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STOCHASTIC ANALYSIS OF BACKWARD TIDAL DYNAMICS EQUATION

HONG YIN

Asstract. The backward stochastic tidal dynamics equations, a system of coupled back-
ward stochastic dlierential equations, in bounded domains are studied in this paper. Un-
der suitable projections and truncations, a priori estimates are obtained, which enable us
to establish the uniformly boundedness of an adapted solution to the system. Such regu-
larity does not usually hold for stochastidférential equations. The well-posedness of

the projected system is given by means of the contraction property of the elevation com-
ponent. The existence of solutions are proved by utilizing the Galerkin approximation
scheme and the monotonicity properties for bounded terminal conditions. The unique-
ness and continuity of solutions with respect to terminal conditions are also provided.

1. Introduction

Tide, the alternate rising and falling of the sea levels, is the result of the combination
of the rotation of the Earth, and the gravitational attraction exertedf@relnt parts of
the Earth by the Moon and the Sun. The study of ocean tides trace back to the early
seventeenth century. The first attempt of a theoretical explanation of ocean tides was given
by Galileo Galilei[6] in 1632. Although not very successful, it inspired many successors
to further the studies in this field, including Johannes Kepler and Isaac Newton[25]. The
latter established a scientific formulation in 1687, which pointed out the role of the lunar
and solar gravitationalffect on ocean tides. Later Maclaurin[20] used Newton’s theory
of fluxion and took into account Earth’s rotationdfexts on motion, Euler discovered
that the horizontal component of the tidal force, as opposed to the vertical component, is
the main driving force of ocean tides that causes the wavelike progression of high tide,
and Jean le Rond d’Alembert observed tidal equations for the atmosphere which did not
include rotation. A major break through of the mathematical formulation of ocean tides
is accredited to Laplace[14], who introduced a system of three linear paftiedatitial
equations for the horizontal components of ocean velocity, and the vertical displacement
of the ocean surface in 1775. His work remains the basis of tidal computation to this
day, and was followed up by Thomson and Tait[33], and Poincaré[28], among others.
The former applied systematic harmonic analysis to tidal analysis and rewrote Laplace’s
equations in terms of vorticity.

In the first half of the nineteenth century, researchers further expanded the studies
of ocean tides. Encouraging developments include Arctic tides, and geophysical tides
such as tidal motion in the atmosphere and in the Earth’s molten core. In the second
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half of the nineteenth century, quantum advances in computers, satellite technology and
numerical methods of solving PDEs made it possible to solve Laplace tidal equations
with realistic boundary conditions and depth functions. In this article, we consider the
tidal dynamics equations constructed by Marchuk and Kagan[21, 22]. The existence and
unigueness of the tide equations in forward case have been shown by Ipatova[9], Marchuk
and Kagan[21], and Manna, Menaldi and Sritharan [23].

The backward version of stochastic tidal dynamics equations is, to our best knowl-
edge, new. It appears as an inverse problem wherein the velocity profile and elevation
component at a tim& are observed and given, and the noisefitcient has to be ascer-
tained from the given terminal data. Such a motivation arises naturally when one under-
stands the importance of inverse problems in partiédéntial equations (see J. L. Lions
[15, 16]). Since the problem of specifying the function of boundary condition on the lig-
uid boundary, and the problem of specifying the tide-generating forces must be solved
simultaneously with the tide theory equation system, Agoshkov[2], among other authors,
has considered tidal dynamics models as inverse problems. Some studies of backward
stochastic analysis on fluid dynamics has been put forth in our previous work [31]. Lin-
ear backward stochasticfiiirential equations were introduced by Bismut in 1973 ([3]),
and the systematic study of general backward stochadtereintial equations (BSDEs
for short) were put forward first by Pardoux and Peng[27], Ma, Protter, Yong, Zhou, and
several other authors in a finite-dimensional setting. Ma and Yong[19] have studied linear
degenerate backward stochasti€etiential equations motivated by stochastic control the-
ory. Later, Hu, Ma and Yong [8] considered the semi-linear equations as well. Backward
stochastic partial diierential equations were shown to arise naturally in stochastic ver-
sions of the Black-Scholes formula by Ma, Protter and Yong [17, 18]. A nice introduction
to backward stochastic ftierential equations is presented in the book by Yong and Zhou
[34], with various applications.

The usual method of proving existence and uniqueness of solutions by fixed point ar-
guments do not apply to the stochastic system on hand since the dfiicizog in the
backward stochastic tidal flow is nonlinear, non-Lipschitz and unbounded. However, the
drift coefficient is monotone on bound&d(G) balls in H(l)(G), which was first observed
by Manna, Menaldi and Sritharan [23]. One may also refer to Menaldi and Sritharan [24]
for more information. The Galerkin approximation scheme is employed in the proof of
existence and uniqueness of solutions to the system. To this end, a priori estimates of
finite-dimensional projected systems are studied, and uniformly boundedness of adapted
solutions are established. Such regularity does not usually hold for stochdfstie ah
tial equations. The well-posedness of the projected system is also given by means of the
contraction property of the elevation component. In order to establish the monotonicity
property of the drift term, a truncation &{(x), the depth of the calm sea, is introduced.
Then the generalized Minty-Browder technique is used in this paper to prove the existence
of solutions to the tidal dynamics system. The proof of the uniqueness and continuity of
solutions are wrought by establishing the closeness of solutions of the system via mono-
tonicity arguments.

The structure of the paper is as follows. The functional setup of the paper is introduced
and several frequently used inequalities are listed in section 2. Some a priori estimates for
the solutions of the projected system are given undigrdint assumptions on the terminal
conditions and external force in section 3. Section 4 is devoted to well-posedness of the
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projected system. The existence of solutions of the tidal dynamics equations under suit-
able assumptions is shown by Minty-Browder monotonicity argument in section 5. The
unigueness and continuity of the solution under the assumption that terminal condition is
uniformly bounded irH! sense are given in section 6.

