The Baby and Infant Screen for Children with Autism Traits: A DSM-5 Update

Matthew Jason Konst
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations
Part of the Psychology Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_dissertations/144

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
THE BABY AND INFANT SCREEN FOR CHILDREN WITH AUTISM TRAITS: A DSM-5 UPDATE

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Psychology

by

Matthew J. Konst
B.S. Appalachian State University, 2011
M.A., Louisiana State University, 2013
August 2016
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Purpose</td>
<td>53</td>
</tr>
<tr>
<td>Method</td>
<td>58</td>
</tr>
<tr>
<td>Study One</td>
<td>67</td>
</tr>
<tr>
<td>Study Two</td>
<td>79</td>
</tr>
<tr>
<td>Study Three</td>
<td>89</td>
</tr>
<tr>
<td>Conclusion</td>
<td>97</td>
</tr>
<tr>
<td>References</td>
<td>102</td>
</tr>
<tr>
<td>Appendix</td>
<td>150</td>
</tr>
<tr>
<td>Vita</td>
<td>151</td>
</tr>
</tbody>
</table>
Abstract

Interest surrounding the investigation of autism spectrum disorder (ASD) has increased exponentially since it was initially described over a half-century ago. With this passage of time our conceptualization of the ASD diagnosis has undergone multiple changes. An increasing trend in research has been an emphasis on early identification and intervention. This trend has brought about the creation and adaptation of multiple measures designed to inform early ASD diagnosis. Recently, the ASD diagnostic category underwent significant revisions. In response to revisions, it is necessary to adapt preexisting measures to reflect these significant changes in order to maintain diagnostic accuracy. The Baby and Infant Screen for Children with aUtsism Traits (BISCUIT) is a triad of assessments specifically designed to assess infants and toddlers for ASD, comorbid conditions, and challenging behaviors. Initial investigations of each component of the BISCUIT have demonstrated that they are reliable and valid in the ASD population. However, the current scoring procedures include individuals diagnosed with both Pervasive Developmental Disorder, Not Otherwise Specified (PDD-NOS) and autistic disorder. The recent restructuring of the ASD category has effectively combined the various ASD diagnoses into a single diagnosis. The current studies identified new cutoff scores that reflect recent changes to the ASD diagnosis and maximized diagnostic sensitivity and specificity for each component of the BISCUIT and their individual subscales. Participants were initially separated into two diagnostic groups before being further separated into one of three age cohorts based upon age at time of initial evaluation. This approach allowed for direct comparisons between those with ASD and atypically developing peers while also considering the variable role of development on symptom manifestation. The cutoff scores identified by the current analyses maximized diagnostic sensitivity and specificity. Results of the current analyses are an initial step to demonstrating the utility of the BISCUIT for early identification following the revisions implemented by the Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5).
Introduction

Autism spectrum disorder (ASD) is often identified as a neurodevelopmental disorder (Barrett et al., 1999; Geschwin & Levitt, 2007; Goldstein, Minshew, Allen, & Seaton, 2002; James et al., 2004; Newschaffer et al., 2007; Samaco, Hogart, & LaSalle, 2005; Shao et al., 2002). Despite consistent agreement about the neurodevelopmental nature of the diagnosis, neuropathological investigations have continuously failed to identify a singular cause or deficit that reliably predicts the presence of ASD (Trevarthen, 2000). Currently, ASD identification and diagnosis is based upon the manifestation of a group of core symptoms which include impairments in communication and socialization, and the presence of restricted interests and/or repetitive behaviors (Bodfish, Symons, Parker, & Lewis, 2000; Fodstad, Matson, Hess, & Neal, 2009; Fombonne et al., 2004; Matson, Dempsey, & Fodstad, 2009; Matson, Mayville, Lott, Bielecki, & Logan, 2003).

There has been a growing interest surrounding the manifestation of ASD in recent years. Unlike some psychological disorders which may be ostracized or garner little attention in the public domain, ASD is a predominant topic amongst researchers, clinical practitioners, and the general public alike (Evans et al., 2001; Fombonne et al., 2004; Gernsbacher, Dawson, & Goldsmith, 2005; Newschaffer & Curran, 2003; Wing & Potter, 2002). Unfortunately, the information being disseminated amongst these groups is not always positive or constructive. For example, Gernsbacher and colleagues (2005) highlighted the negative information displayed to the general public by popular media sources which portrayed ASD as an “epidemic.” However, the increased awareness and interest has also given rise to important advancements which include changes in policy, federal funding, and the prevalence and organization of ASD research (Charles, Carpenter, Jenner, & Nicholas, 2008). Collaboration between researchers and practitioners and a growing awareness in the public domain have greatly increased the emphasis on early detection and diagnosis. A dominant factor facilitating this movement has been the observed impact of early interventions (Corsello, 2005; Dawson et al., 2010; Hume, Bellini, & Pratt, 2005; Matson, 2007b; McGee, Morrier, & Daly, 1999; Smith, Groen, & Wynn, 2000). Although the
intensity and modality of early intervention remains a contentious subject of research, the general consensus remains that early intervention in ASD populations is efficacious. However, accurate and reliable assessment and diagnosis is necessary before treatment can be delivered. Professional organizations such as the American Academy of Pediatrics (AAP) and researchers have recommended that children be screened at 18 and 24 months of age for ASD (Johnson & Myers, 2007; Matson & Smith, 2008).

