stevedore Peter Lorraine (Grindle 1971a:289, 290). Other markets were Richmond, Savannah, Jacksonville (Florida), Pensacola, Mobile, and Galveston.

After the railroad reached Rockland, some lime went over land, but by far, lime companies shipped the bulk of the industry’s output under sail. Sail was a cost-effective method of shipping heavy, bulky, and inexpensive products that other methods of transportation have never matched. In order to provide that transportation, Maine led the
nation in shipbuilding until well after World War II. The *Maine Register* for 1857 summarized the state’s resources and industries, including shipbuilding:

In the number of vessels annually built she took the lead in 1820, and has maintained her supremacy ever since. For that year the tonnage of her new vessels was 37,705; while in 1854 the tonnage was 168,631 tons against that of New York, the next largest, of 72,073 tons, and Massachusetts, the third numbering 48,000 tons. Her 110,047 tons of shipping, built in 1852, were valued at $4,400,000 (p.82).

Tonnage is the standard measure of shipping. A ton is not the weight of the vessel or the water it displaces but is the capacity of the ship to carry cargo. A ton is a measure of the volume of the ship. The ship is measured by standardized and legally mandated procedures and a formula is applied to the results. The formula has changed over time, and is today, more complex, however, the resulting tonnage is nearly the same. In the shipping records that I used for this project, I noticed that tonnage was expressed as “tons and 95^{ths}.” A schooner reported as being of 382.85 tons was 382 tons and $\frac{85}{95}$ ton. The early formula was: $$\left(length - \frac{3}{5} breadth\right) \times \frac{1}{2} breadth \div 95.$$ By 1864, the United States changed the rules of measurement and the 95^{ths} was dropped (Lipfert 2002). The measurements make allowances for space taken up by cabins, machinery spaces, fuel and water storage spaces, etc. For example, our small sloop, built of wood in Boothbay Harbor, Maine, was 33 feet in overall length and of five tons; a five masted schooner, the *Rebecca Palmer*, built in Rockland in 1901 at the Cobb-Butler yard was of 2,125 tons (Industrial Journal 1902:10). The relationship between tonnage/volume and the actual weight of a cargo was variable; one schooner of 113 tons carried a load of lime weighing 145 tons. In the late nineteenth early twentieth centuries, large ships like the *Palmer* did not often carry lime (see Figure 75). Limers were smaller and sailed coastal waters with
small crews. Fifty years earlier, larger ships like the bark *Rambler* of 367 \(\frac{29}{95} \) tons homeport of Rockland with a crew of ten) sailed with large cargoes of lime (see Appendix G for ship types). The *Rambler* left Rockland on December 7, 1854 with 2,627

![Image of the Rockland-built schooner Rebecca Palmer (homeport of Boston) in Cornwall, England “waiting to load china clay for New York City” (Parker in Gardiner 1993:104). China clay is used in the manufacture of porcelain and china.](image-url)
casks of lime, and arrived in New Orleans on January 6, 1855, having made the more
than 2,400-mile trip in 31 days (Manifests 1855). Later, lime companies owned their
own fleets or single vessels that were somewhat smaller with most lime schooners
ranging between 50 and 140 tons.

“Locality will ever be a factor in the marketing of lime, for it cannot be carried
beyond a certain distance with profit” (BILS 1902:62). Transportation of inexpensive,
bulky goods was an important consideration for the business people of Rockland, but for
Rockland’s lime shipped under sail, that “certain distance” was considerable. Shipping
records and ship’s logs make clear the fact that Rockland was well-connected to distant
cities and that long voyages to deliver lime were undertaken fairly routinely.

The captains and crews of lime schooners became familiar with the waterfronts of
numerous cities and with the waters between them. Barring foul weather (or wet lime as
mentioned in Chapter 5), such trips were usually uneventful; however, those voyages
with trouble or disaster often left better historical documentation than those that were
uneventful.

In December of 1854 alone, for example, along with the Rambler, numerous
other, mostly large vessels from Rockland and other nearby Maine ports left for New
Orleans with both single and mixed cargoes (see Figure 76). Rockland’s newspapers
routinely carried advertising for businesses in New Orleans, as well as news that may
have been important to lime or other shipping interests (see Figure 77). On the same day
as the Dewey & Co. advertisement, April 19, 1849, two other New Orleans ads appeared,
one for a building materials supplier (and lime buyer), and another for a ships’ chandler
(selling food and other supplies for ships). The fourth such ad that day was for a

Many Rockland vessels returned to New Orleans often; the bark *A.H. Kimball*, 283.08 tons and not a limer but carrying mixed cargoes, entered that port from Rockland on November 21, 1855, June 14, 1856, September 19, 1959, and May 9, 1860, and again two days after Christmas the same year. New Orleans was a busy port before the Civil War and Rockland vessels were numerous among the shipping there. Ships built in Maine, manned by Maine crews, owned by Maine companies, and captained by Mainers

<table>
<thead>
<tr>
<th>Name</th>
<th>Type of Vessel</th>
<th>From Port of:</th>
<th>Tonnage and 95ths</th>
<th>Number of Men in Crew</th>
<th>Cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Wakefield</td>
<td>Ship</td>
<td>Rockland</td>
<td>1268 11/95</td>
<td>22</td>
<td>300 tons granite paving blocks</td>
</tr>
<tr>
<td>Staska</td>
<td>Brig</td>
<td>Camden</td>
<td>190 58/95</td>
<td>7</td>
<td>1,550 barrels of lime (casks, typ.)</td>
</tr>
<tr>
<td>Sarah E. Dix</td>
<td>Brig</td>
<td>Rockland</td>
<td>262</td>
<td>6</td>
<td>2,076 barrels lime</td>
</tr>
<tr>
<td>George Warren</td>
<td>Bark</td>
<td>Thomaston</td>
<td>423 68/95</td>
<td>10</td>
<td>3,005 cask lime</td>
</tr>
<tr>
<td>Cavalier</td>
<td>Ship</td>
<td>Rockland</td>
<td>1286 26/95</td>
<td>27</td>
<td>332 tons granite paving blocks</td>
</tr>
<tr>
<td>Pathfinder</td>
<td>Bark</td>
<td>Rockland</td>
<td>420 54/95</td>
<td>12</td>
<td>1,815 barrels lime, 100 tons paving</td>
</tr>
<tr>
<td>Clarissa Bird</td>
<td>Ship</td>
<td>Rockland</td>
<td>1063 93/95</td>
<td>16, 4 boys</td>
<td>4,089 barrels of lime, 196 tons paving</td>
</tr>
<tr>
<td>Western Chief</td>
<td>Ship</td>
<td>Belfast</td>
<td>997 28/95</td>
<td>20</td>
<td>100 tons hay (see Figure 78)</td>
</tr>
<tr>
<td>Fanny Fosdick</td>
<td>Ship</td>
<td>Rockland</td>
<td>729 14/19</td>
<td>17</td>
<td>225 tons granite paving blocks</td>
</tr>
<tr>
<td>Charles A. Farwell</td>
<td>Ship</td>
<td>Rockland</td>
<td>1298 2/95</td>
<td>24, 4 boys</td>
<td>300 tons granite paving blocks</td>
</tr>
</tbody>
</table>

Figure 76. Ships leaving Rockland area in December 1854 and arriving in New Orleans after direct voyages (Manifests 1855)."
Figure 77. 1849 advertisement in Rockland, Maine newspaper for one of the agents that sold Rockland’s products in the South (Lime Rock Gazette 1849).

Figure 78. Manifest for shipment of 100 tons of hay on the ship Western Chief arriving in New Orleans from Belfast, Maine. This ship left Belfast on January 20, 1855 and arrived in New Orleans on February 24 (Manifests 1855).
made up an important portion of the international trade of the Crescent City. Rockland’s shipping interests were aware of secession issues long before the war began. Knox County newspapers kept residents of the city and sailors from Rockland abreast of secession and slavery, and particularly, the shipping of slaves and the fight to end that trade (Lime Rock Gazette 1858, 1860, Rockland Gazette 1858-1861: various).

In an informal history of the coast of Maine, Rich (1962) remarks that the decline of the shipping industry in the state had begun before the Civil War but worsened during the war period.

Because of their means of livelihood, the people of the Maine coast had many ties with the people of the South. It wasn’t only a matter of business, either. Bonds of friendship and affection had been formed in the half century of the cotton trade, so that there was a great deal of truth in the remark that Bath and New Orleans were closer neighbors than Richmond and Washington (Rich 1962:88).

Shipping did suffer, the recapitulation of shipping entrances for the quarter-year ending December 31, 1860 lists the following (Entrances, New Orleans 1860):

218 American Vessels entered from Foreign Countries 172,400 70/95 tons, 4,512 men
136 Foreign Vessels entered from Foreign Countries 93,086 66/95 tons, 2,719 men
262 American Vessels, Coastwise 52,188 02/95 tons, 3,799 men

Just a month later, business changed for Rockland’s lime manufacturers, shipping companies, and sailors; the start of the year 1861 saw Mississippi, Florida, Alabama, Georgia, Texas, and Louisiana pass ordinances of secession and elect Jefferson Davis as President of the Confederate States of America (Wells 1940: 1008). Although early February 1861 saw heavy shipping traffic into and out of New Orleans, the coming Civil War would reduce it to virtually nothing. On February 1, 1861, citizens of New Orleans made a serious and bold move. The Rockland Gazette for February 7, 1861 reported:
New Orleans, Feb. 1.
United States Mint and Custom House were quietly taken and the officials
to-day took the oaths of office under the ordinance of secession.

The New Orleans Custom House was no longer a United States facility, but was
operating “In the name of Louisiana” (Entrances, New Orleans 1861) (see Figure 79). At
the start, shipping records from the Custom House indicate little change in the busy port.
Brigs, barks, ships, and schooners from France, England, Cuba, Spain, Brazil, and the
States entered with crews ranging from six to 36 (Entrances, New Orleans 1861). No
Maine vessels appear in the next two months’ records, but ships from Boston continued
to arrive.

Figure 79. Custom House records for port of New Orleans (Entrances, New Orleans
1861).

With a flourished hand, the record keeper at the Custom House notes another
critical change of status in his city in writing: “Commencing April 1st 1861 ‘Confederate
States of America’ Custom House New Orleans” (Entrances, New Orleans 1861). Under
the “Flag” column, along with Brit. (British) and Cuba, US (United States) and CS (Confederate States) now appear. Bath, Maine and Boston vessels still enter New Orleans, but in declining numbers. The ship *Birmingham*, lands on April 29, 1861 and is the last New England vessel entering until more than a year later. Through April and May entrances decline dramatically; by June there are only 22 entries. A blockade by the Federal military reduced shipping in New Orleans to rafts, flatboats, and a hayboat, three classes of vessels previously unimportant and unrecorded. The majestic brigs and barks with cargoes from the world over no longer arrived in the Crescent City; small, local rivercraft comprised most of the port traffic. A Rockland newspaper reported on June 13:

> A gentleman from New Orleans reports that the trade of the South is in a most deplorable condition. Louisiana, Mississippi and Texas are suffering most of the southern states. In the latter state provisions are becoming so scarce that the people will be in a starving condition when the blockade of New Orleans is complete (Rockland Gazette 1861).

With the blockade fully in place by July 1, the Custom House records for that month indicate only five vessels entering, one each from Kentucky, Tennessee, Alabama, Cuba, and England. August has but four entries, September just three. In November, the Confederate Custom House noted entry of four vessels: a flatboat from Green River, Kentucky, one schooner from Brownsville, and two from Havana. Confederate officials recorded no vessels in December (Entrances, New Orleans 1861).

Confederate naval forces had some success against the blockade on October 12 in familiar waters at Southwest Pass, at the Gulf end of the Mississippi River birdsfoot delta. “A Confederate participant made the following observations” (Clarke 1862 in Winters 1947:119):

> About three o’clock in the morning we saw a rocket go up … the signal that the *Manassas* had rammed something … the United States ships
blazed forth as they shot holes in the darkness. Our fire rafts also burst into flame and were floating down upon them. When daylight came, all firing ceased, and to our amazement we saw the Federal Fleet fleeing down Southwest Pass.

The Confederate vessels did not continue the battle. “Pursuit of the much stronger Federal fleet in the in the open waters of the gulf would have been sheer folly” (Winters 1947:119). In her diary, Clara Solomon, a sixteen-year-old resident of the city of New Orleans wrote of the same event on Sunday, October 13, 1861 (Ashkenazi 1995:194):

There was an account of a glorious naval victory which we have achieved at the Passes, under Commodore Hollins. On the night of the 12th he attacked the blockade, and with his little fleet succeeded, after a very short struggle, in driving them all aground on the S.W. Pass bar, except the sloop of war Preble, which he sank. He captured a prize from them. No casualties on our side; a complete success. A general exultation and rejoicing pervades the City. Thus have the insolent blockaders and invaders received another most signal rebuke for their insane attempt to subjugate this free and indomitable people.

The Confederate States of America Custom House records are virtually silent for months. Three British schooners carrying crews of 20, total, entered New Orleans from Cuba during April 1862 and for May, there are no entries; it was a troubled time for the port. On May 1, 1862, the Rockland Gazette informed Lime City’s residents that New Orleans was captured by Federal troops with cotton and steamboats burned:

New Orleans captured. Great destruction of property. Steamboats enough saved to take away the ammunition. Great consternation among the inhabitants.

A few days before Rockland got the news, on April 26, Winters (1947:125) explains that,

… a small party of Federal troops raised the United States flag over the mint. The next morning William B. Mumford, followed by a mob, tore the hated flag from its mooring and trampled it in the dust [and the next
day] … a detachment of [Federal] sailors and marines … replaced the State and Confederate flags flying over the Custom House and City Hall with the stars and stripes.

New Orleans fell to Federal troops on May 1, 1862 (Winters 1947:127); the Rockland Gazette (1862) reported the event seven days later in its “War News.”

With Federal authorities back in control of the port itself, the Mint, and Custom House, relief for the city’s residents was forthcoming; shipping (and record keeping) quickly returned to a significant portion of pre-war volume. Leaving two blank (and symbolic) pages between the last Confederate shipping records and the resumption of Federal Customs records, an official recorded the first large vessels for some time. The steamer Blackstone from New York was the first vessel to enter. She was under U.S. flag and had a crew of 40 men. The other vessels gaining entry into New Orleans under Federal occupation that same day were a schooner from Pensacola with a crew of four and another steamer from New York, crew of 43, both under U.S. flag. The next 27 vessels, steamers, schooners, and finally, barks and brigs returning, were U.S. flagged. On June 11, the first Maine vessel entered; she was the Myrover out of Portland with eight men aboard. By the last week of June, British, French, and Spanish ships resumed trade in New Orleans. It was months, however, until the first vessel from Rockland entered (legally, at least). The bark Persia, 55 55/95 tons, cleared from Rockland with a mixed cargo and eight men (Entrances, New Orleans 1862).

The role of Mainers in the Civil War is well known; Joshua Chamberlain of the 20th Maine, for example, the subject of numerous books and the central character in the film Gettysburg. Rockland sent many of her sons south to take part, Major Generals Hiram Berry and Adelbert Ames, and Colonel Elijah Walker among them. One Maine-
born man, Appleton Oaksmith gained infamy by being the captain of a blockade-runner and because Federal authorities indicted him for participating in the slave trade, although he escaped custody (Thompson 2000: 23, 48,125).

Civil War efforts went both ways between Maine and the South. “The Rockland bark *Ocean Eagle*, loaded with 1,300 casks of lime consigned to New Orleans parties, was captured by the rebel steamer *Calhoun* in the spring of 1861” (Grindle 1971a:50). Confederate vessels made their way into Maine waters to disrupt shipping, fishing, and to gain prizes, often using nearby British ports. New Brunswick and Nova Scotia citizens, and communities and cities, were either sympathetic to the C.S. or actively supportive of the Confederacy; operating out of Saint John, a group of four Confederates attempted a raid in the border town of Calais, Maine. Smith (1985:9) includes, in his book *Confederates Downeast*, the report from the New York *Herald*:

The Rebels in Maine

Attempt to Rob the Calais Bank by Rebels—The Citizens Arming

Calais, Me., July 18, 1864

At midday to-day there was an attempt to rob the Calais Bank by a small party of rebel raiders, who came here from St. John, N.B. Three men were arrested. The leader of the gang is Collins, a captain in the Fifteenth Mississippi. They say that thirty associates promised to meet them here, but failed.

The vigilance of the State Guard prevented the consummation of this bold scheme of pillage.

Other Confederate efforts were more successful, however, they seized Maine ships, imprisoned Maine sailors, disrupted steamer service to Maine, and on June 27, 1863, Confederate raiders led by Lieutenant Charles W. Read, CSN, made their way into the inner harbor at Portland, Maine. The group was able to steal the armed, 100-foot schooner *Caleb Cushing*. The *Cushing* was a revenue cutter “anchored in the middle of
the inner harbor opposite the Custom House.” Due to wind conditions, Read and his crew were unable to outrun pursuers from Portland who captured them after they set fire to the Cushing (Smith 1985:70, 84, 95-108).

6.1.1 Lime Shipping after the Civil War

After the War, the south was being rebuilt and northern cities resumed expansion; although inland limestone quarries were utilized because of railroad development, Rockland was back in full business, with its most profitable years yet to come (see Chapter 5). Production in Lime City more than doubled within three years after the war and virtually all the lime produced went to market under sail, with most going in smaller, two-masted schooners sailed by crews of less than seven men.

The schooner Silver Spray was typical of her type and her trips were, like those of so many others, routine coastal voyages with varied cargoes, an important one being lime. The Silver Spray was built in Damariscotta, Maine. Her logbook begins on the day of her launching; I have taken the following about the Silver Spray from its entries, courtesy of Nathan Lipfert, director of the library at the Maine Maritime Museum, Bath, Maine. The Silver Spray was 77.1 feet in length, 23.3 feet abeam, she drew 10.0 feet, and was of 124.59 tons gross, 118.37 tons net, and homeported Thomaston, Maine.

Launching May Saturday the 25th 1872
Came down the Damerscota River th first of June and Commenced loading Lime in Thomaston Tuesday June th 4 1872
June Wednesday th 5 Finished loading and came down the [St. George] River wind East and Stormy

The Silver Spray carried her first cargo to New York City, picked up 1,070 barrels of cement for Boston and headed back to Thomaston on July 4th. Their captain, like most others whose records I was able to find, hired a pilot to get their schooner out of New
York City’s East River into Long Island Sound through Hell’s Gate, or as the captain of the *Spray* wrote, Hell Gates. I have made the, sometimes harrowing, trip through Hell’s Gate dozens of times on sailing vessels of varying description. The tidal current is formidable in the East River and a vessel with little power, such as a sailboat with an auxiliary engine, must go through with a favorable tidal flow. Heading south, one would wait in Long Island Sound for the tide to be right; going north, behind the crooked arm of New Jersey’s Sandy Point. On a ship like the *Silver Spray*, without engine power and relying on the tide and sail alone in the narrow channel between Manhattan and Brooklyn, a pilot with local knowledge would be welcome. As steam tugs became commonly available in busy or congested ports, the *Spray*, and others like her, took advantage of their mechanical power. Again, from the log of the *Silver Spray*, entries about a surprisingly fast trip:

Through Hell’s Gate at 7pm on August Thursday 29
Off Monhegan [Island, Maine] August Saturday 31

The *Silver Spray* carried lime frequently; the crew loaded 426 casks of lime on September 17 and 846 the next day. On the 19th of September:

This day begins with ESE winds rainy all hands employed in clearing up decks and making ready for sea, at 4 o’clock PM got underway sailed down river at 6PM anchored in Maplejuice.

The river is again, the St. George and “Maplejuice” is a cove on the river in South Cushing, Maine. Looking ashore from their anchorage, the crew of the *Silver Spray* would have seen the pasture and farmhouse depicted in the famous Andrew Wyeth painting of 1948 “Christina’s World.” The house was there when the *Spray* anchored at the foot of the sloping pasture and it remains there today. The house itself was the subject of many of Wyeth’s works, but the one with the occupant Christina is likely his
most recognized. The cove has good bottom for anchoring, but is shallow in places, silted in from nearby, long-term agriculture.

The *Silver Spray* log for the same trip, heading to New York City with 1,272 casks of lime:

- **Sept Friday 20** This day begins with wind WNW squaly weather lay all this day wating for crew to come
- **Sept Saturday 21** This 24 Hours begins with clear weather wind NW by W at 11 oclock AM got underway to proceed to sea, at 4 oclock PM passed Pumpkin Rock from that shapes our coarse SW by S
- **Sept Sunday 22** This 24 Hours light SW winds fair weather stood to the westward all day intil 1 oclock PM made Cape Anne, Tacked ship stood of S 1/2 E
- **Monday September 21872** This 24 Hours begins with Light Breezes NW at 11 Oclock AM come to anchor on Pawtucket Shoals to wait for the tide to change, at 3 PM got underway light verible winds from NNE to E fair weather
- **Sept Tuesday 24** This 24 Hours begins with light winds from SE cloudy at 7 oclock AM passed Vinyardsound light ship at 8 PM passed Little Gull, thick Fog all night
- **Sept Wednesday 25** This 24 Hours begins with light winds from SE, Fogg at 7oclock AM cleared up made the Land Falkiners Island bearing NW dist 8 miles at 12 h, fresh breezes S by E cloudy, at 8 oclock PM com to anchor in Heart Island Harbour
- **Sept Thursday 26** This 24 Hours begins with fresh gales from SSE with rain squalls at 6 oclock in the morning got underway beat up to City Island to wait for Tug Boat, at 2PM took steam tug Gen’l McCandless ant towed up to anchorage at 7PM in Buttermilk Channel [a narrow passage between Governor’s Island and Brooklyn at the mouth of the East River]
- **Sept Friday 27 1872** This day begins with light verible winds with rain showers and Fogg at 4Oclock PM took steam tug Gen’l McCandless and docked
- **Sept Saturday 28** This day fair weather, lying at the dock all hand employed in ship duty
- **Sept Sunday 29** This day begins with fresh gales SE cloudy, still lying at the dock Brooklyn
- **Sept Monday 30** This day Fair weather discharged 580 casks Lime to Burrows & co Brooklyn
- **October Tuesday 1** This day Fine weather fresh Breeze NE discharged 190 Casks Lime in the morning At 10 Oclock took tug boat AC Carter over to 14 St. East River, and had to wate the rest of the day for a bearth
October Wednesday 2 This day begins with Fair weather fresh breeze NW, at 4 Oclock PM finished discharging, took out this day 424 Casks lime
Oct Thursday 3 This day begins with light verible winds Cloudy, at 4 oclock PM took tug Gen’l McCandless towed to Wehawken, at 7 oclock went into tow and towed to Roundout to Load Cement for Boston

The Silver Spray made numerous similar voyages carrying corn, coal, cement, and more lime. From Rockland to Richmond, Virginia:

March th7 1873 This day strong breeze and clear, layed to the wharf aground
March th8 1873 Finished loading with thirteen hundred and twenty four BBLs on board and went off in the stream and come to an anchor

The next day they left but turned back near Monhegan Island due to heavy seas and took refuge in George’s River. Two days later they were still in the St. George River and for much of March 10th the captain had “all hands imploy’d shoveling snow and clear’ng up decks.”

They did have rough weather and some worrisome nights; off Montauk Point in a gale, the crew was pumping “400 strokes an hour.” On another trip from “Delaware City toward New Bedford” the Spray encountered stormy skies but “pumps tried every half hour vessel tight and by the wind.” In Buttermilk Channel in January 1875, the crew had some trouble while awaiting “a freight.” At five in the morning on the 6th, ice floating down the East River set them adrift and “carried us afoul of the schr Light Boat of Rockland and carried away two shrouds on Port side forward.” The crew “got cleared away and made sail and went to Hoboken and anchored at 1AM and repaired damages.”

Sailing schooners like the Spray was dangerous and demanding in Northeastern winters, but I know from experience, it was certainly pleasant and at times exhilarating in good weather, and sailors enjoyed periods of leisure as well as periods laboring at the pumps.
When I worked in a boatshop in East Boothbay, Maine, a joiner in his seventies, Stanley, worked with us as much of the year as he could (until his social security income would be docked because of the additional meager income from the shop). Stanley was from Milbridge, a small shipbuilding and fishing town in downeast Maine. He was born there in the first decade of the twentieth century, and as a boy of 15, sailed a 110-foot two-masted schooner as sole crew with his father who owned the vessel. Employed in the coasting trade, the ship did not have mechanical propulsion or a yawl boat equipped to push it in close quarters or calm wind conditions. Their schooner did have a “donkey engine” on deck. The small internal combustion engine powered a winch that they used to hoist sails and load cargo. Stanley and his father never carried lime, as far as I know, but they did carry lumber and boxwood to New York from Thomaston as well as other cargoes along the East Coast. Stanley told many stories of his days on that schooner, including one about going hand-over-hand on the “fresh water stay” between the foremast and mainmast tops, 100 feet above the water, on a dare. On the too-rare occasion that Stanley was in a story-telling mood, he had the full attention of all the workers at lunch in the electric shop (one of the few places warm enough to sit still to eat during the winter). One of Stanley’s favorite stories was about a friend (supposedly), although some of us thought it was about him. A young man (Stanley or otherwise) was looking for a berth on a coaster. In an effort to get the best job he could, he looked at numerous boats and talked to their captains and crews. Being of a clever sort, he eventually signed on to an older looking schooner with a friendly skipper. The boat was most attractive because the pump handle was thoroughly rusted and the wooden portions cracked and gray. The young sailor was sure it was a tight boat and he would not have to
labor regularly at the pumps. After loading their cargo and getting underway, the skipper went below, brought up a shining, well-used set of pump handles, and ordered the new crewmember, the low man, to get pumping. I suppose Stanley meant this story to be a lesson for us (younger workers): don’t judge a schooner by its pump handles.

