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STOCHASTIC ANALYSIS OF BACKWARD TIDAL DYNAMICS EQUATION

HONG YIN

Abstract. The backward stochastic tidal dynamics equations, a system of coupled back-
ward stochastic differential equations, in bounded domains are studied in this paper. Un-
der suitable projections and truncations, a priori estimates are obtained, which enable us
to establish the uniformly boundedness of an adapted solution to the system. Such regu-
larity does not usually hold for stochastic differential equations. The well-posedness of
the projected system is given by means of the contraction property of the elevation com-
ponent. The existence of solutions are proved by utilizing the Galerkin approximation
scheme and the monotonicity properties for bounded terminal conditions. The unique-
ness and continuity of solutions with respect to terminal conditions are also provided.

1. Introduction

Tide, the alternate rising and falling of the sea levels, is the result of the combination
of the rotation of the Earth, and the gravitational attraction exerted at different parts of
the Earth by the Moon and the Sun. The study of ocean tides trace back to the early
seventeenth century. The first attempt of a theoretical explanation of ocean tides was given
by Galileo Galilei[6] in 1632. Although not very successful, it inspired many successors
to further the studies in this field, including Johannes Kepler and Isaac Newton[25]. The
latter established a scientific formulation in 1687, which pointed out the role of the lunar
and solar gravitational effect on ocean tides. Later Maclaurin[20] used Newton’s theory
of fluxion and took into account Earth’s rotational effects on motion, Euler discovered
that the horizontal component of the tidal force, as opposed to the vertical component, is
the main driving force of ocean tides that causes the wavelike progression of high tide,
and Jean le Rond d’Alembert observed tidal equations for the atmosphere which did not
include rotation. A major break through of the mathematical formulation of ocean tides
is accredited to Laplace[14], who introduced a system of three linear partial differential
equations for the horizontal components of ocean velocity, and the vertical displacement
of the ocean surface in 1775. His work remains the basis of tidal computation to this
day, and was followed up by Thomson and Tait[33], and Poincaré[28], among others.
The former applied systematic harmonic analysis to tidal analysis and rewrote Laplace’s
equations in terms of vorticity.

In the first half of the nineteenth century, researchers further expanded the studies
of ocean tides. Encouraging developments include Arctic tides, and geophysical tides
such as tidal motion in the atmosphere and in the Earth’s molten core. In the second
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half of the nineteenth century, quantum advances in computers, satellite technology and
numerical methods of solving PDEs made it possible to solve Laplace tidal equations
with realistic boundary conditions and depth functions. In this article, we consider the
tidal dynamics equations constructed by Marchuk and Kagan[21, 22]. The existence and
uniqueness of the tide equations in forward case have been shown by Ipatova[9], Marchuk
and Kagan[21], and Manna, Menaldi and Sritharan [23].

The backward version of stochastic tidal dynamics equations is, to our best knowl-
edge, new. It appears as an inverse problem wherein the velocity profile and elevation
component at a timeT are observed and given, and the noise coefficient has to be ascer-
tained from the given terminal data. Such a motivation arises naturally when one under-
stands the importance of inverse problems in partial differential equations (see J. L. Lions
[15, 16]). Since the problem of specifying the function of boundary condition on the liq-
uid boundary, and the problem of specifying the tide-generating forces must be solved
simultaneously with the tide theory equation system, Agoshkov[2], among other authors,
has considered tidal dynamics models as inverse problems. Some studies of backward
stochastic analysis on fluid dynamics has been put forth in our previous work [31]. Lin-
ear backward stochastic differential equations were introduced by Bismut in 1973 ([3]),
and the systematic study of general backward stochastic differential equations (BSDEs
for short) were put forward first by Pardoux and Peng[27], Ma, Protter, Yong, Zhou, and
several other authors in a finite-dimensional setting. Ma and Yong[19] have studied linear
degenerate backward stochastic differential equations motivated by stochastic control the-
ory. Later, Hu, Ma and Yong [8] considered the semi-linear equations as well. Backward
stochastic partial differential equations were shown to arise naturally in stochastic ver-
sions of the Black-Scholes formula by Ma, Protter and Yong [17, 18]. A nice introduction
to backward stochastic differential equations is presented in the book by Yong and Zhou
[34], with various applications.

The usual method of proving existence and uniqueness of solutions by fixed point ar-
guments do not apply to the stochastic system on hand since the drift coefficient in the
backward stochastic tidal flow is nonlinear, non-Lipschitz and unbounded. However, the
drift coefficient is monotone on boundedL4(G) balls inH1

0(G), which was first observed
by Manna, Menaldi and Sritharan [23]. One may also refer to Menaldi and Sritharan [24]
for more information. The Galerkin approximation scheme is employed in the proof of
existence and uniqueness of solutions to the system. To this end, a priori estimates of
finite-dimensional projected systems are studied, and uniformly boundedness of adapted
solutions are established. Such regularity does not usually hold for stochastic differen-
tial equations. The well-posedness of the projected system is also given by means of the
contraction property of the elevation component. In order to establish the monotonicity
property of the drift term, a truncation ofR(x), the depth of the calm sea, is introduced.
Then the generalized Minty-Browder technique is used in this paper to prove the existence
of solutions to the tidal dynamics system. The proof of the uniqueness and continuity of
solutions are wrought by establishing the closeness of solutions of the system via mono-
tonicity arguments.

The structure of the paper is as follows. The functional setup of the paper is introduced
and several frequently used inequalities are listed in section 2. Some a priori estimates for
the solutions of the projected system are given under different assumptions on the terminal
conditions and external force in section 3. Section 4 is devoted to well-posedness of the
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projected system. The existence of solutions of the tidal dynamics equations under suit-
able assumptions is shown by Minty-Browder monotonicity argument in section 5. The
uniqueness and continuity of the solution under the assumption that terminal condition is
uniformly bounded inH1 sense are given in section 6.

2. Formulation of the Problem

Let us consider the time interval [0,T], and letG, the horizontal ocean basin where
tides are induced, be a bounded domain inR2 with smooth boundary conditions. The
boundary contour∂G is composed of two disconnected parts, a solid part ofΓ1 coinciding
with the edge of the continental and island shelves, and an open boundaryΓ2. Let us
assume that sea water is incompressible and the vertical velocities are small compared
with the horizontal velocities. Thus we are able to exclude acoustic waves. Also long
waves, including tidal waves, are stood out from the family of gravitational oscillations.
Furthermore, to reduce computational difficulties, we assume that the Earth is absolutely
rigid, and the gravitational field of the Earth is not affected by movements of ocean tides.
Also the effect of the atmospheric tides on the ocean tides and the effect of curvature of the
surface of the Earth on horizontal turbulent friction are ignored. Under these commonly
used assumptions, we are able to adopt the following tide dynamics model:







































∂w
∂t + lk× w = −g∇ζ − r

R|w|w + κh△w + g;
∂ζ

∂t + ∇ · (Rw) = 0;

w = w0 on [0,T] × ∂G;

w0 = 0 onΓ1, and
∫

Γ2
w0dΓ2 = 0,

(2.1)

wherew, the horizontal transport vector, is the averaged integral of the velocity vector
over the vertical axis,l = 2ρ cosθ is the Coriolis parameter, whereρ is the angular ve-
locity of the Earth rotation andθ is the colatitude,k is an unit vector oriented vertically
upward,g is the free fall acceleration,r is the bottom friction factor,κh is the horizontal
turbulent viscosity coefficient,g is the external force vector, andζ is the displacement of
the free surface with respect to the ocean floor. The functionw0 is an known function
on the boundary. The restrictionw0|Γ1 = 0 is the no-slip condition on the shoreline, and
∫

Γ2
w0dΓ2 = 0 follows from the mass conservation law. HereR is the vertical scale of mo-

tion, i.e., the depth of the calm sea. Let us assume thatR is a continuously differentiable
function ofx, so that infx∈G{R(x)} ≥ C0 and supx∈G{R(x)+ |∇R(x)|} ≤ C1 for some positive
constantsC0 andC1.

In order to simplify the non-homogeneous boundary value problem to a homogeneous
Dirichlet boundary value problem, we set

u(t, x) = w(t, x) − w0(t, x),

and

ξ(t, x) = ζ(t, x) +
∫ t

0
∇ ·

(

R(x)w0(s, x)
)

ds.

Let us denote byA the matrix

A =
(

−κh△ −2ρ cosθ
2ρ cosθ −κh△

)

,
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andγ(x) , r
R(x) . Thus we are able to rewrite the tide dynamics model as






































∂u
∂t = −Au − γ|u + w0|(u + w0) − g∇ξ + f on [0,T] ×G;
∂ξ

∂t + ∇ · (Ru) = 0;

u = 0 on [0,T] × ∂G;

u = u0 andξ = ξ0 at t = 0,

(2.2)

where


























f = g− ∂w0

∂t + g∇
∫ t

0
∇ · (Rw0)ds+ κh△w0 − lk × w0;

u0(x) = w0(x) − w0(0, x);

ξ0(x) = ζ0(x).