2. Formulation of the Problem

Let us consider the time interval [0], and letG, the horizontal ocean basin where
tides are induced, be a bounded domaiRfnwith smooth boundary conditions. The
boundary contoudG is composed of two disconnected parts, a solid pdrg @oinciding
with the edge of the continental and island shelves, and an open boundabet us
assume that sea water is incompressible and the vertical velocities are small compared
with the horizontal velocities. Thus we are able to exclude acoustic waves. Also long
waves, including tidal waves, are stood out from the family of gravitational oscillations.
Furthermore, to reduce computationafidulties, we assume that the Earth is absolutely
rigid, and the gravitational field of the Earth is néffexcted by movements of ocean tides.
Also the dfect of the atmospheric tides on the ocean tides andtbet®f curvature of the
surface of the Earth on horizontal turbulent friction are ignored. Under these commonly
used assumptions, we are able to adopt the following tide dynamics model:

’}—"{+Ik><w=—gV§—§|W|W+KhAW+g;
% +V-(Rw) =0;

w=w" onl0,T]xdG;

w®=0 onl';, and frzwodl"gzo,

2.1)

wherew, the horizontal transport vector, is the averaged integral of the velocity vector
over the vertical axig, = 2p cosd is the Coriolis parameter, whereis the angular ve-
locity of the Earth rotation and is the colatitudek is an unit vector oriented vertically
upward,g is the free fall acceleratiom,is the bottom friction factor, is the horizontal
turbulent viscosity coicient, g is the external force vector, aigds the displacement of
the free surface with respect to the ocean floor. The funatibis an known function
on the boundary. The restrictiav’|r, = 0 is the no-slip condition on the shoreline, and
frz wodr, = 0 follows from the mass conservation law. H&#s the vertical scale of mo-
tion, i.e., the depth of the calm sea. Let us assumeRlist continuously dferentiable
function ofx, so that infeg{R(X)} > Co and sup.s{R(X) + |VR(X)|} < C; for some positive
constant€y andC;j.

In order to simplify the non-homogeneous boundary value problem to a homogeneous
Dirichlet boundary value problem, we set

u(t, x) = w(t, X) — wo(t, x),
and
t
LX) =t X) + f V- (R9W’(s ¥))ds
0
Let us denote byA the matrix

A= —KkhA  —2pC0SH
~ \2p0cosA —kns |’
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andy(x) = @. Thus we are able to rewrite the tide dynamics model as
29—‘5 = —AU-yu+Wol(u+wW%) —gVé+f on[0,T]xG;

5 +V-(Ru)=0;

u=0 on[QT]xdG;

U=upandé =¢ att=0,

2.2)

where
f=g- 6a_v¥0 +gvf0tv.(RW°)ds+KhAw°— Ik x wP;
Uo(X) = wo(x) — wO(0, X);
&o(X) = o(X).

To unify the language, let us introduce the following definitions and notations.

Definition 2.1. Let A be an operator on a separable Hilbert spidogith complete or-
thonormal system (CONS for shotej}‘]?‘;l. If (AX, y)=(x, A*y) for anyx,y € K, thenA*
is called theadjointof A. If A = A*, thenA s calledself-adjoint

Definition 2.2. Let A be a linear operator from a separable Hilbert sgaseith CONS
{ej}‘]?‘;l to a separable Hilbert spaéee

(a) We denote by (K, H) the class of all bounded linear operators with the uniform
operator normj| - ||._.

(b) If ||A|||_1=Z§°:1<(A*A)%ek, &)k < oo, thenAis called drace class(nuclear) opera-
tor. We denote by;(K, H) the class of trace class operators equipped with norm
Il -

(c) We also denote biy(K, H) the class oHilbert-Schmidt operatorsvith norm
I I, given by|lAllL,= (A&, Ag)H)z. Sometimes - I, is also denoted by
I ks,

(d) Let Q € L;i(K,K) be self-adjoint and positive definite. L&, be the Hilbert
subspace oK with inner product

(.9, = (Q 21, Q7ig)x,
and we denoté.q = L(Ko, H) with the inner product
(F,G)L, = tr(FQG") = tr(GQF"), F,Ge Lg.

Definition 2.3. A stochastic proces#/(t) is called arH-valued Q-Wiener proceswhere
Qis atrace class operator dh if W(t) satisfies the following:

(a) W(t) has continuous sample pathsHanorm withW(0) = 0.
(b) (W(t), h) has stationary independent increments fohadlH.
(c) W(t) is a Gaussian process with mean zero and covariance op&;ater

E(W(t), g)(W(s),h) = (t A s)(Qg, h) forallg,he H.

Let L%(G) andH}(G) be standard Sobolev spaces with norms

2 2
IM@éfwa
G
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and

2, = f IVulPdx,

respectively. Denot&1(G) the dual space dfi} o(G). Denote () the inner product of
L2(G), (-, )H1 the inner product o} o(G), and(, -) the duality paring betwedH} o(G) and

H™1(G). Let|| - ||;2 be the norm of.? and|| - |l be the norm ofH}(G). Similarly, we can
define the norms, inner productsioi(G), H}(G) andH~Y(G). It is clear that

HY(G) c L*G) c H}G) and HX(G) c L%G) c HX(G)

are Gelfand triples, and for anye 1L.%(G) andy € H} o(G), there existx’ € H~ 1(G), such
that &,y) = (X, y). The mapping — X’ is linear, injective, compact and continuous. A
similar result holds fot-?(G), H3(G) andH~%(G).

Remark2.4. (i) Let Q be a trace class operator bA(G). Let {gj}2,€ L*(G) N Hy(G) N
L4G) be a CONS irL%(G) such that there exists a nondecreasmg sequence of positive
numberga;}i2,, limj . 4j = co and-ae; = ;e for all j. LetQe = gkex with 3,2, 0k <
o0, and b"(t) be a sequence of iid Brownian motionskn Then thel.?(G)-valuedQ-
Wiener process is taken &(t)= Y ; \/@b"(t)a(.

(ii) Let Q be a trace class operator bA(G). Similarly, we can define a complete
orthonormal systenfe;}2;, a nondecreasing sequence of positive numt,qu}%‘;l such

that—aej = pjej, and positive numberg; such thatQe; = gjej and X2, 0 < co. Let
W(t)=X5, \/qT bj(t)ej. ThenW(t) is anL?(G)-valuedQ-Wiener process.