As in New York, Boston, New Orleans, and other cities, Rockland’s newspapers carried a regular column of shipping news. The *Courier-Gazette* (1882 and various) had its “Marine Department” through which residents kept track of their business interests as well as family members, for example, from the Tuesday, December 26, 1882 issue:

Sch. S.J. Gillmore loaded lime Saturday for Gay Bros. for New York.
Capt. Has Rhoades takes command this trip, Capt. Hiram being a little under the weather.
Sch. Magnet of Machias [Maine], while anchored at City Island, N.Y., was run into by sch. Allie Oakes, of Camden [Maine], Carrying away starboard quarter and doing slight other damage.
Several Rockland vessels loaded with lime have discharged crews and hauled up on Erie Basin, New York, for the winter, there being no hopes of selling their cargoes. Among them we note the following—Schs. Caroline Knight, Race Horse, Thayer Kimball, Monticello and R.L. Kenney.

The heavy presence of Maine vessels in New York is evident in various forms of shipping records, even in reports of mishaps among and between them.

After a difficult winter (as indicated in the report of poor lime markets above), August, was a hectic month in the good-weather shipping season of 1883. The *Courier-Gazette* “Marine Department” informed Rockland readers that ice was F.O.B. for Baltimore at $0.75 per ton, paving blocks for New York were begin loaded at $20.00 per thousand, that “twenty cargoes of wood from the [British] Provinces arrived here last Sunday”, and the “St. John wood boats are rather thick along our wharves just at present.” The schooner *May Munroe* was chartered to load general cargo from New
York for Angostura, Venezuela, and a number of cargoes of lime are reported headed for Richmond, New York, and elsewhere. One load of lime did not get far before the ship encountered trouble.

Sch. Mary Brewer, lime-loaded, in working out last Sunday, got on a ledge at Owls Head [the southern headland at Rockland Harbor] and took fire before she could be floated. She is now afloat in Owl’s Head harbor sealed up waiting for fire to be smothered. She is bound to New York with a cargo for Perry Brothers (Courier-Gazette 1883).

The danger of fire aboard a lime schooner, as mentioned in Chapter 5, was ever-present. In some cases, the crew was able to save the vessel, in others, it was abandoned; occasionally, especially in violent weather, a ship was lost with its crew. A burning limer was an almost routine event. Examples taken from the records of the United States Lighthouse Service (now, records of the First Coast Guard District) help illustrate the dangers of shipping lime, and of the coasting trade generally.

June 12, 1897
Wooden Schooner Caroline Knight, 99.20 tons, 46 years old
Vessel value: $1000
Cargo value: $980
Cargo: 140 tons of lime
Lime fire, “vessel sealed as customary” in Boston Harbor, assisted by Boston Fire Department

November 27, 1898
Wooden Schooner Bertha E. Glover Wood, 113.20 tons, 16 years old of Rockland, Maine, Frank C. Farr of South Thomaston, Master
Sailing from Portland, Maine to New York City with crew of four
Vessel value: $3500
Cargo value: $1500
Cargo: 145 tons of lime

November 27, 1898
Wooden Schooner E.G. Willard, 113.20 tons, 36 years old, bound for New York City, Faran, Master.
Vessel value: $2500
Cargo value: $750
Cargo: 135 tons of lime
Dragged ashore in a gale and sank. Wind 80, snowing, dark morning,
5:00 am, two anchors out, all chains, thirty five fathoms of line.

Ten vessels, though not all limers, were lost in the gale on that day, November 27, 1898.

November 8, 1900
Wooden Schooner John M. Fisk, 76 tons, 32 years old of Waldoboro, ME,
W. Nutt, Master, bound for Marblehead and Boston
Vessel value: $1000
Cargo value: $600
Cargo: 90 tons of lime
In first cove at Marblehead [MA] Harbor, lime fire due to “water to the lime,” “all possible means to smother the fire by cementing the hatches and cabin, all possible assistance by citizens of Marblehead and their fire department. After finding it impossible to smother the fire we were obliged to beach her (United States Coast Guard 1897-1900).

Other incidents involving burning lime were reported: “Cabin caught fire by accident, in extinguishing the fire, the lime caught and the vessel had to be flooded and sunk at the dock.” “Stranded, cargo [lime] burned.” “Sprung aleak, cargo caught fire.” “Sprung aleak and caught afair, pumps kept going and sealed up.” Many wreck reports include comments that make the reader realize that lime fires were not rare, two are: “usual precautions against a lime fire taken” and “vessel sealed to smother fire.”

Injuries and deaths occurred due to causes other than fire. On December 27, 1897 an unnamed man was killed on a limer, “Man was reefing Main Sail & fell from Main Boom.” Another sailor, Edward Kelly, was lost on November 7, 1898, “Fell from flying Jibboom while going out to furl outer Jib. Stormy wind and Choppy sea. Put boat over and searched more than one hour.”
As the twentieth century began, and the Rockland-Rockport Lime Company consolidation efficiency efforts developed, barges replaced many of the small schooners that had been carrying lime. Kilnwood came in by small schooner as did some coal, however, R-RLC barges carried most of the coal used and sold in Rockland. Kerosene and gasoline, like coal, were barge cargoes, while lumber, granite, lime, and ice still went out aboard coastal schooners. In November of 1913, Rockland Harbor was still busy

Figure 80. Number of foreign vessels clearing Rockland for the month of June (only), 1890-1911 (Clearances 1890-1911).²

with shipping traffic; Custom House officials recorded 140 entrances for that month alone (Entrances, Rockland 1913). Never an international port like New Orleans, Rockland still had ships coming from and bound for New Brunswick, Prince Edward Island, and Nova Scotia, but in dramatically diminished numbers compared to earlier decades (see Figure 80). Other vessels were sailing to and from other U.S. East
Coast ports. Rockland products and vessels were no longer making the long trips to New Orleans and Galveston, however. New York and Philadelphia were, by the 1910s, their most distant ports. For December, winter kept shipping traffic lower with 85 entrances; 18 were barges, three being towed by the steam tug Fred E. Richards built by Neafie and Levy shipbuilders in Philadelphia in 1900 for R-RLC (see Figure 81). As time passed, the Fred E. Richards and others like her and their barges took over more freight. With the help of railroads and early trucks, they put the small coasters out of business.

Figure 81. Shipbuilder’s letter notifying R-RLC of the launching of their steam tug (1900), courtesy of Dave Hoch.
The schooner *Helvetia* was one of Rockland’s own that worked well into the twentieth century. She was built in Rockland in 1905, always had the homeport of Rockland, and returned there frequently. She must have been a fine vessel; leaving Jacksonville, Florida on July 23, 1920, she anchored in Portland, Maine at 5:00 pm just 14 days later. I have made the same trip under sail and while not a record, her time is respectable for a cargo vessel of her size and type. Through much of her log, even at 25 years of age, under sail, and loaded with bulky cargo, her character shows: “Pumps sounded, no water, so ends the day.” This quote about her condition and the following are from her log, courtesy of the Maine Maritime Museum. The single book spans just three of her years, beginning September 3, 1927 and ending September 28, 1930.

The *Helvetia* was out of work for parts of 1927, the year in which this log began. She waited for charter or freight from September 27, 1927 until March 31, 1928. The coasting trade, that had provided low-cost transportation of inexpensive goods for so long, had slowly become a seasonal industry, starting at the turn of the century. Shipping volume, for the coasters, was reduced in winter; February through April had become an off-season for vessels of *Helvetia*’s type; I am unsure of precisely what their crews did during the wait between shipping seasons. It is likely they gained employment the same way so many men did during winters after the ice harvest declined due to mechanical refrigeration, working in the woods or fishing offshore.

In the spring of 1928, the “Capt. and cook joined Sch at Rockland where she had been hauled up all winter.” The *Helvetia* then sailed from Rockland to Maitland, Nova Scotia. From there she went to Portland, Maine; back to Hillsboro, New Brunswick; to Philadelphia; to Saint John, NB; Bass River, NY; Parrsboro, NS; City Island, NY; Port
Newark, NJ; then to Albany, NY to load 400 tons of sand for Bath, Maine. She hired a towboat that tied her alongside at 2:00pm on September 24 to get her through Hell’s Gate, and she sailed up the Kennebec River to Bath on the 29th. She carried bulky, heavy, inexpensive cargoes like sand, coal, lime, and laths. The practice of plastering interior walls had not ended yet; she carried 2,250,000 laths to New York on one trip that summer. The captain, or more likely, the first mate made consistent entries in the ship’s log recording wind, sea condition, heading, and a few details about the ship and her condition with nothing of the crew or the ports they saw. A typical entry, this one from December 8, 1928:

This day wind NE at 2:30am. Blowing hard, take in spanker at 4pm, rounded two [too] and anchored. Blowing hard and thick but Ship lying easy. At midnight weather the same, so ends day with Pumps, Lights and lookout attended too.

The Helvetia worked until January 9, 1929 and was still until April 8, 1929. She worked the shipping season again into January 1930. On the 14th, at 3:00pm, she “came two anchor in Machias River [Maine], with 40 fms Chain with wind ESE and beginning to Snow. Day Ending with unsettled weather and all Ship Duties Attended.” The next day was “Ending of Season for 1929.”

Machias Maine for Winter Quaters
Machias at Sanborns Cove.
Day begins with ENE wind and fine Rain. Vessel Secure in berth Except Being Secured by Second Anchor and Remainder of Crew paid off, on this Same Date.

She went back to work four months later; her log was full and ended in Lubec, Maine on September 28, 1930 on a trip from Philadelphia. I do not know what became of her after that, but if she worked the coastal trade long after, she would have been one of the few.
The collapse of the Boston [shipping] firm of Crowell & Thurlow relegated the largest and finest remaining fleet to lay-up berths in Down East coves at Boothbay Harbour and Eastport during the great Depression of the 1930s, and only tree of them were destined for a brief reprise under American ownership. By 1940 it would have been hard to muster more than a half-dozen four-masters and perhaps as many three-masters which were still trading on the Atlantic Coast. At the close of the Second World War only one vessel, the four-master *Herbert L Rawding*, remained seaworthy, and she was very soon sold for a brief career under Newfoundland ownership [she sank in 1947] (Parker in Gardiner 1993:123,130).

6.2 Shipbuilding in Rockland

In 1881, Varney (p480) wrote, “Formerly shipbuilding was the leading industry, but the lime business has now outgrown it.” Information about shipbuilding before 1848 is difficult to find for Rockland. However, consulting a list of ships built in Rockland from 1848 to 1864 compiled by Eaton (1972:104-110, orig. 1865, v.2), Varney’s statement would appear true; the lime industry had greatly expanded in the second half of the nineteenth century and shipbuilding in Rockland had seen its best days by 1855 as it had in Maine overall (Rowe 1948:144).

“Deacon” George Thomas, Rockland’s greatest builder, moved to Boston, Mass., in 1854 after constructing four clippers totaling 5,487 tons at his Rockland yard during 1851-1853 inclusive, and during the depression that closely followed Thomas’ desertion of the community, Rockland faded from the picture as a leading shipbuilding center (Fairburn 1955:3409).

Shipbuilding records for the city disagree. Fairburn’s (1955) and Eaton’s (1972, orig. 1865), for example, in some cases, list more or fewer ships and tonnage, as well as some vessels of different names. Strangely, Eaton’s (1972:104-110, orig. 1865) summary does not include the *Red Jacket*, built by Thomas in 1853. The *Red Jacket* is, without question, the most famous of Rockland’s clippers, possibly the most well known and recognized of all clipper ships. A clipper is not a style of rig, such as those described
in Appendix G, but a less formal, less well-defined type. The clippers were, foremost, fast. Usually ship-rigged (all were square-riggers), they carried a tremendous amount of sail and required large crews. The fast ships heading for the California gold rush were “California clippers” and others were “opium clippers” or “tea clippers” depending on the trade in which they were employed. Called _sharp ships_, they had sharp stems or narrow, knife-like bows and sacrificed carrying capacity for speed. Flat-floored as opposed to the deep, V-shaped hulls of other, slower designs, the clippers were a new shape of hull (Fairburn 1955:3411). Although they are a much-romanticized type of vessel, clippers enjoyed only a short period of popularity; declining freight rates and other economic trends of the 1860s put them out of business. The 1850s were their brief time and they established speed records that have never been equaled.

As ships became bigger, builders could not continue construction at sites up the smaller, tidal rivers as they had when their projects were smaller and did not require such deep water. In the late 1840s and into the 1850s, shipbuilding was concentrated on the coast itself.

Rockland did not come to the fore during this period and grow to be a prime wood shipbuilding center such as its geographical location would suggest, and in actual ship construction and in shipping activities it lagged behind other Penobscot towns as well as Bath on the Kennebec River and various inlet ports between the Kennebec and the Penobscot. However, in the clipper shipbuilding era, which consisted practically of the first half of the 1850s, Rockland launched ten clippers of 13,179 aggregate tons, leading all other Maine shipbuilding communities in the production of sharp-modeled and heavily canvassed vessels of this type as to both number and tonnage of ships built (Fairburn 1955:3409).

Fairburn (1955:3419) explains that there were many vessels built in Rockland that are not in his summary of Custom House records. His list covers the years 1837 to 1920 and includes 275 registered vessels; the early years disagree with Eaton’s.
See Figure 82 below for Eaton’s (1972:104-110, orig. 1865) and Fairburn’s (1955:3420-3424) lists for Rockland shipbuilding, 1849-1864.

<table>
<thead>
<tr>
<th>Year</th>
<th>Eaton: Number</th>
<th>Tonnage</th>
<th>Fairburn: Number</th>
<th>Tonnage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1848</td>
<td>12</td>
<td>2,606</td>
<td>9</td>
<td>1,791</td>
</tr>
<tr>
<td>1849</td>
<td>8</td>
<td>2,878</td>
<td>8</td>
<td>2,734</td>
</tr>
<tr>
<td>1850</td>
<td>6</td>
<td>2,518</td>
<td>6</td>
<td>2,564</td>
</tr>
<tr>
<td>1851</td>
<td>13</td>
<td>3,302</td>
<td>9</td>
<td>2,774</td>
</tr>
<tr>
<td>1852</td>
<td>13</td>
<td>6,277</td>
<td>12</td>
<td>6,102</td>
</tr>
<tr>
<td>1853</td>
<td>20</td>
<td>8,798</td>
<td>22</td>
<td>12,200</td>
</tr>
<tr>
<td>1854</td>
<td>22</td>
<td>14,990</td>
<td>19</td>
<td>12,873</td>
</tr>
<tr>
<td>1855</td>
<td>8</td>
<td>397</td>
<td>10</td>
<td>3,861</td>
</tr>
<tr>
<td>1856</td>
<td>5</td>
<td>2,251</td>
<td>6</td>
<td>3,166</td>
</tr>
<tr>
<td>1857</td>
<td>2</td>
<td>1,616</td>
<td>2</td>
<td>1,593</td>
</tr>
<tr>
<td>1858</td>
<td>3</td>
<td>1,016</td>
<td>4</td>
<td>1,610</td>
</tr>
<tr>
<td>1859</td>
<td>4</td>
<td>1,301</td>
<td>4</td>
<td>1,750</td>
</tr>
<tr>
<td>1860</td>
<td>5</td>
<td>820</td>
<td>5</td>
<td>864</td>
</tr>
<tr>
<td>1861</td>
<td>1</td>
<td>75</td>
<td>2</td>
<td>303</td>
</tr>
<tr>
<td>1862</td>
<td>5</td>
<td>1,877</td>
<td>4</td>
<td>1,859</td>
</tr>
<tr>
<td>1863</td>
<td>7</td>
<td>1,146</td>
<td>3</td>
<td>314</td>
</tr>
<tr>
<td>1864</td>
<td>4</td>
<td>1,248</td>
<td>5</td>
<td>1,442</td>
</tr>
</tbody>
</table>

Figure 82. Table of shipbuilding in Rockland, two versions.

Both sets of figures indicate that the years 1853 and 1854 were the high point in Rockland’s shipbuilding endeavors, in tonnage and numbers of vessels. The period was the city’s peak in building noteworthy ships as well. The Thomas yard built a small ship designed by Samuel Pook of Boston in 1851. It was a success and the following year Thomas launched another of Pook’s designs, the Defiance. She was “of revolutionary design for an extreme clipper and Cape Horner” (Fairburn 1955:3411). On its first trip, “her delivery run from Rockland to New York” she made 18 knots and on the last leg of the trip made “the unprecedented speed of 20 knots” (Fairburn 1955:3411). Thomas launched the Red Jacket, also a Pook design, in 1853. She was towed to New York City where her spars were shipped and she was rigged. Her first trip was from New York to
Liverpool and she made the run in 13 days, 1 hour, and 25 minutes “dock to dock,” a time that has still never been beaten. During this famous run, she made 413 miles in one day, “the greatest distance ever run in twenty-four hours by anything afloat” (Fairburn 1955:3414). The Red Jacket set other records, but came to an ignominious end, stripped of her spars, rigging, and sails; this most famous clipper ship suffered the duty of being “used as a coal storage barge to fuel steamers” (Fairburn 1955:3415).

The Red Jacket was not only fast, but many consider her one of the most beautiful clippers. “Her figurehead was a life-sized likeness of the Seneca Chief whose name she bore, while on her light, round stern, surrounded by heavy gilt scrollwork, was a bust of the same Indian warrior” (Rowe 1948:184-185). She had accommodations for her crew of 62, and her aft cabin, for the captain and officers, was elaborately finished in exotic woods and gilt work (Rowe 1948:185). Of 2,305 tons, the Red Jacket was 251.2 feet in length, 44 feet abeam, and 31 feet in depth. Her depth would likely be the reason she was not finished in Rockland. Without masts and other spars, rigging, sails, and ballast, she would have ridden high in the water; in Rockland’s shallow harbor she would have needed to be light. Unlike less famous or celebrated vessels, the Red Jacket is the subject of some well-known paintings, but descriptions of many such vessels are relatively easy to find. Building and launching even a modest workaday schooner was a part of Rockland’s waterfront life that drew all residents’ attention, as it did in other ship and boatbuilding cities and towns on the coast of Maine.

On a Tuesday, October 9, 1883, a report, typical of its type, appeared in the Rockland Courier-Gazette (the complete article is included in Appendix H):
The J.B. Holden
New Schooner J.B. Holden, built by Cobb, Wight & Co., at their yard at the South-end, is to be launched Wednesday or Thursday of this week. …
The length of her keel is 138 feet, beam 34 feet, and depth of hold 11 feet. …
The schooner measures 500 tons carpenter’s tonnage [411 registered tonnage] and is unusually heavily built, there being no cheap work in her construction. The cabins are 9 feet square and 7 feet high and are well lighted. The after cabin is elegantly finished off in ash, cherry, black walnut and burl ash, and is handsomely painted and polished. Finely carved gilt work and moaldings in different colored woods, give the cabin a tasty appearance.
Along with so many others, the J.B. Holden sank on the outer banks of North Carolina; she went down on October 11, 1903.

Figure 83. Postcard of four-masted schooner launching in Rockland. Note Lime Rock Railroad engine, making the date of the scene after 1888. Because of the size of the two vessels pictured, it is likely in the twentieth century, courtesy of Andrew Curtis.
Launchings are celebratory. Figure 83 is a postcard depicting a four-masted schooner launching in Rockland. A large crowd is gathered at the water’s edge, the Lime Rock Railroad engine is blasting its steam whistle as the vessel takes to the water, and at least two of the many buggy horses are frightened by the noise and commotion.
Figure 84. Edward J. Winslow launching, Bath, Maine, November 1908 (Bunting 1997:323).

Figure 84 is a photograph taken at the 1908 launching of the six-masted Edward J. Winslow in nearby Bath, at the Percy and Small yard. Bunting (1997:322) explains that there were 600 people aboard to ride the schooner down the ways into the Kennebec River. Bunting’s (1997) usually well-organized text is somewhat confused regarding the Winslow and another of the few six-masters built, the Edward J. Lawrence, also out of the Percy and Small yard that same year, however, what is important is the description of the launching of the Lawrence that Bunting (1997:322) has taken from the Bath Anvil of April 4, 1908:
It was shortly after one when the word was given and Miss Lawrence, daintily poising a bottle of champagne, decorated with a mesh of red, white and blue ribbons, brought it down on the bowsprit. Miss Lawrence evidently underestimated the strength of the bottle’s glass for the trick had to be tried several times before the bottle would break. The breaking occurred, however, just at the right moment, just when the nose of the Lawrence left the ways and she swung out into the stream. As she went down the ways a loud cheer went up from the spectators on the shore which was answered by the cheers of the [300] guests aboard and the shrieking of whistles. The Lawrence moved slowly but proudly and majestically from the cradle out into the steam. She was attended by the [steam] tug Seguin…and was anchored but a short distance from the Woolwich shore…. While the vessel was in the stream a fine luncheon consisting of lobster and chicken salads, sandwiches, cakes and coffee was served by Caterer Malo of the Dewy Café. The service was by a large corps of very pretty and capable waitresses and was excellent in every respect… It was 2:15 when the craft…was brought back to the wharf by the Seguin.

In Maine, until the last few years when insurance, liability, and litigation issues have largely ended the tradition, the public was welcome at any launching. Newspaper announcements let citizens know of the launching and nearby boatshops would stop work, often for much of the day, depending on the time of the right tide, so employees could attend the event. I have been to a great many launchings, from those of warships built in Bath or wooden schooners for the windjammer tourist fleet, to small sailboats and oar-powered peapods. The owner of the vessel, together with the yard management, would customarily provide food and drink. Those in attendance were welcome to look the vessel over, inside and out, once she was overboard and tied to the dock. From high-tech fishing boats to expensive yachts, all were welcome. I worked at a yacht-building yard for a number of years; our launchings were of a traditional nature and we always had a good crowd. I occasionally rode the boat down the ways, but on the boat or the shore, launchings were exciting, festive events. The person christening the yachts used a special bottle of champagne, one not meant for consumption (although those were in supply as
well). The boss would purchase a bottle specially made to break; his wife or daughter
laced it into a casing of red, white, and blue ribbons that caught most of the glass, as was
done for the Lawrence so long ago. A party ensued after the boat was wet; again, the
wife of the yard owner usually provided lobster stew for our launching parties. Reporters and photographers took tours of the new vessels, as did anyone else that
wanted to have a look. The owner of one new yacht hired buses to carry his friends to
Maine from the Boston area for the christening of his ketch. Most people enjoy a
launching and the accompanying party. For me, though, they usually brought on
something of a melancholy mood. After working on a boat for a year or two, suddenly,
someone who had nothing to do with its construction (other than the important part of
funding it) comes along and takes it away, making it his own. The owner might have
supplied the money, but we, the crew, supplied the effort, the knowledge, skills and tools,
the caring, dedication, and sacrifice (always including more than a little blood) to bring
the boat to life. Seeing it leave in the hands of a person who knew nothing of what
building it really took left me a little sad. Unfortunately, today, fences and security
people keep onlookers at a distance, and no one gets aboard the yachts of the rich to see
the art and artisanship of their neighbors, the local boatshop workers.

In 1862, despite the war and depression, Rockland yards built four vessels, a
small schooner of 56 tons, two larger barks, 222 and 284 tons, and the ship Martha Cobb
of 1,297 tons, 184.7 by 37.4 by 25.5 feet. The name Cobb should be familiar by now, the
family owned the largest lime operation, much of a busy shipyard, retail stores, and had
interests in shipping and other businesses in Rockland and elsewhere. The Martha Cobb
was the last ship over 1,000 tons built in Rockland until the 1890s schooner Lena F.
Dixon. The fore-and-after, or schooner rig, became the favored rig; no more brigs, barks, or ships were built in Rockland beginning in 1878 (Fairburn 1955).

The schooner was an important and popular rig for smaller vessels like limers and coasters. Those built in Rockland were mostly less than 100 feet in length in the early years, 60 to 75 feet was most common. By the 1880s, however, designers and builders abandoned the complex rigs of barks and brigs for large vessels and they produced significant sized vessels rigged as schooners. Rockland and other shipbuilding cities built numerous schooners over 200 feet in length during the shipbuilding revival of the early twentieth century. In 1907, the *Mertie B. Crowley* was the largest schooner and the last one over 2,000 tons built in Rockland. She was 2,824 tons, 296.5 feet in length, 48.4 feet abeam, and 23.8 feet deep, carrying six masts (Fairburn 1955: 3419, 3424).