To unify the language, let us introduce the following definitions and notations.

Definition 2.1. Let A be an operator on a separable Hilbert spaceK with complete or-
thonormal system (CONS for short){ej}∞j=1. If 〈Ax, y〉=〈x,A∗y〉 for anyx, y ∈ K, thenA∗

is called theadjointof A. If A = A∗, thenA is calledself-adjoint.

Definition 2.2. Let A be a linear operator from a separable Hilbert spaceK with CONS
{ej}∞j=1 to a separable Hilbert spaceH.

(a) We denote byL(K,H) the class of all bounded linear operators with the uniform
operator norm‖ · ‖L.

(b) If ‖A‖L1=
∑∞

k=1〈(A∗A)
1
2 ek, ek〉K < ∞, thenA is called atrace class(nuclear) opera-

tor. We denote byL1(K,H) the class of trace class operators equipped with norm
‖ · ‖L1.

(c) We also denote byL2(K,H) the class ofHilbert-Schmidt operatorswith norm
‖ · ‖L2 given by‖A‖L2=(

∑∞
k=1〈Aek,Aek〉H)

1
2 . Sometimes‖ · ‖L2 is also denoted by

‖ · ‖H.S.
(d) Let Q ∈ L1(K,K) be self-adjoint and positive definite. LetK0 be the Hilbert

subspace ofK with inner product

〈 f , g〉K0 = 〈Q−
1
2 f ,Q−

1
2 g〉K ,

and we denoteLQ = L2(K0,H) with the inner product

〈F,G〉LQ = tr(FQG∗) = tr(GQF∗), F,G ∈ LQ.

Definition 2.3. A stochastic processW(t) is called anH-valued Q-Wiener process, where
Q is a trace class operator onH, if W(t) satisfies the following:

(a) W(t) has continuous sample paths inH-norm withW(0) = 0.
(b) (W(t), h) has stationary independent increments for allh ∈ H.
(c) W(t) is a Gaussian process with mean zero and covariance operatorQ, i.e.

E(W(t), g)(W(s), h) = (t ∧ s)(Qg, h) for all g, h ∈ H.

Let L2(G) andH1
0(G) be standard Sobolev spaces with norms

‖u‖2
L2 ,

∫

G
|u|2dx
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and

‖u‖2
H1

0
,

∫

G
|∇u|2dx,

respectively. DenoteH−1(G) the dual space ofH1
0(G). Denote (·, ·) the inner product of

L2(G), (·, ·)H1
0

the inner product ofH1
0(G), and〈·, ·〉 the duality paring betweenH1

0(G) and

H−1(G). Let ‖ · ‖L2 be the norm ofL2 and‖ · ‖H1
0

be the norm ofH1
0(G). Similarly, we can

define the norms, inner products ofL2(G), H1
0(G) andH−1(G). It is clear that

H1
0(G) ⊂ L2(G) ⊂ H−1(G) and H1

0(G) ⊂ L2(G) ⊂ H−1(G)

are Gelfand triples, and for anyx ∈ L2(G) andy ∈ H1
0(G), there existsx′ ∈ H−1(G), such

that (x, y) = 〈x′, y〉. The mappingx 7→ x′ is linear, injective, compact and continuous. A
similar result holds forL2(G), H1

0(G) andH−1(G).

Remark2.4. (i) Let Q be a trace class operator onL2(G). Let {ej}∞j=1∈ L2(G) ∩ H1
0(G) ∩

L4(G) be a CONS inL2(G) such that there exists a nondecreasing sequence of positive
numbers{λ j}∞j=1, lim j→∞ λ j = ∞ and−△ej = λ jej for all j. LetQek = qkek with

∑∞
k=1 qk <

∞, and{bk(t)} be a sequence of iid Brownian motions inR. Then theL2(G)-valuedQ-
Wiener process is taken asW(t)=

∑∞
k=1
√

qkbk(t)ek.
(ii) Let Q be a trace class operator onL2(G). Similarly, we can define a complete

orthonormal system{ej}∞j=1, a nondecreasing sequence of positive numbers{ρ j}∞j=1 such
that−△ej = ρ jej , and positive numbersq′j such thatQej = q′jej and

∑∞
j=1 q′j < ∞. Let

W(t)=
∑∞

j=1

√

q′jb
j(t)ej . ThenW(t) is anL2(G)-valuedQ-Wiener process.

Thus according to Definition 2.2 and 2.3,LQ, the space of linear operatorsE such that
EQ

1
2 is a Hilbert-Schmidt operator fromL2(G) to L2(G), is well-defined, and so isLQ.

In this paper we consider a filtered complete probability space (Ω,F ,P; {Ft}t≥0), where
{Ft} is the natural filtration of{W(t)} and{W(t)}, augmented by all theP-null sets ofF .
Introducing randomness to system (2.2), and suppose the terminal value of the tide is
given, one can construct the following backward stochastic tidal dynamics equations:



























∂u(t)
∂t = −Au(t) − γ|u(t) + w0(t)|(u(t) + w0(t)) − g∇ξ(t) + f (t) + Z(t) dW(t)

dt ;
∂ξ(t)
∂t + ∇ · (Ru(t)) = Z(t) dW(t)

dt ;

u(T) = φ and ξ(T) = ψ,

(2.3)

wheref ∈ L2(0,T;H−1), φ ∈ L2
FT

(Ω;L2(G)) andψ ∈ L2
FT

(Ω; L2(G)).

Definition 2.5. A quaternion ofFt-Adapted processes (u,Z, ξ,Z) is called asolutionof
backward tidal dynamics equation (2.3) if it satisfies the integral form of the system



























u(t) = φ +
∫ T

t

{

Au(s) + γ|u(s) + w0(s)|(u(s) + w0(s)) + g∇ξ(s) − f (s)
}

ds

−
∫ T

t
Z(s)dW(s);

ξ(t) = ψ +
∫ T

t
∇ · (Ru(s))ds−

∫ T

t
Z(s)dW(s);

P-a.s., and the following holds:

(a) u ∈ L2
F (Ω; L∞(0,T;L2(G))) ∩ L2

F (Ω; L2(0,T;H1
0(G)));

(b) Z ∈ L2
F (Ω; L2(0,T; LQ));
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(c) ξ ∈ L2
F (Ω; L∞(0,T; L2(G))) ∩ L2

F (Ω; L2(0,T; H1
0(G)));

(d) Z ∈ L2
F (Ω; L2(0,T; LQ)).

We list below some commonly used results and omit some of the proofs. Readers may
refer to Adams[1], Kesavan[11], Ladyzhenskaya[12], Manna, Menaldi and Sritharan[23],
and Temam[32] for more details.

Lemma 2.6. For any real-valued, compact supported smooth functionsx andy in R2, the
following holds:

‖xy‖2
L2 ≤ ‖x∂1x‖L1‖y∂2y‖L1,

‖x‖4
L4 ≤ 2‖x‖2

L2‖∇x‖2
L2.

Lemma 2.7. Let X be a normed linear space. Let O be an open subset of X, and K be a
convex subset of O. Let J: O→ R be twice differentiable in O. Then J is convex if and
only if, for all u and v∈ K,

J′′(v; u, u) =
d2

dθdα
J(v+ θu+ αu)|θ,α=0 ≥ 0.

Lemma 2.8. DenoteB(u) , γ|u + w0|(u + w0). ThenB(·) is a continuous operator from
L4(G) intoL2(G), and for allu andv in L4(G),

〈B(u) − B(v), u − v〉 ≥ 0.

Lemma 2.9. (a) For anyu andv ∈ H1
0(G), andu has a smooth second derivative,

(Au, u) = κh‖u‖2H1
0

and

(Au, v) ≤ C2‖u‖H1
0
‖v‖H1

0

for some constant C2 = κh + 2ρ cosθ.
(b) For anyu andw0 ∈ L4(G),

‖B(u)‖L2 ≤ C3‖u‖L4,

where C3 = supx∈G γ(x).
(c) For anyu, v andw0 ∈ L4(G),

‖B(u) − B(v)‖L2 ≤ C3

{

‖u‖L4 + ‖v‖L4

}

‖u − v‖L4,

and

|〈B(u) − B(v), u − v〉| ≤ C4

{

‖u‖2
L4 + ‖v‖2L4

}

‖u − v‖L2.

