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Mobile elements have created structural variation in the human
genome through their de novo insertions and post-insertional
genomic rearrangements. L1 elements are a type of long inter-
spersed element (LINE) that is dispersed at high copy numbers
within most mammalian genomes. To determine the magnitude of
L1 recombination-associated deletions (L1RADs), we computation-
ally extracted L1RAD candidates by comparing the human and
chimpanzee genomes and verified each of the L1RAD events by
using wet-bench analyses. Through these analyses, we identified
73 human-specific LIRAD events that occurred subsequent to the
divergence of the human and chimpanzee lineages. Despite their
low frequency, the L1IRAD events deleted ~450 kb of the human
genome. One L1RAD event generated a large deletion of ~64 kb.
Multiple alignments of prerecombination and postrecombination
L1 elements suggested that two different deletion mechanisms
generated the L1RADs: nonallelic homologous recombination (55
events) and nonhomologous end joining between two L1s (18
events). In addition, the position of LIRADs throughout the ge-
nome does not correlate with local chromosomal recombination
rates. This process may be implicated in the partial regulation of L1
copy numbers by the finding that ~60% of the DNA sequences
deleted by the L1RADs consist of L1 sequences that were either
directly involved in the recombination events or located in the
intervening sequence between recombining L1s. Overall, there is
increasing evidence that L1RADs have played an important role in
creating structural variation.

LINE-1 | nonallelic homologous | nonhomologous end joining |
retrotransposon

Long interspersed elements (LINE-1s or L1s) are universal
constituents of mammalian genomes and account for ~17%
of the human genome (1). They have expanded to ~ 520,000
copies over the last 150 million years (1, 2). Full-length L1s are
~6 kb long, and encode two ORFs (ORF1 and ORF2), which
code for a 40-kDa RNA-binding protein with nucleic acid
chaperone activity (3) and a 150-kDa protein with both endo-
nuclease (EN) and reverse transcriptase (RT) activities (4-6).
L1s mobilize via an RNA intermediate to integrate themselves
into genomic DNA at the target site. However, ~99.8% of L1s
in the human genome are unable to retrotranspose (7), either
because of point mutations or structural deficiencies (e.g., 5’
truncations, 5’ inversions, or other internal rearrangements)
(8-10). Consequently, only 80-100 retrotransposition-
competent L1s capable of autonomous retrotransposition are
located in the human genome (7, 11).

Homologous recombination between closely related DNA
fragments occurs in all living organisms (12, 13). A recent study
of human genomic deletions caused by unequal homologous
recombination between two Alu elements showed that 492
human-specific deletion events resulted in a total of ~400 kb
DNA being lost since the divergence of the human and chim-
panzee lineages (14). Similar to the Alu elements, L1s may have
been a source of recombination-associated genomic deletion
throughout human evolution because of their high copy numbers
and relatively long stretches of sequence identity. Surprisingly,
only three L1 recombination-associated deletion (L1RAD)
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events causing human diseases (i.e., glycogen storage disease,
Alport Syndrome-Diffuse Leiomyomatosis, and Ellis—van Crev-
eld syndrome) have been reported (15-17). However, there have
been no previous systematic studies of the genome-wide impact
of this process in the human lineage. Here, we report the
identification and characterization of 73 human lineage-specific
L1IRAD events that have occurred since divergence of the
human and chimpanzee lineages (~6 million years ago) (18, 19).

Results and Discussion

Identification of LIRAD Events in the Human Genome. To investigate
the genome-wide impact of LIRADs on the human genome, we
computationally compared the position of L1s in the human
genome (hgl8) to orthologous positions in the chimpanzee
genome (panTro2). After various computational filtrations, a
total of 4,786 putative LIRAD candidate loci were retrieved for
further examination (see Materials and Methods for details). We
analyzed and discarded 546 of the 4,786 loci as false positives
because of (i) insertions of an L1 or other type of repetitive
element at the orthologous chimpanzee locus (181 events), (ii)
computational errors in the alignment of the human and chim-
panzee genomes (99 events), and (iii) other genomic rearrange-
ments (e.g., translocation, gene conversion, and retrotransposi-
tion-mediated deletion) (266 events) (Supporting Information
(SI) Fig. S1). Of the remaining 4,240 loci, we found 98 LIRAD
candidate loci that did not contain poly (N) stretches (i.e.,
partially unsequenced regions) in the orthologous chimpanzee
locus. The remaining 4,142 loci were ambiguous because of the
inclusion of poly (N) stretches in the chimpanzee sequence. So,
we investigated these loci based either on target site duplication
(TSD) structure or by using rhesus macaque and orangutan
reference sequences (rheMac2 and ponAbe2, respectively), that
encompass the unsequenced chimpanzee genomic region. For
TSD structure analyses, the chimeric L1 created by an LIRAD
event in the human was expected to lack matching TSDs whereas
the orthologous chimpanzee L1s retain the normal, matching
TSD structure as described in the study of Alu recombination-
mediated deletion (ARMD) (14). By applying the criteria men-
tioned above, we collected 117 more LIRAD candidates from
the 4,142 loci that included partially unsequenced regions of the
chimpanzee genome. The 215 putative LIRAD candidates were
then examined by using locus-specific PCR to confirm their
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Table 1. Summary of human-specific LIRAD events