The schooner-rig has a number of advantages over the various square-rigs. Most importantly, they are simple. The schooner has less standing rigging and just a small portion of the running rigging that a ship-rigged vessel would have. The rig is flexible; the crew can adapt the sail area to changing wind and sea conditions with relative ease and, importantly, little climbing aloft. They sail closer to the wind than a square-rigger, meaning that the schooner can sail a heading much closer to the direction from which the wind is coming, the angle between the wind direction and the heading of the vessel is shallower. This characteristic is especially important in coastwise sailing, in rivers, and other places where the vessel must be tacked, or brought-about. The schooner can make faster and less labor-intensive progress in restricted areas or when the heading is close to the wind. The simple, adaptable rig allows a schooner to sail with fewer crew. A six-masted schooner of over 2,000 tons, similar in size and capacity to the three-masted *Red
Jacket at 2,305 tons but with a donkey engine, would need a crew of just 12 to 15 compared to the Red Jacket’s 62 men. Fewer men with less sailing skill cost the owners significantly smaller amounts in wages and food and water, as well as increasing cargo space because of the smaller cabin and accommodation space they required. Schooners have fewer sails with greater sail area lower on the masts. This elimination of numerous smaller sails in favor of a few larger ones had some drawbacks. Raising these large sails became more than a crew could routinely do by hand, so the donkey engine/windlass arrangement, whether steam or internal combustion, was a crucial technological advancement. Ship designers usually placed donkey engines on or near the foredeck, toward the bow. Early, their prime use was in hoisting the huge anchors that the larger vessels needed. Anchors of the nineteenth and early twentieth centuries were heavy; they depended on great mass, four to five tons, to set (become secure in the seabed). Modern anchors are considerably lighter due to design innovations; modern plow anchors or the “Danforth” anchor are examples. In addition to running the anchor windlass, sailors employed the donkey engine to raise the large sails on schooners by running the halyards through sets of blocks to the main windlass or other smaller winches driven by the same engine.

Therefore some schooner sails are the largest of any in the world. The heaviest sail ever made in Hancock county [Maine] was a spanker for the schooner Nantasket, by S. B. Haskell at Deer Isle. It contained more than 600 honest yards of No. 0 hard duck, had five and a quarter inch rope, and weighted more than eleven hundred and fifty pounds (Industrial Journal 1889).

Donkey engines were solely for hoisting anchors, sails, and cargo and could not power the vessel through the water. Later, some schooners used deck engines to generate electricity, mostly for lighting and pumping. In 1902, the schooner attained new
dimensions, in steel however, but this size was practical solely because of the mechanization of sail handling. The only seven-masted schooner built, the collier *Thomas W. Lawson* (5,216 tons, 369.5 by 50 by 35 feet) was launched in Quincy, Massachusetts (see Figure 85).

![Image](image_url)

Figure 85. The *Thomas W. Lawson* built in Massachusetts, larger but of the type similar to the *Mertie B. Crowley* and other Rockland schooners. The *Lawson* was the epitome of schooner building (Szarkowski and Benson 1997:48).

The new seven-masted schooner building for John C. Crowley will be the first steel schooner ever built in this country and the first [and only] seven-master ever built in the world. She will carry a cargo of 7500 tons, spread 43,000 square feet of sail, and be handled by a crew of only 16 men, owing to many devices for saving labor (Industrial Journal 1902:22).\(^4\)

Although Maine has always been heavily forested, shipbuilding took a toll on certain species of wood, white oak and cedar especially, just the way lime kilns did with
other less valuable species and softwoods. Parker (in Gardiner 1993:120) explains that Maine’s white “oak was as scarce as its white pine by 1870” and shipbuilders gathered suitable materials over long distances. Oak came from Virginia and Maryland, hard pine from Georgia, and hackmatack from Canada.

Figure 86. Rockland’s Cobb, Butler & Co. with four large vessels under construction in 1908 (Parker in Gardiner 1993:130).

Maine ran short of materials for shipbuilding, but had a steady supply of the builders themselves, captains, and sailors they needed, and the state dominated the industry. Maine had supplied 70% of the 702 “ships, barques and barquentines built on the East Coast” during the last three decades of the nineteenth century (Parker in Gardiner 1993:120). With the adoption of the schooner, Maine continued to make an important contribution in wooden shipping (see Figure 86).

From 1870 until the end of the First World War there were 1758 three-masters built in the Atlantic States, and of these almost exactly a half came
from Maine shipyards. Of the 459 East Coast four-masters launched after the advent of the rig in 1879, Maine accounted for no fewer than 326. She also produced all but three of the fifty-six Atlantic five-masters and all but one of the ten giant six-masters (Parker in Gardiner 1993:120).

The building of large wooden schooners concluded in Rockland in 1920 with the last big schooner built there being the Josephine A. McQuestin at 1,607 tons, 230 feet by 41.9 by 22.8 (Fairburn 1955:3424). The last of building such impressive wooden vessels in Rockland came at the “end of the era in 1920” (Fairburn 1955:3424); it was not just Rockland that saw it finish. Rocklanders did build some ships after 1920; during World War II, for example, Rockland yards built minesweepers and submarine net tenders.

In the state as a whole, in 1943, three yards were building steel vessels for the war effort. They were the Bath Iron Works building destroyers, New England Shipbuilding in South Portland building merchant vessels, and the United States Navy Yard in Kittery, Maine building submarines. These three yards employed 59,581 workers. All twenty yards engaged in wood vessel building were working on “government, maritime commission or commercial fishing craft contracts.” In addition to tenders and minesweepers they were building “sub-chasers, salvage vessels, submarine supply and submarine detection lighters, plane rearming boats, transports, harbor and naval tugs, buoy boats, picket boats, barges, and commercial fishing draggers.” These 20 yards employed 4,284 (Maine DLI 1943-1944).

Rocklanders continued to build fishing and pleasure craft through most of the twentieth century, however few. A member of one of Rockland’s long-time ship repair and building families, Bertram Snow (2001) has compiled the most exhaustive list of Rockland-built vessels to date. He explained to me that he had information for more than 500 documented (over five tons net) vessels built in Rockland beginning in 1795 (Snow
2001). He intended to put his work into book form and I was told (in December 2002) that he had finished the project and was in the process of getting it published locally.

Bath, Maine was an established shipbuilding center before the 1840s and 40 years later had become “America’s principle shipbuilding port” (MacGregor in Gardiner 1993:27). Builders at Bath made the change to iron, then steel shipbuilding early, the Sewall’s yard built its first steel ship in 1884 and produced eight significant vessels in steel in 1899-1901 (Ville in Gardiner 1993:66). The largest wooden ship ever built was the Wyoming, 3,730 tons, 329.5 feet long, 50.1 feet abeam, and 30.4 feet deep built by Percy and Small of Bath and sailed with only 11 men. She was a six-master, and although her builders strengthened her hull with iron bracing, some people believe that her size exceeded what the physical properties of wood could bear. She carried coal and made deep-water trips as well, until foundering in 1924 (Parker in Gardiner 1993:132). The Bath yards continued building in steel, after the wooden schooner era, and today, Bath Iron Works is among the largest facilities for building military vessels and commercial shipping in the world. The Percy and Small yard is now the location of the Maine Maritime Museum where one can learn the details of Bath’s ships like the Ranger, the only bronze-hulled sailing yacht ever built, luxurious steam yachts over 200 feet long, merchant vessels, and so many of World War II’s military vessels.

The change in shipbuilding materials from wood to steel was an important one, and centralized shipbuilding. In Maine, Bath became the sole builder of sizable vessels, but the same process took place elsewhere. MacGregor (in Gardiner 1993:29) explains, “the lack of any industrial infrastructure is a notable feature of wooden shipbuilding; all that was necessary was access to timber, a workforce, and deep water.” Maine’s builders
constructed large, complex ships almost anywhere. I have been to the site where Thomas built the *Red Jacket*; there is no evidence of the facility that produced her. In Rockland, where residents have used the water’s edge for many different purposes, I am not surprised that no evidence of her or the other clippers built by Thomas remains today. In fact, it seems likely that shortly after Thomas departed for Boston, the same was true, and lime interests used the property, soon leaving nothing of the famous clippers. Today, a few Rocklanders, like Dave Hoch again, would like to see an acknowledgement of the famous clipper on the waterfront so residents and visitors alike might know that she was built right there in downtown Rockland (Hoch 2001, 2002).

Steel shipbuilding is different from wood in that it requires significant specialized equipment and large capital investment.

Opinions vary as to the costs of setting up a new iron shipyard or of converting from a wood one. Iron shipyards tended to be both larger and require much more capital investment. Hall, in his report on American shipbuilding in 1884, suggested that many wooden sailing shipyards required less than $500 in fixed capital, helped by the fact that many workers provided their own hand tools. … However, an iron yard was likely to require a minimum of $60,000 of fixed capital (Ville in Gardiner 1993:68).

In Maine, Bath was the only shipbuilding city to make the investment. Small boatyards and repair facilities continued to flourish, and a few still operate today. The ones I worked for were (more or less) permanent, but kept investments in facilities as small as possible. The owners expected all workers to own and use their own hand tools, including small power tools, while the yard owned the table saws, drill presses, band saws and other heavy equipment.

Although Rockland’s population did not decline in any significant way during the period addressed in geographer Packard’s 1916 study, other areas of the Maine coast did
Rockland had 8,174 people in 1910 and had lost just 65 in number by the next decennial census. Some migration likely took place, although I have no figures for this. As shipbuilding ended in Rockland and expanded in Bath, I would expect that skilled workers must have moved west along the coast for employment there. However, Packard’s article “Population Decrease on the Coast of Maine” that appeared in the *Geographical Review* (1916) claimed a decrease of 4.7% for Knox County as a whole for the first decade of the twentieth century while Sagadahoc County with Bath as its shire town, lost more population during the same period, 8.6%. Packard cited the decline of a number of industries including shipping, quarrying, and fishing as the cause of the coastal population decline but considered shipbuilding’s evolution most important.

Probably the changes arising in the shipbuilding industry more than any other one factor account for the decline of the Maine coast population. With the changes in construction from wood to steel and from sail to steam Maine lost much of her former advantage. The Maine plants were relatively far from the coal and iron necessary both for the construction of the vessel itself and also for the machinery needed for propelling it. Again, with the advent of steel, vessels were much larger, and the capital needed for maintaining a manufacturing plant much greater. … Only one city, Bath, which had conducted the business on the largest scale, has undertaken the manufacture of steel vessels (Packard 1916:337).

Thirty-four years before Packard, the editor of the *Maine Mining Journal* (1882) wrote an article regarding the idea of building iron ships in Maine. Although clearly boosterism, “Why not Build Iron Ships in Maine” explained that, indeed, there was a source of high-grade iron ore in Maine at Katahdin Iron Works, just 172 miles by rail line already in existence. Ships built of the superior iron available at Katahdin “could be built of equal strength of any English ship, and be eighteen percent lighter, drawing less water, and carrying the increased weight of freight per ton measurement” (MMJ 1882a). Along
with a supply of native iron, Maine had other advantages that should not have been ignored.

Take the expense of labor; we can build a ship in Bath at ten percent less in labor than in New York or on the Delaware; it cost the mechanic less to live, the climate is more vigorous, and our men work more hours per day. … little skilled labor is required compared with the number usually employed in building wooden ships (MMJ 1882a).

The Katahdin Iron Works fell to short supplies of ore and its great distance from industrial centers. The furnaces there are mostly gone; as in Rockport, however, the old industrial site has received some historic preservation effort.

Shipyards have never been a source of predictable, steady, year-round employment. In Rockland as in other shipbuilding towns, workers moved from yard to yard wherever they needed to in order to stay employed. When one vessel was finished, if the owner did not have another in line to start, the yard might begin a vessel on speculation and hope for a buyer. They might lease it or employ it themselves getting freights through shipping agents, as did most everyone. As with sailors who were out of work in the off-season, shipbuilders often needed to find other work in the winter. At a boatshop I worked at, the boss closed the operation due to inadequate work; he let us know with small slips of paper in our pay envelopes on Christmas Eve.

Ville (in Gardiner 1993:71) also explains that low wages and long work days were the key to Maine’s success in shipbuilding and that out-migration was an issue at the turn of the twentieth century:

In contracting towns like Bath there were few alternative occupations and an unwillingness of an ageing shipyard workforce to move elsewhere for work. Although younger workers migrated, the remainder of the workforce was highly immobile. In other words, part of their wages had represented a quasi-rent which enabled firms to reduce their wage costs in
the late nineteenth century. … wage costs in Maine were 25 to 50 percent lower than in other shipbuilding regions.

Ville has touched on some characteristics of Mainers that shipbuilding firms took advantage of 150 years ago and that service industry corporations like the credit card company MBNA and other businesses in Maine exploit today. Mainers still have “few alternative occupations” and are “highly immobile.” In 1980, Rockland presented its population’s immobility, or entrenchment really, as an asset to industrial interests considering locating in Rockland. “The population of Rockland show higher percentages of persons who are native born and who have native parentage than those of the State of Maine, both urban and total” (RCD 1980:24-25). Rocklanders are reluctant to leave Rockland and some resent people with more money from outside Maine displacing them from their traditional place at the water’s edge through property value and tax increases driven by seasonal property ownership. Their families have stayed in Rockland through good times and bad, especially bad. Most Mainers would be less likely to leave a sinking ship than a sound one, and Rockland’s industrial history shows the strong (even at times, less than sensible) attachment to their place that its residents have. Whether this is due to a (usually unarticulated) love of place, tenacity, or fear of the unfamiliar, the result is the same and the character that allows them to adapt and carry on despite what little economic sense it may make also allows corporate interests to misuse and take advantage of them. Rocklanders will explain that they diversify, they are adaptable, are willing to do whatever they need to do to get by (and to stay put); they are proud that they are independent and self-reliant enough to survive economic and social hardship.

After 1920, the numerous builders of large wooden ships in Thomaston, Belfast, Camden, Milbridge, Rockland, and a dozen other towns were permanently quiet, while in
Bath, the centralized steel shipbuilding industry thrived. Lime had consolidated and streamlined (and declined) as shipbuilding virtually ended, but the attributes that Ville eludes to, and that I am intimately familiar with, kept Rocklanders in Rockland; they went fishing.

6.3 Fish Rule

Fishing and fish processing did not come to dominate Rockland overnight. A long-term transition took place beginning in 1896 with the first commercial fish drying and packing facilities in the city. By 1950 though, Rockland was a fishing town. Always a working town, Rockland appears to have had little difficulty changing use of much of its littoral space from lime processing and shipbuilding to fishing and fish processing. Wharves left empty by the consolidation of lime burning were inexpensive and readily converted to other uses by Rockland residents and outsiders willing to invest in Rockland’s waterfront and build fish handling and processing facilities.

While not an accurate total of all people employed in fishing and fish processing, the employment figures from the Rockland city directories reliably indicate trends in the change of lime-related jobs to fish-related jobs for the years 1892 to 1950 (see Chapter 5 discussion of teamster unemployment, Figure 87 below, and Appendix F). The city directories also list fish dryers, packers, and canneries, however, as with residents, I am uncertain that all companies are represented. For 1892, the directory lists two fish packers, one on Tillson’s Wharf called Rockland Packing Co. (RCD 1892). The Sanborn map for the same year indicates a fish packer of a different name on Tillson’s wharf, Steven Chase and Company, along with an unnamed fish-smoking house and several icehouses nearby.
Lime City was not an important fishing harbor in the nineteenth century. As a commercial venture, fishing and fish handling served only Rockland’s residents, like so many other small businesses there at the time. In a survey of the fisheries of the state for 1887, the *Industrial Journal* makes no mention of Rockland as even a small part of that industry. Rockland has always had some agriculture at its margins; however, unlike in other places where agriculture was a focus, Rocklanders were employed in industrial occupations and bought their food and other supplies (at times from the company store). With ships delivering lime widely, businesses with offices hundreds of miles away, entrepreneurs establishing branch enterprises as far away as California (see Chapter
5.4.2) and other commercial interests in regular communication with a wider world, Rockland residents had products and services readily available that other, more isolated Maine towns did not. Along with town gas for lighting available early, Lime City had a wide choice of merchants.

The Maine Register and the Rockland City Directories listed retail establishments along with industrial interests. The 1876 Register, for example, shows Rockland to be a busy commercial and cultural center, despite its small size, low population, and lack of significant hinterland. Along with four retail fish dealers, eight churches, ten physicians, ten lawyers, four dentists were taking care of residents’ needs. Approximately 40 grocers supplied corn, grains, flour, fruit, confectionery, and produce. Five apothecaries, two bookshops, nine boot and shoe shops, 13 clothing and furnishings stores, five jewelers, four carpet, and 14 milliners and fancy goods shops were among the many merchants who provided wide choices for those living in Lime City (Maine Register 1876-77).

Rockland’s workers have long used boarding houses, in 1892, 16 were in operation, and as late as 2001, an inexpensive (though rude) room could be had in the city by the week or month. The selection of crafted and manufactured merchandise available in the city had further expanded by the 1890s. Rocklanders operated 10 dining rooms and six hotels, while 19 hairdressers kept Rockland coiffed (RCD 1892). The city was, again until recently, known for its other services; saloons and houses of ill fame flourished, especially on Sea Street (now Tillson Avenue) where workers, fishermen, sailors, and granite cutters and quarrymen from the quarry islands spent their hard-earned wages. Another institution was established in Rockland, the Rockland Commercial College. Calvin Stinson, who eventually owned 12 sardine factories in the state and was
known as “Maine’s Sardine King” had graduated from the college; although he was occasionally at odds with government officials, he was a successful businessman by any measure (Gilman 2001:257-265).

The late years of the nineteenth century saw the expansion of fishing in Rockland, and the lobster business developed rapidly. Rockland became one of the collection, processing, and shipping points on the Maine coast for the growing lobster fishery. The owner/operators of lobster smacks, small sail, steam, and eventually internal combustion engine-driven vessels with wet-wells (the hold filled with circulating seawater), traveled from harbor to harbor, buying lobsters from the lobstermen who trapped them (see Figure 88). The *Industrial Journal* (1901) listed the lobster fishery as having the highest value of all fisheries, the multi-species groundfishery included. The report continues: for 1899 there were 375 vessels involved in commercial fishing in the State of Maine, increasing

Figure 88. *Edna L.* lobster smack, Rockland, Maine ca. 1940 (Ackerman1941a:239).
to 422 in 1900, with landings of 8,213 tons. A total of 16,935 people were employed in all fisheries for the year 1900 in Maine. From the same report (Industrial Journal 1901):

During the year 1900 lobster smacks collected and delivered to Portland and Rockland dealers 3,395,063 lobsters. In the year 1899 the total was 2,988,568. In the collecting, transporting and delivering there was engaged in the business in 1900 fifteen steam smacks valued at $70,700, and 39 sailing smacks valued at $46,325, making a total value of craft used exclusively in this branch of business of $117,025.

If the 1900 Portland/Rockland lobsters averaged 1.25 lbs. each (a likely weight), the year’s catch would have weighed 4,243,829 lbs. but with a small worth compared to today ($0.10-0.15 per lobster to the fisherman). Lobster landings for the state in the year 2001 were 47,762,319 lbs., but were an all-time high of 57,215,406 lbs. with a value of $187,714,817.00 the year before. The lobster industry has been a significant part of Rockland’s economy since the 1890s; the city has deemed itself “Lobster Capital of the World” (LWV 1959). Lobster landings data for the city of Rockland are not available; the city’s catch is included in the Knox County figures; whether or not their claim is justified is questionable. Today, the city still promotes itself as “Lobster Capital” but the claim is less likely to be valid now than 50 years ago. The county consistently has the highest landings of lobster in Maine, the state where more lobsters are trapped than in any other. However, with so much lobster business in Knox County as a whole, if not, in fact, in Rockland itself, there is little evidence of the lobster fishery on the waterfront or in landscape of the city, except for tourism promotions, trinkets, souvenirs and the long-running Rockland Lobster Festival. A small number of lobster boats operate out of Rockland, but few compared to those in other, nearby harbors. The city supports a commercial fish pier, an economic drain, rather than asset, and during the past few years, Rockland’s only commercial fishing activity of any scale has been the herring fishery that
supplies lobstermen with herring for bait (see Figure 73 in Chapter 5). Thus, while
Rockland is the seat of the small county where lobster landings are highest, the greatest
percentage of lobsters go over docks in other towns today, particularly Port Clyde,
Friendship, Owls Head, and Tenants Harbor.

6.3.1 Sardines

The segments of commercial fishing that did employ meaningful numbers of
residents over long periods centered on two other species whose forms were amenable to
industrialization, both in their capture and processing. Rockland handled considerable
quantities of other fish along with the now valuable lobster, however, sardines (Atlantic
Herring, *Clupea harengus harengus*) and redfish (Ocean Perch, *Sebastes marinus*) were
the two dominant fish landed and processed there. These two provided employment for
much of Rockland’s workforce and contributed most (over the long-term) to the
transition from lime industry domination to fishing and fish processing.

A commercial fish dryer/packer set up shop on Tillson’s Wharf in 1892 and the
first sardine factory was in operation in 1896 (Sanborn 1892, 1896). That first sardine
factory did not last long, but it was soon replaced with numerous canneries; as in many
other harbors on the Maine coast, the sardine industry flourished in Rockland for much of
the twentieth century. The Russell plant in Rockland closed in 1903, but the next year
Seafood Packing Co. began operations there employing 300 people (Gilman 2001:273).
Through the years, Rockland’s littoral scene saw numerous sardine canneries come and
go. They canned herring of different sizes under a wide variety of labels, with various
combinations of oils and sauces; cottonseed oil, mustard, and tomato sauce being the
most popular over decades. The sardine industry was not centered in Rockland, but to
the east in Lubec and Eastport, where “the first successful attempt at packing sardines in this country” took place in 1875 (BILS 1910:38). Companies from the east expanded into or moved into the mid-coast to be closer to supplies and markets. Sardine plant operations were fluid, expanding, closing, re-opening due to the Depression, war, subsidies, and years when the herring schools just did not materialize off the coast of Maine. In Rockland, some of the canneries were (from Gilman 2001):

1909—North Lubec Manufacturing and Canning Company (200 x 60 ft. building with 150 workers employed)
1920s—Deep Sea Fisheries, Lawrence Canning Company (240 x 50 ft. building with 100 employees), William Underwood Canning Company (150 employees)
1935—Ramsdell Packing (250 x 72 ft. two-story building with 240 workers)
1938—North Lubec takes over Lawrence on Tillson’s wharf (200 employees)
1943—Green Island Packing
1944—Medomak Canning Company
1947—Holmes Packing Company (expanded operations out of Eastport, Maine, bought out Ramsdell Packing)
1970—Port Clyde Packing Company

Port Clyde Canning’s unused buildings became part of a marina catering to pleasure boats by 1997 as had North Lubec Canning in 1986. Lawrence Packing Company property was a seaweed processing plant for a time, but became the home of Fisher Snowplow Manufacturing, from 1957 to 2001 and is today the elaborate, groomed grounds and buildings of MBNA, a credit card company. The Stinson Cannery was a seafood-related property until 1994 when Dragon Cement Products, Inc. bought the property that they now use to transfer their products from their short rail line (was Maine Central Railroad) to their barges. The sardine industry disappeared from Rockland’s waterfront in 1997 when a Canadian company, Connors Bros. bought Port Clyde Foods and closed the last cannery in the city. Gilman (2001:278), chronicler of the history of
the sardine fishery comments: “Rockland has gone from a fishing town to a tourist town, as so many others along the Maine Coast have done.”

Just a short walk from where I was born in Bath, Maine, a sardine cannery, or *fish factory*, we called it, operated on the river-terraced bank of the Kennebec River. The plant, built in 1946, has had a number of owners since I used to spend time wandering around the factory and docks as a child, but is still in operation. I was there last summer while workers ran the machinery well into the night; as I left, I took with me more than childhood memories evoked by the sights, sounds, and, particularly, smells. In the darkness, as I made my way away from the riverside, I ran my car through a wet area on the first street corner going out of the plant. There had not been any rain, but I did not think anything of it until later. My car smelled strongly of fish; a dump truck, going uphill and around the first corner had slopped over, leaving a mass of bloody, watery entrails in the street. The tires had spun some of the slurry up into the wheel wells and along the sides of my vehicle, where it remained caked on, though less fragrant as time passed, for a number of weeks. Fish parts and bloody slime in the streets around Rockland, as well as Bath, were once such a commonplace feature that people took scarce notice of; it was a part of the every-day. During the summer of 2001, two of the last four sardine canneries closed, leaving Lubec and Belfast without herring entrails in the streets, but also without hundreds of jobs that locals residents need. Bath’s fish factory and another, owned by the same company in Prospect Harbor are the last of their kind on the coast of Maine.
Fishing has a long history on the Maine Coast, if not in Rockland specifically. During the 1820s, Maine’s fishermen caught 19.25% of all fish landed in the United States (BILS 1910).