(d) For anyu, v ∈ H1
0(G) andw0 ∈ L4(G),

|〈B(u) − B(v), u − v〉| ≤ C5

{

‖u‖L4 + ‖v‖L4

}

‖u − v‖
3
2

L2‖u − v‖
1
2

H1
0

.
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3. A Priori Estimates

In this section we are going to show some a priori estimates for a projected system.
These projections are useful for the Galerkin approximation scheme employed in Section
5 and Section 6. For anyN ∈ N, let

L2
N(G) , span{e1, e2, · · · , eN}

be theN-dimensional subspace ofL2(G). Likewise, we can defineH1
0N(G), H−1

N(G),
L2

N(G), H1
0N(G) andH−1

N (G). Note that since{ej}∞j=1∈ L2(G) ∩ H1
0(G) ∩ L4(G), we have

L2
N(G) = H1

0N(G) = H−1
N(G).

Similarly, we have

L2
N(G) = H1

0N(G) = H−1
N (G).

Let PN be the orthogonal projection fromL2(G) to L2
N(G). Let

WN(t) , PNW(t) and WN(t) , PNW(t).

Note that by Remark 2.4,WN(t) =
∑N

i=1
√

qibi(t)ei and WN(t) =
∑N

i=1

√

q′i b
i(t)ei . Let

{F N
t } be the natural filtration of{WN(t)} and {WN(t)}, and we introduce the following

projections:

f N(t) , PNf (t), φN
, E(PNφ|F N

T ) and ψN
, E(PNψ|F N

T ).

The projected backward tide dynamics system is given by


























∂uN(t)
∂t = −AuN(t) − BN(uN(t)) − g∇ξN(t) + f N(t) + ZN(t)dWN(t);

∂ξN(t)
∂t + ∇ · (R

NuN(t)) = ZN(t)dWN(t);

uN(T) = φN andξN(T) = ψN,

(3.1)

whereBN(u) , γN |u + w0N |(u + w0N) for all u ∈ L4(G).

Proposition 3.1. Suppose that the terminal conditions satisfyφ ∈ L∞FT
(Ω;L2(G)), ψ ∈

L∞FT
(Ω; L2(G)), and the external forcef ∈ L2(0,T;H−1(G)). Then for any solution of

system(3.1), the following is true:

(uN,ZN) ∈
{

L∞F ([0,T] ×Ω;L2(G)) ∩ L2
F (Ω; L2(0,T;H1

0(G)))
}

× L2
F (Ω; L2(0,T; LQ)),

(ξN,ZN) ∈
{

L∞F ([0,T] ×Ω; L2(G)) ∩ L2
F (Ω; L2(0,T; H1

0(G)))
}

× L2
F (Ω; L2(0,T; LQ)).

Proof. An application of the Itô formula to‖uN(t)‖2
L2 yields

‖uN(t)‖2
L2 +

∫ T

t
‖ZN(s)‖2LQds

=‖φN‖2
L2 + 2

∫ T

t
〈AuN(s) + BN(uN(s)) + g∇ξN(s) − f N(s), uN(s)〉ds

− 2
∫ T

t
〈ZN(s)dWN(s), uN(s)〉. (3.2)

By Lemma 2.6 and 2.9, we have

2〈AuN(s), uN(s)〉 = 2(AuN(s), uN(s)) = 2κh‖uN(s)‖2
H1

0
, (3.3)
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2〈BN(uN(s)), uN(s)〉
≤2C3‖uN(s)‖L4‖uN(s)‖L2

≤4C3‖uN(s)‖
3
2

L2‖uN(s)‖
1
2

H1
0

≤3C3‖uN(s)‖2
L2 +C3‖uN(s)‖2

H1
0
, (3.4)

2〈g∇ξN(s), uN(s)〉
= − 2g〈ξN(s),∇ · uN(s)〉
≤2g‖ξN(s)‖L2‖∇ · uN(s)‖L2

≤g‖ξN(s)‖2L2 + g‖uN(s)‖2
H1

0
(3.5)

and

2〈−f N(s), uN(s)〉 ≤ ‖f N(s)‖2
H−1 + ‖uN(s)‖2

H1
0
. (3.6)

Thus (3.2) becomes

‖uN(t)‖2
L2 +

∫ T

t
‖ZN(s)‖2LQds

≤‖φN‖2
L2 +

∫ T

t

{

(2κh +C3 + g+ 1)‖uN(s)‖2
H1

0
+ 3C3‖uN(s)‖2

L2 + g‖ξN(s)‖2L2

+ ‖f N(s)‖2
H−1

}

ds− 2
∫ T

t
〈ZN(s)dWN(s), uN(s)〉. (3.7)

Applying the Itô formula to‖ξN(s)‖2
L2 to get

‖ξN(t)‖2L2 +

∫ T

t
‖ZN(s)‖2LQ

ds

=‖ψN‖2L2 +

∫ T

t
2〈∇ · (RNuN(s)), ξN(s)〉ds−

∫ T

t
2〈ZN(s)dWN(s), ξN(s)〉. (3.8)

The term

2〈∇ · (RNuN(s)), ξN(s)〉
=2〈RN∇ · uN(s), ξN(s)〉 + 2〈uN(s)∇RN, ξN(s)〉
≤2‖RN‖L∞‖uN(s)‖H1

0
‖ξN(s)‖L2 + 2‖uN(s)‖L2‖∇RN‖L2‖ξN(s)‖L2

≤C1

{

‖uN(s)‖2
L2 + ‖uN(s)‖2

H1
0
+ 2‖ξN(s)‖2L2

}

. (3.9)

Thus substituting (3.9) into (3.8), and adding up (3.7) and (3.8), one gets

EFr ‖uN(t)‖2
L2 + EFr ‖ξN(t)‖2L2 + EFr

∫ T

t
‖ZN(s)‖2LQds+ EFr

∫ T

t
‖ZN(s)‖2LQ

ds

≤EFr ‖φN‖2
L2 + EFr ‖ψN‖2L2 + EFr

∫ T

t

{

(2κh +C3 + g+ 1+C1)‖uN(s)‖2
H1

0

+ (3C3 +C1)‖uN(s)‖2
L2 + (g+ 2)‖ξN(s)‖2L2 + ‖f N(s)‖2

H−1

}

ds (3.10)
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for 0≤ r ≤ t, P-a.s. Since

‖uN(s)‖2
H1

0

=〈−△uN(s), uN(s)〉

=

N
∑

i=1

〈λiei , uN(s)〉

≤λN‖uN(s)‖2
L2,

whereλi , as stated in Section 2, is the eigenvalue of−△ with respect toei . Thus equation
(3.10) becomes

EFr ‖uN(t)‖2
L2 + EFr ‖ξN(t)‖2L2 + EFr

∫ T

t

{

‖uN(s)‖2
H1

0
+ ‖ξN(s)‖2

H1
0

}

ds

+ EFr

∫ T

t
‖ZN(s)‖2LQds+ EFr

∫ T

t
‖ZN(s)‖2LQ

ds (3.11)

≤EFr ‖φN‖2
L2 + EFr ‖ψN‖2L2 + EFr

∫ T

t

{

K(N)‖uN(s)‖2
L2 + K(N)‖ξN(s)‖2L2 + ‖f N(s)‖2

H−1

}

ds,

P-a.s., whereK(N) is a constant depending onN only. By means of the Gronwall inequal-
ity and lettingr = t, one obtains

sup
t∈[0,T]

{

‖uN(t)‖2
L2 + ‖ξN(t)‖2L2

}

+ E
∫ T

0

{

‖uN(s)‖2
H1

0
+ ‖ξN(s)‖2

H1
0

}

ds

+ E
∫ T

0
‖ZN(s)‖2LQds+ E

∫ T

0
‖ZN(s)‖2LQ

ds

≤K(N)
{

sup
t∈[0,T]

EFt‖φN‖2
L2 + sup

t∈[0,T]
EFt‖ψN‖2L2 +

∫ T

0
‖f N(s)‖2

H−1ds
}

, (3.12)

P-a.s., which completes the proof. �

Proposition 3.2. Suppose that the terminal conditions satisfyφ ∈ Ln
FT

(Ω;L2(G)), ψ ∈
Ln
FT

(Ω; L2(G)), and the external forcef ∈ L2(0,T;H−1(G)), for all n ∈ N and n≥ 2. The
following is true for any solution of system(3.1):

(uN,ZN) ∈
{

L∞(0,T; Ln
F (Ω;L2(G))) ∩ Ln

F (Ω; Ln(0,T;H1
0(G)))

}

× L2
F (Ω; L2(0,T; LQ)),

(ξN,ZN) ∈
{

L∞(0,T; Ln
F (Ω; L2(G))) ∩ Ln

F (Ω; Ln(0,T; H1
0(G)))

}

× L2
F (Ω; L2(0,T; LQ)).