Thus according to Definition 2.2 and 213;, the space of linear operatdessuch that
EQz is a Hilbert-Schmidt operator frof?(G) to L2(G), is well-defined, and so ikq.
In this paper we consider a filtered complete probability sp;e( P; {Fi}t=0), Wwhere
{F1} is the natural filtration ofW(t)} and{W(t)}, augmented by all thE-null sets ofF.
Introducing randomness to system (2.2), and suppose the terminal value of the tide is
given, one can construct the following backward stochastic tidal dynamics equations:

2O = —Au(t) - ylu(t) +wo)I(u(t) + wo(t)) — gvE(D) + (1) + Z(1) 52
65(0 +V - (Ru(t) = Z(t) aw) . (2.3)

dat
u(T) = ¢ and(T) =
wheref € L2(0, T;H ™), ¢ € L;T(Q;LZ(G)) andy € LZ (Q; L%(Q)).
Definition 2.5. A quaternion offi-Adapted processes,(Z, &, Z) is called asolutionof
backward tidal dynamics equation (2.3) if it satisfies the integral form of the system
ut) = ¢ + f T {AU(9) + yIu(s) + Wo(9)I(u(s) + WO(9)) + gVE(S) - f(9)}ds
- ﬁ Z(s)dW(s)
N =y + f V - (Ru(s))ds— f Z(9)dW(s);
P-a.s., and the following holds:

(@) u e L2(Q;L*(0, T; LA(G))) N L2(Q; LX(0, T; HG)));
(b) Zel2 2(Q;L%(0, T; Ly));
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(c) £ € LZ(Q;L=(0, T; LA(G))) N LE(Q; L*(0, T; Hy(G)));
(d) ZeLZ(Q; L%(0.T; Lg)).
We list below some commonly used results and omit some of the proofs. Readers may

refer to Adams[1], Kesavan[11], Ladyzhenskaya[12], Manna, Menaldi and Sritharan[23],
and Temam[32] for more details.

Lemma 2.6. For any real-valued, compact supported smooth functioasdy in R?, the
following holds:

2
[IXYll> < IXO1X]l2llyd2Yll.2,
4 2 2
[IXIIga < 2XIIEMIVXIIE.

Lemma 2.7. Let X be a normed linear space. Let O be an open subset of X, and K be a
convex subset of O. Let:JO — R be twice djferentiable in O. Then J is convex if and
only if, for all u and ve K,

d2

doda

Lemma 2.8. DenoteB(u) £ y|u + wO(u + w®). ThenB(:) is a continuous operator from
L4(G) into L?(G), and for allu andv in L*(G),

J’(v;u,u) =

J(V+ 6u + au)|pq=-0 = 0.

(B(u) = B(v),u—v) > 0.
Lemma 2.9. (a) Foranyu andv e Hcl)(G), andu has a smooth second derivative,
(Au, u) = knllull,
and
(Au, V) < Collull Vil

for some constant£= «y + 20 COSH.
(b) For anyu andw? € L4(G),

Bz < Csllulles,

where G = supg y(X).
(c) For anyu, vandw? e L4G),

IB(u) = BW)Ile < Ca{llulls + IVllza }llu — Vs,
and
KB(U) - B(v), u— V)| < CaflluliZ, + IMIZ.}llu = Vil

(d) For anyu, v € H}(G) andw? € L*(G),

3 1
KB(U) = B(v). u = V)l < Cs{llullzs + IMlkze llu = VI llu = VI,
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3. A Priori Estimates

In this section we are going to show some a priori estimates for a projected system.
These projections are useful for the Galerkin approximation scheme employed in Section
5 and Section 6. For any € N, let

L?n(G) £ sparey, €, -+ - , en)
be theN-dimensional subspace &f(G). Likewise, we can defin&lj, (G), H™'n(G),
LX(G), H3\(G) andH{(G). Note that sincge )2 € L*(G) N Hy(G) N L*(G), we have

L’N(G) = Hgy(G) = H '\ (G).
Similarly, we have

LY(G) = Hon(G) = HY'(G).
Let Py be the orthogonal projection frofr?(G) to L2y (G). Let
WN@) £ PyW() and WN(D) £ PyW(L).

Note that by Remark 2.4¥N(t) = S, vGibi(te and WN(t) = S, \/g/b'(he. Let

{FN} be the natural filtration of WN(t)} and {WN(t)}, and we introduce the following
projections:

fN(t) £ Puf(t), N 2 E(PngIFT) and ™ & E(PuyIFT).
The projected backward tide dynamics system is given by
f’“T”t(‘) = —AUN(t) — BNUN(D) — gVeN () + FN() + ZN (O dWN (L),
%0 1 v (RVUN(D) = ZNOdWN (0); (3.1)
uN(T) = ¢" andeN(T) = y~,
whereBN(u) £ yNJu + wON|(u + wON) for all u € L*(G).

Proposition 3.1. Suppose that the terminal conditions satigfy Ly (Q;L%G)), ¥ €
L (;L*(G)), and the external forcé € L*(0, T;H(G)). Then for any solution of
system(3.1), the following is true:

(UM, Z) € {L2(10, T x @ L2(G)) N LE(Q; L2(0, T; HY(G)))) x L2 L2(0, T; L)),
(V. ZM) € {L([0. T] x ; L3(G)) N L2(Q; L3(0. T; HY(G)))} x L2(Q; L%(0. T; Lo)).

Proof. An application of the Ito formula tguM(t)|?, yields
T
IQIE+ [ 12MEIR, ds
t

=lgNIZ, + 2 f T<Au“(s) +BNUN(9) + gveN(s) - FN(9), uN(s))ds
t

T
- 2f (ZN(5)dWN(s), uN(9)). (3.2)
t
By Lemma 2.6 and 2.9, we have
2AuN(s), uN(9)) = 2(Au™(9), u™(9) = 2knllu™ (I (3:3)

1y
HO
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2B (uMN(9), uM(9))
<2C3{[uM(9)llalluM(9)lIc2
S I CTATNCTA

<3C4lIu™ (I + Callu™ (9,

2(gveN(9), uN(s)
=—2g(&N(s). V- uN(9))
<29 (9)lIL2lV - uN(9)lle2
<glig" (IIE: + Al (I,
and
2=tN(9). uN(9) < I (SEs + MU (SIE,

Thus (3.2) becomes

:
TR GRS
t

.
<llg"iz2 + f @+ Co+ g+ DUV, + 3CIu S, + gl (S
t

.
+||f“(s)||§ﬂ,1}ds—2 f @ZN(9dwh(s), u" ().

t

Applying the Itd formula td|¢(s)II?, to get

.
MO+ [ 12N ds

T T
WM+ [ 27 RN Mohds- [ 2299, €49,
The term
2V - (R'N(9),£" ()
=2(R'V - uMN(s), N(9)) + 2AuM (9 VRY, £M(s)
2RI UM (9 s llE™ ()2 + 2/uM (N2 VR Iz lIEN (I
<Cafllu(9IZ; + (SN, + 20N (S -

Thus substituting (3.9) into (3.8), and adding up (3.7) and (3.8), one gets

T T
E7 luN@)IZ, + E7 N @)I17, + ET f IZN(S)IE, ds+ E” f IZ"(9)IE,ds
t t

4
<ETgNIE, + ET NI, + ET f {@a+Corgr 14 CONEIZ,
t

+(3Cs + C)IIUN(9IZ, + (g + 2N (I, + ||f”(s)||§ﬂ,1}ds

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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forO<r <t, P-a.s. Since
M (Sl