Maine was heavily interested in the Grand Banks cod fishery up to about 1870, at which time it is said that nearly every town along the coast had one or more “Banker” to its credit. … In place of the bank fishing [by the late 1890s] the great herring industry has been developed, these small fish being the raw material for our immense sardine pack. Lobster fishing also has of late assumed large proportions, brought about by better protection to small lobsters, the use of power boats, better regulations in marketing, an increased demand from the large cities and consequent high prices. … In the Maine coast fisheries and allied industries, 15,881 persons were employed [in 1905]. Of this number, 1,126 were engaged on fishing vessels; 330 were on transporting vessels; 5,986 in the shore fisheries, and 8,439 were shoremen employed chiefly in sardine canneries, smoke houses, and other wholesale fishing establishments (BILS 1910:20-21).

Fishermen traditionally caught herring with stationary weirs, lobsters with traps, and groundfish with hooks and lines. In the early twentieth century, commercial fishing, as a whole, rapidly industrialized with steam power, and soon, and more importantly, internal combustion engines. In 1905, fishermen first began otter trawling in Massachusetts with Bay State Fishing Company’s steam driven ship, the Spray (Innis 1940:423). Usually known in Maine as dragging, internationally known as trawling, and more specifically, bottom otter trawling, fishermen quickly adopted this method and by 1920, it was being used extensively in the Northeast (Ackerman 1941a:29). By 1935, eighty percent of all groundfish landed in New England were harvested by otter trawlers (Ackerman 1941a:78). Garland (1983:18) laments this development and calls the beginnings of dragging in New England a revolution,

… steam power, diesel power and the adoption of the otter trawl, the dragnet [that] no sailing vessel could haul effectively across the bottom of the sea, wind or no wind, scooping in every creature in its path. And the disappearance, as if by the wave of a wand, of the subsociety of sail – the
skills, the wisdom, the vessels, tools, support systems, customs, traditions and even language. A culture wiped out forever.

Innovations like the efficient, indiscriminant, (and wasteful) otter trawl would eventually kill the industry, however, Rockland’s economy benefited from industrialized fishing for much of the twentieth century.

6.3.2 Redfish

Lobster, herring, cod, haddock, and several other species of finfish and shellfish appear in the summary of 1905 fishing industry statistics for the state compiled by the Bureau of Industrial and Labor Statistics, however, redfish are not mentioned (BILS 1910). It was not long, however, before the small redfish became the single most important species of fish in Rockland’s history; and when redfish stocks succumbed to overfishing and the U.S. lost important redfish grounds to Canada, Rockland suffered.

Redfish is also known as Acadian redfish, ocean perch, and rosefish. Ackerman (1941a:21,79) explains that redfish was one of the most common inhabitants of the Gulf of Maine but was not of commercial importance until the 1930s, and continues, that without otter trawlers “… the small rosefish probably would remain undisturbed.” Redfish are relatively small; when sexually mature at seven years of age they are nine to ten inches long. They are thick through the middle, and yield a small but relatively substantial, mild and pleasant tasting white fillet. Redfish are a slow growing and long-lived fish; a good sized, marketable redfish averages around twenty-five years of age; fish of forty years are not uncommon, and their maximum age is approximately fifty-eight (Marckoon 1999).
In the early 1930s, the fishing industry in Maine suffered as did so many other businesses during the Depression. “Observers were shocked by the severe poverty of fishermen in Maine, living in shanties with their listless families” (Dewar 1983:12). In Gloucester, Massachusetts, the fish that supported a portion of Rockland for nearly 20 years was becoming an important species for the first time.

Gloucester trawlers served new demand in the Midwest for redfish, marketed as frozen fillet of “ocean perch.” Gloucester redfish landings jumped from zero in the early 1930s to seventeen million pounds in 1937 (Dewar 1983:13).

World War II and the early post-war period was a time of prosperity for some of New England’s fisheries. Landings increased and some fishermen began making a living wage. “Dealers prospered, too” (Dewar 1983:15), a few expanded or moved into Maine, particularly Rockland, closer to redfish grounds. F.J. O’Hara and Sons, still an important presence on the Rockland waterfront, was one of the establishments to make the move from Massachusetts to Maine. O’Hara “moved a large share of operations from Boston to Rockland as early as 1939 to fish for redfish and process it” (Dewar 1983:100). In 1940, the city directory lists the O’Hara Company for the first time (RCD 1940). The company was one of a few that eventually owned a fleet of large, offshore trawlers, redfish and other groundfish processing facilities, and an extensive portion of waterfront.

The large quantities of fish landed by offshore vessels require extensive pier space, unloading equipment, and trucking and processing capacity. Boston, New Bedford, and Gloucester, Massachusetts, as well as Portland and Rockland, Maine, had facilities that filled these needs so that offshore boats landed nearly all their fish in those ports from 1945 to 1965. … An otter trawler harvesting redfish landed in Gloucester or in Rockland; a vessel fishing for haddock went to Boston or occasionally to New York to land the catch (Dewar 1983:30).
Figure 89. The hulk of the *Squall*, one of Rockland’s early fleet trawlers sitting on the bottom near Castine, Maine (2001).

Figure 90. The deck of the *Squall* looking forward (2001).
During that period, Dewar (1983:30) explains, such specialization was not a good practice. In retrospect, redfish, the ideal industrial fish, seemed in endless supply, however, by the early 1960s stocks (and landings) began to plummet. Rockland enjoyed a brief boom during the optimistic and hectic era of huge supplies of groundfish, especially redfish. The “wild and woolly” (O’Hara 2001) days did not last long; however, redfish and other groundfish did provide Rocklanders with a living for many years (see Figures 89 and 90).

Work on the Rockland redfish trawlers was, at times, difficult and dangerous, but usually reliable (until the decline). The O’Hara Company boats were especially well-maintained and kept orderly and clean, and the occasional opening of a crew position was quickly filled. A few redfish boat captains made, what Rocklanders considered, good money for many years, and fishermen considered the O’Hara trawlers among best to work on. Dewar (1983:98) explains that pay varied; the company and vessel mattered greatly:

Through the 1950s and early 1960s, fishermen’s earnings declined while other workers’ incomes rose so that by the early 1960s fishermen on large boats in Boston usually earned much less than the national median income. Those who did earn incomes of about a the national median level worked many more days than other workers in New England and held sites on the most prosperous boats.

I have written about the day-to-day of fishing elsewhere (Fagan 2000), but work on a trawler engaged in general groundfishing, side or stern rig, was demanding work, around the clock, and any fisherman, even those on the best vessels, who figured an hourly wage, would have been discouraged by his calculations. Crews on the larger redfish boats, however, had less taxing jobs. According to one of my informants, a
typical trip on the redfish boat he worked aboard would bring in 200,000 pounds of redfish, and a few halibut that were part of the incidental catch, or bycatch. Since they caught redfish in dense schools, the bycatch was a smaller percentage than in cod or haddock fishing; however, the assortment of creatures was not insignificant; everything else that came up in the huge nets went back overboard, a tremendously wasteful practice. Redfish were not eviscerated at sea, so the crew simply sent them into the hold where they put them on ice. With mixed groundfish rather than a catch dominated by redfish, the crew must slice open, gut, and clean each fish individually. The catch must be cleaned and the gills removed from cod, the heads from hake; all this done on the open deck, year round. Redfish required less handling and effort from the deckhands. Crew accommodations were not luxurious on the redfish boats, but they were more comfortable than on most trawlers. A cook prepared the meals; redfish crews usually ate well. Most importantly, redfish schools rise up off the bottom at night making them difficult to catch so on many redfish boats; most of the crew could actually get most of a night’s sleep.

In the processing plants ashore, workers filleted all redfish by hand rather than by machine, and the plants employed a large number of people for this operation. Most fish processors paid their workers by “piecework”; their pay was determined by how much they produced. Many Rockland women who took jobs cutting (filleting) fish made a good living during the period of the mid-1960s into the 1980s. A by-product of redfish processing was the racks, which were the entire fish minus one fillet that a worker took off each side. The rack was valuable as lobster bait and was favored all along the coast because it held together in the trap; redfish racks were in great supply for many years but
have been replaced by the less favored herring. Herring is a soft fish that must be put in net mesh bait bags rather than just speared onto a line in the trap like a redfish rack.

Joining O’Hara in Rockland, General Foods of Boston moved its boats to Rockland in the late 1940s to avoid labor problems with Massachusetts fishermen. They built a redfish plant there in 1949; 300 Boston fishermen were put out of work by the move (Dewar 1983:98), but Rocklanders would work for less and were glad to get the jobs. In an unusual move, General paid its trawlermen wages “which removed fishermen’s concern about fish prices” (Dewar 1983:101). National Sea Products (a Nova Scotian company) bought General Foods’ boats and onshore processing facilities in 1957 (Dewar 1983:99-100). These companies, and others like them, transformed Rockland’s waterfront and commercial zone; fishing dominated. Naturally, other businesses continued; Bicknell, the granite toolmaker kept busy at their waterfront location, furniture and grocery stores thrived, and clothing manufacturers expanded. A tallow plant operated on Tillson’s Wharf, two chemical manufacturers, oil dealers, and service providers like bankers and insurance sellers were busy. New enterprises came and went; a few flourished because of the money that fishing brought in (just as some had when the lime industry was at its best), and a number of them did not. By the mid-1950s, Rockland’s identity, both within and without, had become one of an industrial fishing town.

Through the 1950s, Rockland’s canneries were busy with sardines, redfish production expanded, and lobsters were big business. In 1956, Holmes Packing and North Lubec Canning thrived, two fishmeal plants were in operation and the waterfront was home to four non-canning groundfish processors, a fish handling and cutting
machinery manufacturer, 10 lobster dealers, and a company that made the gauges to measure legal-sized lobsters (RCD 1956). Rockland had two shellfish processors by 1961, probably dealing with clams and mussels but not lobster, at least three canneries were running, and redfish processors numbered five with O’Hara and Maine Sea Products dominating. Another lobster dealer was in operation making the total at the time 11 (RCD 1961).

Rockland was still promoting itself as the world’s “lobster capital” in the mid-1960s; lobster landings consistently exceeded 5 million pounds in Knox County and lead the other seven coastal counties with over 25% of the state’s total lobster catch (MDMR 2003). Further promotion was as an industrial city that welcomed expansion and touted its industrial heritage, hard-working people, and its geography. The “Rockland Harbor and Industrial Waterfront” was the city’s core with room for new industry and expansion of the fishing business.

The city’s fish processing plants, fish filleting and freezing plants, sardine packers, and lobster wholesales handled well over 96,331,000 pounds of fish products in one year (RCD1965:13).

The lime industry, by then only a small fraction of what it once was, still produced its 70,000 tons of agricultural lime per year, mostly going to potato fields in Aroostook County (Hoch 2001). Rockland business leaders recognized that the city was well situated to serve the state’s poultry industry; that same year, 1965, they secured loans from the federal government amounting to $600,000 “for construction of a grain feed mill and an ocean barge terminal on the Rockland waterfront just north of the former Maine Central Railroad Wharf” (Downeast 1965:53).
The 1980 Rockland City Directory shows that the city could not predict the downfall of its industrial base and the failure of the fishing industry that was in its near future. “Waterfront improvements are crystallizing and the city continues to be the focal point of marine industries and industrial development in the Mid-Coast Area” (RCD 1980:24).

The waterfront did need improvement at the time; the sewage treatment plant was in operation, but fish processors added organic, but unsightly and aromatic, materials to the water while the limestone crusher at the north end filled the air with white dust. During my time as a commercial fisherman, first on a wooden side-rig or eastern-rig trawler, then later on a more modern steel stern trawler, we never entered Rockland Harbor. We fished out of Boothbay Harbor but because of bad weather or gear damage, occasionally put in at some other port. I have been in a number of Maine’s fishing harbors on draggers; we fished out of Jonesport, downeast, for a time and we were once stuck in Southwest Harbor repairing the net, but we never steamed into Rockland. I have sailed past Rockland many times aboard various sailing vessels, but avoided Rockland, as did most other sailors. A British sailing magazine once warned its readers to avoid Rockland at any cost because of its polluted water and an industrial waterfront that did not welcome yachts (Trumble 2001, Rich 2002).

The air was unpleasant to breath on certain days; the rendering plant was probably the worst contributor to the problem, but the fish processors likely helped. Tons of redfish racks (the smellier the better, for a lobster) were always around the docks stored in barrels, salted and baking in the sun, and the water itself was often repulsive. A white-hulled yacht staying overnight would be left with dark, gray-brown stains from fish parts
and fluids; the large scales from herring stick to a smoothly painted surface like super-
glue. With most of the rest of the coast rather pristine, Rockport and Camden,
Vinalhaven and North Haven, and Dix and High Islands nearby, there was no reason to
sail into Rockland’s open, exposed, polluted, bad-smelling, paint-staining harbor.

Just as on the water, many people traveling on land avoided Rockland’s industrial
sector during the 1960s to 1980s; the main highway, U.S. Route 1, went through the city
core, but a by-pass allowed those that wished (most everyone), to miss that part of town
on the way to quieter, cleaner, more pleasant-smelling Camden. For much of my life I
used the Route 1A by-pass, just as I had sailed our sloop past the harbor. After I finally
realized and admitted to myself that fishing allowed us to eat well but not necessarily
keep up with our bills, and that New England’s groundfishery was not going to improve
with the EEZ, I ended up with a job that took me onto Rockland’s docks almost daily.

The fish dealer who bought our fish when we fished out of Jonesport needed a
truck driver; I got off the water and on the road. My daily mission was to pick up fish
that small draggers landed at harbors along the coast from Mount Desert Island, the
location of Acadia National Park, to Boothbay Harbor. Other trucks would meet at a
wharf in Boothbay, where fish would be sorted, re-iced, and loaded for the trucks to the
Boston Fish Pier. I would leave Boothbay in the early morning and stop in Rockland to
load a few thousand pounds of ice at O’Hara’s ice plant. Ice was still made in 300-pound
blocks at that time. The machinery and process to make those ice blocks in Rockland
was identical to that used in Dulac, Louisiana on Bayou Grand Caillou. Ammonia was
the refrigerant; the blocks were frozen beneath moveable floor hatches, and dropped
through a noisy (and scary) ice crusher. The large crusher would swallow a 300-pound
block of ice in just a few seconds and send the crushed ice out to be blown into my truck, or the hold of a waiting boat. The Ivy Authement Ice Company on Grand Caillou still uses ammonia, but has a vertical, rotary icemaker that produces flakes rather than blocks. O’Hara’s Ice Company has changed to a Freon system, but in the summer of 2001 when I returned to the ice house for the first time in many years, Larry Poulin, the ice house worker that filled my truck for me was still there sending tons of ice into a dragger out of Port Clyde; it was his 50th year working for O’Hara.

Winding my way off the docks, up Main Street and out of town, I would go to Bernard, Maine, on Mount Desert Island. That was my turn-around point and I would spend the rest of the day stopping at any harbor where someone had landed fish for the Jonesport buyer to send to Boston. I was lucky to get to know much of the coast from the land side, a different perspective than knowing a place, or approaching a place on the water. Small harbors far off the highway, down Maine’s long, recently glaciated peninsulas were my destinations. In places, I picked up just two or three hundred pounds of groundfish, at others, several thousand, often overloading my truck so severely that blown-out tires became commonplace. The job entailed hard work, hot in summer, cold in winter, but along with the landscapes, I was fortunate to also get to know some of the people of Maine’s changing coast while they were still in their traditional places at the water’s edge, making their living from the sea.

Redfish landings declined steadily through the late 1960s, 70s, and 80s from nearly 30,000 metric tons (mt) in Maine alone in 1966 to just 151 in 2001. The small amount draggers catch today is bycatch only; there are no trawlers targeting redfish specifically. Processing facilities for redfish are now gone and no market exists for large
amounts. Considering the life cycle of the redfish, the decline in landings indicated in Figure 91 should not be surprising after fleets of trawlers harvested them in such huge numbers for an extended period. In retrospect, the redfish industry was sure to be short-lived; the collapse inevitable; however, fishers have explanations that put blame on others. Regarding redfish, fishermen explained to me that the industry ended as a result of being overfished to a degree, but they gave other reasons as well.

![Graph of Redfish Landings, Maine, Otter Trawl, Bottom, Fish Only 1950-2001](image)

Figure 91. Redfish landings, Maine, otter trawl, bottom, fish only 1950-2001 (U.S. Department of Commerce 2003).

One popular explanation in both Rockland and Portland is that the Hague Line (the long-disputed oceanic border between U.S. and Canadian territory) gave all the best redfish bottom to the Canadians, and this action killed the industry in Rockland. The landings statistics, one informant insisted, indicate the effects of that restriction. Another explanation is that no one lands redfish because there is no longer a market for it, hence the decline in landings recorded. A member of the statistics branch of the National
Marine Fisheries Service told me, regarding the end of the Rockland redfish industry, that “The Hague Line was just another nail in the coffin” (Marckoon 1999).

Rockland, as a fishing port, was second for landings in New England only to New Bedford as late as 1985, and 11th in the country overall for landings by weight for that year. Cameron, Louisiana was the port with the highest landings during the 1980s until finally in 1989, Dutch Harbor-Unalaska, Alaska surpassed Cameron. Rockland had fallen to 22nd in the nation by 1988 and to fifth in New England. Rockland’s ranking among U.S. ports continued to fall through the 1990s, although lobster landings were consistently high in Knox County overall (see Figures 92 and 93). Lobster is a high-value by weight product; herring is low-value by weight, whether it is used for lobster bait or human consumption. Seiners and mid-water trawlers still land large catches of herring for bait in Rockland in the twenty-first century, but the National Marine Fisheries Service ranked the port 31st for poundage in 2001 and 70th for value (U.S. Department of Commerce 2003). As late as 1990, Rockland’s fish processors still employed a surprising number of workers. O’Hara claimed 150 employees, Port Clyde Foods 175, and Stinson Canning 95 (Guide 1990). However, Rockland’s importance as a groundfishing port ended with the closure that year of the O’Hara processing facility and that of National Sea Products (more than 200 employees), which left hundreds of Rockland area residents looking for work. The collapse of the New England groundfishery dealt a devastating blow to Rockland, as it did to other fishing cities, towns, and villages. The death of fishing had profound effects on the people of Rockland and on the cultural landscape.
Figure 92. Lobster landings, Knox County and State of Maine (MDMR 2003).
Figure 93. Knox County live lobster landings as percentage of total state landings (MDMR 2003).

6.4 Notes on the Text, Chapter 6

1 The *Fannie Fosdick* entered New Orleans from Rockland on January 6, 1855. On that same day, four other ships from Maine entered as well, two from Thomaston, one from Searsport, and one from Bath (Entrances, New Orleans 1855).

2 Almost without exception, the foreign vessels leaving Rockland were under British flag and bound for New Brunswick, Nova Scotia, and Prince Edward Island. I chose the month of June as representative of the shipping season.

3 Boatyard parties were numerous, especially if we had more than one boat going at a time. Each one was for a different purpose and each had traditional
elements. We built boats for wealthy clients; a generous one would provide a Christmas, Spring, Summer, or Autumn party, or one for the Fourth of July (We got three holidays off: Christmas, July 4th, and Labor Day. No one was happy about any of these falling on a weekend). The best parties were “shutter parties,” long a tradition in Maine. When the crew puts the last plank on the hull of a wooden boat, the hull is closed in; the last plank is called the shutter plank. Boatshops recognize this event regardless of the material comprising the hull. On an aluminum or steel boat, the last plate shuts in the hull and an after-work party ensues. Beer is a requirement, and the vessel owner or boss provides some food as well, however, not a meal or lobster stew.

4 Born in Bath, I grew up knowing that her seven masts were called by the days of the week with Monday the forwardmost. In reality, they were the Fore, Main, Mizzen, Number 4, Number 5, Number 6, and Spanker. Her owners converted the Lawson to carry bulk oil at Newport News in 1906. The Lawson was the extreme of her type and was, without doubt, too big, a failed experiment. “Only when deeply loaded would she sail properly, but when full of cargo her draft exceeded that of almost all harbors where this same cargo was needed” (Szarkowski and Benson 1997:48). She was lost on a trip to London with oil in December 1907.

5 Ramsdell’s Rockland plant was one of the largest in Maine. “It employed 160 packers and an additional 80 men. It could handle 150 hogsheads a day, supplied from weirs and stop seine crews. By 1940 the building was enlarged with a 190’ x 50’ addition, which provided space for an extra 275 workers. The shipping room was moved to a separate building which measured 32’ x 60’” (Gilman 2001:188).

6 John Gilman of Lambertville, Deer Island, New Brunswick, Canada has collected and published vast information about the Maine/Maritimes sardine industry. His book I reference here is part one of two on the history of the industry. In a previous book Masts and Masters: a Brief History of Sardine Carriers and Boatmen (1993) Gilman began the task of documenting the industry by recording the lives of the appealing sail and power sardine carriers and the men who operated them. He will publish the second part of his history in the summer of 2003.

7 There are many works on the history of the New England fishing industry, including a concise overview in Chapter 2 of my thesis The Decline of the New England Groundfishery: Some Geographical Implications (Fagan 2000).

8 Maine has 16 counties. As mentioned in Chapter 5, Aroostook County is, by far, the largest. Sagadahoc County, with Bath as its shire town, is smallest, with the least coastline of the coastal counties. Knox is second smallest. The other coastal counties are York, Cumberland, Lincoln, Waldo, Hancock, and Washington.
These landings figures are for the state of Maine as a whole. While redfish were landed in other ports, particularly Portland, Rockland was, by far, the principal redfish port. State landings trends can be taken as directly representative of landings trends in Rockland.
CHAPTER 7. A FEW MORE ROCKLANDERS

7.1 The Harbor

Many people kindly shared their place, Rockland, with me. In his classes, Dr. Miles Richardson asks his students to consider the ways in which culture comes to be in a place, and, what place is. If there are three components of place, of culture-in-place, in Rockland, for example, the first might be place as the material setting. I have described Rockland elsewhere in this work with words, photographs, and maps. I have presented its geography, its setting, or as Weigend (1958:186) preferred, its situation, “a concept that may have either physical or cultural implications.” Secondly, place is a behavior setting; acceptable behaviors change with place, are guided by place and by places of differing scale. Inside an office on Limerock Street, acceptable behaviors are not the same as they are behind the office building. The presence or lack of presence of others guides our behavior and we come to know downtown behavior, or more widely, Rockland or Maine behavior. Guides such as the ones present in these places are apparent, and sanctions for real or imagined transgressions are often swift and unpleasant. Third, is place as an image; this image comes from our interaction with a setting and we gain a notion of the place, mediated by our selves, our perceptions, our sensitivities or lack thereof.

The people of Rockland, helped me understand their place; they molded the image I slowly gained from being in Rockland, being with and among them, laughing at jokes, being happy with and for them, feeling sad with them at times, even scared by them more than once. In this chapter, I hope to present Rockland as a place, maybe a little more clearly, or at least differently, than I have in previous sections.
Throughout my research for this project, in archives and libraries, and among Rockland’s people, it was evident that the harbor has always been the core of the city and the feature that continually provides opportunities (recognized and not) for industry in the past, for tourism and recreation in the present. I spoke with two of Rockland’s harbormasters, both of whom are justifiably proud of their contributions to improving the harbor and its facilities during their tenure in the office. The city government position of harbormaster was created in Rockland in 1946 (much later than I expected, and it only became a full-time, salaried position in 1991). The waterfront was the hub of industrial activity at that time, but as a port, Rockland had seen its busiest days long before.

On a piece of land created by covering and grading over a long-term trash dump at the harbor’s edge, the city built a public landing, having recognized that,

The trend of recreation from the dusty and crowded roads has turned to yachting, until today it is one of the great industrial units, and the need of every city is a proper landing (Courier-Gazette 1926b).

It was opened for use in 1926 and provided amenities for visitors arriving by water that included electric lighting, a telephone line, and a supply of fresh water. The city sent notices to 150 yacht clubs announcing the facility. The newspaper article entitled Rockland’s Fine Public Landing (Courier-Gazette 1926b) reminded residents of the importance of such an installation:

That this work is important to our city can best be realized when we know that in 1925 over 7000 boats landed there between May and November. Could our merchants see the hundreds of people who daily enter our city over this landing they would be astounded.

This paragraph might mislead one regarding the yacht traffic that Rockland enjoyed, the harbor served as the connection from the mainland to the many nearby islands then, as it does now. The state ferry terminal is north of the public landing and is
especially busy during the summer season; many residents of Maine’s islands are seasonal. The landings recorded in 1925 likely included ferries, steamers, and commercial vessels of varying description along with some yachts. Yachts were not one of Rockland’s more important watercraft types until relatively recently; perhaps because fish processing and rendering were not compatible with yachting. Moreover, yacht owners may have avoided Rockland because the harbor is not well protected and was heavily polluted. Harbormaster reports show that the city has long desired to increase yachting, and it has, of late, been especially successful. The water is now cleaner and the city government and chamber of commerce have organized or brought to the city, activities that promote the harbor that, unfortunately, still has some serious drawbacks for the yacht business the city romances. The lack of good shelter (that is available in other nearby harbors) is a problem residents recognize; one described the harbor as “a hell-hole in an easterly,” however, a 1995 proposal for two inner breakwaters seems unlikely to go very far.