Proof. First of all, the case whenn = 2 can be proved by applying the Gronwall inequality
to equation (3.11) in Proposition 3.1, taking the expectation, and then taking supremum
over the time interval [0,T]. Secondly, suppose the proposition holds for all 2≤ m≤ n−1.
Let us show that the proposition is still true form = n. An application of the Itô formula
yields

‖uN(t)‖n
L2 +

n2 − n
2

∫ T

t
‖uN(s)‖n−2

L2 ‖ZN(s)‖2LQds

=‖φN‖n
L2 + n

∫ T

t
‖uN(s)‖n−2

L2 〈AuN(s) + BN(uN(s)) + g∇ξN(s) − f N(s), uN(s)〉ds
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− n
∫ T

t
‖uN(s)‖n−2

L2 〈ZN(s)dWN(s), uN(s)〉.

Taking the expectation on both sides, one obtains

E‖uN(t)‖n
L2 + E

∫ T

t
‖uN(s)‖n

H1
0
ds+

n2 − n
2

E
∫ T

t
‖uN(s)‖n−2

L2 ‖ZN(s)‖2LQds

=E‖φN‖n
L2 + nE

∫ T

t
‖uN(s)‖n−2

L2 〈AuN(s) + BN(uN(s)) + g∇ξN(s)〉ds

− nE
∫ T

t
‖uN(s)‖n−2

L2 ‖uN(s)‖H1
0
‖f N(s)‖H−1ds+ E

∫ T

t
‖uN(s)‖n

H1
0
ds

≤E‖φN‖n
L2 + K(n,N)E

∫ T

t
‖uN(s)‖n

L2ds+ K(n,N)E
∫ T

t
‖ξN(s)‖nL2ds

+ n
√

λN

∫ T

t
‖f N(s)‖H−1 E‖uN(s)‖n−1

L2 ds

≤E‖φN‖n
L2 + K(n,N)E

∫ T

t
‖uN(s)‖n

L2ds+ K(n,N)E
∫ T

t
‖ξN(s)‖nL2ds

+ n
√

λN sup
s∈[0,T]

E‖uN(s)‖n−1
L2

∫ T

t
‖f N(s)‖H−1ds. (3.13)

whereK(n,N) is a constant depending onn andN only. Similar, one can show that

E‖ξN(t)‖nL2 + E
∫ T

t
‖ξN(s)‖n

H1
0
ds+

n2 − n
2

E
∫ T

t
‖ξN(s)‖n−2

L2 ‖ZN(s)‖2LQ
ds

≤E‖ψN‖nL2 + K(n,N)E
∫ T

t

{

‖uN(s)‖n
L2 + ‖ξN(s)‖nL2

}

ds. (3.14)

Adding up (3.13) and (3.14) to get

E‖uN(t)‖n
L2 + E‖ξN(t)‖nL2 + E

∫ T

t
‖uN(s)‖n

H1
0
ds+ E

∫ T

t
‖ξN(s)‖n

H1
0
ds

≤E‖φN‖n
L2 + E‖ψN‖nL2 + K(n,N)E

∫ T

t

{

‖uN(s)‖n
L2 + ‖ξN(s)‖nL2

}

ds

+ K(n,N)
∫ T

t
‖f N(s)‖n

H−1ds,

which completes the proof after an application of the Gronwall inequality. �

4. Well-posedness of the Projected System

In this section, we are going to show the well-posedness of the projected system (3.1).
In order to do so, we need to truncate the system. For everyM ∈ N, let LM to be the
LipschitzC∞ function given as follows:

LM(‖u‖H1
0
) =



























1 if ‖u‖H1
0
< M

0 if ‖u‖H1
0
> M + 1

0 ≤ LM(‖u‖H1
0
) ≤ 1 otherwise
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Proposition 4.1. ‖LM(‖x‖H1
0
)BN(x) − LM(‖y‖H1

0
)BN(y)‖L2 ≤ C(N,M)‖x − y‖H1

0
for any

x, y ∈ L2
N(G) and M∈ N, where C(N,M) is a constant depending on N, M and G only.

Proof. Let x andy be any two elements inL2
N(G). Without lose of generality, we assume

that‖x‖H1
0
≤ ‖y‖H1

0
, and let us discuss it in the following 3 cases:

Case I.‖x‖H1
0
> M + 1.

By the definition ofLM, ‖LM(‖x‖H1
0
)BN(x)− LM(‖y‖H1

0
)BN(y)‖2

L2 = 0 ≤ ‖x− y‖2
H1

0
. Thus

we see thatLMBN is Lipschitz.
Case II.‖y‖H1

0
≤ M + 1.

It is clear that

‖LM(‖x‖H1
0
)BN(x) − LM(‖y‖H1

0
)BN(y)‖2

L2

=

N
∑

i=1

|〈LM(‖x‖H1
0
)BN(x) − LM(‖y‖H1

0
)BN(y), ei〉|2

=

N
∑

i=1

|〈LM(‖y‖H1
0
)BN(x) − LM(‖y‖H1

0
)BN(y) + LM(‖x‖H1

0
)BN(x) − LM(‖y‖H1

0
)BN(x), ei〉|2

≤2
N

∑

i=1

|LM(‖y‖H1
0
)〈BN(x) − BN(y), ei〉|2 + 2

N
∑

i=1

|〈BN(x), ei〉|2|LM(‖x‖H1
0
) − LM(‖y‖H1

0
)|2

≤2
N

∑

i=1

L2
M(‖y‖H1

0
)|〈BN(x) − BN(y), ei〉|2 + 2C2

M

N
∑

i=1

|〈BN(x), ei〉|2‖x − y‖2
H1

0
, (4.1)

whereCM is Lipschitz coefficient of LM. By Lemma 2.6, Lemma 2.9, and the Poincaré
inequality, one has

N
∑

i=1

|〈BN(x) − BN(y), ei〉|2

=

N
∑

i=1

‖BN(x) − BN(y)‖2
L2

≤2C2
3

[

‖x‖2
L4 + ‖y‖2L4

]

‖x − y‖2
L4

≤4C2
3CG

[

‖x‖2
H1

0
+ ‖y‖2

H1
0

]

‖x − y‖2
H1

0
,

whereCG is a constant depending onG only. Also
N

∑

i=1

|〈BN(x), ei〉|2 ≤ C2
2‖x‖2L4 ≤ C2

2CG‖x‖2H1
0
.

Thus (4.1) becomes

‖LM(‖x‖H1
0
)BN(x) − LM(‖y‖H1

0
)BN(y)‖2

L2

≤
{

8C2
3CGL2

M(‖y‖H1
0
)
[

‖x‖2
H1

0
+ ‖y‖2

H1
0

]

+ 2C2
MC2

2CG‖x‖2H1
0

}

‖x − y‖2
H1

0
.

Since‖x‖H1
0

and‖y‖H1
0

are all bounded byM+1, ‖LM(‖x‖H1
0
)BN(x)−LM(‖y‖H1

0
)BN(y)‖2

L2 ≤
C(N,M)‖x − y‖2

H1
0
, whereC(N,M) is only related toN, M, andG.
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Case III.‖y‖H1
0
> M + 1 and‖x‖H1

0
≤ M + 1.

Then by the definition ofLM, LM(‖y‖H1
0
) = 0. Thus

‖LM(‖x‖H1
0
)BN(x) − LM(‖y‖H1

0
)BN(y)‖2

L2 ≤ 2C2
MC2

2CG‖x‖2H1
0
‖x − y‖2

H1
0
.

Thus we have shown that

‖LM(‖x‖H1
0
)BN(x) − LM(‖y‖H1

0
)BN(y)‖L2 ≤ C(N,M)‖x − y‖H1

0
,

whereC(N,M) is a constant which is only related toN, M andG. �

Let us state without proof an useful result from Yong and Zhou [34].

Proposition 4.2. For any(y, z) ∈Rk×Rk×m, assume that h(t, y, z) : [0,T]×Rk×Rk×m×Ω→
Rk is {Ft}t≥0-adapted with h(·, 0, 0)∈ L2

F (Ω; L2(0,T;Rk)). Moreover, there exists an L> 0,
such that

|h(t, y, z) − h(t, ȳ, z̄)| ≤ L{|y− ȳ| + |z− z̄|}
∀t ∈ [0,T], y, ȳ∈ Rk and z, z̄ ∈ Rk×m P-a.s. For any givenξ∈L2

FT
(Ω;Rk), the BSDE















dY(t) = h(t,Y(t),Z(t))dt+ Z(t)dW(t), t ∈ [0,T), a.s.

Y(T) = ξ,
(4.2)

admits a unique adapted solution(Y(·),Z(·))∈M[0,T], where

M[0,T] = L2
F (Ω; C([0,T]; R)) × L2

F (Ω; L2(0,T;R))

and it is equipped with the norm

‖Y(·),Z(·)‖M[0,T] = {E( sup
0≤t≤T

|Y(t)|2) + E
∫ T

0
|Z(t)|2dt} 1

2 .