=(=au™(s),uN(s))
N

=) (tie, uN(s)
i=1

<ANluN (9%,

whered;, as stated in Section 2, is the eigenvalue afwith respect tag. Thus equation
(3.10) becomes

.
E7 IUNOIZ, + E7 N O + E f (NI, + 1M (92, ds
t
Y
+Eﬁf IZN(9II? ds+ Eﬁf IZN(9IIF ds (3.11)
t - t

.
<E7 |V, + E7yNZ, + ET f {K(N)Hu“(s)u{ﬁz + K(N)IEN (N2 + ||fN(s)||§H,1}ds
t

P-a.s., wher&(N) is a constant depending dhonly. By means of the Gronwall inequal-
ity and lettingr = t, one obtains

:
sup{||u”(t)||L2+||§ (OZ} + f (IuNQIE; + 1M (9 ds

te[0, T

+Ef IZN(9II? ds+ Ef IZN(9)IIF,ds
0 - 0

.
<K(N){ sup E7jg" ||L2+ sup SR fo INEERCER (3.12)

te[0,T

P-a.s., which Completes the proof. O

Proposition 3.2. Suppose that the terminal conditions satigfy L“¢T (Q;L%G)), ¥ €

L3 (2 L2(G)), and the external forcé e L?(0, T; HY(G)), for alln e N and n> 2. The
following is true for any solution of systefB.1).

N, Z) € {L(0. T; LH(Q; LA(G))) N L (Q; L"(O, T, HY(G)))} x L2 (Q; LX(0. T; Ly)),
(€M, ZV) € {L™(0. T; LI (Q; L%(G))) N LIH(©; L"(0. T; HY(G)))} x L2 (Q; L*(0. T; Lo)).

Proof. First of all, the case whem= 2 can be proved by applying the Gronwall inequality

to equation (3.11) in Proposition 3.1, taking the expectation, and then taking supremum
over the time interval [OT]. Secondly, suppose the proposition holds for afl th < n—1.

Let us show that the proposition is still true for= n. An application of the 1td formula
yields

n2 - _
NI, + NEITIZN(S)IE, ds

NI, + f uuN(s)n S2AuN(9) + BNUN(9) + gveN(s) - FN(9). uN(9)ds
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i
n f N (SIT2ZN (AN (S), uN(S).

Taking the expectation on both sides, one obtains
N5y TN des PN (0 N2 N2
EOIf + E [ (9l ds+ ——E [ IuN9IAIZNIE,ds
t t
T
=EllgN|I}, + nE f [uM(9IIF2>AuN(s) + BN (UN(9)) + gve (s))ds
t
T T
-nE [ QIS ds+ E [ I9IEds
t t
T T
<ML + KONE [ (I ds+ KM NE [ Y9I ds
t t
.
+nyin f (s ENUN (9 s
t
T T
<E[lg"|I!, + K(n,N)E f [uN(9)IP.ds+ K(n,N)E f IEN(S)IIds
t t

T
£y sup EJuNEIT f (Sl ds (3.13)
se[0,T] t

whereK(n, N) is a constant depending orandN only. Similar, one can show that

n-n

T T
ENEN I, + E ft e (SIds+ e ft 1N I (SIE, ds

.
<EllyMI. + K(n, N)E f (NI, + 1IN Jds (3.14)
t
Adding up (3.13) and (3.14) to get

T T
IO, + EEOIL + € [ OIds+E [ €9, s
t t
T
<Ell¢"I!, + ElMIIY, + K(n, N)E f (NI, + 1Y (9N Jds
t

i
£ K(MN) f IN(IL . ds
t

which completes the proof after an application of the Gronwall inequality. O

4. Well-posedness of the Projected System

In this section, we are going to show the well-posedness of the projected system (3.1).
In order to do so, we need to truncate the system. For evVery N, let Ly to be the
LipschitzC* function given as follows:

1 if lullzz <M
Lum(llullg) = 10 if flull > M+ 1
0< LM(||U||H3) <1 otherwise
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Proposition 4.1. [ILm(IXllz)BN(¢) = Lu(Ilyllz)B Wiz < CN, M)Iix — Yl for any
X,y € L2y(G) and M e N, where GN, M) is a constant depending on N, M and G only.
Proof. Letx andy be any two elements ib?y(G). Without lose of generality, we assume

that||X|lz < lyllz2, and let us discuss it in the following 3 cases:
Case |-||X||Hg >M+ 1.

By the definition oftw, lILm (IIXllz3)B () — Lu(Illz)BY WIIZ. = O < Ix - ylIZ,. Thus
we see thakyBN is Lipschitz.

Case II.||y||Hé <M+ 1
Itis clear that

LM (Xlz) BN (X) = Laa(lly ) BN ()2

= Z KL (Idl)BN 09 = Lmn(lyllz) BN (v), @)

MZL

KLm(IYIl2)BN () = Lin(IYll)BN(Y) + L (1x1lz22)BN (X) = L (llylligs) B™ (%), €

<2 ) ILu(Iylle) (B () - BY(y), e>|2+22|<BN(x) ePILm(Ixllss) = Lm(llylls)?

i=1

<2

Mz EMZ g

Li(lylle) B () ~ BY(y), )l + 2C}, ZI(BN(X) ENRL S = (4.2)

i=1

whereCy, is Lipschitz codficient ofLy. By Lemma 2.6, Lemma 2.9, and the Poincaré
inequality, one has

N
D BN - BY(y), &)
i=1

N
= > 1B () - BN W)I
i=1

<2C3[IXIZ, + ylIZ. Jix - yIIZ,
<ACTCalIIXIZ; + Y12, ]IIx — Y1
whereCg is a constant depending @only. Also
N
2, BN, @)l < CHIMIE, < CiCalixIZ,

i=1
Thus (4.1) becomes

ILm(Xlz2)BN () = L (llyllzss) B ()1
<{BCICa LT iylly) [IXIZ; + Y12 | + 2CHC5CalIxIZ fix ~ I,
Sincel|x|l; anduyan, are all bounded b + 1, ILm (IIXl1e2) BN () = Lm(lly llg) BYWIZ, <
C(N, M)||x y|[2,, whereC(N, M) is only related taN, M, andG.

HE’
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Case III.||y||H[1) >M+1 and||x||Hc1J <M+1.
Then by the definition oEy,, LM(||y||Hé) = 0. Thus
m(IXl)BY () = LIy ) B ()12 < 2CH C5CalIXIE I - YIIZ,-
Thus we have shown that
ILmIXIEz)BN () = L (Yl BY W)Ilz < CN, M)IIX = Yz,
whereC(N, M) is a constant which is only related k& M andG. O
Let us state without proof an useful result from Yong and Zhou [34].