The 1958 harbormaster’s report explains that a municipal float was “well used by the local, island, and visiting pleasure craft” and that the public landing had a “very active season” (COR 1958:37). More specifically, however, the report offers a summary that indicates the harbor as a busy commercial port, dominated by the commercial fishing industry.

Rockland harbor is also a port of entry for clearances to foreign ports and through the local Customs Office, a total of 127 entries and 122 clearances to and from foreign ports were made this year. Some 20,400 pounds of lobsters were imported and some 5,362,000 pounds of fresh sea herring were exported. … In noting some of the other activities of the harbor for this period, some 80,000,000 pounds of food fish, lobsters, herring, fish meal and sea moss products were brought into the harbor by vessel only. Also, some 8,200,000 gallons of gasoline and other fuel oils and 28,000
tons of coal and gypsum were brought in by water transportation. … These figures exceed the last few years and can give encouragement to the City of Rockland that it is being used steadily as a port and is growing and through its natural assets and the energy of its people, Rockland can once again come into its rights as a seaport (COR 1958:38).

In 1980, the harbormaster report noted that pleasure boating was increasing, and reminded residents that “Rockland is very fortunate to have the ocean right on Main Street and more and more people are realizing what an advantage that is” (COR 1980:95). The following year, the same harbormaster recognized that there were some compatibility problems.

Yachtsmen must realize that Rockland’s tax base and pay checks come from fish plants, from Stinson’s on the south to the huge O’Hara operation on Tillson Avenue. Hundreds of Rockland’s population enjoy life in this area. Pleasure boating is also enjoyed by hundreds in the area and the mutual benefits to both are being more fully understood every day. We will work toward the goal, more fully, in 1982 (COR 1982:88).

By 1985, the city had 12 guest moorings for visiting yachts; the harbormaster performed maintenance and continued improvements on the pleasure boating facilities in the downtown area (COR 1985:24). A decade later, Rockland’s harbormaster, Ken Rich, summarized the activity at his docks and harbor from July 1, 1994 to June 30, 1995. “A total of 2,220 boats were served at the Public landing bringing in a total of $32,000 in user fees from the Public Landing” (COR 1995:33). He was optimistic about Rockland’s future as an important, though different, harbor.

The Sea-Pro fish rendering plant and the old sewer treatment system insulated Rockland from development on the waterfront for as much as thirty years. Now that the smell is gone and the water is clean, there is nothing to deter the use of the underdeveloped waterfront. … New docks will be built, and marinas will expand and grow and aquaculture will fill the void of a declining fishing industry. As the century turns, Rockland Harbor will blossom again and take its rightful place as center a activity on the Maine coast (COR 1995:34).
Ken Rich gave up the position to Jon Trumble in 1997. I spoke with Rich and Trumble, and both characterize the harbor as Rockland’s economic engine.

7.1.1 Harbormaster Rich (July 6, 2002)

Ken Rich settled in Rockland in 1992, had been sailing on the coast of Maine since 1951 and had a background in yachts and knew Rockland, its problems and possibilities.

“I see potential wherever I go.” He was trained at the University of New Hampshire as a poultry specialist in mechanized agriculture. He took an interest in aquaculture and explained that the poultry business and aquaculture have much in common, “In both, a lot of it is taking care of their shit.” He spent some time on Hurricane Island, one of Maine’s granite industry islands, and was on Roake Island, (downeast Maine) managing a farm for 15 years.

When he took the harbormaster job in Rockland, he began his work getting the harbor moving toward its potential. “Rockland was this great big open space that needed to be filled up.” He knew that mooring space in other harbors was at a premium, and in four years was able to add about 100 moorings to his harbor. He did his best to promote Rockland harbor as “yacht-friendly” and, although there was some trouble with lobstermen fishing in the mooring area, he eventually resolved it and had expansion of pleasure boating as his first priority, knowing that yachts can bring significant business to a city in numerous ways.

Today Rich manages the city dump and dreams of using Rockland’s other abandoned quarries for fresh-water aquaculture. “Still, the harbor is the greatest asset the
community has and there is still room for expansion; it is nicely diversified now” not just in commercial fishing. He reminded me that, “This place was really depressed in the late 80s and early 90s.” He also cautioned that the community must be careful about the development they allow on the waterfront. His enthusiasm for Rockland’s future and his obvious love for the city were clear. “My goal was to make this the Newport of the East—it eventually will be, it’s halfway there now, as the affluent crowd gets pushed farther from Cape Cod, they’ll be here.” Again, “It’s the harbor, the revitalization of the harbor that will do it.”

7.1.2 Harbormaster Trumble (July 26, 2001)

Jon Trumble’s first visits to Rockland were by water. He was in command of a patrol ship, the Point Bonita out of Woods Hole, Massachusetts for the United States Coast Guard. They put in at the Coast Guard docks at the end of Tillson’s Wharf in Rockland and Trumble recalls the event as “not pleasant, but not unpleasant, as a seaman, it was just Rockland.” The city was still a fishing town then, in 1987 the packing plants, groundfish processors, and rendering plant were still operating, “that was the introduction to Rockland coming by water; it was a working town.”

Later, he returned to stay on a more permanent basis as captain of the icebreaker Thunder Bay homeported in Rockland. The Coast Guard Station Rockland is at the end of Tillson Avenue, formerly Sea Street, and in a historic brick building that once housed the Bird Company (see Chapter 5, Bird Company shipping bill, Sanborn maps, and text). The wharf was purchased by the U.S. Navy in June 1941 and transferred to the Coast Guard in 1943 (U.S. Coast Guard 2003). Trumble explained that the harbor was busy with fishing vessels at the time, but had only “30 to 40 moorings in the entire harbor,
geographically, it is a huge harbor, for Maine; we have so many narrow harbors and long harbors.” “Rockland is round and wide with lots of room.” By 1990 with fishing on the way out, “Rockland was probably in search of a new identity, right around that time, but there was no one piece of Rockland that was leading the way” leading to recovery. One lobster wharf owner converted his property to a marina, then another tried the same idea, and when O’Hara’s plant stopped processing fish, Frank O’Hara started redeveloping his properties. “He has done a great job with his property switching from fishing to recreation.”

Trumble credits his predecessor, Ken Rich for getting the harbor’s transformation underway. “Rich did a wonderful job getting the word out that Rockland had room [for boats/moorings] when Camden, Rockport, and other places did not.” The transformation of the place was “quiet until in 1995 when the harbor boomed, transatlantic sailors arrived in large numbers [again, thanks to promotion done by Rich] and replaced Camden in the British Cruising Guide for Transatlantic Sailors as the number one destination on the East Coast.” That year Trumble says the harbor was experiencing a transformation, and the downtown was beginning to do the same.

The visitors were coming from the harbor during the tourist season. This still wasn’t a place that you came to by bus; Rockland was not a destination by car in 1995. Yet, the tourist population was growing, primarily because of boating. It remained the most undeveloped harbor on the East Coast, but the water was clean, the services were available, and by this time, Knight’s [Marine Service] had a mixed customer base: recreation and fishing. There were moorings to be found, there were new boatyards that were popping up as a result of this. The Apprenticeshop had been in Rockland for a couple of years which was attracting wooden boat enthusiasts.

The yard at the south end was busy and “through the boating industry, word of mouth brought new business to the city, and Ken Rich brought the Friendships to
Rockland.” The Friendship Sloop Society now has their annual regatta in Rockland rather than Friendship (see Chapter 4). “Rich attracted people and development was rapid, there were so many events organized on the harbor.”

Trumble describes the city’s events as all dependent on the harbor: the blues festival is held at the water’s edge, the setting is important; Schooner Days, when the Maine Windjammers congregate in Rockland, obviously, the large, open harbor permits this to happen there; the Lobster Festival, and a new one-day folk festival, all on the harborside.

Last year [2000] we hosted the New England regional championship for Optimist Prams. These are little eight-foot boats captained by under-13 year-old kids. We ended up with 300 boats; all of these were accompanied by three, four, five people, whole families who stayed in the area for five nights. Why were they here? They were here for the harbor. They weren’t passing through and spending a few hours at a museum.

Trumble explained that next year [2002] Rockland would host the week-long Atlantic Challenge and Woodenboat Festival (I was able to attend both, see Figure 94).

That is the harbor—these people will go and visit the other things [museum, art galleries] on a rainy day especially, but they’re coming here because the harbor created the opportunity for these activities. These activities will be a success whether the tourists come or not. These activities are not based on the tourists coming to Rockland; they are based on the harbor that gives them the chance. The boaters keep coming.

“Last year [2000], the last fiscal year, the harbor budget was $159,000 … of which about $17,000 was a cost to the taxpayers [the rest was fees, permits, dockage and mooring charges, etc].” Trumble figures that budget generated, in all harbor-related activities around $25 million for the city. “Not bad.”

Trumble’s harbormaster report for 2000 informed the citizens of Rockland that the harbor was building its reputation among large, long-distance yachts, “with visits by
Canadian, Swedish, Australian, British, and Spanish flagged vessels to name a few” (COR 2000:34). The city had “approximately 460 vessel moorings, 175 vessel slips, and 2,500 foot of transient dock space.” He concluded, “Rockland Harbor is a treasure that will sustain and support us for a long and prosperous future” (COR 2000:35).

Figure 94. Rockland public docks during wooden boat gathering (2002).

7.1.3 Captain David Allen (July 14, 2002)

Dave Allen has been on the Rockland waterfront for more than 25 years and was among the early operators of one of Maine’s vacation schooners, dude schooner, windjammer, skin boat, or puke boat, out of Rockland (these names are mine, not Captain Allen’s). When I was more familiar with the trade (I was crew on one heading south for the winter in the early 1980s), these boats took people out for six-day trips along the coast. They would get aboard on Sunday, either stay in port or make a short trip that afternoon, or move out on Monday morning. These boats always anchored at
night, but in a different harbor each night during the week, returning to their homeport on Saturday to prepare the boat to go again. Each schooner took a skilled cook; food was an important ingredient of the trip, and guests were welcome, or encouraged, to take part in shipboard duties such as hoisting sail, rowing the longboat, cleaning, and steering the vessel (under the right circumstances).

He used to make Monday to Saturday trips, but today, Dave explained, the business has changed, few schooners make six day trips, three or four are the norm. When he began in the business with the Richard Robbins sailing out of Camden in 1967, there were only a few others in operation (one was the Victory Chimes, long out of Rockland, see her photo in section 4.6). So many schooners have joined the fleet, and share a limited market, that they struggle more than when fewer operated two decades earlier. Allen is glad to be out of the tourist business and now happily teaches science in the city’s high school.

Dave and his wife bought a two-masted schooner, the J&E Riggin, built in 1927 at Dorchester, New Jersey as an oysterer. They hauled her out, at the north end in Rockland in 1974 and rebuilt her (I think they were one of Dave Hoch’s tenants on some of the lime company land while he was trying to get some diversity there). She was fit for service by 1977 and they sailed her in the windjammer trade that July. SeaPro was a neighbor to the Riggin and although their berth was adjacent to the rendering plant it was “not a problem but an annoyance, the dock lines got scummy, but….” Dave explained, “We were heading out of Rockland, so SeaPro was not a problem; Rockland was a good place to leave from but not a place to visit in the middle of a trip.” They had chosen Rockland, “It is easy to get in and out of Rockland Harbor, especially in the fog, it is
handy for business reasons; back then the water was dirty and smelled, but the passengers enjoyed the flavor of a working harbor."

They sold the Riggin in 1998 as an established business, and Dave seems not to miss it. They had gone every summer, usually for a 17-week season, for more than 20 years; they took 26 passengers, five crew (including Dave and his wife who cooked aboard sailing schooners for 25 years) and “were ready to get out of it.”

Dave owns a home in Rockland, and like so many others I met, is unlikely to leave. He contributes time to the harbor planning committee and performs other service for his city, which he too, clearly holds dear.

7.2 Fishing

The commercial fishing industry has left a few wharves in the city, many were built during the lime era and maintained by fishing interests. The city fish pier is, at times, busy, and at the north end the seagulls and bait dealers flock to the old lime company property when they get word that a big herring boat is coming in. Among the layers in which fishing can be found are the buildings on Tillson’s Wharf. Looking at an office building of today, one might find it difficult to see the original purpose of its construction, a “fireproof” sardine packing plant (see Figure 95).

7.2.1 Frank J. O’Hara (July 7, 2001)

Frank O’Hara is a prominent figure in Rockland; I have mentioned him, his boats, and plants, and quoted him elsewhere in this work. He arrived in Rockland in 1947 at the age of 16 to work for his father in the fishing industry. “Rockland was a fishing town by then, with a little [boat] building.” The O’Hara company owned groundfish processing
facilities and a fleet of trawlers, having side-trawlers built in the early days and stern trawlers into the late 1970s, some of which are still fishing, but in Alaska and elsewhere, none in Maine. O’Hara processed fish after the rendering plant SeaPro closed, “We took our scrap to Blacks Harbour, [New Brunswick] Canada by truck,” an expensive but short-lived necessity. “We were done, we just didn’t know it.”

They continued to process redfish, cod, and pollock on expensive cutting machines. “It was an exercise in futility; we closed the plant in ’89.” He and his sons operate a number of businesses from Tillson’s Wharf. They sell ice, store boats, operate a marina, office building, and lease other waterfront buildings for various uses.

Remembering Rockland’s past, “It was a big fishing town, there were lots of boats, a lot of fishermen.” One bar on the waterfront “had the big blackboard of all the
boats coming and going, when they left, when they were coming back … you could get in
trouble in there pretty easy, if you wanted it.” He is pleased with his city’s ongoing
transformation, “The Wyeth museum, a tremendous boon to the town, galleries filling
in,” and buildings being rejuvenated and saved. “There’s some prosperity here that was
never here, not since the great fish days.”

O’Hara explained that Rockland’s role as a service center for the islands has
expanded, “The islands, more populated, more prosperous—that has fed Rockland
tremendously.” He made it clear that he likes the Rockland of today, but has fondness for
what it was in the recent past as well, when it was a hectic, noisy, smelly, industrial town.
“It was a kind of wild and wooly town in those days; a lot of money spent here, a lot
wasted.” O’Hara considers Rockland as having two high points, fishing and today, but
the fishing high point, “It was another world, it certainly was.”

7.2.2 Fishcutter Barbara Fournier (July 19, 2001)

Today, Barbara owns and operates her own business, Barbara’s Hair Salon; she
gave me a business card/refrigerator magnet, “Stick with the best.” We met at her shop,
and spoke while she cut and dyed a regular customer’s hair. She is an energetic and
articulate person. Born and raised in Rockland, graduated from Rockland High School,
Barbara worked in a fish plant for 16 years. She had a part-time job at a sardine plant
while a high school student, “I loved it, especially the 8s.” She explained that 8s means
eight per can, eight sardines in each can. “We didn’t have to cut the tail, just the head.”
As a senior in high school she worked at Dave’s Restaurant, as well (where she met her
husband in 1969), but when she finished school, she worked full-time at a nearby chain
grocery store. Like many women in the area at the time, Barbara took a job at a fish
plant, the O’Hara Company, in 1974. “We were a big fishing port,” but jobs in the plants were highly desirable, and it took some time for her to secure one. “My husband’s aunt got me in, I asked the boss when he came into the grocery store and finally got a job.”

She had various jobs in the plant, everyone did, and handled different fish, cod “the worst fish—they’re full of worms,” and the best? “My favorite fish was pollock, nice white meat, very seldom have worms.”

During the 1970s at O’Hara’s, she worked with a crew of “about 200 or so.” Fish cutters, those who actually removed a fillet from each side of the fish, then cut the skin off the fillet, were both female and male. Candlers, the workers who cleaned the fillets were always female; the packers were all males. “Guys” performed the plant maintenance and “there were some boys that worked around.” Lumpers were men. A lumper is a man, paid by the hour or ton, who unloads a fishing vessel. Fleet boats employ lumpers; the O’Hara Company owned a renowned fleet and paid lumpers to unload. On the boats I worked on, we lumped ourselves; with a pitchfork or shovel, one loads a canvas basket with as much fish as it will hold, a hundred pounds or more, and a man on the dock winches it out, dumps it into a sorting tray and chute, and returns it back down into the hold. Lumping is hectic. The man in the hold sets the pace for a large crew on the dock that is busy sorting, boxing, and re-icing the fish, a slow lumper holds the rest of the crew back, but only once; there will be someone else down in there for the next trip if that happens.

Barbara worked with redfish; it was Rockland’s specialty. Some of the processing employed machinery, but workers always cut the fillets by hand. She would begin with an 80-pound box of redfish, “it was sent through the scales, up, over, weighed,
we fillet the sides, the fillets are weighed, we’re paid by weight, then down to the
candlers, they clean out any bones and things.” Then she would move on to another
“run.” The fillets went on a conveyor, through a rinse, to a packing table (packers were
also paid piecework), and the fish was packed into one or 10-pound boxes, then sent to
the freezer. “They were frozen in blocks, a machine would wrap them.” They made
breaded redfish for government contracts and the racks were valuable bait. From the
original 80-pound box of redfish, 18-21 pounds of fillets were the average. Barbara
averaged a little better, 23-24 pounds. “Anything over 21 pounds was a bonus, 3¢ a
pound bonus.”

During her time at O’Hara’s she also cut cod, pollock, haddock, hake, flounder,
cusk, and sea cats. Before a load of fish was ready for her and her fellow cutters, she
would work in the “groundfish shack culling fish off groundfish boats”; she sorted the
fish by species as the lumper sent it up to the dock.

“I enjoyed working there, I made good money there, Mr. O’Hara was really nice
to us, good to his workers.” “My co-workers were good, there was a little friction in
places, but…” “The big thing was the money, getting paid piecework, I made very good
money.” It was year-round work for Barbara and the others. She began at 6:30am, got
the process started, and the candlers would come in at 7:00. “Monday to Saturday
mostly, we had so many fish we worked Saturdays; work was steady, we worked right up
to Christmas Eve, it wasn’t seasonal but year-round.” Her days were eight to 10 hours
long, but on occasion “we could take a half day off—Frank O’Hara was so nice, they
knew, with children and all ….” They had a 15-minute break at 9:00am, a one-hour
lunch, or a half-hour if they were too busy, another break at 3:00pm and “would sometimes stop if we got too far ahead of the candlers.”

Groundfish cutting (other than redfish) was by the hour, but at times, “redfish was so bountiful that we were working night and day, we would go back and work nights.” The plant actually got too much fish once, “one boatload—most of it went to SeaPro.” However, it was not to last. As I have indicated elsewhere, redfishing had been at its peak in the mid-1960s. “We had boats with 100,000 to 150,00 pounds, then 50,000, then 30,000; 30,000 pounds was just enough for a day’s work.” Barbara’s husband was a groundfisherman, “He knew fishing was coming to an end, he could see it out there, he went lobstering.” Barbara characterizes the end as a “slow decline, people knew, fishermen talked about it.” She explained to me, somewhat angrily, as other Rocklanders have done, that the Hague Line brought about the end of haddock and redfish. “I always felt that that had a big impact, we should never have lost that.”

They were good jobs, then they were gone. The good thing was that if you worked hard, you made more. One week, we had lots of redfish, I made $800.00 clear, after taxes, that was huge money at the time! Another time I got $2.00; just kept the check.

She decided to leave before it was over, “1988 or so, O’Hara’s was still going well, I decided to go to school, drove to Augusta every day, got my hair license.”

Barbara was among few to take proactive measures.

National Sea Products closed before O’Hara’s, so when O’Hara’s closed it was devastating for the area—what happened to those people? They had no education.” Rockland was in bad shape, there were no jobs, where could they go? There were a lot of older people out of work.
Barbara’s steady income helped the family particularly as her fisherman husband’s was sporadic and less predictable. “We’ve done well, we had good jobs, we worked hard.”

In his survey of New England’s fisheries of the late 1930s and beginning 1940s, geographer Edward Ackerman describes some labor issues in Boothbay Harbor.

Boothbay in an earlier day was the Gloucester of Maine, and as such it attracted summer vacationists and other seekers after the picturesque. Its popularity increased until it succumbed to the advances of the multitude. Today the tourist business far overshadows any other activity in the town. There is, consequently, a heavy demand for female workers in hotels, restaurants, curio shops, and in every other sort of activity. But this demand is in the summertime, precisely when the sardine plant would like to have operatives. If given her choice between a hotel and a cannery job, even at the same wage, there is no doubt that almost any woman would choose the former. Considering the further fact that cannery work is spasmodic, the difficulties of obtaining labor in this region can easily be understood. Portland, on the other hand has an industrial population, from which canners readily are able to draw extra help as they need it. The same applies to Rockland, which now has two canneries (Ackerman 1941a:201)

Ackerman saw labor as another element making tourism and fishing incompatible. While Rockland is shed of fishing, the seasonality of the employment needed by its new economic focus is sure to be a continuing problem for the city.

Barbara and others recall fishing industry jobs as good jobs, and, more importantly, they were year-round. Since Barbara and I spoke, now more than eighteen months ago, I have thought about her work many times. Was it something special that she did? No, it was not. She does not think it was. It was everyday. It was the everyday. That is what is important about it. She went there, to that fish plant, every day, for sixteen years.
7.3 The Lime Industry

Dragon Products has workers in their vast quarries; however, I could not locate any quarrymen who had worked to supply limestone to Rockland’s kilns. Dave Hoch was unable to direct me to any who are still living, but he did introduce me to the last living lime-burner in Rockland.

7.3.1 Lime-Burner Vern Raye (July 8, 2002)

Vern Raye kindly allowed me to interview him at his home; after we finished, he agreed to take a ride through the ex-industrial zone of the city to show me where he had worked and share memories of his past Rockland. I dropped him off at the city golf course, where he plays frequently if the weather is suitable.

Lime-burner and kiln-tender were occupations I saw frequently in city directories, industrial journals, and other places that have information about the nineteenth-century lime industry. My first question to Vern was to determine what difference, if any, there was between these two occupations. I have listed them separately in my occupations data (Appendix F) since the source material listed them as separate categories.

There’s no difference, a man that ran the kiln produced the lime, down the other end, he pounded it up on the hearth, he was called a lime-burner, but he’s also a kiln tender, the same damn thing. If I’m a lime-burner I’m also a kiln tender.

It turned out that I did get to talk to a quarryman; Vern worked in the quarries for a time. He was a driller, boring holes for the placement of dynamite. He too, though, worked for the cement plant, now Dragon, so the limestone he drilled was not for the Rockland kilns either.

I graduated in 1935, the only job around then was the lime plant, it was the Depression here, I went right to the kilns because my father worked there,
my brother worked there, so I went right there. That was the only job around then, it was hard to get a job. I took the first job I could get. Then, like a damn fool, I got married, I couldn’t leave and go get another job, I had to have a check coming in—so I was stuck there seven years.

When I was a kid they all burned wood, that whole area out there around there wharf was just piled right up with cordwood, scrubwood. You could burn any kind of wood, softwood, hardwood, anything. Before I got out of high school they burned coal.

Vern on tending a kiln:

We had four, six-hour shifts. The first thing you’d do, you take six iron wheelbarrow loads out on your hearth, some people took seven, they wanted a little extra bonus, but I always took out six because I wanted to get to hell out of there anyway.

You put the wheelbarrow down under that hatch, open up the shears; you could regulate how much rock was coming out by opening and shutting the shears; you put it into an iron wheelbarrow, take about six of those to a batch, then you take a, what they call a pair of adze, it ain’t a pair, it’s one hammer with a flange on one end and a peen on the other. You pound it up and put it in barrels.

You had to head them up, with round pieces of wood, fit them in grooves. Sometimes it was pretty hard to get those damn things in there. You’d have three or four pieces to match in. There’s iron hoops around them, you’d pound down on the middle hoop to tighten up the barrel, then you’d put another hoop on the top of the barrel and pound it down and that pushes together the barrel and the laths, that keeps the head in. It was pretty tight.

The train would come with those rock cars and they’d dump it in. They filled it [the kiln, through the top] every day, twice a day.

It [the lime] was hotter than hell, dump it out on the hearth cobblestone, let it cool, sit down a little while, smoke a pipe, and let it cool. Go up and stoke your fire and then you go down and take your adze and break it up. Throw up the core, the core comes up blue. They used to throw that core away. Then they brought in a little small crusher and then crushed it up and put it into tanks and bagged it—it was still good lime.

I asked Vern if they ever shut down in the winter. I explained that I had read that Rockland kilns were quiet for the month of January; he explained that it was not true and
seemed somewhat irritated that I thought they stopped work, or maybe he did not like the
idea that I thought kiln tenders got some time to lounge around.

We worked year-round, you can’t let the kiln go out, Christ Almighty, it
would take you, Christ, take a week to heat it back up, yes, Christ, you’d
keep that fire going steady. You can never shut them down, not even for a
holiday. The only goldarn time they got a half a day off is July [4th], that’s
the only time a kiln man ever had a holiday. You had to keep that fire
going.