Now we are able to prove the main result of this section.

Theorem 4.3. System(3.1)admits a unique adapted solution(uN,ZN, ξN,ZN) in
{

L∞F ([0,T] × Ω;L2(G)) ∩ L2
F (Ω; L2(0,T;H1

0(G)))
}

× L2
F (Ω; L2(0,T; LQ))

×
{

L∞F ([0,T] × Ω; L2(G)) ∩ L2
F (Ω; L2(0,T; H1

0(G)))
}

× L2
F (Ω; L2(0,T; LQ)),

provided that the terminal conditions satisfyφ ∈ L∞FT
(Ω;L2(G)), ψ ∈ L∞FT

(Ω; L2(G)), and

the external forcef ∈ L2(0,T;H−1(G)).

Proof. First of all, for anyM ∈ R, let us define a truncated system as follows:






































∂uNM(t)
∂t = −AuNM(t) − LM(‖uNM(t)‖H1

0
)BN(uNM(t)) − g∇ξNM(t) + f N(t)

+ZNM(t)dWN(t);
∂ξNM(t)
∂t + ∇ · (RNuNM(t)) = ZNM(t)dWN(t);

uNM(T) = φN andξNM(T) = ψN.

(4.3)

From Lemma 4.1, it is clear that all coefficients of the above system are Lipschitz continu-
ous for fixedN andM. Let us fixζ(t) ∈ L∞F ([0,T]×Ω; L2

N(G))∩L2
F (Ω; L2(0,T; H1

0N(G))).
Consider














∂uNM(t)
∂t = −AuNM(t) − LM(‖uNM(t)‖H1

0
)BN(uNM(t)) − g∇ζ(t) + f N(t) + ZNM(t)dWN(t);

uNM(T) = φN.

(4.4)
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Let us map system (4.4) toRN. It is obviously that the image of system is equivalent
to system (4.4). Since the coefficients in the image system are Lipschitz, Proposition
4.2 guarantees the existence of a unique adapted solution of the image system. By the
equivalence between two systems, we claim that system (4.4) admits a unique adapted
solution (uNM,ZNM). Clearly, for thisuNM, the following system















∂ξNM(t)
∂t + ∇ · (RNuNM(t)) = ZNM(t)dWN(t);

ξNM(T) = ψN
(4.5)

admits a unique adapted solution (ξNM,ZNM). Hence we can define an operatorΦ, such
thatΦ(ζ) , ξNM. We would like to show thatΦ is a contraction mapping. For anyζ1 and
ζ2 ∈ L∞F ([0,T] ×Ω; L2

N(G))∩L2
F (Ω; L2(0,T; H1

0N(G))), letΦ(ζ1) = ξNM
1 andΦ(ζ2) = ξNM

2 .
Denote

û , uNM
1 − uNM

2 , ξ̂ , ξNM
1 − ξNM

2 , ζ̂ , ζ1 − ζ2,

Ẑ , ZNM
1 − ZNM

2 , Ẑ , ZNM
1 − ZNM

2 .

Similar to the proof of Proposition 4.1, one can verify that

|〈LM(‖uNM
1 (t)‖H1

0
)BN(uNM

1 (t)) − LM(‖uNM
2 (t)‖H1

0
)BN(uNM

2 (t)), û(t)〉|
≤C(M,CG,C3)‖û(t)‖2

H1
0
,

whereC(M,CG,C3) is a constant depending onM, CG, C3 only. Let η be a positive
number such that

η > max(
ρN

2
,
2κhλN +C(M,CG,C3)λN + λN

2
).

Applying the Itô formula to‖ξ̂(t)‖2
L2e

2ηt to get

‖ξ̂(t)‖2L2e
2ηt +

∫ T

t
‖Ẑ(s)‖2LQ

e2ηsds

=

∫ T

t

{

− 2η‖ξ̂(s)‖2L2 + 2〈∇ · (RNû(s)), ξ̂(s)〉
}

e2ηsds−
∫ T

t
2e2ηs〈Ẑ(s)dWN(s), ξ̂(s)〉

≤
∫ T

t

{

− 2η‖ξ̂(s)‖2L2 + 2C1(1+CG)‖û(s)‖H1
0
‖ξ̂(s)‖L2

}

e2ηsds

−
∫ T

t
2e2ηs〈Ẑ(s)dWN(s), ξ̂(s)〉,

where the estimates are obtained similar to (3.9). Thus for any 0≤ r ≤ t,

EFr ‖ξ̂(t)‖2L2e
2ηt + EFr

∫ T

t
‖ξ̂(s)‖2

H1
0
e2ηsds+ EFr

∫ T

t
‖Ẑ(s)‖2LQ

e2ηsds

≤EFr

∫ T

t

{

− 2η‖ξ̂(s)‖2L2 + ‖ξ̂(s)‖2H1
0
+ 2C1(1+CG)‖û(s)‖H1

0
‖ξ̂(s)‖L2

}

e2ηsds

≤EFr

∫ T

t

{

(−2η + ρN)‖ξ̂(s)‖2L2 + 2C1(1+CG)‖û(s)‖H1
0
‖ξ̂(s)‖L2

}

e2ηsds

≤EFr

∫ T

t
e2ηsC2

1(1+CG)2

2η − ρN
‖û(s)‖2

H1
0
ds, (4.6)
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P-a.s., whereρN is defined in Remark 2.4. An application of the Itô formula to‖û(t)‖2
L2e

2ηt

yields

‖û(t)‖2
L2e

2ηt +

∫ T

t
‖Ẑ(s)‖2LQe

2ηsds

=

∫ T

t

{

− 2η‖û(s)‖2
L2 + 2〈Aû(s) + LM(‖uNM

1 (s)‖H1
0
)BN(uNM

1 (s))

− LM(‖uNM
2 (s)‖H1

0
)BN(uNM

2 (s)) + g∇ζ̂(s), û(s)〉
}

e2ηsds

−
∫ T

t
2〈Ẑ(s)dWN(s), û(s)〉e2ηs

≤
∫ T

t

{(

− 2η + 2κhλN +C(M,CG,C3)λN

)

‖û(s)‖2
L2 + 2g

√

λN‖ζ̂(s)‖L2‖û(s)‖L2

}

e2ηsds

−
∫ T

t
2〈Ẑ(s)dWN(s), û(s)〉e2ηs.

Thus for any 0≤ r ≤ t,

EFr ‖û(t)‖2
L2e

2ηt + EFr

∫ T

t
‖û(s)‖2

H1
0
e2ηsds+ EFr

∫ T

t
‖Ẑ(s)‖2LQe

2ηsds

≤EFr

∫ T

t

{(

− 2η + 2κhλN +C(M,CG,C3)λN + λN

)

‖û(s)‖2
L2

+ 2g
√

λN‖ζ̂(s)‖L2‖û(s)‖L2

}

e2ηsds

≤EFr

∫ T

t
e2ηs g2λN

2η − 2κhλN −C(M,CG,C3)λN − λN
‖ζ̂(s)‖2L2ds, (4.7)

P-a.s. Equations (4.6) and (4.7) imply

EFr ‖ξ̂(t)‖2L2e
2ηt + EFr

∫ T

t
‖ξ̂(s)‖2

H1
0
e2ηsds+ EFr

∫ T

t
‖Ẑ(s)‖2LQ

e2ηsds

≤
C2

1(1+CG)2

2η − ρN

g2λN

2η − 2κhλN −C(M,CG,C3)λN − λN
EFr

∫ T

t
e2ηs‖ζ̂(s)‖2L2ds,

P-a.s. Hence we takeη to be large enough such that

EFr

∫ T

t
‖ξ̂(s)‖2

H1
0
e2ηsds≤ 1

2
EFr

∫ T

t
e2ηs‖ζ̂(s)‖2

H1
0
ds,

P-a.s. Taking the expectation and lettingt = 0, we see thatΦ is a contraction mapping
from L2

F (Ω; L2(0,T; H1
0N(G))) to L2

F (Ω; L2(0,T; H1
0N(G))). By the contraction mapping

theorem, a unique adapted solution (uNM,ZNM, ξNM,ZNM) of (4.3) is guaranteed. As
shown in Proposition 3.1, supt∈[0,T] ‖uN(t)‖2

L2 ≤ K(N), whereK(N) is a constant associated
with N only. Since for finite-dimensional spaces, the norms‖·‖L2 and‖·‖H1

0
are equivalent,

we know that‖uN(s)‖H1
0

is also uniformly bounded for everyN. By the definition of the
truncationLM, it is clear that (3.1) and (4.3) are equivalent whenM is large enough.
Thus lettingM approach infinity, the limit of the solution (uNM,ZNM, ξNM,ZNM) is the
unique adapted solution of the projected system (3.1). The regularity of the solution can
be obtained by Proposition 3.1. �
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Continuity of the solution to the projected system (3.1) can also be obtained along
similar lines of the proof of Theorem 6.1. We shall skip the proof and postpone it to
Section 6. Thus the well-posedness of the projected system has been fully investigated.