Proposition 4.2. For any(y, 2) e RXxR*M, assume that(t, y, 2) : [0, T]xR¥xR™Mx Q) —
R¥ is {Fih=0-adapted with K, 0,0)e LZ(Q; L%(0, T; R¥)). Moreover, there exists ant 0,
such that

Ity 2) - h(t. . 2| < L{ly - Y + 12— Z}
vt [0,T],y,ye R“and 2z R*™ P-a.s. For any givegieLZ (Q;R), the BSDE

{dY(t) = h(t, Y(t), Z())dt + Z()dW(L), te[0,T), a.s. 42)

Y(T) =¢,
admits a unique adapted soluti¢¥i(-), Z(-))e M[O, T], where
MO, T] = LZ(Q; C([0, T]; R)) x LZ(Q; L%(0, T; R))
and it is equipped with the norm

]
IYO.Z6)om = (E(Sup YQOF) + E fo Z@Pdy?.

Now we are able to prove the main result of this section.
Theorem 4.3. Systen{3.1)admits a unique adapted solutiga, ZN, &N, ZV) in
{L2(10, TT x @ L2(G)) N LZ(Q; L2(0, T; HG(G)))} x LZ(Q; L%(0, T; Lg))
x{L2([0, T] x @; LA(G)) N LE(Q; L2(0, T; HH(G))} x LA(Q; L2(0, T; o))
provided that the terminal conditions satigfye L3 (Q;L*(G)), ¢ € L3 (Q; L*(G)), and
the external forcé € L2(0, T; H™1(G)).
Proof. First of all, for anyM € R, let us define a truncated system as follows:
W = —AUNM(D) - L (V™ () BN UMM (D) - gTENM(D) + V()
+ZNM(t)dwN(t);
NM
27 + V- (RVUNM() = ZNM(dWA (1)
uNM(T) = ¢ andeNM(T) = yN.
From Lemma 4.1, itis clear that all cieients of the above system are Lipschitz continu-

ous for fixedN andM. Let us fixZ(t) € L([0, T]1xQ; L3(G)) NLZ(Q; LA(0. T; Hy\\ (G))).
Consider

W0 = — AUNM(E) — Ly (UMM Olh2) BN UNM(D) — gVZ(E) + FN(E) + ZNM () d W ();
uNM(T) = oM.

(4.3)

(4.4)
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Let us map system (4.4) ®N. It is obviously that the image of system is equivalent

to system (4.4). Since the ddeients in the image system are Lipschitz, Proposition
4.2 guarantees the existence of a unique adapted solution of the image system. By the
equivalence between two systems, we claim that system (4.4) admits a unique adapted
solution NM, ZNM), Clearly, for thisuNM, the following system

w0 4y . (RN NM(t)) = ZNM(t)dWN(t);
fNM(T)

admits a unique adapted soluticﬁ‘n\‘t" Z"M). Hence we can define an operadarsuch

that® () £ £NM. We would like to show thab is a contraction mappmg For agyand

lrely ([0 TIxQ; L2 (G))mL (Q; L%, T;H N(G))) letd((y) = & NMandd(s,) =
Denote

(4.5)

azup™-uM E2aV-aM [2a-o
z2z\M_ZNM 72 ZNM _ZM,
Similar to the proof of Proposition 4.1, one can verify that
KLm(tuy ™ ®) ) BN (U™ (1) — LIy ™ (®)ll52) BN (ud ™ (1)), )l

<C(M, CG,Cs)llu(t)llHl,

whereC(M, Cg, C3) is a constant depending dvi, Cg, C3 only. Letn be a positive
number such that
0> max(p?N, 2knAN + C(M,SG,CS)AN + /lN).

Applying the Itd formula tdl€(t)[1,€*" to get
B+ | 29Ik s
= ft ' { = 201&(9Z. + 27 - (R0(9), &(s)}e?*ds - ft " 2RIW(S, &)
: ft T { = 209 +2C1(1 + Ca)lIA(S g lé(S 2 &°d's

)
_ ft 26#15(2(9)dWN (9), &(9).

where the estimates are obtained similar to (3.9). Thus for any & t,

T ~
E7"r||é:(t)||2 et + Eﬂf ||§(S)||2 e1%ds+ Eﬁf ”Z(S)”EQeZ”SdS
t
<€ ft (= 20192 + IE(IR, + 201 (1 + CONIUSgE(SeJe"d's
T
<& [ {(—zn+pN)ué(s)n22+2c:1(1+Ce)IIG(SNIHsl'é”*(@““}ez"sOIS

2
<Eﬁf Pt l ) a2, (4.6)
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P-a.s., whergy is defined in Remark 2.4. An application of the It6 formuI:{alfn(;t)lhzdzez”t
yields

T A~
@z + [ 12 s

.
= ft { = 2010(9E2 + AAD(S) + L (™ (Sl B" (U2 (9)

— Lm(IuY™(9)llz2)BN(USM(9)) + gVZ(9), G(s))}e°ds
- f ! 2AZ(s)dWN(s), 0(s))e?’®
t
.
< ft {(= 27+ 26nn + C(M, Ca, Ca)n)IG(S)IZ + 29 VANIIZ(S)lIL2lIa(S 12 e °ds

- f ! 2AZ(s)dWN(s), 0(9))e”™.
t

ThusforanyO<r <t,

T T
E7 0|2, + E™ f Ia(SIZ, e ds+ E™ f IZ(SIE, & °ds
t t

-
<€ [ (- 2+ 20y + C(M.Ca. Caldn + 1B,
t
+ 29 VANIZ(S L 10(9 .)€
< | o g Ol @.7)
- t 27] — 2Kh/lN - C(M, CG, Cg)/lN — /lN § L2 S '
P-a.s. Equations (4.6) and (4.7) imply

T T
T T e T
t 0 t

2n-pn 27— 2knAN — C(M, Cg, C3)An — AN
P-a.s. Hence we takgeto be large enough such that

T R 1 T R
£ f (SR, e°ds < JE” f X2, ds
t 0 t 0

P-a.s. Taking the expectation and letting 0, we see tha® is a contraction mapping
from LZ(Q; L*(0, T; Hg\ (G))) to LZ(Q; L*(0, T; Hg\ (G))). By the contraction mapping
theorem, a unique adapted solutiai'{!, ZNM, &NM ZNM) of (4.3) is guaranteed. As
shown in Proposition 3.1, syp 1 ||uN(t)||i2 < K(N), whereK(N) is a constant associated
with N only. Since for finite-dimensional spaces, the nofifig and||-||H[1) are equivalent,

we know thaﬂ|u’\'(s)||Hc1J is also uniformly bounded for evemy. By the definition of the
truncationLy,, it is clear that (3.1) and (4.3) are equivalent whdnis large enough.
Thus lettingM approach infinity, the limit of the solutioruf'M, ZNM ¢NM_ZNMy is the
unigue adapted solution of the projected system (3.1). The regularity of the solution can
be obtained by Proposition 3.1. O

:
E7 ft 79I ds,
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Continuity of the solution to the projected system (3.1) can also be obtained along
similar lines of the proof of Theorem 6.1. We shall skip the proof and postpone it to
Section 6. Thus the well-posedness of the projected system has been fully investigated.