Classification Number of loci

Putative L1RAD events 215

False events 142

Sequence disagreement caused by the chimpanzee 98
genome

Sequence disagreement caused by the human 2
genome

L1 insertion in the chimpanzee genome 40

Others (e.g. lineage sorting and L1IMD) 2

L1 recombination-associated deletions 73

Nonallelic homologous recombination 55

Nonhomologous end joining 18

status as authentic LIRAD events (Table 1). Six of these loci
could not be amplified via PCR because of the presence of other
repeat elements in the flanking sequence. These six were exam-
ined by either the comparison of the chimeric and prerecombi-
nation L1s and/or triple alignment of multiple species (14, 20).
The analysis resulted in the recovery of 73 events that were
classified as authentic human-specific LIRAD events (Fig. S2
and Table S1).

Impact of Genomic Deletions Associated with Recombination Between
Two L1s. Subsequent to the divergence between the human and
chimpanzee lineages, the total amount of human DNA deleted
by the 73 identified LIRAD events, that have occurred through-
out the genome aside from chromosomes 16 and 21 (Fig. S2), is
estimated to be 447,567 bp. The size of human-specific LIRADs
ranges from 56 to 64,113 bp, with an average length of 6,132 bp
and a median length of 3,239 bp (Fig. 1). We investigated the 146
L1s that were involved in the 73 LIRAD events. As expected,
most of the L1s (85%) involved in these events are truncated,
with only 22 elements that were full-length L1s (>6 kb). Inter-
estingly, 13 elements were shown to be inverted/truncated L1s
that were generated by twin priming (9), four of which involved
a chimeric L1 that was both 5’ and 3’ truncated. The size
distribution of human-specific LIRADs indicates that these
events are skewed toward smaller deletion sizes (<4 kb). How-
ever, this skew is not as pronounced as the one reported (<0.5
kb) for human-specific L1 insertion-mediated deletions
(L1IMDs) (21). In addition, the LIRAD process has deleted 25
times as much human genomic sequence as the LIIMD process.
Surprisingly, the largest deleted sequence was ~64 kb in length,
within which only the LOC469769 pseudogene and two inter-
genic regions are found in the chimpanzee ortholog. This
deletion is fixed in 80 human individuals (see SI Text) and is the
largest mobile element recombination-associated deletion re-

ported to date. Overall, the size of LIRADs is positively
correlated with the size of the longer L1 insert of the two L1s
involved in each LIRAD (r = 0.258, P = 0.0275). One expla-
nation of this finding is that, when we analyzed the correlation
between the sizes of the two L1s involved in each LIRAD, we
found the sizes of the two L1s to be positively correlated (r =
0.431, P = 0.0001) with one another. This implies that longer L1s
have a higher probability of possessing more regions of homol-
ogy with other long L1s than with shorter L1s. This observation,
combined with the expectation that larger L1ls will be less
densely distributed in the genome than smaller L1s, suggests that
longer L1s participate in larger deletions. Therefore, we con-
clude that larger L1s contribute more to overall genomic insta-
bility in the human genome than do shorter L1 elements.