5. Existence

In this section, we are going to show the existence of an adapted solution of system
(2.3). The Galerkin approximation scheme and Minty-Browder technique will be em-
ployed. In order to assure an uniform bound on a priori estimates, we make the follow-
ing assumptions. Such an approach is commonly taken in the study of stochastic Euler
equations by several authors so that a dissipative effect arises. Also they are standard
hypotheses in the theory of stochastic PDEs in infinite dimensional spaces (see Chow [5],
Kallianpur and Xiong [10], Prévôt and Röckner [29]).

(A.1) (Continuity):f : H1
0→ H−1 is a continuous operator;

(A.2) (Coercivity): There exist positive constantsα andβ, such that

〈Au − f (u), u〉 ≤ α‖u‖2
L2 − β‖u‖2H1

0
;

〈Au − f (u),Au〉 ≤ α‖u‖2
H1

0
− β‖Au‖2

H1
0
;

(A.3) (Monotonicity): There existν > 1 andα > 0, such that for anyu andv in H1
0,

andM ∈ N,

〈νA(u − v) − (f (u) − f (v)),RM(u − v)〉 ≤ α‖u − v‖2
L2,

whereRM is the projection ofR into L2
M(G);

(A.4) (Linear growth): For anyu ∈ H1
0 and some positive constantα,

|〈f (u), u〉| ≤ α‖u‖2.
The system (2.3) can now be written as


























∂u(t)
∂t = −Au(t) − γ|u(t) + w0(t)|(u(t) + w0(t)) − g∇ξ(t) + f (u(t)) + Z(t) dW(t)

dt ;
∂ξ(t)
∂t + ∇ · (Ru(t)) = Z(t) dW(t)

dt ;

u(T) = φ and ξ(T) = ψ,

(5.1)

and the corresponding projected system is


























∂uN(t)
∂t = −AuN(t) − BN(uN(t)) − g∇ξN(t) + f N(uN(t)) + ZN(t)dWN(t);

∂ξN(t)
∂t + ∇ · (R

NuN(t)) = ZN(t)dWN(t);

uN(T) = φN andξN(T) = ψN.

(5.2)

Under these assumptions, we are able to prove a very important monotonicity result,
which is the essence of proof of the existence theorem.

Lemma 5.1. For anyu, v ∈ L
4
3 ([0,T]; L4(G)) ∩ L0(0,T;H1

0(G)), and M∈ N, define

r(t) ,
∫ T

t

{

2α +
3

2
5
3

( C4
1C4

5

(ν − 1)κhC0

)
1
3
{

‖u(s)‖L4 + ‖v(s)‖L4

}
4
3
}

ds.

Then

〈A(u − v) + B(u) − B(v) − (f (u) − f (v)) +
1
2

ṙ(t)(u − v),RM(u − v)〉 ≤ 0.
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Proof. From the monotonicity assumption and Lemma 2.9, one has

〈A(u − v) + B(u) − B(v) − (f (u) − f (v)),RM(u − v)〉
=〈νA(u − v) − (f (u) − f (v)),RM(u − v)〉 + 〈B(u) − B(v),RM(u − v)〉
+ 〈(1− ν)A(u − v),RM(u − v)〉

≤α‖u − v‖2
L2 +C1C5

{

‖u‖L4 + ‖v‖L4

}

‖u − v‖
3
2

L2‖u − v‖
1
2

H1
0

+ (1− ν)κhC0‖u − v‖2
H1

0

≤α‖u − v‖2
L2 +

3

2
8
3

( C4
1C4

5

(ν − 1)κhC0

)
1
3
{

‖u‖L4 + ‖v‖L4

}
4
3 ‖u − v‖2

L2

= − 1
2

ṙ(t)‖u − v‖2
L2,

which completes the proof. �

The coercivity assumption assures a uniform a priori estimate. The following a priori
estimate is very useful for the Galerkin approximation which will be used in Theorem 5.3.

Proposition 5.2. (i) Suppose that the terminal conditions satisfyφ ∈ L∞FT
(Ω;L2(G)) and

ψ ∈ L∞FT
(Ω; L2(G)). Then for any solution of system(5.2), the following is true:

(uN,ZN) ∈
{

L∞F ([0,T] × Ω;L2(G)) ∩ L2
F (Ω; L2(0,T;H1

0(G)))
}

× L2
F (Ω; L2(0,T; LQ)),

(ξN,ZN) ∈ L∞F ([0,T] ×Ω; L2(G)) × L2
F (Ω; L2(0,T; LQ)).

Moreover,

sup
t∈[0,T]

‖uN(t)‖2
L2 + E

∫ T

0
‖uN(s)‖2

H1
0
ds+ sup

t∈[0,T]
‖ξN(t)‖2L2

+ E
∫ T

0
‖ZN(s)‖2LQds+ E

∫ T

0
‖ZN(s)‖2LQ

ds≤ K, (5.3)

P-a.s. for some constant K, independent of N.
(ii) Suppose the terminal conditions satisfyφ ∈ Ln

FT
(Ω;L2(G)) andψ ∈ Ln

FT
(Ω; L2(G))

for all n ∈ N and n≥ 2. The following is true for any solution of system(5.2):

(uN,ZN) ∈
{

L∞(0,T; Ln
F (Ω;L2(G))) ∩ L2

F (Ω; L2(0,T;H1
0(G)))

}

× L2
F (Ω; L2(0,T; LQ)),

(ξN,ZN) ∈ L∞(0,T; Ln
F (Ω; L2(G))) × L2

F (Ω; L2(0,T; LQ)).

Moreover,

sup
t∈[0,T]

E‖uN(t)‖n
L2 + E

∫ T

0
‖uN(s)‖n−2

L2 ‖uN(s)‖2
H1

0
ds+ sup

t∈[0,T]
E‖ξN(t)‖nL2

+ E
∫ T

0
‖ZN(s)‖nLQds+ E

∫ T

0
‖ZN(s)‖nLQ

ds≤ K, (5.4)

for some constant K, independent of N.
(iii) Let the terminal conditions satisfyφ ∈ L∞FT

(Ω;H1
0(G)) andψ ∈ L∞FT

(Ω; H1
0(G)).

Then for any solution of system(5.2), the following is true:

(uN,ZN) ∈ L∞F ([0,T] ×Ω;H1
0(G)) × L2

F (Ω; L2(0,T; LQ)),

(ξN,ZN) ∈ L∞F ([0,T] ×Ω; H1
0(G)) × L2

F (Ω; L2(0,T; LQ)).
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Moreover,

sup
t∈[0,T]

‖uN(t)‖2
H1

0
+ sup

t∈[0,T]
‖ξN(t)‖2

H1
0

+ E
∫ T

0
‖ZN(s)‖2LQds+ E

∫ T

0
‖ZN(s)‖2LQ

ds≤ K, (5.5)

P-a.s. for some constant K, independent of N.

Proof. The proof is very similar to Proposition 3.1, with few modifications of some esti-
mates. It is clear that

2〈BN(uN(s)), uN(s)〉 ≤ 3

√

27C4
3

2β
‖uN(s)‖2

L2 +
β

4
‖uN(s)‖2

H1
0
,

and

2〈g∇ξN(s), uN(s)〉 ≤ 4g2

β
‖ξN(s)‖2L2 +

β

4
‖uN(s)‖2

H1
0
.

Thus under part one of Assumption (A.2), we have

‖uN(t)‖2
L2 +

∫ T

t
‖ZN(s)‖2LQds+

β

2

∫ T

t
‖uN(s)‖2

H1
0
ds

≤‖φN‖2
L2 +

∫ T

t

{(

α +
3

√

27C4
3

2β

)

‖uN(s)‖2
L2 +

4g2

β
‖ξN(s)‖2L2

}

ds

− 2
∫ T

t
〈ZN(s)dWN(s), uN(s)〉.

Since

2〈∇ · (RNuN(s)), ξN(s)〉

≤C1‖uN(s)‖2
L2 +

β

4
‖uN(s)‖2

H1
0
+

(4C2
1

β
+C1

)

‖ξN(s)‖2L2,

we have

EFr ‖uN(t)‖2
L2 + EFr ‖ξN(t)‖2L2 +

β

4

∫ T

t
‖uN(s)‖2

H1
0
ds

+ EFr

∫ T

t
‖ZN(s)‖2LQds+ EFr

∫ T

t
‖ZN(s)‖2LQ

ds

≤EFr ‖φN‖2
L2 + EFr ‖ψN‖2L2

+ EFr

∫ T

t

{(

α +
3

√

27C4
3

2β
+C1

)

‖uN(s)‖2
L2 +

(4g2

β
+

4C2
1

β
+C1

)

‖ξN(s)‖2L2

}

ds,

for 0 ≤ r ≤ t, P-a.s. An application of the Gronwall inequality and lettingr = t completes
the proof.