5. Existence

In this section, we are going to show the existence of an adapted solution of system
(2.3). The Galerkin approximation scheme and Minty-Browder technique will be em-
ployed. In order to assure an uniform bound on a priori estimates, we make the follow-
ing assumptions. Such an approach is commonly taken in the study of stochastic Euler
equations by several authors so that a dissipatfiecearises. Also they are standard
hypotheses in the theory of stochastic PDEs in infinite dimensional spaces (see Chow [5],
Kallianpur and Xiong [10], Prévot and Rockner [29]).

(A.1) (Continuity):f: H(l) — His a continuous operator;
(A.2) (Coercivity): There exist positive constaat@ndg, such that

(Au —f(u), u) < alluliZ, - Blullz

o
(AU —f(u), Au) < aIIUII ﬁIIAUIIHl;
(A.3) (Monotonicity): There exist > 1 anda > 0, such that for any andv in HZ,
andM € N,
(VAU = V) = (f(u) - f(v)), R"(u = v)) < allu - vIZ,.

whereRM is the projection oRinto L2y (G);
(A.4) (Linear growth): For any € Hé and some positive constamt

I<F(u), u)l < duli®.
The system (2.3) can now be written as

20 = —Au() - ylu() + WOBI(u(t) +wO(t) — gVEEM) + F(u(t) + Z(t) T5;
ﬁf@ +V - (Ru(t)) = Z(t) W, (5.1)
u(T) ¢ and(T) =

and the corresponding projected system is

WO — _AuN(t) - BNUN(E) - gveN(t) + FNUN (D) + ZN ()W (b);
10 4 9. (RUN) = ZV O (>2)
N(T) = ¢" andeN(T) = Y.
Under these assumptions, we are able to prove a very important monotonicity result,
which is the essence of proof of the existence theorem.

Lemma 5.1. For anyu, v € L3([0, T]; LYG)) N L°(0, T; HX(G)), and Me N, define
44

) 3, CiCs 4
r) ft {2a+ (m) {lu(9ls + (e} }ds

Then
(A(u-v) +B(u) - B(v) - (f(u) - f(v)) + %f(t)(u -v),RMu-v)) <o.
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Proof. From the monotonicity assumption and Lemma 2.9, one has
(A(u—-V) +B(u) - B(V) - (f(u) - f(v)), R"(u - v))
=(vA(U - V) = (f(u) = f(v)), R"(u = v)) + (B(U) - B(v), R"(u - ))
+((1 =AU -V),RMu - v))

3
, ;
<allu = VI, + CaCflulls + Ivllee)llu = VI, lu ~ vII%, ; + (L= )nCollu - VI

Hl
2 3 iC: o\ 3 2
<a|lu-v +—(—){u a4V 4} u-v
I II7 1 "D, lulls + [IV]lat 1l II7

=- ir(t)llu — VI,
which completes the proof. O

The coercivity assumption assures a uniform a priori estimate. The following a priori
estimate is very useful for the Galerkin approximation which will be used in Theorem 5.3.

Proposition 5.2. (i) Suppose that the terminal conditions satigfg L (Q;L?(G)) and
yely (Q; L%(G)). Then for any solution of systeff.2), the following is true:
(UM, ZM) € {L2(10, T] x @, LA(G)) N LA(Q; L2(0, T; Hy(G)))} x L2(Q; L*(0, T; Lg)),
@, ZV) e L2([0, T] x Q; LA(G)) x LZ(Q; L%(0, T; Lg)).
Moreover,

)
sup [UN(DIE, + E f NI, ds+ sup VDI
0 0 te[0,T]

te[0,T]

T T
+ Ef IZN(9IE, ds+ Ef IZN(9IF ds< K, (5.3)
0 0

P-a.s. for some constant K, independent of N. , ,

’ ) " ; . .
forslln € N anina 2. The folowing i e for 2y sohior o sys@sy
(UM, ZM) € {L=(0. T; LH(Q: LX(G))) N L2(Q; L2(0, T; HY(G)))} x L2(Q; L*(0, T; Lg)),
@V, ZN) € L=(0, T; LI L%(G))) x L7(Q; L*(0, T; Lg)).

Moreover,

.
sup EuM)IIf, + E f UM I NIuN(9)IZ,ds+ sup ElEN DI
te[0,T] 0 0 te[0,T]

T T
+ Ef IZN(I, ds+ Ef IZM(9IP, ds< K, (5.4)
0 0

for some constant K, independent of N.
(iii) Let the terminal conditions satisfy € L2 (Q H 0(G)) andy € L (Q; Hl(G))
Then for any solution of systefs.2), the foIIowmg is true:

UM, ZM) e LR([0, T] x Q; H3(G)) x LZ(Q; L3(0, T; L)),
@, ZV) € L2([0, T] x Q; H3(G)) x L2(Q; L%(0, T; Lg)).
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Moreover,

sup [lUN@)IR. + sup IEN@)IP,
te[0,T] 0 t€[0,T] 0

T T
+ Ef 1IZN(9)II? ds+ Ef IZN(9IIF ds< K, (5.5)
0 - 0
P-a.s. for some constant K, independent of N.

Proof. The proof is very similar to Proposition 3.1, with few modifications of some esti-
mates. It is clear that

5| 27C2
28 (U (9). 0N < | IO + FI 9,

2
207E(9,0(9) = UM + G2,

and

Thus under part one of Assumption (A.2), we have

N(py2 TN 2 4 B TN 2 4
U™ Ol + IZ7(9E, ds+ > llu (5)||Hé S
t t

T 4| 27C4 402
<lIgMIR, + ft {(a+\/73)||u”(s)niz+T?uf”(s)ufz}ds

T
_ N N N
2]: (Z™(9)dWhN (), u™(9)).