To determine the possible effects of the elimination of an-
cestral genomic sequences during the 73 human-specific LIRAD
events, we compared the prerecombination sequences (i.e.,
orthologous chimpanzee sequences) with the human genome.
This analysis showed that ~27% of the LIRAD events were
located within predicted or known RefSeq genes. When com-
pared with the ARMD events, the density of LIRAD events
within genic regions was relatively low (Table 2). This result is
not unexpected because 66% of Alu elements are located in
intronic regions whereas only 58% of L1s are located in intronic
regions (22). In other words, the universal distribution of L1s is
biased toward gene-poor regions relative to their Alu counter-
parts. Nevertheless, one LIRAD event generated exonic dele-
tions in two genes annotated as putatively functional in the
chimpanzee genome. One of the two genes, LOC745816, en-
codes a hypothetical protein. The other, LOC457712, is a model
chimpanzee gene similar to a sorting nexin (SNX) 25 gene. In the
human lineage, SNX 25 is one of the cellular tracking proteins
(23) and has been predicted to encode phox homology (PX), PX
associated, and a regulator of G protein domains (24). However,
the role of SNX 25 is currently unclear.

L1IRADs Created by Two Different Mechanisms. To analyze the
recombination junction, sequence alignment between prerecom-
bination and postrecombination L1s involved in the 73 LIRAD
events was performed by using BioEdit (25). We found that the
L1IRAD events were generated by two different mechanisms.
Among them, 55 LIRADs were generated by nonallelic homol-
ogous recombination (NAHR). In this mechanism, the two
prerecombination L1s still present in the chimpanzee genome
have recombined into a single chimeric L1 in the human genome.
This recombination occurs at a point within the identical se-
quence shared by the two L1s that averages 40 bp in length. In
the human genome, the resulting chimeric L1 is recognized as a
single element by RepeatMasker (http://www.repeatmasker.org/
cgi-bin/WEBRepeatMasker), and only careful analysis of L1
alignments and TSDs demonstrate its chimeric nature. The other
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Size distribution of the L1RADs. The size distribution of DNA sequences deleted by human-specific LIRAD events is displayed. The largest deleted
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Table 2. Comparison of the LIRADs and ARMDs

Feature L1RAD ARMD*
Total events 73 492
Total deletion size, kb ~450 ~400
Maximum deletion size, kb 64 7.3
Mean of deletion size, bp 6132 806
Median of deletion size, bp 3239 486

GC content (neighboring 20 kb) 38% 45%
Gene density (neighboring 4 Mb) 1 gene/105 kb 1 gene/66 kb
Located within genes 27% 60%
Exonic deletions (loci) 2 3

*The features of ARMD events are derived from Sen et al. (14).

mechanism resulting in LIRAD events is nonhomologous end
joining (NHEJ) between two Lls, a process shown to be
responsible for the other 18 LIRADs. It is known that NHEJ
typically involves microhomology between sequences (12, 26,
27). After the alignment of two prerecombination L1s and their
chimeric L1 recombination product, we identified the micro-
homologies between the two prerecombination L1s. These mi-
crohomologies were found to range from 1 to 6 bp. Unlike the
chimeric L1s generated by the NAHR-LIRAD events, the
NHEJ-L1IRAD process produced two different contiguous L1s
rather than a single chimeric L1.

The analysis of L1 subfamilies involved in the NAHR-L1RAD
events shows that the number of elements from each L1 sub-
family is proportional to their genome-wide copy number (Fig.
2A). This is an expected result as NAHR events occur via the
mispairing of two closely related L1 sequences that share a
relatively long stretch of sequence identity. Additional evidence
supporting this observation comes from the fact that 83% of
NAHR-LIRAD events resulted from elements in the LIPA2 to
L1PA7 subfamilies (Fig. 24). These subfamilies are relatively
young and exist in high copy number in the human genome (28,
29). By contrast, NHEJ-L1RAD events showed no relationship
between the number of elements in each subfamily involved in
the events and their genome-wide copy number for each L1
subfamily (Fig. 2B). NHEJ has been shown to be one of the
repair mechanisms for double-strand breaks (DSBs). Thus, it
may be hypothesized that the two Ll1s involved in a NHEJ-
L1RAD event were present in the flanking region of DSB(s),
and that a pair of short complementary L1 sequences (i.e.,

microhomology between two L1s) is associated with end-binding
to bridge the DNA lesion.