We skip the proof of part (ii) and (iii) since they are very similar to part (i) and the
proof of Proposition 3.2. Note that the proof of (iii) uses the second half of the coercivity
assumption. �
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Under our assumptions, the well-posedness of system (5.2) can be obtained similarly
to Theorem 4.3. We shall skip the proof. Now we are ready to present the main result of
this paper.

Theorem 5.3. Suppose that the terminal conditions satisfyφ ∈ L∞FT
(Ω;H1

0(G)) andψ ∈
L∞FT

(Ω; H1
0(G)). Then there exists an adapted solution(u,Z, ξ,Z) of system(5.1), such

that

(u,Z) ∈ L∞F ([0,T] ×Ω;H1
0(G)) × L2

F (Ω; L2(0,T; LQ)),

(ξ,Z) ∈ L∞F ([0,T] ×Ω; H1
0(G)) × L2

F (Ω; L2(0,T; LQ)).

Proof. For technical reasons, let us introduce a new system. For anyM1 ∈ N, M1 ≤ N, let
RM1 be the projection ofR to L2

M1(G). Then clearly previous results on projected system
(5.2) hold for


























∂uNM1 (t)
∂t = −AuNM1(t) − BN(uNM1(t)) − g∇ξNM1(t) + f N(uNM1(t)) + ZNM1(t)dWN(t);

∂ξNM1 (t)
∂t + ∇ · (RM1uNM1(t)) = ZNM1(t)dWN(t);

uNM1(T) = φN andξNM1(T) = ψN.

Let the unique adapted solution be (uNM1,ZNM1 , ξNM1 ,ZNM1). First of all, let us estab-
lish several limits of convergent sequences. They are necessary when we perform the
Galerkin approximation scheme. By Proposition 5.2,{uNM1}∞N=1, {ξNM1}∞N=1, {ZNM1}∞N=1
and{ZNM1}∞N=1 are all uniformly bounded in respective spaces. Thus there existu, ξ, Z,
andZ, and a subsequenceNk, such that

uNkM1
w−→ u in L2

F (Ω; L2(0,T;H1
0(G))),

ξNkM1
w−→ ξ in L∞F ([0,T] ×Ω; L2(G)),

ZNkM1
w−→ Z in L2

F (Ω; L2(0,T; LQ)),

ZNkM1
w−→ Z in L2

F (Ω; L2(0,T; LQ)).

SinceA is a continuous mapping fromH1
0(G) toH−1(G), we know that

‖Au‖H−1 ≤ C‖u‖H1
0
,

for all u ∈ H1
0(G) and some constantC. Thus combined with the assumptions onf , one

gets

AuNkM1 − f Nk(uNkM1)
w−→ F1 in L2

F (Ω; L2(0,T;H−1(G))),

for some functionF1 and some subsequenceNk. By Lemma 2.9,

‖BN(uNM1(t))‖H−1 ≤ CG‖BN(uNM1(t))‖L2 ≤ CGC3‖uNM1(t)‖L4 ≤ 2
1
4 C

3
2
GC3‖uNM1(t)‖H1

0
.

Thus

BNk(uNkM1)
w−→ F2 in L2

F (Ω; L2(0,T;H−1(G))),

for some functionF2 and some subsequenceNk. For everyt, let us define

Lt : L2
F (Ω; L2(0,T; LQ))→ L2

F (Ω; L2(0,T;H−1(G)))

J 7→
∫ T

t
J(s)dW(s).
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ClearlyLt is a bounded linear operator. Hence it maps weakly convergent sequences to
weakly convergent sequences, and

∫ T

t
ZNkM1(s)dWNk(s)

w−→
∫ T

t
Z(s)dW(s) in L2

F (Ω; L2(0,T;H−1(G))).

Similarly, one can prove that
∫ T

t

{

AuNkM1(s) − f Nk(uNkM1(s)) + BNk(uNkM1(s))
}

ds
w−→

∫ T

t

{

F1(s) + F2(s)
}

ds,

in L2
F (Ω; L2(0,T;H−1(G))) and

∫ T

t
ZNkM1(s)dWNk(s)

w−→
∫ T

t
Z(s)dW(s) in L2

F (Ω; L2(0,T; H−1(G))).

One can also show that

Lξ : L∞F ([0,T] × Ω; L2(G))→ L2
F (Ω; L2(0,T; H−1(G)))

ξ 7→
∫ T

t
∇ξ(s)ds

is a bounded linear operator. SinceξNkM1 ∈ L∞F ([0,T] ×Ω; L2(G)), we have
∫ T

t
∇ξNkM1(s)ds

w−→
∫ T

t
∇ξ(s)ds in L2

F (Ω; L2(0,T; H−1(G))).

Likewise, we have
∫ T

t
∇ · (RM1uNkM1(s))ds

w−→
∫ T

t
∇ · (RM1u(s))ds in L2

F (Ω; L2(0,T;H−1(G))).

Thus we have shown that

u(t) =φ +
∫ T

t

{

F1(s) + F2(s) + g∇ξ(s)
}

ds−
∫ T

t
Z(t)dW(s), (5.6)

and

ξ(t) = ψ +
∫ T

t
∇ · (RM1u(s))ds−

∫ T

t
Z(s)dW(s) (5.7)

hold P-a.s. For notational convenience, let us denoteNk by N again. For anyM2 ≤ N, let
v ∈ L∞F ([0,T] ×Ω;H1

0M2
(G)). Define

r(t) ,
∫ T

t

{

2α +
3

2
5
3

( C4
1C4

5

(ν − 1)κhC0

)
1
3 K

4
3

}

ds,

where

K = sup
{

{

sup
(t,ω)∈[0,T]×Ω

‖u‖L4

}

∪
{

sup
(t,ω)∈[0,T]×Ω

‖uNM1‖L4

}∞

N=1

}

+ sup
(t,ω)∈[0,T]×Ω

‖v‖L4.

By Lemma 5.1, it is easy to see that

〈AuNM1(t) + BN(uNM1(t)) − f N(uNM1(t)) +
1
2

ṙ(t)uNM1(t)

− Av(t) − BN(v(t)) + f N(v(t)) − 1
2

ṙ(t)v(t),RM1uNM1(t) − RM1v(t)〉 ≤ 0.
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Integrating both sides and taking the expectation, one gets

E
∫ T

0
e−r(s)〈AuNM1(s) + BN(uNM1(s)) − f N(uNM1(s)) +

1
2

ṙ(s)uNM1(s),

RM1uNM1(s) − RM1v(s)〉ds

≤E
∫ T

0
e−r(s)〈Av(s) + BN(v(s)) − f N(v(s)) +

1
2

ṙ(s)v(s),RM1uNM1(s) − RM1v(s)〉ds.

(5.8)

An application of the Itô formula toe−r(s)‖
√

RM1uNM1(s)‖2
L2 yields

E‖
√

RM1φN‖2
L2 − Ee−r(0)‖

√
RM1uNM1(0)‖2

L2 + 2E
∫ T

0
e−r(s)〈g∇ξNM1(s),RM1uNM1(s)〉ds

− E
∫ T

0
e−r(s)‖

√
RM1ZNM1(s)‖2LQds

= − E
∫ T

0
e−r(s)ṙ(s)‖

√
RM1uNM1(s)‖2

L2ds

− 2E
∫ T

0
e−r(s)〈AuNM1(s) + BN(uNM1(s)) − f N(uNM1(s)),RM1uNM1(s)〉ds

= − 2E
∫ T

0
e−r(s)〈AuNM1(s) + BN(uNM1(s)) − f N(uNM1(s)) +

1
2

ṙ(s)uNM1(s),

RM1uNM1(s)〉ds. (5.9)

Applying the Itô formula to‖ξNM1(s)‖2
L2 to get

− E
∫ T

0
2〈g∇ · (RM1uNM1(s)), ξNM1(s)〉ds

=E
∫ T

0
2〈g∇ξNM1(s),RM1uNM1(s)〉ds

=gE‖ψN‖2L2 − gE‖ξNM1(0)‖2L2 − gE
∫ T

0
‖ZNM1(s)‖2LQ

ds. (5.10)

Substituting (5.10) into (5.9), one gets

E‖
√

RM1φN‖2
L2 − Ee−r(0)‖

√
RM1uNM1(0)‖2

L2 + gE‖ψN‖2L2 − gEe−r(0)‖ξNM1(0)‖2L2

− gE
∫ T

0
e−r(s)‖ZNM1(s)‖2LQ

ds− E
∫ T

0
e−r(s)‖

√
RM1ZNM1(s)‖2LQds

= − 2E
∫ T

0
e−r(s)〈AuNM1(s) + BN(uNM1(s)) − f N(uNM1(s)) +

1
2

ṙ(s)uNM1(s),

RM1uNM1(s)〉ds.