Given the emphasis on early detection and intervention, it is paramount that ASD assessment measures are developed and updated to ensure diagnostic validity and reliability. An appropriate measure should have established psychometric properties utilizing large representative data sets. The *Baby and Infant Screen for Children with Autism Traits (BISCUIT)*; Matson, Boisjoli, & Wilkins, 2007; Matson et al., 2009a) was specifically designed to assess infants and toddlers between 17 and 37 months of age. The *BISCUIT* assessment battery consists of a trio of measures which are used for early screening and identification when atypical development is observed in infants (Matson & Tureck, 2012; Matson et al., 2009a). The current study sought to identify new cutoff scores for each of the measures constituting the *BISCUIT* battery based upon the changes to diagnostic criteria that appeared in *Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5)*. The history of ASD, changes in diagnostic criteria, and co-occurring conditions are discussed in addition to the prevalence and etiology of the disorder.

Autism Spectrum Disorder

The origin of the ASD diagnosis as it is thought of today is most often traced back to Kanner (1943). In this seminal text the author provided descriptors of multiple children exhibiting a core group of symptoms which were not readily accounted for by any developmental disorder of the time. Core symptoms included the presence of stereotypic behavior, insistence on sameness, deficits in the formation of appropriate social relationships, and deficits in the acquisition and use of language (Kanner, 1943). Despite variation in symptom severity and presentation, these core symptom features were present in each child.
The word autism has been suggested to be a compound of two Greek words, *autos* which means "self" (Grossman, Carter, & Volkmar, 1997) and *ism* which refers to personal orientation or a state of being (Aitken, Robarts, & Papoudi, 1999). Although this terminology captured the disinterest of individuals with ASD from interacting with others, it did not capture the triad of impairments observed in ASD populations. Kanner (1943) was not the first individual to utilize the term autism in the conceptualization of psychological impairment. In fact, Bleuler (1913) had previously utilized the term to describe secondary symptoms of schizophrenia (detachment from reality). Piaget (1932) also referred to the initial stage of childhood intelligence as autistic thought and the maturation of perceptual relations. Following Kanner’s seminal work (1943), research surrounding ASD was controversial due to differences in terminology, diagnostic criteria, and the assessments being developed and used (Rutter, 1972, 1978; Volkmar & Klin, 2005).

Researchers have previously noted that multiple terms and descriptors have been proposed and used intermittently to identify and describe symptoms of ASD such as arrested emotional development (Rank, 1949) and childhood schizophrenia or psychosis (Bender, 1956; Laufer & Gair, 1969; Rutter, 1978). Additional terminology was proposed based upon the hypothesized etiological underpinnings of ASD. For instance, due to the suspected influence of early abnormal cerebral development, Van Krevelen (1971) proposed the term "autismus infantum." Other terminology such as “disintegrative psychosis” was proposed as a means of communicating the observed manifestation of symptoms, specifically the period of regression often reported in ASD populations (Rutter et al., 1969).

Diagnostic confusion was further perpetuated by the diagnostic manuals of the time. Initially, the symptoms of ASD appeared in the *Diagnostic and Statistical Manual of Mental Disorders* (*DSM*; American Psychiatric Association [APA], 1952, 1968) under the diagnosis of childhood schizophrenia. Similarly, the diagnosis of autism was included as a subtype of schizophrenia in the *International Classification of Diseases, 8th Revision* (*ICD*-8; WHO, 1967). It was not until the introduction of the Pervasive Developmental Disorders (PDDs) category in the *Diagnostic and Statistical Manual of Mental
Disorders - Third edition (DSM-III; APA, 1980) that autism and childhood schizophrenia were distinguished in a diagnostic manual (Volkmar, 1998; Volkmar & Klin, 2005). Five diagnoses were included under the PDD category and included atypical PDD, childhood onset PDD, residual childhood onset PDD, infantile autism, and residual infantile autism (Volkmar & Klin, 2005). Criteria for the PDD category incorporated the three core features originally identified by Kanner (1943). However, the proposed diagnostic criteria were also influenced by the work of Rutter (1972, 1978) and Rutter and colleagues (1969) as well as other researchers who identified specific diagnostic criteria for ASD.

In addition to confirming and refining the core symptoms originally identified, Rutter (1978) also proposed that symptom manifestation occurs prior to 30 months of age. However, the specification of an age requirement was one of many problems noted in the debut of the PDDs category. Additional problems included controversy surrounding the classification of autism as a PDD and the diagnostic criteria proposed (Gillberg, 1991a; Volkmar, 1998; Volkmar & Cohen, 1991). For example, to be diagnosed with infantile autism, an individual was required to meet each of the criteria proposed (Volkmar, 1998). Further, researchers argued that the exclusive focus on infant populations excluded older children or higher-functioning individuals (Volkmar, 1998).