Genomic Environment and Distribution of L1RADs. L1s tend to be
found in regions of low GC content relative to the ~41% average
of the human reference genome (1). Consistent with this obser-
vation, recent L1 insertions also show a preference for AT-rich
DNA (30) because of either the L1 EN cleavage site or the
greater selective pressure operating in GC-rich regions. To
characterize the genomic environment of human-specific
L1RAD events, we estimated the neighboring GC content, gene
density, and local chromosomal recombination rate of LIRAD
loci. The GC content of neighboring LIRAD loci was deter-
mined by extracting 20 kb of flanking sequences (=10 kb in
either direction) for each LIRAD locus from the human ge-
nome. The GC content of this sequence, excluding the chimeric
L1 (i.e., the postrecombination L1) itself, was then calculated by
using in-house Perl scripts. The resulting GC content for the
flanking regions of the human-specific LIRADs averaged
~38%. Our results show that the LIRAD loci seem to be located
in AT-rich areas of the human genome which is congruent with
findings that most L1s exist in GC-poor regions (36-38%) of the
human reference genome (1). To measure gene density in the
neighborhood of human-specific LIRAD events, we retrieved 4
Mb of sequence flanking LIRAD events (£2 Mb in either
direction) and determined the number of known and predicted
human RefSeq genes there. The gene density of these loci was
estimated to be, on average, one gene per 105 kb and their
distribution is skewed toward low gene density (median is one
gene per 121 kb) (Fig. S3). When compared with the average
gene density for the entire human genome (one gene per 94 kb),
this finding indicates that human-specific LIRAD events tend to
be found in regions of low gene density. This trend is correlated
with the location of Lls, which predominate in gene-poor
heterochromatin (31), but those observations likely reflect either
the L1 insertion preference (30) or selective pressures against
deleterious L1s (32) during genome evolution. Next, we inves-
tigated whether LIRADs were correlated with the local chro-
mosomal recombination rate. We analyzed the recombination
rate, as calculated by UCSC’s BLAST-like alignment tool
(BLAT) browser in the human genome, for each chimeric L1
element, but could not find any correlation between L1RADs
and the local chromosomal recombination rates. The correlation
among four parameters (GC content, gene density, deletion size,
and recombination rate) reported above can be found in Table
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S2. Furthermore, to investigate whether the L1 density around
each LIRAD region can affect the local chromosomal recom-
bination rate, we performed a correlation test for relationship
between the recombination rate in the 100-kb windows of
L1RAD events (=50 kb in either direction) and the total number
of L1s in the windows. Whereas the r-value was negative, the P
value represented no significant correlation between the two
factors (r = —0.029; P = 0.8089). However, because LIRADs are
rare events, it may be difficult to find robust correlation between
these variables, even if it does exist.

Human-Specific LIRAD Polymorphism. To estimate the polymor-
phism rates of LIRAD in humans, we analyzed 35 human-specific
NAHR-LIRAD loci by using a panel of genomic DNA, from 80
human individuals (see SI Text and Table S3). Our results show that
the polymorphism level of human-specific LIRAD is 20% (Table
S4), which is similar to the polymorphism rate of human-specific
ARMD events (15%) (14). These observations suggest that
genomic deletions associated with recombination between retro-
transposons have generated structural variation between humans.

Comparison of Human-Specific LIRADs with ARMDs. Despite the
remarkable copy number of Lls in the human genomes, the
frequency of human-specific LIRADs is not as high as that of
human-specific ARMDs (73 vs. 492 events, Table 2). The
observed difference between these two similar processes is
caused by several reasons. First, L1s are monomer sequences
whereas Alu elements are dimeric consisting of left and right
monomers. Although each monomer evolved from 7SL-RNA
independently (33), their 5’ ends are fairly homologous. The
particular dimeric structure of each Alu element, a free left Alu
monomer (FLAM) and a free right Alu monomer (FRAM),
could contribute to an increase in opportunities for recombina-
tion between two Alu elements. FLAMs and FRAMs exist in
54,965 and 21,730 copies, respectively, in the human genome, as
estimated by UCSC table browser (http:/genome.brc.mew.edu/
cgi-bin/hgTables?command = start). Furthermore, it was ob-
served that ~25% of all human ARMD events are caused by the
dimeric structure of Alu elements (14). The second reason
accounting for the observed difference between ARMD and
L1RAD frequencies involves the average distance between L1s
(one insertion every 6 kb), which is twice that observed between
Alu elements (one insertion every 3 kb). This implies that
L1IRAD events could be more deleterious as compared with
ARMDs because of their potential to cause relatively large
deletions in the host genome. This may result in an increase in
the selective pressure against LIRAD events. The third factor
impacting the relative frequencies of ARMDs and LIRAD:s is
the observation that L1s tend to be located in less recombino-
genic areas of the genome. A study of comparative recombina-
tion rates has shown that the recombination rate is highly
correlated with CpG fraction, GC content, and polypurine/
polypyrimidine tract fraction in 5-Mb, nonoverlapping windows
of the human genome, but is negatively correlated with the
density of LINEs in the human, mouse, and rat genomes (34).
These observations imply that the high density of LINEs could
counteract or decrease chromosomal recombination. Finally, the
presence or absence of a recombination hotspot between L1s
might contribute to the observed differences in the levels of
recombination-associated deletions between Alu elements and
L1s. To investigate the existence of possible recombination
hotspots involved in LIRADs, we aligned prerecombination
Lls from the chimpanzee genome with the chimeric Lls
recovered from the human genome. The alignment windows
contained identical regions (5 to 366 bp in length) between the
two L1s. However, no recombination hotspot on L1 sequences
emerged (Fig. S4). By contrast, the studies of human- and
chimpanzee-specific ARMD processes revealed a recombina-