By the lower semi-continuity of the norms, we have

2 lim inf
N→∞

E
∫ T

0
e−r(s)〈AuNM1(s) + BN(uNM1(s)) − f N(uNM1(s)) +

1
2

ṙ(s)uNM1(s),

RM1uNM1(s)〉ds.
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= − E‖
√

RM1φ‖2
L2 + lim inf

N→∞
Ee−r(0)‖

√
RM1uNM1(0)‖2

L2

− gE‖ψ‖2L2 + g lim inf
N→∞

Ee−r(0)‖ξNM1(0)‖2L2

+ g lim inf
N→∞

E
∫ T

0
e−r(s)‖ZNM1(s)‖2LQ

ds+ lim inf
N→∞

E
∫ T

0
e−r(s)‖

√
RM1ZNM1(s)‖2LQds

≥ − E‖
√

RM1φ‖2
L2 + Ee−r(0)‖

√
RM1u(0)‖2

L2 − gE‖ψ‖2L2 + gEe−r(0)‖ξ(0)‖2L2

+ gE
∫ T

0
e−r(s)‖Z(s)‖2LQ

+ E
∫ T

0
e−r(s)‖

√
RM1Z(s)‖2LQds. (5.11)

Again applying the Itô formula toe−r(s)‖
√

RM1u(s)‖2
L2 and ‖ξ(s)‖2

L2 in (5.6) and (5.7) to
get

E‖
√

RM1φ‖2
L2 − Ee−r(0)‖

√
RM1u(0)‖2

L2 + gE‖ψ‖2L2 − gEe−r(0)‖ξ(0)‖2L2

− gE
∫ T

0
e−r(s)‖Z(s)‖2LQ

ds− E
∫ T

0
e−r(s)‖

√
RM1Z(s)‖2LQds

= − 2E
∫ T

0
e−r(s)〈F1(s) + F2(s) +

1
2

ṙ(s)u(s),RM1u(s)〉ds. (5.12)

Hence (5.11) and (5.12) imply

2 lim inf
N→∞

E
∫ T

0
e−r(s)〈AuNM1(s) + BN(uNM1(s)) − f N(uNM1(s)) +

1
2

ṙ(s)uNM1(s),

RM1uNM1(s)〉ds.

≥2E
∫ T

0
e−r(s)〈F1(s) + F2(s) +

1
2

ṙ(s)u(s),RM1u(s)〉ds. (5.13)

Together with (5.8), one gets

E
∫ T

0
e−r(s)〈F1(s) + F2(s) +

1
2

ṙ(s)u(s),RM1u(s) − RM1v(s)〉ds

≤ lim inf
N→∞

E
∫ T

0
e−r(s)〈Av(s) + BN(v(s)) − f N(v(s)) +

1
2

ṙ(s)v(s),RM1uNM1(s) − RM1v(s)〉ds

= lim inf
N→∞

E
∫ T

0
e−r(s)〈Av(s) + B(v(s)) − f (v(s)) +

1
2

ṙ(s)v(s),

PN

{

RM1uNM1(s) − RM1v(s)
}

〉ds. (5.14)

SinceuNM1
w−→ u in L2

F (Ω; L2(0,T;H1
0(G))), it is easy to show that

PN

{

RM1uNM1
} w−→ RM1u

in L2
F (Ω; L2(0,T;H1

0(G))) as well. Thus (5.14) becomes

E
∫ T

0
e−r(s)〈F1(s) + F2(s) +

1
2

ṙ(s)u(s),RM1u(s) − RM1v(s)〉ds

≤E
∫ T

0
e−r(s)〈Av(s) + B(v(s)) − f (v(s)) +

1
2

ṙ(s)v(s),RM1u(s) − RM1v(s)〉ds.
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Since the above inequality holds for allv ∈ L∞F ([0,T] × Ω;H1
0M2

(G)) and allM2 ∈ N, we

know that it holds true for allv ∈ L∞F ([0,T] × Ω;H1
0(G)). Let us choosev=u + λw where

w ∈ L∞F ([0,T] ×Ω;H1
0(G)) andλ > 0, one gets

E
∫ T

0
e−r(s)〈F1(s) + F2(s),RM1w〉ds

≥E
∫ T

0
e−r(s)〈Av(s) + B(v(s)) − f (v(s)) + λ

1
2

ṙ(s)w(s),RM1w(s)〉ds.

Lettingλ vanish to 0, and by the arbitrariness ofw and the continuity of the coefficients,
we know that

F1(s) + F2(s) = Au(s) + B(u(s)) − f (u(s)) P-a.s.

for all M1 ∈ N. The regularity of the solution is guaranteed by Proposition 5.2. The proof
can then be completed by lettingM1 go to infinity. �

6. Uniqueness and Continuity

In this section we deal with the uniqueness and continuity of the solution. Again we
assume the uniform bound of the terminal conditions underH1

0-norm. Such circumstances
arise in certain other nonlinear stochastic partial differential equations such as stochastic
Euler equations.

Theorem 6.1. Suppose that the terminal conditions satisfyφ ∈ L∞FT
(Ω;H1

0(G)) andψ ∈
L∞FT

(Ω; H1
0(G)). Then system(5.1)admits a unique adapted solution(u,Z, ξ,Z) in

L∞F ([0,T] × Ω;H1
0(G)) × L2

F (Ω; L2(0,T; LQ))

×L∞F ([0,T] × Ω; H1
0(G)) × L2

F (Ω; L2(0,T; LQ)).

Moreover, the solution is continuous with respect to the terminal conditions in

L∞([0,T]; L2
F (Ω;L2(G))) × L2

F (Ω; L2(0,T; LQ))

×L∞([0,T]; L2
F (Ω; L2(G))) × L2

F (Ω; L2(0,T; LQ)).

Proof. Suppose that (u1,Z1, ξ1,Z1) and (u2,Z2, ξ2,Z2) are solutions of system (5.1) ac-
cording to terminal conditions (φ1, ψ1) and (φ2, ψ2), respectively. Denote

û = u1 − u2, Ẑ = Z1 − Z2, Ẑ = Z1 − Z2,

ξ̂ = ξ1 − ξ2, φ̂ = φ1 − φ2, ψ̂ = ψ1 − ψ2.

Then the differences satisfy


























∂û(t)
∂t = −Aû(t) − B(u1(t)) + B(u2(t)) − g∇ξ̂(t) + f (u1(t)) − f (u2(t)) + Ẑ(t) dW(t)

dt ;
∂ξ̂(t)
∂t + ∇ · (Rû(t)) = Ẑ(t) dW(t)

dt ;

û(T) = φ̂ and ξ̂(T) = ψ̂.
(6.1)

Define

r(t) ,
∫ T

t

{

2α +
3

2
5
3

( C4
1C4

5

(ν − 1)κhC0

)
1
3 K

4
3

}

ds,
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where

K = sup
(t,ω)∈[0,T]×Ω

‖u1‖L4 + sup
(t,ω)∈[0,T]×Ω

‖u2‖L4.

Then an application of the Itô formula toe−r(s)‖
√

Rû(s)‖2
L2 and ‖ξ̂(s)‖2

L2 yields

Ee−r(t)‖
√

Rû(t)‖2
L2 + gE‖ξ̂(t)‖2L2 + gE

∫ T

t
‖Ẑ(s)‖2LQ

ds+ E
∫ T

t
e−r(s)‖

√
RẐ(s)‖2LQds

=E‖
√

Rφ̂‖2
L2 + gE‖ψ̂‖2L2 + 2E

∫ T

t
e−r(s)〈Aû(s) + B(u1(s)) − B(u2(s)) − f (u1(s)) + f (u2(s))

+
1
2

ṙ(s)û(s),Rû(s)〉ds

≤E‖
√

Rφ̂‖2
L2 + gE‖ψ̂‖2L2 .

Thus we have shown the uniqueness and continuity of solutions. �

Now we have established the well-posedness of the backward stochastic tidal dynamics
equation. Such well-posedness holds when the terminal conditions are uniformly bounded
underH1

0-norm. One may want to relax the conditions on terminal values to a weaker
sense, such as uniformly boundedness inL2 sense. However, such problems are still open.
The difficulty lies in the nonadaptiveness nature of the backward stochastic differential
equations. For instance, the functionr defined in Lemma 5.1 is not adaptive to the forward
filtration. So in the proof of Theorem 5.3 and Theorem 6.1, we redefinedr so that it
is adaptive to the system. For this approach, we have to improve the regularity of the
solutionu appeared in the definition ofr. Such obstacles do not arise in the forward
stochastic systems.
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