When you fired up your kiln, put more coal on, there was a little valve
there, you turn it on, let the steam go under the coal because it will burn
better with steam on it. It will burn like hell. You always have to put the
steam on, of course then after the fire gets all going, you have to go up and
turn it off. They had a big boiler, steam boiler down there that made the
steam. Christ, if you kept it on too long, Christ, he’d never be able to keep
up the goddamn steam.

If your fire wasn’t hot enough, you’d turn up your steam a little. You’d go
down and do something else and then go up and turn it off. Steam makes
the coal burn better, hotter and better. I don’t know why, it’s just the way
it is.

I asked Vern if he enjoyed his job with the lime company. He explained that after
burning lime for seven years, he had had enough “It was a good job to get to hell out of.”
He worked for the telephone company, trimming tree limbs away from wires, then went
to work for the fish factories and a textile mill for a few years, then back to the fish
factories until he was 68 years old when he retired. I asked Vern about Sea Street, now
Tillson Avenue, and its reputation for being a popular payday destination among
fishermen, offshore quarrymen, and ships’ crews.

Sailors, the Navy, would come in; they’d land down to the public landing
there right the end of Sea Street. They never got much off of Sea Street.
That’s a lot of whorehouses down to there, I guess every goddamn one of
them was, up to Main Street. They called it “The Point” down there, that
was a name of defamity. Say “Where you living?” “Down to the Point.”
They wouldn’t have nothing to do with you, whores and everything else.
The Navy cleaned that street up, they did it in every town. They got the city to clean it up, every damn house down there was a whorehouse, so when the Navy came in there, they cleaned it right up. The Navy did that all over the goddamn country, they didn’t want to have anything like that going on.

We took that ride along the harbor and looked at the kilns rotting out of the terrace face at the north end. I drove over to the Spear Kiln to ask some questions about how such kilns worked (see Figure 40 in section 5.2.2). Vern explained how one arch was the “hatch” where the lime-burner withdrew the lime from the fire, and that the second, higher arch was the one through which they fed wood into the fire. It was “just like” the one he tended, “they were all the same.” He was surprised it has survived as long as it has, and dismayed that there has been no effort to protect it. “They better keep it there, because, Jesus Christ, that’s a relic.”

7.4 A Few Words from Rockland’s Dead

In the reports of the Bureau of Industrial and Labor Statistics (BILS various years), the words of some of Maine’s and Rockland’s workers now gone are recorded. In addition, historic photographs tell us about the day-to-day, although more photographs survive depicting events such as parades, fires, and launchings. We often see images of activities in the town centers but fewer of the everyday and the rural.

Other documents give voice to those of the past as well. The lime company newsletter has details of worker’s lives that we otherwise would miss (see Chapter 5 and Figure 96 below). Newspapers, as I have shown elsewhere in the work, include useful information, and other histories included individual’s voices, or, at times, lead us to them.
MILLS

Dana Miller is back again after several days out with a cold.

Harry Winkworth is on as night man in place of Leslie Griffith, out on account of injury.

Mike Amato has quit the mill to attend to his surprise clothing business which he recently established.

Conny took his first off last week to "fix up about his income tax" and two more on account of sickness.

Live lime orders have kept the barrel packer in constant operation for the past few weeks and will for several weeks more.

Several large invoices of cotton bales have been received recently. The use of jute bags for agricultural lime has been discontinued.

A trial trip of the new mixer resulted in the production of several bags of "ready-for-use" material which is undergoing a testing-out process.

A new record has been established on the barrel packing machine by Clarence Hennigan who packed 112 barrels in one day last week. The previous high record had been 96 barrels.

Reports from the Sibly hospital state that Leslie Griffith is coming along fine. L. Frank will now have time to think up some more of those sea yarns he so dearly loves to tell the boys.

A substantial loading runway with side rails and adjustable loading stage has been built at rear of boiler room for the loading of ashes from boiler. An electric light has also been put up at this place. This action was taken by Sopt. Wade immediately following an accident to Leslie Griffith, night watchman, who was injured by falling while wheeling ashes.

Now that the boiler has resumed operation Linie Henderson is back on the job as Sunday watchman. He has something to do besides watching, however, one of his jobs being the "cooling up" of machinery and motors. This proceeding takes about four hours' time and requires 2 1-2 gallons of molasses to do the job. There are 21 motors in the two mills.

Something entirely new in contents around the plant occurred when cloth bags were being transferred from rag storage room to the safety bin. It was a rat chas ing period, the animals emerging from among bags which were being overhauled. Linie Henderson used his feet for the killing and had the largest number of victims, but Domenico Venuto took the more scientific method of catching them alive by grabbing them behind the eyes and carrying them out to show to the boys before the funeral rites were performed.

The score was: Henderson 3, Venuto 2.

A huge bin has been built over the office for the storage of cloth bags. It is lined with tin and all approaches are protected in the same manner. It is reached by a wall ladder with "handles" at the top, the "handles" being a suggestion by Foreman Knights as a safety precaution. The bin was made necessary by the ravages of rats in the former storage room. The rodents will be much missed by Earl Haskell who has his bag repair machine in the latter place. Charlie Wade says Earl is to blame anyhow for the rats getting in there in the first place, by enticing them in with Gas Bird's cheese which Earl brought down to lunch on.

POINT

Clyde Withee spent Thanksgiving at Swan's Island.

Knave arrivals for the past two weeks were five carloads.

The Dec. 10 shift put L. Stanley on 4, M. Salerno from 4 to 3, E. Smart on 3.

C. Peabody and T. Lathrop who have both been out with colds, came in Monday.

Hard rock has been discontinued. It's all soft iron now on a lump and bulk schedule.

All unused cooperage material at the Thomaston plant is being transferred to this section.

Production for the week ending December 9: No. 3, 1191; No. 4, 1208; No. 5, 1306 with loss of five batches.

James Filisardo was out four days last week on account of sickness in his family. W. McKenzie is out for similar cause.

Antonio Delmonico was on as night foreman five nights last week, substituting for George Adams who was on the sick list.

No. 5 filled out for repairs last Saturday after a run of five months and two weeks. It was a nice fill-out of 129 barrels and only about one-half bushel of rock. During last week this kiln had a high day's record of 140 barrels.

The cooer shop will be shut down Saturday for a short time to enable a readjustment of machinery made necessary by installation of new heading machine. The firm of Rollins & Richards begin work on the electrical part of the job this week.

Crew shifs on kilns went into effect on December 2, the order being on a two weeks' schedule. Shifts at that time put Wm. Young in place of Mike Salerno on 3, James Filisardo and Augusto Delmonico on 4 in place of Antonio Delmonico and Ed Smart, and John Phelps on L. Stanley's place on 5.

Boiler repairs during the week ending December 2 caused the loss of several draws. This was a disappointment for the 5 crew as their kiln was headed for a 1500-barrel week before the break occurred. For two-days this kiln got 225 each day. It was a good week's production all round however, notwithstanding the break, the record being: No. 3, 1086; No. 4, 1986; No. 5, 1299.

FIVE DOLLAR "BILL."

"I've lost my watch over the edge of the wharf," said Fred Ludwick to the crew. "I lost it from the house by the track, looking quite sad and blue."

"It was a valuable watch," he was heard to say, "as good as you generally see; And I'd give five dollars from my hard-earned dough to have it returned to me."

When Bill Staples heard that he rushed for his hat and ran to the house by the track.

He shined down the wharf all slinky and black, recovered the watch, and soon came back.

He entered the shop with a military step, his composure expressed delight.

Who wouldn't have joy without alloy when a five-dollar bill was in sight?

Bill held the watch by the buckle on the fob as he marched to the berth of Fred. Who reached for the watch, then smiled at Bill, but "Thank you," was all that Fred said.

281
For example, a lime-burner in 1887: “I think the kilns should be closed Sunday to give the men a chance to rest and attend church” (BILS 1887:101). The same lengthy report provides the opinions and views of fishermen of the day. They made complaints about new technologies, the waste they saw in the industry, prices, and explained that fishing was better 30 years earlier (this all sounds familiar to me).

The twenty-first annual report for the same state agency contains a thorough summary of the sardine industry. *Women and Children in Sardine Factories* (BILS 1907:121-137) explains the conditions they worked in, the pay they received, and provides an overview of the fishery and canning operations. Just as I heard tales of worker heroics,

There is a great deal of rivalry among the packers, each trying to win the championship. One hears of marvelous wages being earned, but I was unable to find any pay roll for the past season giving higher than $18.00, though told by a bookkeeper he had known a packer to make $32.00 in one week.

Some of the women take much pride in their work. “I always try,” said one girl as I stood watching her swift fingers which put the six little fish into a can in a surprisingly short space of time, “to make my pack look nice.” “It’s hot fish,” said the girl. “We can’t pack them till they are cool, so we get a little time off” (Miss Eva L. Shorey, special agent of the bureau, BILS 1907:125-126).

Annual city reports were another source that let past Rocklanders speak. In a rare instance of detailed reporting of health issues in the report, the city undertaker’s summary for the year 1919 (the year of the Great Spanish Flu) gives more than the usual total number of dead buried by the city. He provided “services” to 234 (dead) residents of Rockland and neighboring towns. Cause of death is listed for each, with 77 dying from “influenza and pneumonia.” The second highest single cause is listed as “cerebral hemorrhage” with 22 deaths. Others include: jaundice, Bright’s disease, exclempsa,
gumatra of the brain, and malaria (COR 1919:59-62). Obviously, Rockland’s residents have not been isolated from the larger world and its epidemics and diseases. With hundreds of cargoes of lime going out of its harbor every year to distant ports, and with so many vessels carrying mixed freight, Rockland was in constant contact with much of the world by sea, directly and indirectly. Historical accounts and contemporary newspapers offer insights into the state of health of such a port, and of some of the risks posed by such communication. Four examples from Rockland’s pre-modern medicine era:

Much distress was occasioned in the settlement this year, by a malignant fever which carried of may. It is thus noted by James Fales. “A very sickly season, of a kind of the yellow fever, 1771.” (Eaton 1972:101, orig.1865, v.1).

On the 5th of May [1827], the brig Thomas and William, Capt. Colley, 19 days from Limerick, Ireland, with coal and 68 Irish passengers, arrived in the Georges [River], anchored half a mile below the wharf, and reported one of the crew, Washington Boyd, sick of a disease feared to be small-pox. Dr. Kellogg, being sent on board, could not determine the disease with certainty; but the vessel was laid under restrictions, with Mr. Break as keeper, a red flag hoisted, and all persons forbidden to leave. By midnight the sick man died; and was immediately buried on Simonton’s Point. Next day the vessel was cleansed, and it was hoped all danger was over. [The ship left and on May 19th arrived in Boston with four of the crew “sick with the small-pox.”] (Eaton 1972:358, orig.1865, v.1).

On the 24th July [1832], at a meeting called by request, a Board of Health was appointed for preventing the introduction and spread of the Asiatic cholera,—a disease then newly introduced into the country, which was raging in many of our sea-ports and sweeping off its unhappy victims with frightful rapidity (Eaton 1972:372, orig.1865, v.1).

In July [1843] a severe influenza, named the Tyler grip, pervaded this community and indeed a greater part of the Union (Eaton 1972:404, orig.1865, v.1).

Later, when the lime industry had fully developed, health issues related to quarry and kiln work appear in various documents. Injuries and deaths were common in the
quarries. Blasting accidents blinded and otherwise maimed numerous men. Preparing the charge seems to have been particularly dangerous, it “proved equally fatal to Daniel Donovan, an Irishman, aged 54 years, employed in the quarry of Daniel Morse,—his body, like that of Mr. Fales, being shockingly mangled” (Eaton 1972:409, orig.1865, v.1)

Shipbuilding was undoubtedly another occupation in which workers found themselves hurt. I have witnessed too many accidents during my own boatbuilding experience to think otherwise. “A sad accident occurred in Chapman & Flint’s ship-yard, by which John Rollins, one of the workmen, was so severely injured that he died August 27th.” Examples of shipping and shipboard life as dangerous also appear in newspapers and elsewhere. The master of the brig *Rainbow* was killed by a “blow on his head from a falling block” (Eaton 1972:427, orig.1865, v.1). Another from Eaton (1972:437, orig.1865, v.1):

> The new barque *Livorno*, of this place, Capt. Isaac L. Montgomery, master and part owner, on her first trip, sailed for New Orleans in August, 1856, with his wife, his only daughter three years old, and his nephew … and was never afterwards heard from.

Ships logs were especially vocal, while some mates or captains recorded only the necessary and customary weather, sea conditions, location, etc., some told fascinating stories of social conditions on their ships, what they saw in the harbors they entered, and more that will have to wait for another time and place.
7.4.1 Historic Photographs

Figure 97. Kiln tenders in Thomaston (Bunting 1997:337).
Figure 98. Sparmakers on Rockland’s waterfront, note abandoned kilns in background (Bunting 2000:305).
Figure 99. Quarrymen in one of Rockland’s quarries (SVHS 1996:13).

Figure 100. Rockland kiln workers, note casks with split-pole hoops (SVHS 1996:14).
CHAPTER 8. THEORETICAL CONSIDERATIONS AND CONCLUSION

8.1 The Construction of Histories

During this project, with its particular concern with the past, the ways in which we construct, define, reconstruct, and deconstruct historical (geographical and anthropological) “facts” became apparent and problematic several times. Individuals or groups, such as historical societies, occasionally produce local historical volumes that result from casual and anecdotal research efforts using little or no documentation and citing few sources, if any. While the writers may qualify their works with the description “informal” or explain that portions are undocumented, such warnings are most often ignored. Library patrons commonly use the contents and statements of informal town histories as concrete facts about the past. Qualifications, though well intentioned, go largely unnoticed, and folklore and family stories, as interesting and valuable as they may be, become distorted into “real” history. As generations pass, the older works become the basis for further histories and are thus, made undisputable.

Cyrus Eaton wrote his history of the area in the mid-1860s, looking back to the early seventeenth century. He was aware of such issues at the time and wanted his readers to consider his work with this in mind. After thanking the people of the towns that were the subject of his work, he wrote (Eaton 1972:iii, orig. 1865):

If it shall be found a faithful and impartial transcript of the past, and reasonably free from those errors which necessarily result from the examination and collation of so many facts and documents nowhere to be found in print and with no living interpreter, for the most part, to elucidate, it will have accomplished the utmost expectations of the author. If in any instance it should fail in this, he hopes the generous reader will pardon, and impute it rather to lack of ability than to any willful negligence or sinister purpose.

I offer the same sentiments.
Some of Rockland’s products and occupations are already long forgotten there; only through careful research, will they be recovered and archived. Anecdotes and informal genealogies may have their place, but the preservation of much of Rockland’s past lies in its geography.

8.2 Some Theoretical Considerations

8.2.1 Sequent Occupance

Derwent Whittlesey’s contributions to the discipline of geography have been both questioned and defended by his contemporaries and by those who survive him. He began his (post-student) academic career in 1920 at the University of Chicago where he stayed until 1928 when he joined the faculty at Harvard University’s Department of Geology and Geography. Whittlesey’s appointment as a human geographer was part of an effort to separate geography out of geology as had been done elsewhere (Smith 1987).

Not only did geography never stand on its own at Harvard, by 1948 Whittlesey was the only geographer left at Harvard; he had been at the center of the battle for the elimination of geography there. Isaiah Bowman, at Johns Hopkins, had a long-standing relationship with Harvard’s president Conant and wielded his influence to forestall expansion of the geography program. Bowman disparaged Whittlesey, his work, and human geography generally, although Harvard had produced successful graduates such as Edward Ullman (PhD 1935) and Edward Ackerman (PhD 1939), who moved from a faculty member at Harvard to Chicago in 1948 after his position was eliminated with the demise of the program at Harvard.

Whittlesey had garnered numerous honors while at Harvard and served as president of the AAG in 1944. Strangely, neither the Annals nor any other geographical
journal acknowledged his death in 1956 although his student Ackerman was so honored in 1974 (White).

Whittlesey is credited with coining the term *sequent occupance* and defining it as a process and method of illuminating historical geographies and past, present, and future landscapes (Dodge 1938:233, James 1934:81). Sequent occupance is a methodology still in use today, by geographers and anthropologist (especially archaeologists, landscape archaeologists). In his article “Sequent Occupance” (1929), he calls for the inclusion of time as an important factor to be considered in geographical studies. He explained:

Spatial extent is always taken for granted as implicit in the geographic craft. In fact the distribution of people and of their activities over the surface of an earth of varied forms, conditions, and resources, is conceded to be the major premise of anthropogeography, human geography, or chorology, as it is variously called. These spatial concepts remain purely descriptive, however, unless they are treated dynamically, i.e., unless the time factor is considered (Whittlesey 1929:162).

Sequent occupance, as a method, fosters an awareness of the ways in which humans that occupied a given landscape modified it both intentionally and unintentionally. “Not only does the recognition of sequent occupance place the current stage in its proper relation to antecedents and to successors; it throws it into true perspective” (Whittlesey 1929:164). Human transformations of landscapes restrict, limit, or direct the uses to which they may be put by following occupants. Contingencies change; an abandoned gravel pit mine that was originally covered with forest would likely be unsuitable for tillage or pasturage. A stand of timber, cut and stumped may, however, become useful farmland. Agricultural endeavors often cause soil depletion or erosion and the resulting disuse can, over time, result in expansion of area reclaimed by forest.
A 400-foot deep limestone quarry is unlikely to have subsequent uses after it is forsaken, but it will forever indicate the use to which the area was put by humans. Such transformation is dramatic, but more subtle and temporary remains of previous uses or occupancy also offer clues to help us understand what is happening where, why, and when. Stone walls and cellar holes miles out in today’s New England’s forests tell us of communities of farming families that once occupied that landscape, but may have left for better soils and climate to the west.

Developed areas such as cities and towns become places that may be more difficult to analyze because of the complexities of layers of alteration and activities. “The chorologist centers his attention on the human occupance of areas, and so must take account of changes in any of the complex elements of natural environment, and in the equally complex cultural forms” (Whittlesey 1929:164). More recently, (Massey 1984:117-118) offers similar thoughts on the subject:

For one thing, local areas rarely bear the marks of only one form of economic structure. They are the products of long and varied histories. … if a local economy can be analyzed as the historical product of the combination of layers of activity, those layers also represent in turn the succession of roles the local economy has played within wider national and international spatial structures.

Whittlesey used a case in New England to illustrate the neatly sequential uses of an area of land. Beginning with native people’s use of the region for hunting and collecting, he next explains that farming dominated. Soils were depleted and woods reclaimed idle cropland, first a transitional period of small growth, then a stage of occupance by forest used for lumber and pulp (Whittlesey 1929:163,164). In 1938, Richard Dodge criticized Whittlesey: “In this fundamentally important paper no evidence is given that the first mode of occupance (hunting and collecting) left any impress on the
landscape that can be identified in the present complex of cultural features which are the results of occupance in stages 2 and 3.” Dodge (1938:237) continues to suggest improved utility for sequent occupance methods by offering a “plea for a more systematic approach to the study of modes of occupance, and of sequent occupance … based on the belief that there will not be real progress in regional geography until the details of both cultural and physical features can be described in terms that are generally understood.”

Native groups, in what is today New England, did leave evidence of their occupance. The English, particularly, took advantage of land cleared before them for their European style farmsteads. Open, park-like woodlands were maintained for improved hunting by Native Americans throughout the Northeast. Some of the most valuable timber stands today have resulted from such long-term, pre-contact projects. Dodge may have failed to recognize landscape modifications made before European colonization, but his suggestion for a widely used classification scheme for sequent occupance seems useful, though still inadequate given the complex changes in land use that began as New England (and other regions) became industrialized and urbanized.

There are places, especially in rural New England, that have undergone transformations ad seriatim as Whittlesey suggested, however, his view may strike some as simplistic. “Cultural geographers with an anthropological perspective could dismiss sequent occupance as a form of the discredited notion of ‘unilinear evolution’” (Mikesell 1976:161).

In Rockland, and in other more developed and industrialized areas, land use change is more complex, often seeming nearly chaotic, and leaving little or no evidence on the landscape. Geographical neatness in Rockland is missing; there are many
overlapping and elusive characteristics. At times, people make particular efforts to remove relict features that may seem inappropriate to the newly developing landscape. In Rockland, for example, fish processing plants were removed from the waterfront after they became obsolete in order to make the harbor a more pleasant tourist attraction. Certainly, as a method and process, sequent occupancy should continue to be used with an awareness of its limitations as well as its utility.

Regarding the adoption of sequent occupancy as a geographic method Mikesell (1976:154-155) offers that:

The most striking evidence the early popularity of sequent occupancy was its use in doctoral dissertations. The first such use seems to have been at the University of Michigan, where studies by Glendinning, Kendall, and Davis contain brief sections on the sequential development of settlement and land use. Later Meyer presented an account of the “sequent occupancy forms and functions” of the Kankakee Marsh of northern Indiana and Illinois, and Alfred Wright offered a study of three periods in the evolution of the industrial geography of the middle Miami Valley of Ohio. …

For example, sixteen out of sixty-four dissertations completed at the University of Chicago between 1939 and 1956 reveal explicit or implicit adoption. Six of these studies present the sequential development of settlement and land use as their major theme. …

In 1941, while still at Harvard, Ackerman, by then Whittlesey’s colleague rather than student, published an article in Economic Geography (v. 17, p.61-74) entitled “Sequent Occupance of a Boston Suburban Community.” In it, he describes the evolution of Concord, Massachusetts and outlines five periods, or modes, as Dodge (1938) thought they should be labeled. Concord began with an aboriginal period followed by the colonial, subsistence farming period, “the dairying and manufacturing periods,” “the period of rural depopulation,” “and the modern era of intensive truck gardening and residential expansion” (Ackerman 1941b:61).
Ackerman’s informative work came after Whittlesey had already moderated his claims for sequent occupancy. At the 1936 AAG meeting he “held that ‘sequent occupancy implies that what has existed in the past is our concern only if it has left vestiges and so exists also, in effect, in the present’” (Mikesell 1976:158). He had backed away from his “first contention that studies of sequent occupancy would lead to both retrospective and predictive generalizations” (Mikesell 1976:158).

Preston James continued to see utility in sequent occupancy in 1948 although Mikesell claimed it was abandoned soon after (in the 1950s). James (1948:273,274):

For example, sequent occupancy is a geographic concept. This term refers the successive patterns of settlement impressed upon a given physical and biological environment by a succession of people with differing economic techniques. … It is entirely possible to set up exploratory studies the purpose of which is to provide additional data to enrich or fill out this concept. Categories developed with this concept in mind can be evaluated—they have a meaning which is broader or more general than can be applied to the local settlement pattern of any one area at any one time. Exploratory studies in sequent occupancy add up to something.

Mikesell (1976:164) concludes: “It was Whittlesey’s case study [in Ellsworth, Maine], rather than his highly tentative generalizations about landscape evolution, that encouraged the proliferation of sequent occupancy studies, and the large literature thus inspired proved to be additive rather than cumulative.”

Meinig (1979:43) on the landscape as history:

To see landscape as ideology is to think about how it was created, but here is another way of doing that which, while at its best is reflective and philosophic, is also much more detailed and concrete: to see landscape as History. To such a viewer all that lies before his eyes is a complex cumulative record of the work of nature and man in this particular place.

Rockland’s landscapes still offer a conscientious viewer evidence of past economic activities; however, the record there is fast disappearing. There was not an
orderly progression or series of activities upon the landscape there; it was, historically, and is today, a place of many uses, with complex relationships between and among place and culture. The concept of the city as palimpsest is more useful to understanding Rockland’s past and present than is sequent occupancy as a method (versus a process), as in geography the notion of palimpsest acknowledges the erasure of much of what has come before and looks for the remnants and the ways in which contemporary landscapes are molded by previous ones. In Rockland, much of the industrial landscape is being erased in favor of a new service/tourism economy, but granite and brick lime kilns, railroad beds, and rotting piers are among the signs that can still be found that help explain Rockland’s industrial past.

8.2.2 Comparative Advantage, Competitive Advantage

Comparative advantage is a theory/model/principle in economics and economic geography most often attributed to David Ricardo (2001, orig. 1821) involving production and [international] trade. In his chapter on “Foreign Trade” Ricardo (2001, orig. 1821:85-103) uses the often-cited example of cloth manufacturing and wine production in his contemporary England and Portugal. He understood that both cloth and wine could be produced in Portugal and in England (although more efficiently in Portugal), but that both countries would benefit from product specialization and trade between them. Considering just these two products in these two countries, and making a number of assumptions that will be addressed below, a useful model and definition of comparative advantage emerges.

If Portugal is better at wine production, relatively, than cloth manufacturing, their comparative advantage lies with wine. If we also assume that England is better at cloth
making than wine production, relatively again, England’s comparative advantage is with wheat production. Production costs and, particularly, opportunity costs must be compared to determine which of these products is best produced in which country, and which product is worst to produce where. In other words, the question is: the production of which product requires less production of the other product to be sacrificed in which place? England, in this example, could produce less cloth if it engages in wine production than if it does not. Portugal can produce more wine of it does not try to manufacture cloth. Trade is then needed between the two so that England can have the wine it needs and Portugal can have its cloth.