Han et al.

tion hotspot consisting of 22-24 bp on Alu sequences (14, 20)
that could account for some of the difference in frequency of
ARMDs compared with LIRADs. Given these four reasons, it
is not surprising that the number of LIRAD events is lower
than that of ARMD events. This may also explain why only a
few examples of genetic disorders caused by LIRAD events
have been reported.

Consequences of LIRAD in the Human Genome. L1 is an autonomous
retrotransposon (35) and ~1,850 copies of L1 are specific to
human genome (30). Nevertheless, only 80-100 L1s are retro-
transposition-competent (7, 11). These retrotransposition-
competent L1s can cause human diseases by disrupting or
altering functional gene expression, an event termed insertional
mutagenesis. Not only these active L1s but also other inactive L1s
are a source of genomic instability because they could provide
sequence identity through which recombination may occur,
resulting in deletions and other genomic rearrangements.

Our study represents the first genome-wide analysis of
L1IRAD events within the human lineage. Despite their low
frequency, the LIRAD events removed ~450 kb of human
genomic DNA, an amount that is larger than the combined
effects of Alu retrotransposition-mediated deletion (=9 kb de-
leted) (36), LIIMD (~18 kb deleted) (21), and ARMD events
(=400 kb deleted) (14) in the last 6 million years. Therefore, it
appears that the impact of the LIRAD is much higher than
reported retrotransposon-associated deletion mechanisms in
contributing to the fluidity of the human genome. However, we
could not rule out the role that the different genomic environ-
ments in which Alu and L1 elements tend to be found as a
contributor to the relative frequencies of their associated dele-
tion events. Alu elements tend to be found in gene-rich regions
whereas L1s are more commonly found in gene-poor regions.
We may therefore expect Alu-associated deletions to be more
often selected against and to also have a smaller total deletion
size as compared with L1-associated deletions. If ARMDs cause
larger deletions than L1IRADs, the evidence of these events has
been erased by the strong purifying selection present in gene-rich
regions.

To better show the effect of this deletion process in context
with L1 copy number increase, we estimated the L1-associated
sequence turnover rate in the human genome after the diver-
gence of the human and chimpanzee lineages. Approximately
1.65 Mb (900 bp, average size of L1s; ~1,850, copy number of
human-specific L1s) of human genome sequence was added by
the insertion of human-specific L1s whereas ~450 kb of se-
quence was deleted by LIRAD events during the same time
period. Thus, LIRAD can be said to have counteracted ~27%
of the L1-mediated increase in genome size. However, reciprocal
recombination-associated deletions should produce concurrent
duplications even though these two recombination products
(deletions and duplications) could have different evolutionary
fates in the host genome. If we consider L1 recombination-
associated duplication as another regulator of L1 copy number
increase, the turnover rate will be decreased. Interestingly, the
majority of genomic sequences deleted by LIRADs were L1
sequences (=60%) (Table S5). L1s are often found clustered in
the genome, likely because of their insertion mechanism specific
target site preference. Thus, in many cases, the deleted regions
that existed between the two prerecombination L1s contained
sequence from other L1s. In addition, each LIRAD event
deleted portions of the two prerecombination L1s. Since the
divergence of human and chimpanzee lineages, the LIRAD
process has not only played a significant role in counteracting the
increase in genome size caused by new L1 insertions, but it may
also regulate the overall copy number of Ll1s in the genome.