Since
2V - (RVuN(9),M(s)
4C2
<A + GIIE, + (S5 + oI
we have

.
E U @17, + E7 " (I +§ f (97 ds
t

T T
& [ 129k ds+ 7 [ 1249k ds
t t

<E7Ig"I2, + ET NI,
T 27C4 492  4C?
7 3 3 N/ 2 g 1 N/ 2
+E ft {(os Z52 + @iz + (5 + 2+ colie9l os
for0<r <t, P-a.s. An application of the Gronwall inequality and letting t completes
the proof.
We skip the proof of part (ii) and (iii) since they are very similar to part (i) and the
proof of Proposition 3.2. Note that the proof of (iii) uses the second half of the coercivity
assumption. O
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Under our assumptions, the well-posedness of system (5.2) can be obtained similarly
to Theorem 4.3. We shall skip the proof. Now we are ready to present the main result of
this paper.

Theorem 5.3. Suppose that the terminal conditions satigfg Ly (Q; HE o(G)) andy €

L°°T(Q H1(G)) Then there exists an adapted solutignZ, &, Z) of system(5.1), such
that

(u,Z) € LX([0, T] x Q; HY(G)) x L2(Q; L%(0, T; Ly)),
(£,2) € L2([0, T] x Q; H3(G)) x LA(Q; L*(0, T; Lg)).

Proof. For technical reasons, let us introduce a new system. FovlareyN, M; < N, let
RM: be the projection oRto L2, (G). Then clearly previous results on projected system
(5.2) hold for

A = —AUN() - BN (D) - gUEN() + TN(UNM() + 2V T );
oeN 1(t)+V (RMluNMl(t))_ZNMl(t)d\NN(t)
NV (T) = g andg™: (T) = g

Let the unique adapted solution be\{*, ZNM: &NM: ZNM - Eirst of all, let us estab-

lish several limits of convergent sequences. They are necessary when we perform the
Galerkin approximation scheme. By Proposition J2iM ), {¢NMye | (ZNMe
and{ZNMl} , are all uniformly bounded in respective spaces. Thus there @xstZ,

andZ, and a subsequenNﬁ such that

uNM Sy in L2(Q; L3(0, T; HA(G))),
MM L e in Le(0, T x Q; LAG)),
ZNM L 7 in L2(Q; L0, T; L)),
MM L 7 in L2(Q L%(0,T; L))
SinceA is a continuous mapping frofi} H(G) to H~ 1(G), we know that
AUl < Cllullz,

forallu e Hl(G) and some consta@. Thus combined with the assumptionsforone
gets

AuNM _ fNeNMy D in L2(Q; L2(0, T HTG))),
for some functiorf-; and some subsequenisg By Lemma 2.9,
IBY QN @)1 < ColBYUN™ )z < CoCallu™™ )l < 2} CECaIUM™: ().
Thus
BMuMM) 5, in L2(Q; L0, T; HY(G))),
for some functiori-, and some subsequenidg For everyt, let us define
L1 LZ(Q;L%(0,T; L)) — L2(Q; L%0. T; H X(G)))

5
I ft AdW(S).
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Clearly £; is a bounded linear operator. Hence it maps weakly convergent sequences to
weakly convergent sequences, and

f Tz (s f "Z(9aw(e  in L@ 0. TG
t t

Similarly, one can prove that
T

ft T{AuNle(s)—ka(uNle(s))JrBNk(uNle(s))}olsﬂ ft {Fi(9) + F2(9))ds
in L2 (Q; L%(0, T; H'}(G))) and

f ! ZNM (9w (g) S f ! Z(sdW(s)  in LZ(Q; L*(0, T; HY(G))).
t t
One can also show that
Le  L2([0,T] x Q; L%(G)) - L2(Q; L%(0, T; HXG)))
T
& ft Vé(s)ds

is a bounded linear operator. SingeM: e L2([0, T] x Q; L%(G)), we have

T w T
f veNMi(g)ds — f VE9ds  inLZ(Q; L2(0, T; HYG))).
t t
Likewise, we have
T w T
f V- (RMuMNMz(g))ds = f V- R™Mu(9)ds  inLZ(Q; L3O, T; HHG))).
t t

Thus we have shown that
T

T
u(t) =¢ + ft {F1(s) + Fa(s) + gV&(9)ds - ft Z(t)dw(s), (5.6)

and

T T
£t) =y + ft V - (RMu(s))ds- ft Z(9dW(s) (5.7)

hold P-a.s. For notational convenience, let us dehtiey N again. For anyM, < N, let
v e L([0, T] x Q; Hg,, (G)). Define

T 3, CiCi i .
() 2 {2 +—73K§}d
® ft ot (g, s

where
K= sup{{ sup lulisju{  sup ||uNM1||L4}N_1} +  sup Vil
(t,w)e[0,TIxQ (t,w)e[0,TIxQ - (t,w)e[0,TIxQ
By Lemma 5.1, it is easy to see that

(AUNMe(t) + BN UMV (1)) - PN UMM (D) + %f(t)uNMl(t)

— AV(t) - BN(v(D) + TN (v(D) - %f(t)v(t), RM1gNMz (t) — RMuy(t)) < 0.
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Integrating both sides and taking the expectation, one gets
E fo ' e "OAuNM(s) + BN (UMM (9)) — NN (s)) + %f(s)u”'\"l(s),
RMiyNMi(g) — RMiy(s))ds

<E f ! e O(Av(s) + BN(v(3) — fN(v(9)) + %f(s)v(s), RMiyNMi(g) — RMiy(s))ds
0
(5.8)

An application of the Itd formula te~ || VRM:uNM:(s) |2, yields
T
Ell VRM:gN |2, — Ee O VRMUN™: (0)7, + 2E f e "(gveNi(s), R™uNMi(s)ds
0
.
- Ef e’ \/RMlzNMl(s)HEst
0
.
=-E f e OF (9l VRM:uNM: (9)]17,ds
0
.
-2E f e"OAuNM () + BNUNM:(g)) — FNUNM(9)), RMuNM(s))d's
0

.
=-2E f e"OAuNM () + BNUNM(g)) — FNUNM:(9)) + %f(s)u”'\"l(s),
0

RMiyNM:(s))ds (5.9)

Applying the Itd formula gl (9)]2, to get
T
- [ 207 R0 (9). M (9)ds
0

)
_E f 2(gve™i(9), RMuNM: (9))dss
0

.
=gEllyNIIZ, - gElleN™ ()11, - gE fo I1ZM ()1, ds (5.10)
Substituting (5.10) into (5.9), one gets
Ell VRN |2, — Ee™ O VRMUNM: (0))12, + gEIIyN|IZ, — gEe " O)ig"M (0)112,