To produce the wine in Portugal, might require only the labour of 80 men for one year, and to produce the cloth in the same country, might require the labour of 90 men for the same time. It would therefore be advantageous for her to export wine in exchange for cloth. This exchange might even take place, notwithstanding that the commodity imported by Portugal could be produced there with less labour than in England. Though she could make the cloth with the labour of 90 men, she would import it from a country where it required the labour of 100 men to produce it, because it would be advantageous to her rather to employ her capital in the production of wine, for which she would obtain more cloth from England, Than she could produce by diverting a portion of her capital from the cultivation of vines to the manufacture of cloth (Ricardo 2001, orig. 1821:91).

Considering Ricardo’s convincing logic, “economists, the general public and even most politicians have come to accept that every nation has a comparative advantage in certain types of goods and services, though it may lack an absolute advantage in them” (Maneschi 1998:10).

As in other models used in geography, the application of comparative advantage theory (traditional trade theory) requires some assumptions (like the isotropic plane) to be made. Transportation costs are considered to be zero, factors of production
(land, labor, capital) are fixed and equal from country to country, technological
development is equal, and costs (overall) are constant and there are no economies of scale
(Dicken1998). “In fact, none of these assumptions can be maintained in a study of the
real world” (Dicken 1998:75).

Competitive advantage theory is described by Porter (1990:19):

Competitive advantage is created and sustained through a highly localized
process. Differences in national economic structures, values, cultures,
institutions, and histories contribute profoundly to competitive success.

Porter considers nations home bases for successful companies that engage in trade
or foreign investment. The nation has resources and social characteristics that allow
certain companies based/founded/operating there, engaged in certain activities, to be
successful. Particular skills and technologies that are developed in a national setting
provide possibilities and limitations to economic endeavors in that particular place, or in
those that are run from there.

Porter wants to be able to move past the limits of comparative advantage theory to
a theory that illuminates the complexities of trade and offers a “rich conception of
competition that includes segmented markets, differentiated products, technology
differences, and economies of scale” (Porter 1990:20).

Dicken (1998) explains that, in Porter’s view, “the particular combination of
conditions within nation-states has an enormous influence on the competitive strengths of
the firms located there.” In addition to natural resources, social and cultural conditions
advance or hamper economic development and trade. Porter’s theory seems to rely on
the existence of a set of collective social characteristics that foster competitive economic
strategies. Such is obviously accepted widely; recent books put competitive advantage to
work while assuming its acceptance and validity. Two are: *The New Competitive Advantage: The Renewal of American Industry* (Best 2001) and *National Image and Competitive Advantage* (Jaffe and Nebanzal 2001). The latter discusses ways in which countries have an image (to others, outside their borders and within them as well) that can/should be exploited to increase trade. Certainly, however constructed, image has reality and seems to be what Porter is describing as a national resource or competitive asset.

As others have employed the theory, and used it to look at individuals and firms, comparative advantage can help one understand the important specializations that have been so central to Rockland’s economic past and present. Rockland has land that residents could, or could have, developed for agricultural purposes that they did not; in other areas nearby, however, similar land (wetlands, etc) was developed into acreage for cultivation or pasturage. It could be that, in Rockland, agriculture was largely ignored early on, not because of lack of tillable land, but in favor of the lime industry. Its comparative advantage was with lime. Rockland, as an industrial port it was, fostered the importation of goods not produced locally.

Competitive advantage, if dependent on a set of intrinsic social characteristics, may be a restrictive for the subject of Rockland’s changing economies and landscape transformations. Certainly, as do the countries and clusters of industries discussed by Porter, Rockland has an “environment” that has “shaped its competitive success over time” (Porter 1990:29).

Rockland’s products, lime and fish for this discussion, were low-cost. Transportation to distant markets was always an important consideration. In 1900, for
example, freight was 6.1% of the cost of lime manufactured in Maine, the next highest
was just 3.6% in Missouri. Limestone quarries were, fortunately, adjacent to a good
harbor and residents took advantage of their environment. After lime failed, Rockland
turned to industrial fishing, again, residents took advantage of its proximity to redfish
grounds near Canadian waters. Rockland fish processors specialized in redfish, therefore,
and largely ignored other species caught on grounds closer to Boston or New Bedford,
Massachusetts.

Rockland residents often talk about their adaptability regarding the way the city
survived the failure of the lime industry and turned to fishing, only to have that fail soon
after. One fisherman told me that being willing and able to diversify was the only way to
be at all successful during such difficult times. A fish buyer explained, “I only survived
through being able and willing to change” (Fagan 2000:91). They turned to more diverse
enterprises, though with a single dominant industry and focus once again, tourism. Does
this “adaptability,” give them a competitive advantage? Rockland has a new image to
outsiders; one that has been manipulated and managed in an effort to attract tourists…

would Porter or Jaffe consider that an element of competitive advantage? It seems likely.
Competitive advantage, in a local sense, then, may be considered an element driving the
erasure of components of unpleasantness (especially industrial fishing) from the
landscape.

8.2.3 A Brief Look at World Systems Theory

A world-system perspective informs many of the issues I have presented above.
“Although the general focus of the world-system school has been on global dynamics,
this focus nevertheless should not preclude researchers from applying the global
perspective to the study of historical developments at the national or local level” (So 1990: 226). Alvin So (1990:226) continues, using an example of his own work and a quote from a 1981 article by June Nash:

So’s study of the South China silk district, for instance, examines how the historical processes of global dynamics—such as incorporation, commercialization of agriculture, industrialization, proletarianization, and the cyclical rhythms of the capitalist world-system—have penetrated into the local society, triggered multiple forms of class struggle, and opened up new opportunities for local development. In fact, the adoption of world-system analysis for the study of local regions may even throw new light on old issues that ethnologists have taken for granted, because ethnologists have too often “developed a defensive blindness to the macrostructures that shaped the societies they studied.”

Wallerstein’s world system model dictates that to understand any society (none of which totally controls its own fate) we must place it in the context of the world system (Collins and Makowsky 1993:279-280). Wallerstein’s world is “divided into a network between areas which are core and those which are periphery, together with those in the semiperiphery and in the external area. Wallerstein’s world system does not, Collins and Makowsky (1993:279) warn, “… mean the whole globe, but a world-in-itself, a set of societies that are linked together but are relatively autonomous from what lies outside the set.”

Two types of world systems now exist, world empires (based on tribute) and world economies, made up of “a multiplicity of political units tied together by warfare and by economic exchange” (Collins and Makowsky 1993:280). Wallerstein envisions a possible third system, a socialist world government that may emerge in the future. The capitalist world system (the goal of which is to ensure continuous economic growth) is a system of processes, foremost, that has been in place for hundreds of years, and has been (and will be) subject to cycles, states gain and lose power and their positions relative to
others rise and fall. There are both long cycles and shorter cycles that Wallerstein and others recognize.

World-systems as processes between and among cores and peripheries are far from simple to untangle. Wallerstein (1982:92) explains:

The interrelationship and the interaction between the core processes and the states in which they are located, the fact of multiple layers of coreness and peripherality, get at the fact that there exist sets of dyadic relationships, within dyadic relationships within dyadic relationships and overlapping dyadic relationships, which are by no means simple to sort out in the actual analysis.

Such core/periphery/semiperiphery relationships, are inherently unequal, “we are talking about some kind of related set of production processes which are unequal; between their products there is unequal exchange” (Wallerstein 1982:92). This is in opposition to Ricardo, above, where trade necessarily benefits both sides. Economic activities, both core and periphery, are also unequally distributed through the world system. It is a hierarchical system, on all scales, and therefore, inequality is built-in.

Individuals are not equally distributed through the system either. One key point is that people, families, or households, may be outside the world system. Wages, or income, are gained from more than one source; these add up to overall wage levels. An obvious source of income is the wages a worker receives from providing labor. Another source Wallerstein considers is money that is not spent. Not have having meals outside the home, but cooking meals is an example (not money saved, but money not spent…). Wallerstein offers an example he thinks will be more readily acceptable than the money not spent idea, that is when a household undertakes “the direct production of food,” in other words, they have income (or again, money not spent) because they keep a family garden (Wallerstein 1982:95).
Richard Lee (1996:202) summarizes:

The world-systems perspective radically reinstates history into the study of social change on a world scale, without however reinventing ‘total history.’ Radical, because as scientists open up the middle ground, world-systems analysis repudiates the premises of nineteenth-century social science. … Process is the watchword; being is always becoming.

Collins and Makowsky (1993:284) explain, “Wallerstein tells us that the individual society is not a useful level of analysis, and that the causes of social change come from the outside.” I would take issue with this interpretation. Wallerstein does say that individual societies are unable to determine completely their own destiny because they exist only in relation to others. That does not mean that studies of local economies cannot benefit from his theory. “It seems to me that it is not [essential that trade crosses national boundaries] and that, one could make the case that trade within states between rural and urban areas is also a trade of unequal exchange” (Wallerstein 1982:92). The important element, regardless of scale, is context. “The crucial issue is that defining and explicating the units of analysis—the historical systems—becomes a central object of the scientific enterprise” (Wallerstein 1987:318).

In the case of Rockland, Wallerstein’s theory, with “historical specification” can be a valuable tool. “It directs our attention to the study of the impact of ‘extrasocietal’ forces, and it corrects the deficiencies of class theorists’ studies that see global dynamics as playing only a minor role in national transformation” (So 1990:226). Rockland did have extensive and long-lasting trade relations with distant cities, while it was relatively autonomous (a quality that helped the city survive economic difficulties due to these distant market’s vagaries).
Rockland’s economy and its citizens, during the dominance of the lime industry, were at the mercy of conditions not under their control. During the Civil War, for example, Knox County suffered a depression because shipments of lime to southern cities, especially New Orleans were halted. Being tied to the wider system is, therefore, both a positive and negative economic influence.

During the Great Depression numerous, autonomous (more so than Rockland), small farmers in Maine (my grandparents, for example) were little effected by wider economic problems. While they had never benefited earlier, they did not suffer during the global depression. They were outside the system that Wallerstein explains, entry into which, does not always improve a household’s (or city’s) income or standard of living.

The industrial Rockland benefited from its wide connections and trade. During its harsh economic times, when the dominant industry failed to buy resident’s labor, households were not as vulnerable as Wallerstein’s example of the “English factory worker straight from the rural areas, who, one generation back, has been pushed off the land, who has not other source of income…” (Wallerstein 1982:95). While industrial, Rockland during the late nineteenth and early twentieth centuries was not a core area and has never engaged with a hinterland. Being on the periphery, and being able to enter and exit the system was an advantage to local residents. When the quarries were quiet, they cut timber in the bog just a short distance from downtown. During the winter, many workers supplemented their income by cutting ice. Gardens were, of course, common as they are now, and fish were, then, nearby and abundant.

The context, then, of Rockland within its trade networks, and the context of Rockland in its history, from which each new day it is unable to escape, is important to
understanding the transitions and transformations that Rockland’s residents have been forced to (or been able to) make.

8.2.4 Urban Morphology and Staple Theory

Understanding long-term processes on landscapes, cultural and natural, is difficult because we can see only what exists at the present. To illuminate what took place in the past and how what happened influenced the form of the landscape today, geographers have borrowed methods from the biological sciences: morphology and morphometry, and the process of evolutionary morphogenesis. For human geography, Sauer’s (1925:326) guidelines for the application of the morphological method have been applied widely in landscape studies, rural and urban geography, and historical geography:

Morphology rests upon the following postulates: (1) that there is a unit of organic or quasi-organic quality; that is, a structure to which certain components are necessary, these component elements being called “forms” in this paper; (2) that similarity of form in different structures is recognized because of functional equivalence, the forms then being “homologous”; and (3) that the structural elements may be placed in series, especially into developmental sequence, ranging from incipient to final or completed stage.

Like the aim of Whittlesey’s sequent occupance, analysis of form on natural and cultural landscapes, according to Sauer, benefits from a knowledge of the temporal series of transformations or simply the uses by humans or disturbances by nature that construct a landscape as it presently (whenever that may be) appears, the form it now has.

Settlements, from temporary camps of nomadic pastoralists to the largest cities, have an organic makeup (beyond convenient genetic comparisons) that geographers study in efforts to understand their evolution. “Cities are culture and geography’s largest artifact, the product of very complex play and greatly varied forces” (Vance 1990:4).
Using Sauer’s guidelines for a point of departure, urban geographers look at form and shape, measure urban form, and discover patterns in such form. Vance’s attempt “organizes the truths of morphology in such a way as to show the pattern throughout history and their interaction of the processes of morphological evolution with those of other institutional processes” (Vance 1990:4). Again, while space is an important element in the form of urban evolution, time and the sequence of human interactions with that space are important to discover.

Humans shape their environments, but our environments also guide our behaviors. Vance (1990) looks at the interrelations that we have with our constructions, and the way we create symbols of our cultures on the landscape, with cities being particularly rich with symbolic artifacts. Our material culture often outlasts our cultural practices that it results from.

The mortality of man contrasts sharply with the immortality of cities. We must distinguish between the way that human beings transfer their learning to other generations and the way that transfer of experience and accomplishment is made through cities (Vance 1977:3).

We have tremendous capital, human and economic, invested in our cities. More people live in cities every day, and understanding and being able to measure their changing form is more than an academic exercise, it can improve quality of life on varied scales. “Production and maintenance of the physical fabric of that environment, especially the buildings, roads and services, absorbs a large amount of the wealth of the Western world” (Whitehand 1987:2).

After presenting, in graphic form, his studies of morphometric dynamics, and explaining that he has “begun to weave the fabric of a theory of urban form by threading together a number of social and economic variables,” Whitehand (1987:138-140) makes
some important claims for urban morphological studies despite some limitations. He
explains, however, that urban form is not completely illuminated through an examination
of economic conditions and that urban morphology is not always a good indicator of
cultural change:

Despite [some] caveats, it is possible to make a variety of generalizations,
many of which are supportable over long periods of time at least within
Western countries if not more widely. Some of these provide valuable
bases upon which to view the future. It is also possible to identify certain
enduring attributes of the urban landscape that may well provide a basis
for making the major intellectual leap from monitoring developments and
identifying those that are likely to continue into the future to formulating
principles for managing change and suggesting possible procedures for
their implementation.

M.R.G. Conzen “began his training in the Geographical Institute in the University
of Berlin” in an atmosphere of great interest in urban geography and settlement studies,
even beyond the university (Whitehand 1981b:7). Conzen’s work in town-plan studies,
Whitehand (1981c:127) claims, has not been equaled. The fringe-belt concept, used by
others since is “arguably [Conzen’s] most fundamental conceptual advance” (Whitehand
1981c:132). Conzen’s thoughts have been developed by others into a “Conzenian school
of urban morphology” (Whitehand:1981c:145).

The prospects for building further on the Conzenian tradition seem to be
brighter now than for some time. A major attempt is being made by a
group of British researchers at the University of Birmingham to integrate
the analysis of changes to the building fabric with the study of the
individuals and organizations involved in the various aspects of property
development, notably building users, developers and architects
(Whitehand 1981c:146).

Urban morphology then, becomes applied geography. My study of Rockland
makes it apparent that such work would benefit the city’s long-term economic interests.
Rather than covering or denying their past, Rockland’s residents should embrace their
diverse and sometimes colorful precedents. Urban morphology, historical archaeology, and historic preservation efforts should be undertaken before more of the past becomes hidden or invisible.

Along Main Street in Rockland, the buildings are much the same as they were more than 100 years ago, the granite and brick has changed little, however, the uses and occupants of many have changed several times. Industrial supply offices, company headquarters, an old hotel, and taverns are now art galleries and gift shops. Although no longer industrial, Rockland’s core space and littoral area is valuable and desirable, and such space is often contested; it is just that in Rockland, not everyone in the city thinks tourism is a long-term answer to Rockland’s post-industrial economic questions.

Rockland is undergoing an urban morphogenesis as have other places that are both admired and criticized (Baltimore Harbor, for example). Urban morphology, as method and tool, would benefit the city of Rockland during its present transitional phase; city officials would benefit from considering this approach.

Elements of Innis’ staple theory, “which suggests that national economic and social development is based upon the export of unprocessed or semi-processed primary resources” are instructive in understanding the evolution of Rockland’s historical geography (Johnston, Gregory, and Smith 1994:589). Further, “the bulk and crude exports that are the basis of most staples regions tend to be very vulnerable to demand shifts … and because domestic sales of staples are relatively small, international market volatility has direct and strong impacts, thereby producing the characteristic boom and bust economy of resource-producing regions” (Johnston, Gregory, and Smith 1994:590,591).
Rockland’s industrial economy was wholly dependent on export, although manufacturers did sell relatively small amounts of lime internationally; throughout its history, there was virtually no local market for lime or fish. Thus, Rockland’s economic health was tied to conditions in distant markets along the Atlantic and Gulf coasts. For example, following the Panic of 1837, building resumed in east coast cities and the amount of lime going to New York increased.

In 1843, vessels from Thomaston [and Rockland] and neighboring Camden completely dominated this maritime trade. All of the one hundred cargoes of lime entering the port of New York in that year sailed form these two Maine ports. The number of cargoes nearly doubled in the following year. Again vessels hailing from Thomaston held a virtual monopoly of the [lime] carrying trade (Grindle 1971a:8).

Following Innis’ model, Rockland’s lime industry failed when the lighter, less labor intensive, (and less skill-demanding) gypsum and wallboard replaced plaster and Rockland was running low on high-grade limestone. Rockland managed, however, to survive a series of boom and bust economic swings. Hayter and Barnes (1990:158) explain:

Once a region specializes in producing staples, it then finds it very difficult to reconfigure production into other types of sectors. The result is extreme susceptibility to already volatile resource prices, making the staples economy especially prone to crisis.

Innis explained the role of the state as necessary in staple production because of “the massive amounts of infrastructural capital necessary” (Spry in Hayter and Barnes 1990:160). He also “made it clear that there was something about the very nature of a staples economy—the need for large expenditures on fixed capital that required large firms, which were consequently often externally-controlled oligopolies” (Hayter and Barnes 1990:160). Rockland’s lime industry did not control its markets, and until its
consolidation in 1900, there were, at times, dozens of small, competing, lime producers in the city. There was never any ownership of lime interests that was not local, and the state was never involved in the industry beyond mandating cask weights and appointing lime inspectors. The Rockland breakwater was a federally funded project that benefited the lime industry and other interests in the harbor, but private funds built the Limerock Railroad, the kilns, wharves, and other lime business infrastructure.

8.3 A Final Thought

The harbor and Rockland’s proximity to the northern edge of the east coast megalopolis have provided residents an ongoing series of contingencies that do not exist in inland Maine or at the northern coast of Cape Breton, for example. The community has taken advantage of some opportunities the harbor offers, however, they have missed many; “We’re surviving in spite of ourselves and city hall,” remarked a lifelong resident who is bitter about new uses of waterfront space, their most valuable asset (2001). He is not alone in worrying about the harbor and waterfront; individuals and corporations can develop such properties with alarming speed, and once they are in place, they are difficult to move or remove. The Rockland community must make informed, careful decisions about long-term development of their littoral space. They are experiencing change in their city that others underwent decades ago so they have an opportunity to look to Maine and New England harbors where development was unchecked or misdirected. During previous research, a Boothbay Harbor resident told me that in order to see water there, one must rent a hotel room. Hotels and condominiums block significant sections of the waterfront and restrict the public’s access to the sea. Access issues have been
problematic all along the Maine coast for years; however, Rockland has the chance to learn from others’ mistakes.

As a community and place, Rockland is special; looking at the geography of Boothbay, Portland, and Marblehead, Massachusetts will allow citizens to guide Rockland through some difficult choices they must make now and in the near future. The city is fortunate to have capable, knowledgeable, interested residents like Rodney Lynch at City Hall; David Bicknell, Bertram Snow, and Dr. Gil Merriam, with whom Rockland’s history is safe; Ken Rich and David Allen, with whom the harbor will be in good hands if they continue to have the chance to help; and David Hoch, a man of insight whose love for Rockland runs as deep as those quarries.

I have learned a great deal about Rockland and from Rockland. I will always hold Lime City in the highest esteem and wish her and her folks nothing but the best.

So ends this day.
REFERENCES CITED

Clearances 1890-1911. *Records of Entrances and Clearances, Rockland, Maine.* Records of U.S. Custom House, Rockland, Maine. Record Group 36; National Archives Regional Facility, Waltham, MA.

Cowie, E., B. Bartone, J. Petersen. 1999. *Archaeological Investigations at the Tracy Farm Site (69-11 ME) in the Central Kennebec River Drainage, Somerset County, Maine*. Site Report prepared for FPL Energy Maine LLC at the Archaeological Research Center, Department of Social Sciences and Business, University of Maine at Farmington, Farmington, ME.

Entrances, New Orleans 1855-1862. *Entrances into New Orleans.* Records of the U.S. Custom House, New Orleans, Louisiana. Record Group 36; National Archives Building, Washington, D.C. (Note: these records were compiled, in part, by the State of Louisiana and the Confederate States of America in 1861 and 1862.)

Entrances, Rockland 1910-1913. *Coastwise Arrivals, Rockland, Maine.* Records of U.S. Custom House, Rockland, Maine. Record Group 36; National Archives Regional Facility, Waltham, MA.

Holmes, E. 1862. Second Annual Report upon the Natural History and Geology of the State of Maine. Augusta, ME: Stevens & Sayward

_____. 1909. The City where the State Board Met. n1215. October. Bangor, ME.

LB= The R. & R. Lime Bulletin. 1922-1925. *Just Among Ourselves*. Rockland, ME: R-R Lime Company. (This was also published other years.)

_____. 1849. Advertising. v4 n13, April 19.

_____. 1884. Coca Plug Tobacco. n216. February 15. Bangor, ME.

_____. 1882b. Islesboro. n 146. October 13. Bangor, ME.

Rockland Courier-Gazette. 1883. The J.B. Holden. October 9. Rockland, ME.

Rockland Gazette. 1851. Rockland Market. v6, n5. February 27. Rockland, ME.

_____. 1858-1861. Various reports and editorials. Rockland, ME.

Roe and Colby. 1873. Map of Rockland, Knox County, Maine. Philadelphia, PA: Roe and Colby. (Drawn and Published by Roe and Colby.)

R-R= Rockland-Rockport Lime Company. 1906. Liming of Soils and Spraying: A Practical Treatise for Farmers, Gardeners, and Crop Specialists. Rockland, ME.

U.S. Coast Guard. 1898-1916. *Wreck Reports*. Record Group 26.6.1, Records of the 1st Coast Guard District, Boston (ME, MA, NH, RI, VT). National Archives Regional Facility, Waltham, MA. (Note: these records were previously “Records of the U.S. Lighthouse Service.”)

Wasson, G. 1932. Sailing Days on the Penobscot: The River and Bay as They were in the Old Days. Salem, MA: Marine Research Society.

APPENDIX A. PEOPLE, PLACES, AGENCIES, AND EVENTS

The following is a list of people, places, agencies, and events that were among those to contribute to this research.

Faculty and staff in the Department of Geography and Anthropology, Louisiana State University
David Hoch, Rockland, Maine
Isabel Hoch, Rockland, Maine
William Lewis, East Boothbay, Maine
Dr. Paul (Gil) Merriam, Historian, Rockland, Maine
John Anderson, Cartographic Information Center, Dept. of Geography and Anthropology, Louisiana State University
Barbara Bibro, Rockland Public Library
Neal Crochetiere, Rockland Public Library
James E. Neptune, Penobscot Nation, Maine
Stephen Scharoun, University of Maine at Farmington (UMF) Archaeology Research Center, Farmington, Maine
William Crandall, UMF Archaeology Research Center
Ellen Cowie, Directory, UMF Archaeology Research Center
Rosemary Cyr, UMF Archaeology Research Center
Charlotte Cavell, Geoscience Publications, Dept. of Geography and Anthropology, Louisiana State University
Frank O’Hara, Rockland, Maine
Bertram Snow, Rockland, Maine
Capt. David Allen, Rockland, Maine
Rodney Lynch, Community Development Director, Rockland City Hall
Harold Simmons, Code Enforcement Office, Rockland City Hall
Peter Marckoon, Owls Head, Maine
Barbara Fournier, Owls Head, Maine
Capt. Jon Trumble
David Bicknell, Bicknell Manufacturing, Rockland, Maine
Mark Curtis, Dragon Products Company, Thomaston, Maine
WoodenBoat Show, Rockland, Maine
Atlantic Challenge (International Festival of Seamanship and Boatbuilding), Rockland, Maine
Mantor Library, University of Maine, Farmington
Bangor Public Library, Bangor, Maine
Fogler Library, University of Maine, Orono, Maine
Paige Lilly, Archivist, Fogler Library, University of Maine, Orono
Nathan Lipfert, Library Directory, Maine Maritime Museum, Bath, Maine
John Arrison, Librarian/Archivist, Penobscot Marine Museum, Searsport, Maine
Hugh Lane, Education Coordinator, Penobscot Marine Museum, Searsport, Maine
Heidi Bray, Landings Specialist, Maine Department of Marine Resources.
Rockland’s quarrymen, teamsters, lime-burners, shipbuilders, fishermen, sailors, and the other workers who made and keep Lime City.
True Maine Lobster Festival packed away with the sardines.