L1RADs are also involved in DSB repair, a function that
may be important for genomic stability and cell survival in the
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host genome. When DSBs occur in L1-rich regions, L1s would
represent first-class material that could be used to restore the
DNA lesion site. Whether one DSB occurs between two L1s or
two DSBs occur inside the L1s, the broken ends are resected
by 5'-3’ exonuclease. During this process, two DSB ends are
bound by short complementary L1 sequences and the gaps are
filled by DNA synthesis and ligation (Fig. 34). In our study, we
found 18 NHEJ-L1RAD events that could be the result of DSB
repair mediated by the mechanism described above. Also,
some NAHR-L1RAD loci could be created by homology-
mediated DSB repair rather than by unequal cross-over
(Fig. 3B).

In summary, our study suggests that L1 recombination-mediated
genomic deletions are a significant source of human genetic vari-
ation, along with the genomic alterations caused by other mobile
elements. Additionally, we believe that L1s could be involved in the
restoration of DSBs occurring near or within L1 sequences.

BN AS PN AN D

Materials and Methods

Computational Search and Manual Inspection for Human-Specific LIRAD Loci. To
computationally screen the human genome for potential LIRAD events, we
modified the technique described in a previous study of human lineage-
specific ARMD events (14). The technique uses the flanking sequences of each
human L1 to locate the orthologous locus in the chimpanzee genome. In-
house Perl scripts were used to calculate the positions of the 20 kb of flanking
sequence, both upstream and downstream, for every L1 locus in the human
genome. The orthologous chimpanzee loci of these human L1 flanking re-
gions were then located by using UCSC's liftOver utility (http://genome.
brc.mcw.edu/cgi-bin/hgLiftOver). Next, the position of the gap between the
chimpanzee flanking regions for each locus was calculated, and the nibFrag
utility bundled with the BLAT software package (http://genome.ucsc.edu/cgi-
bin/hgBlat) was used to generate sequence for these chimpanzee gap loci,
each of which corresponded to the orthologous site known to contain an L1
in the human genome.
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Models for DSB repair mediated by LIRAD mechanisms. Parallel black lines represent double strand DNA and green and yellow boxes indicate two L1s
which are involved in the L1RAD process. The thunderbolts indicate DSB events. (A) Two DSB repairs by a NHEJ-L1RAD. Two DSBs occur inside the L1s and the
broken ends might be trimmed, which results in the removal of nucleotide sequence at each DSB site. Microhomology between two L1 sequences allows for the
repair of the DSBs via NHEJ, resulting in two different contiguous L1s in the post repair genome. (B) One DSB repair by either NHEJ- or HR-L1RAD. One DSB occurs
between two L1s and the broken ends might be processed by 5'-3’ exonuclease. Next, microhomology or a longer homologous stretch between two L1 sequences
allows the DSB to be repaired, forming two different contiguous L1s or a single chimeric L1, respectively.

The chimpanzee ortholog of an authentic LIRAD locus should be larger
than the size of the putative human chimeric L1. Therefore, any chimpan-
zee gap locus whose size was equal-to-or-greater-than the size of the
original human L1 plus 50 bp was considered a candidate locus worthy of
further scrutiny, and was subjected to RepeatMasker analysis. We would
expect that the pre-deletion locus, as represented by the chimpanzee gap
sequences, would have L1 insertions at the beginning and end of the
deleted region. Furthermore, to undergo L1RAD, these two L1 insertions
would be found in the same orientation. To filter our RepeatMasked
candidates based on these criteria, more in-house Perl scripts were used,
screening out all loci except those for which the chimpanzee gap locus
contained same-orientation L1 insertions as the first and last annotated
repeats. In all, this computational filtering process produced a subset of all
human L1s (547,171 in the human genome) that was feasible to screen
manually (4,786 candidates).

Analysis of Flanking Sequences. For each L1RAD locus, 10 kb of flanking se-
quence upstream and downstream were collected by using a combination of
in-house Perl scripts and the nibFrag utility bundled with the BLAT software
package. The GC content of the flanking regions of each LIRAD locus was
calculated by using the combined 20 kb of flanking sequence via another
in-house Perl script, which excluded N’s from the analysis. All scripts used are
available from the authors on request. For the gene density analysis, we
counted the number of genes by using the National Center for Biotechnology
Information Map Viewer utility, run on Build 36.3 of the Homo sapiens
genome (http://www.ncbi.nIm.nih.gov/mapview/map search.cgi?taxid =
9606). The neighboring 2 Mb of sequence 5’ and 3’ to each chimerichuman L1
element was analyzed, and the number of genes found within this combined
4 Mb were noted.
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