T T
_gEf e_r(s)HZNMl(S)HEQdS— Ef e_r(S)HVRMIZNMl(S)HEﬂdS
0 0 -

.
=-2E f e "OAuNM(s) + BN(UNM(9)) - FNUNM () + %f(s)uNMl(s),
0
RMyNM:(g)yds
By the lower semi-continuity of the norms, we have
T
2liminf E f e "OAuNM () + BN(uNM(g)) — fNUNM(9)) + :—Zlf(s)uNMl(s),
—00 0

RMyNM(g))ds
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= — EIl VRYg|[Z, + lim inf Ee " VRN (0) 2,
— GEIIR, + gliminf Ee "N )2,

T T
+inLninfEf e OIZNM ()17 ds+ IiLninfEf e VRM:zZNMu(g)12 ds
—00 0 —00 0 =
> — E|| VRMig|1?, + Ee O VRMu(0)I2, - gElwlIZ, + gE€ " OII£(0)%
T T
+gE f e ONZ(9IE, + E f e O VR™Z(9)I7 ds: (5.11)
0 0

Again applying the Ito formula te"|| VRM:u(s)||2, and [|£(s)[1%, in (5.6) and (5.7) to
get

Ell VRMg|)2, — Ee” O VRMu(O)IIZ, + gElIyIZ, — gE€ €0,
- gEJ;T e"O)Z(s)I?,ds- E j: e O VRWZ(9)|I?, ds
T 1
=_2E fo e "O(F1(s) + Fo(s) + Ef(s)u(s), RM:u(s))ds. (5.12)
Hence (5.11) and (5.12) imply
2liminf E j: e OauNM(g) + BNUNM(9)) - fNUNM(9) + %f(s)uNMl(S),
RMuNM(g))ds
>2E fo ! e "O(F1(s) + Fa(s) + :—Zlf(s)u(s), RM:iu(s))ds. (5.13)
Together with (5.8), one gets

E f ! e O(F1(s) + Fo(9) + :—Lf(s)u(s), RMu(s) — RMy(s))ds
0 2

<liminf E f ! e"O(Av(s) + BN(v(9) — FN(v(9)) + :—Zlf(s)v(s), RMiyNMi(g) — RMiy(9))ds
0

N—sco ] )
=liminf E fo e "O(AV(s) + B(v(9) — f(V(9)) + Er(s)v(s),
Py{R™ UM (s) - RMv(s)yds (5.14)
SinceuMM: 5 yin LZ(Q; L*(0, T; Hy(G))), it is easy to show that
Pu{RMUNM] 25 RMiy
in LZ(Q; L%(0, T; Hy(G))) as well. Thus (5.14) becomes

E f ! e O(F1(s) + Fo(s) + }'r(s)u(s), RMu(s) — RMiy(s))ds
0 2

<E f ! e "O(AV(S) + B(v(9)) — f(v(9)) + %f(s)v(s), RMu(s) — RM1v(s))ds.
0
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Since the above inequality holds for &l L2([0, T] x Q; H oM, (G)) and allM; € N, we
know that it holds true for a¥ € L2([0, T] x ©; H o(G)). Let us choose=u + Aw where
we L2([0,T] x &; H 0(G)) anda > 0, one gets

.
E f e "O(F(9) + Fa(s), RMw)yds
0

T
>E f e "O(Av(S) + B(v(9) — f(V(9)) +A%'r(s)w(s),RM1w(s)>ds
0
Letting A vanish to 0, and by the arbitrarinesswofand the continuity of the cdgcients,
we know that
F1(s) + F2(s) = Au(s) + B(u(s)) — f(u(s)) P-a.s.

for all M; € N. The regularity of the solution is guaranteed by Proposition 5.2. The proof
can then be completed by lettifd; go to infinity. O

6. Unigueness and Continuity

In this section we deal with the uniqueness and continuity of the solution. Again we
assume the uniform bound of the terminal conditions ui’a]l%emorm. Such circumstances
arise in certain other nonlinear stochastic partiéiledlential equations such as stochastic
Euler equations.

Theorem 6.1. Suppose that the terminal conditions satigfg Ly (Q;H(l)(G)) andy €
Ly (Q; Hé(G)). Then systertb.1) admits a unique adapted solutifm, Z, £, Z) in
L2([0, T] x @; HY(G)) x L2(Q; LA(0, T; Lg))
xL2([0, T] x Q; H3(G)) x LZ(; L%(0, T; Lg)).
Moreover, the solution is continuous with respect to the terminal conditions in
L=([0, T]; LA(Q; L%(G))) x LZ(Q; L%(0, T; Lg))
XL™([0, T]; L2(; LA(G))) x LZ(Q; L%(0, T; Lo)).

Proof. Suppose thatug, Z1, &1, Z1) and {2, Z», &2, Z,) are solutions of system (5.1) ac-
cording to terminal condition{, ¥1) and @2, y»), respectively. Denote

0=U1—U2, 2221—22, ZZZl—Zz,
E=t1-&, d=¢1—¢2. U=y1- Vo
Then the diferences satisfy
20 = —AQ(t) - B(ua () + B(uz(t) - GVE) + f(ua(t)) - f(ua(t)) + Z() T52;
%0 V- (Ra(D) = Z(At)%;
U(T) = ¢ and&(T) = ¢
(6.1)
Define

r(t) £ ftT {20+ 3 (%)%K%}ds
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where

K= sup lulles+  sup [luzlla.
(t,w)e[0,TIxQ (t,w)€[0,T]xQ

Then an application of the Itd formula &"|| VRA(s)[1?, and [IE(9)]2, yields
T T
Ee O VRa®W)IZ, + gEIEW)IZ, + 9E f IZ(9)IiF ds+ E f e I VRZ(9IIF, ds
t t

.
=Ell VRAI%, + gEIIgI, + 2E ft e O(AQ(s) + B(ux(9)) - B(ua(9)) - f(us(s)) + f(uz(9))

+ H(S0(9), Ri(SHds
<E|| VRHIIZ, + GEIIGIZ..

Thus we have shown the uniqueness and continuity of solutions. O

Now we have established the well-posedness of the backward stochastic tidal dynamics
equation. Such well-posedness holds when the terminal conditions are uniformly bounded
underHé-norm. One may want to relax the conditions on terminal values to a weaker
sense, such as uniformly boundednegsiisense. However, such problems are still open.
The dificulty lies in the nonadaptiveness nature of the backward stochatceditial
equations. For instance, the functiodefined in Lemma 5.1 is not adaptive to the forward
filtration. So in the proof of Theorem 5.3 and Theorem 6.1, we redefirgal that it
is adaptive to the system. For this approach, we have to improve the regularity of the
solutionu appeared in the definition af Such obstacles do not arise in the forward
stochastic systems.
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