The Maine Lobster Festival has come a long way, as has the city of Rockland, unfortunately. They both used to be wild and wooly and they would give you as much trouble as you wanted. Even if you didn’t want.

One festival night we walked down the stairs to the Red Jacket Lounge with some effete visitors from Plymouth, Mass. Out the door came a gang of locals, bleeding and bandaged. The Plymouth types stopped in their tracks, refusing to go in. We wondered what the problem was.

By then, we were used to Rockland and its similarity to Gloucester, Mass. Shut your mouth and drink anywhere you want. Run your mouth and take the consequences. Rockland had The Oasis, the Dory Lounge, The Jacket, the Thorndike, the Wayfarer, the Log Cabin, The Black Pearl. You ordered a rum and Coke and never knew what you would get.

The Lobster Festival (festibul, the locals pronounce it) was the celebration of Rockland Culture. Forget the Seafood Goddess pageant. The highlight was the World’s Champion Sardine Packing Contest. For 51 weeks a year these women sat in dark and drafty sardine plants, making their fingers move faster than the speed of sight to snip the heads and tails off sardines and pack them in a can. It wasn’t an art form. The faster you were, the bigger the paycheck you brought home.
For festival week, the fish packers owned the stage. Rita Willey was the boss sardine packer back then. She ran them off almost every year and ended up on the “Tonight Show Starring Johnny Carson,” showing him how it was done.

Every year, the police said this was the year that the Hell’s Angels would come to the festival and do motorcycle battle with the local bike club, the NSKK. Every year we believed them and waited for the Titanic battle. We waited for the National Guard to pull in a khaki caravan. It never came. Why a motorcycle club from California would come 3,000 miles to Rockland for some lobsters we could never figure.

The “fistibul” was not a place for the kiddies, especially after dark.

One story I have heard about 100 times is about the fisherman-miscreant who unfortunately drew the attention of the local constabulary. The police chief wandered down to the waterfront and saw how much trouble the shore-bound fisherman was causing. He ordered his two minions to “hold him,” knocked him cold and carried him off to jail.

The lowest point in my 30 years of festivals came when the annual moment of silence was held for the fishermen lost during the previous year: The carnival was the heart of the festival back then and paid the bills. The moment of silence on the festival stage was drowned out by the noise and music from the carnival rides.

The highest point (to me) came when newspaper reporter Ted Cohen, (later famous for sitting on the George Bush drunken driving arrest for 90 days) walked onto a festival stage and blew cheap cigar smoke into the face of a third-rate Bert Parks during the tuxedoed emcee’s biggest number.
Those were the days when the O’Hara fleet and the other boats ruled the seas and threatened Boston with the greatest landings of groundfish. SeaPro ground up the fish guts into chicken meal, covered the city with a nauseating stench and few had the nerve to complain. There was so much crap in the harbor that sailing guides advised rich readers to bypass the city for the islands, please. There were maybe four or five masochistic pleasure boats in the harbor.

The Monday morning police reports were priceless. A decade ago, the festival almost died, mostly from lack of interest.

My, how times have changed.

The sardine-packing contest has gone, along with the sardines, the packers and the plants. Now, MBNA has taken over the waterfront, buying the old Fisher snowplow plant, thrown a million or two into renovation, even added a harbor walk, if you can get there before dark. The Chamber of Commerce and the do-gooders have taken over the festival and made it into a wonderful place for the wife and family, day or night.

Main Street has become an art colony, for God’s sake. They close the street for the annual open house for the galleries, which serve wine and brie and sell $500 oil paintings. Tourists come for the “aaaaahht” at the Farnsworth Museum. O’Hara’s wharf is a museum and you have to get on a waiting list for a harbor mooring, if you can believe it. Rockland has more “skin boat” schooners than Camden, for heaven’s sake.

The police chief is a polite, college-educated teetotaling gentleman who claims he looks like Al Pacino but hasn’t punched a fisherman in the face for decades.

The New York Times, Down East magazine and The Washington Post all write articles about the wonderful “new” Rockland and the art galleries. The most exiting
festival event now is when the women of PETA picket against the untimely death of the festival lobsters.

I hate to admit it but I kind of miss SeaPro, the sardine plants and the fishing fleet. It isn’t the bar fights I miss so much as all that change on the barroom floor.
APPENDIX C. COCA PLUG TOBACCO (MIJ 1884)

Figure 101. Coca Plug Tobacco advertisement.
APPENDIX D. BURNETT'S REPORT (U.S. SEC. OF WAR 1836)

Figure 102. Burnett’s Report, page 1, courtesy of David Allen.
HOPKINTON, December 20, 1835.

SIR: I herewith transmit a report of Lieutenant Burnett, in reference to the survey, &c. of the harbor at East Thomaston, Maine. You have already been apprized that my duties in the State of Maine, during the last summer, were of a nature to prevent my personal attendance on the progress of the survey above mentioned, and in consequence, that I had intrusted this duty to the direction of Lieutenant Burnett, aided by Lieutenants Fuller and Simons, with such instructions from me as were suggested by a careful reconnaissance.

The views exhibited in the accompanying report appear to be judicious and appropriate. The position, form, and dimensions of the contemplated breakwater, are obviously such as ought to be predicated on the results obtained from the survey.

The area under the direct protection of the projected work, embraces about 200 acres, which is a surface sufficiently large for the accommodation of the shipping likely at present to seek protection in the harbor. With respect to the adequacy of the protection thus offered, or the efficiency of the breakwater in allaying the surf, even within the area above mentioned, doubts may be reasonably entertained; for the billows that roll past the extremities of the breakwater will, probably, be regurgitated from the shores of the harbor, and produce considerable fluctuation in rear of the work. An effectual remedy against this inconvenience may no doubt be found in an enlargement of the work, and a correspondingly increase of expenditure.

All which is respectfully submitted.

I have the honor to be, sir,

Very respectfully,

Your obedient servant,

T. H. LONG,

Col. J. J. Abert,
Topographical Bureau, Washington.

CONCORD, N. H. November 30, 1835.

SIR: In obedience to your instructions of June 17th, 1835, the party under my direction have completed the survey of the harbor at East Thomaston, Maine, and the passage leading to it from the Atlantic ocean, lying between Monroe and Sheep Island and the main land, with reference to the selection of a proper site for a breakwater in said harbor. The accompanying drawing will exhibit the general result of our operations, in regard to which, I have the honor to submit the following report.

The survey was commenced on the 18th of June, by the establishment of a base line of 880 yards in length, upon Jamieson’s point, for the triangulation of the shores of the harbor, &c., and the arrangement of signals for soundings. To expedite the soundings, two buoys were placed over sunken rocks, near the centre of the harbor, from which to signals upon the shore, the soundings were made after the usual manner. On
the completion of the field operations, the party, agreeably to your orders, repaired to Concord, in New Hampshire.

The harbor at East Thomaston is upon the south-western coast of the Penobscot bay, adjacent to the Atlantic ocean. It is said to be the only harbor for the larger classes of vessels, between Herring-gut and Belfast, embracing an extent of coast of near sixty miles. It is an indentation in the main land of about thirty-five hundred acres, formed by two headlands that extend into the Penobscot, called Jamie son's point and Owl's head. These headlands are two miles nine hundred yards from each other, and may be said to form the entrance of the harbor; which is thereby left exposed to the winds that range between N. N. E. and S. S. E. The wind being E. N. E., traverses thirteen to sixteen miles of the Penobscot bay before entering the harbor, which, with the great depth of the Penobscot, occasions a very heavy sea. When more easterly, the sea is less, on account of the interposition of the Fox islands, which, in a direction nearly due east, are only eight or nine miles from the entrance of the harbor. When E. by S. or E. S. E., or near those points, a heavy sea is thrown in from the ocean, that is said to be more destructive than any other to which the harbor is exposed; though it passes in rather an indirect manner between the Fox and Matinicus islands, reverberating from land to land, and arriving at the harbor with a diminished force.

Vessels engaged in the coasting trade from ports on the Penobscot river and bay, south of this harbor, make White-head light, upon the southern shore of the bay, and follow the channel designated upon the drawing, between Munroe and Sheep islands and the main land; passing very near Owl's head light, at the entrance of the harbor at East Thomaston; and all other vessels engaged in the trade of the Penobscot must pass within eight or ten miles of this point.

The village of East Thomaston is located at the head of the harbor. Its population is from 1,500 to 2,000. There are twenty-five or more valuable wharves at the village, some of which are secured from all winds by a point of land called Crockett's point, which forms a small harbor for vessels of light draught. This harbor, however, is perfectly dry at low water, and so inconsiderable in its extent and inconveniences, that it cannot be regarded as sufficient for any maritime purposes whatever.

Lime is the principal article of trade at East Thomaston, and is shipped at this place for almost every port in the United States. I am credibly informed, that there was an aggregate of 450,000 barrels made and shipped at East Thomaston during the year 1834. The lime-stone, of which there is an inexhaustible supply, is primitive, and affords, as its extensive market would indicate, lime of the very best quality. Some of it has been used as marble, in various ornamental work, but as yet this source of trade is inconsiderable. A railroad is projected from the lime region to the harbor, which it is expected will tend to increase the trade of the place.

I have adverted to these facts, thus particularly, in regard to East Thomaston, because of its proximity to the contemplated improvement, but as it is understood that the trade of this place forms but an item of the trade upon the adjacent coast and river to be accommodated by the proposed improvement, I have endeavored to ascertain the number of ves-
sels, with their tonnage, that might be compelled by stress of weather to seek a harbor at East Thomaston.

Upon application to the collectors of Thomaston, Castine, Belfast, &c., I have been furnished with the following statement in regard to the vessels of those ports that have been papered at their respective offices; to which is subjoined an estimate of the coasting trade from Eastport and its vicinity, which, during the stormy seasons, frequently passes inside of the islands at the mouth of the Penobscot bay; the fishing vessels and small craft of all of the above-mentioned ports, and the vessels of other ports, that come to the Penobscot for freight, all of which are not generally papered at the custom houses of the ports above mentioned.

<table>
<thead>
<tr>
<th></th>
<th>Steamboats</th>
<th>Ships</th>
<th>Brig's</th>
<th>Schooners</th>
<th>Shveys.</th>
<th>Total No. of vessels</th>
<th>Tonnage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of Thomaston,*</td>
<td>1</td>
<td>6</td>
<td>29</td>
<td>93</td>
<td>23</td>
<td>151</td>
<td>16,342</td>
</tr>
<tr>
<td>Port of Castine,†</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>331</td>
<td>30-50</td>
<td>401</td>
<td>25,000</td>
</tr>
<tr>
<td>Ports of Belfast, Camden, Bangor, Hampden, Northport, Prospect, &c.,</td>
<td>2</td>
<td>1</td>
<td>25</td>
<td>250</td>
<td>12</td>
<td>270</td>
<td>28,632</td>
</tr>
<tr>
<td>Aggregate estimate of certain vessels as above stated,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>932</td>
<td>85,974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first results of our operations induced the belief that the harbor at East Thomaston could not afford an eligible site for the construction of a breakwater; but, in continuing the soundings, a shoal place was discovered in a central part of the harbor, which may be said to afford the only location for the work. This shoal seems to consist of a stratum of rocks, more or less covered with smaller rocks and stones. Upon this shoal, at an average depth of three fathoms at lowest spring tide, it is proposed to locate the work. Its direction and length have been fixed as exhibited in the drawing, with reference to the course of the most destructive winds to which the harbor is exposed, and the foundation of the shoal. The lines B, F, and E, A, respectively tangent to Owl's head and Jamieson's point, show the directions of the sea occasioned by said winds, as near as can be ascertained. The length of the breakwater thus determined is 825 yards. Its general dimensions are exhibited in the accompanying plan and profile, with the relative heights of the tides, which were determined, as far as practicable, from actual observation.

The artificial harbor formed by this work, and designated upon the chart by the letters A, B, C, H, with a depth varying from two to four and a half fathoms at the lowest spring tide, and secure from all winds, would have a surface of about 190 acres. There is an additional surface,

*N of these vessels belong to West Thomaston; make usually but one trip per annum from East Thomaston, in the winter season.
† 50 to 50 vessels, averaging 40 tons each, are said to trade to East Thomaston from Castine.
[N. B. The larger vessels, and a portion of those not engaged in the coasting trade, do not pass very near East Thomaston.]

Figure 105. Burnett’s report, page 4.
E. A., C., of 170 acres, protected from the E. N. E. winds by Jamieson’s point, and another (H, B, F) of 960 acres, protected from the E. S. E. winds by Owl’s head.

To complete the improvements of the harbor, two buoys are required on the sunken rocks at P and N, near the site of the breakwater.

The quantity, probable cost of materials, and construction of the breakwater, are estimated as follows:

600,000 tons of stone, one-half in blocks of $\frac{1}{2}$ to $2\frac{1}{2}$ tons, the residue in blocks of $2\frac{1}{4}$ tons and upwards, at an average price of $\$1.50$ per ton, $900,000$ 00

11,500 perches of masonry, being the estimated quantity of a sea-wall, rising from the top of the breakwater, 3 feet above the highest tide known, at $\$4$ per perch, $46,000$ 00

Superintendence and contingencies, including expenses of buoys, &c. $54,000$ 00

Total, $1,000,000$ 00

The stone is estimated lower than that obtained for the Delaware breakwater, (to the details of which frequent reference has been made,) on account of the facilities for obtaining it in great abundance, in the immediate vicinity of the harbor.

I have the honor to be, sir,

Very respectfully, yours, &c.

WARD B. BURNETT,

2d Lieut. 2d reg’t art. on Top. duty.

To Lieut. Col. S. H. Long,

Topographical Engineer.

[Here follows, in the original, a drawing of the harbor at East Thomaston.]
Figure 107. Rockland Harbor and Vicinity, U.S. Coast Survey. 1863. Washington, D.C.
Figure 110. *Aerial Photograph, Rockland, Maine, United States. May 07.* Adapted from U.S. Geological Survey 1996.
APPENDIX F. OCCUPATIONS

![Figure 111. Occupations Data, page 1.](image-url)

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Billiard Hall/Saloon Worker</th>
<th>Boat/Shipyard Worker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1869</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1877-78</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1882-83</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1897</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>1902</td>
<td>7</td>
<td>93</td>
</tr>
<tr>
<td>1907</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>1912</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>1917</td>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>1921</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>1926</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>1929</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1935</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>1940</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1942</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>1947</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>1950</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Year</td>
<td>Fish Curer/Peddler, etc.</td>
<td>Fisherman</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1869</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1877-78</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1882-83</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1892</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1897</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>1902</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>1907</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>1912</td>
<td>6</td>
<td>61</td>
</tr>
<tr>
<td>1917</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>1921</td>
<td>10</td>
<td>67</td>
</tr>
<tr>
<td>1926</td>
<td>11</td>
<td>54</td>
</tr>
<tr>
<td>1929</td>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>1935</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>1940</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>1942</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>1947</td>
<td>10</td>
<td>95</td>
</tr>
<tr>
<td>1950</td>
<td>4</td>
<td>106</td>
</tr>
</tbody>
</table>

Figure 112. Occupations Data, page 2.
<table>
<thead>
<tr>
<th>Year</th>
<th>Lime Burner</th>
<th>Kiln Tender</th>
<th>Teamster</th>
<th>Quarryman</th>
<th>Emp. of R-R Lime Co.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1869</td>
<td>4</td>
<td>9</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>1877-78</td>
<td>36</td>
<td>32</td>
<td>70</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>1882-83</td>
<td>39</td>
<td>39</td>
<td>84</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>25</td>
<td>143</td>
<td>57</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>1897</td>
<td>44</td>
<td>86</td>
<td>52</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>1902</td>
<td>48</td>
<td>99</td>
<td>20</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>1907</td>
<td>28</td>
<td>86</td>
<td>18</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td>24</td>
<td>85</td>
<td>37</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>1917</td>
<td>11</td>
<td>53</td>
<td>36</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>1921</td>
<td>0</td>
<td>6</td>
<td>37</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>1926</td>
<td>0</td>
<td>6</td>
<td>31</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>1929</td>
<td>1</td>
<td>0</td>
<td>24</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>1935</td>
<td></td>
<td>2</td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1940</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>1942</td>
<td></td>
<td></td>
<td>11</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>1947</td>
<td>1</td>
<td>3</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td></td>
<td></td>
<td>4</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Figure 113. Occupations Data, page 3.
<table>
<thead>
<tr>
<th>Year</th>
<th>Total of Directory Entries that Listed Occupations</th>
<th>Population of Rockland</th>
<th>% of Residents Listed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1869</td>
<td>2291</td>
<td>7074 (1870)</td>
<td>32.4</td>
</tr>
<tr>
<td>1877-78</td>
<td>2705</td>
<td>7074 (1870)</td>
<td>38.2</td>
</tr>
<tr>
<td>1882-83</td>
<td>2292</td>
<td>7599 (1880)</td>
<td>30.2</td>
</tr>
<tr>
<td>1892</td>
<td>4042</td>
<td>8174 (1890)</td>
<td>49.4</td>
</tr>
<tr>
<td>1897</td>
<td>3727</td>
<td>8174 (1890)</td>
<td>45.6</td>
</tr>
<tr>
<td>1902</td>
<td>3933</td>
<td>8150 (1900)</td>
<td>48.3</td>
</tr>
<tr>
<td>1907</td>
<td>4018</td>
<td>8150 (1900)</td>
<td>49.3</td>
</tr>
<tr>
<td>1912</td>
<td>4082</td>
<td>8174 (1910)</td>
<td>49.9</td>
</tr>
<tr>
<td>1917</td>
<td>4189</td>
<td>8174 (1910)</td>
<td>51.2</td>
</tr>
<tr>
<td>1921</td>
<td>4190</td>
<td>8190 (1920)</td>
<td>51.2</td>
</tr>
<tr>
<td>1926</td>
<td>4434</td>
<td>8190 (1920)</td>
<td>54.1</td>
</tr>
<tr>
<td>1929</td>
<td>5149</td>
<td>8190 (1920)</td>
<td>62.9</td>
</tr>
<tr>
<td>1935</td>
<td>4880 (approx.)</td>
<td>9075 (1930)</td>
<td>53.8</td>
</tr>
<tr>
<td>1940</td>
<td>4894 (approx.)</td>
<td>8899 (1940)</td>
<td>55.0</td>
</tr>
<tr>
<td>1942</td>
<td>4956 (approx.)</td>
<td>8899 (1940)</td>
<td>55.7</td>
</tr>
<tr>
<td>1947</td>
<td>5520 (approx.)</td>
<td>8899 (1940)</td>
<td>62.0</td>
</tr>
<tr>
<td>1950</td>
<td>4940 (approx.)</td>
<td>9234 (1950)</td>
<td>52.5</td>
</tr>
</tbody>
</table>

Figure 114. Occupations Data, page 4.

<table>
<thead>
<tr>
<th>Year</th>
<th>Lime-Related Totals</th>
<th>Fishing-Related Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1869</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>1877-78</td>
<td>194</td>
<td>17</td>
</tr>
<tr>
<td>1882-83</td>
<td>226</td>
<td>9</td>
</tr>
<tr>
<td>1892</td>
<td>321</td>
<td>9</td>
</tr>
<tr>
<td>1897</td>
<td>258</td>
<td>17</td>
</tr>
<tr>
<td>1902</td>
<td>274</td>
<td>21</td>
</tr>
<tr>
<td>1907</td>
<td>228</td>
<td>32</td>
</tr>
<tr>
<td>1912</td>
<td>232</td>
<td>69</td>
</tr>
<tr>
<td>1917</td>
<td>163</td>
<td>52</td>
</tr>
<tr>
<td>1921</td>
<td>97</td>
<td>91</td>
</tr>
<tr>
<td>1926</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>1929</td>
<td>101</td>
<td>100</td>
</tr>
<tr>
<td>1935</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>1940</td>
<td>48</td>
<td>74</td>
</tr>
<tr>
<td>1942</td>
<td>64</td>
<td>97</td>
</tr>
<tr>
<td>1947</td>
<td>44</td>
<td>316</td>
</tr>
<tr>
<td>1950</td>
<td>40</td>
<td>370</td>
</tr>
</tbody>
</table>

Figure 115. Occupations Data, summary.
Notes to accompany occupations spreadsheet.

Categories “lime burner” and “kiln tender” are listed separately, as two responses to the surveys that make up the directory. They are, however, the same occupation, according to Vern Raye (see Chapter 7), the last living lime burner in Rockland. It seems likely, however, that at one time there was a distinction that is now lost. In the 1897 city directory, John W. Woods gave his occupation as kiln tender, while John W. Woods Jr. gave his as lime burner (RCD 1897:162).

A teamster is a person who drives a single or team of horses, oxen, or mules. They were involved hauling other materials, certainly, but the majority in Rockland were employed in carting limestone from the quarries to the waterfront kilns.

None of the directories include all residents. Not all residents of the city were canvassed. While later directories included a larger percentage of the population, the totals in the directory do not equal the census population. Adult males are included, some women employed in certain occupations outside the home are included, however, young children are not considered in the directories.

In 1868, “Quarryman” also includes 5 workers listed as “Ledgeman.”

In the category “Boat/Shipyard Workers” joiners are not with ship and boat building; ship joiners do appear though and are included.

Beginning in 1929, kiln tenders, lime burners, some quarrymen, and possibly some teamsters are listed as “Employees of Rockland and Rockport Lime Company” with particular occupations unspecified in the directories.
APPENDIX G. SHIP TYPES

Figure 116. Ship.

Figure 117. Bark
Figure 118. Barkentine.

Figure 119. Brig.
Figure 120. Brigantine.

Figure 121. Schooner (four-masted).
APPENDIX H. THE J.B. HOLDEN
Rockland Courier-Gazette October 9, 1883

The J.B. Holden

New schooner J.B. Holden, built by Cobb, Wight & Co., at their yard at the South-end, is to be launched Wednesday or Thursday of this week. Work was begun on her the last of May with John Mehan as master-builder. The Holden was named for a Boston gentleman, part owner, and is to be commanded by Capt. Wm. D. Scott of this city, recently Master of the sch. Brigadier. The schooner is a three-masted, center-board craft, with white oak frame and white pine deck. The frame is unusually large and of superior oak, cut on the eastern shore of Virginia near salt water. The deck is 3 1-2 inches thick, being half an inch thicker than is usual in vessels built in this vicinity. The length of her keel is 138 feet, beam 34 feet, and dept of hold 11 feet. She has good sized hatches, and made spars 83 1-2 feet long each. The spanker boom is 56 feet long, and the fore and main booms 38 1-2 feet long each. The center-board is 22 feet long by 11 1-2 wide. She carries wire rigging and patent capstans, windlasses and pumps, and is well fitted in every way. The schooner measures 500 tons carpenter’s tonnage and is unusually heavily built, there being no cheap work in her construction. The steward’s room and galley are well fitted; the forecastle accommodates four men. The cabins are 9 feet square and 7 feet high and are well lighted. The after cabin is elegantly finished off in ash, cherry, black walnut and burl ash, and is handsomely painted and polished. Finely carved gilt work and mouldings in different colored woods, give the cabin a tasty appearance. Spare rooms are on the port and starboard sides, and the captain’s room, spacious and convenient, is on the starboard side aft. Opening from the after gangway on
the port side is the lavatory and water closet, large and convenient. The forward cabin is
finished in walnut and ash. The mates’ rooms are on the port side and the pantry on the
starboard. On the starboard side opening from the forward gangway is the oil room. The
name of the schooner is carved on the cut water. The vessel has a very handsome stern
and is adorned with large, gilt carved letters a foot square. She is well built, is of good
model, has a very large carrying capacity and is to be used in the general freighting
business. Long may she wave. The joiner work was done by L.C. Hatch, who designed
and constructed the cabin. Clifton and Karl did the painting, and the fancy painting and
polishing was done by Burkett of Thomaston. Rob’t Benner made the spars and S.T.
Mugridge furnished the sails. H.J.E. Verrill executed all the carved work and J.B. Loring
furnished the boats. Benj. Burton caulked her and she was rigged by John Longley.
Several Rockland men own shares in the vessel, Cobb, Wight & Co. being the principal
owners. She will be sailed on the monthly arrangement. Her cost of construction was
about $26,000.
VITA

William Francis Fagan was born in Bath, Maine. He completed his undergraduate studies in 1998 at the University of Maine at Farmington with a Bachelor of Arts degree in anthropology/sociology and geography. Moving with his family to Baton Rouge, Louisiana in August 1998, he began his studies under Dr. Miles Richardson and Dr. Carville Earle in the Department of Geography and Anthropology at Louisiana State University. He earned his Master of Arts degree in geography in 2000 and will receive his Doctor of Philosophy degree in anthropogeography on August 7, 2003.