The diagnostic category encompassing ASD would undergo multiple changes in subsequent revisions of the DSM (DSM-III-R, DSM-IV, DSM-IV-TR; APA, 1987, 1994, 2000) and the International Classification of Diseases (ICD-9, ICD-10; WHO, 1979, 1992) as research expanded and efforts were made to increase diagnostic sensitivity and specificity (Volkmar, Cicchetti, Bregman, & Cohen, 1992). For example, the age requirement appearing in DSM-III was subsequently removed in the DSM-III-R (Waterhouse, Wing, Spitzer, & Siegel, 1989), only to be reintroduced and increased to 36 months of age in the DSM-IV (APA, 1994; Volkmar & Klin, 2005). The release of the DSM-IV also included the introduction of specific diagnostic criteria for each ASD diagnosis. Further, the DSM-IV also arranged the ASD diagnoses in a hierarchical manner such that a diagnosis for a less severe form of ASD (e.g.,
Asperger’s syndrome) was only considered when the individual did not meet criteria for autistic disorder (Mandy, Charman, Gilmour, & Skuse, 2011).

Development of the PDDs category in the *DSM-IV* (APA, 1994) included extensive consideration of the diagnostic criteria for ASD appearing in the *ICD-10* (WHO, 1992) in order to increase agreement and communication amongst researchers and was based upon the data gleaned from field trials (Volkmar, 1998). The *ICD* is a multi-purpose publication with one chapter (Chapter V) dedicated to the classification of mental disorders (Regier, Kuhl, & Kupfer, 2013). Historically the *ICD* and *DSM* have not always been compatible, which impeded international communication and research. An international conference in 1982 led to increased efforts to align these two major classification systems (Jablensky, Sartorius, Hirschfeld, & Pardes, 1983). Multiple revisions are anticipated to appear in the World Health Organization’s (WHO) proposed release of the *ICD-11* in 2017 (Regier et al., 2013). The collaboration between the *DSM* and *ICD* working groups is likely to continue as cooperation with members of the *DSM-5* work groups continued during the creation of the *DSM-5* (APA, 2013), and multiple members serve on both *DSM* and *ICD* workgroups (Regier et al., 2013). Criticizing the revisions in the recently released *DSM-5*, Ghaziuddin (2010) suggested that it would be more appropriate to modify the criteria for ASD subtypes instead of completely removing them. This was the initial approach taken by the *ICD* work group in preparation for *ICD-11* (WHO, 2012). However, their beta criteria for ASD are closely aligned with the *DSM-5* criteria at present (WHO, 2014).

Despite active collaboration between the *DSM* and *ICD* work groups, some key discrepancies between the two diagnostic systems have been retained. For instance, the *ICD* includes different criterion requirements and guidelines for the consideration of comorbid diagnoses (Volkmar & Reichow, 2013). One of the most notable differences is the differential approach to formulating diagnostic decisions. Volkmar (1998) noted that the *ICD-10* (WHO, 1992) included both research and clinical guidelines encouraging the use of clinical judgment in case formulation, whereas the *DSM-IV* (APA, 1994) required that the individual meet the minimum symptom requirements specified. Although the *DSM-IV* and *ICD*-
remained compatible with previous diagnostic research, they continued to generate controversy amongst researchers. Specifically, the three domain symptom model in the *DSM-IV* (and subsequent *DSM-IV-TR*) and the *ICD-10* provided over 2000 criteria combinations to make an ASD diagnosis (Volkmar & Reichow, 2013). Further, the validity of the *DSM-IV-TR* criteria proposed for Asperger's disorder has previously been questioned (Freeman, Cronin, & Candela, 2002; Mayes & Calhoun, 2003; Tryon, Mayes, Rhodes, & Waldo, 2006). Since its introduction in the *DSM*, researchers have continuously sought to determine how Asperger’s disorder could be reliably differentiated from high-functioning autism (HFA; Schopler, 1985; Wing, 1991). Multiple researchers have previously demonstrated that individuals with a previous diagnosis of Asperger’s disorder actually met criteria for autistic disorder (Eisenmajer et al., 1996; Howlin, 2003; Szatmari et al., 1995; Tryon et al., 2006). Additional concerns surrounded the Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) diagnosis. Specifically, concern about the use of vague criteria and no specification of the minimum number of symptoms necessary for a PDD-NOS diagnosis has been expressed (Gibbs, Aldridge, Chandler, Witzlsperger, & Smith, 2012; Witwer & Lecavalier, 2008).

Diagnostic Changes

Although the *ICD-10* (WHO, 1992) remains in use, the *DSM-IV-TR* (APA, 2000) has recently been revised. The release of the *DSM-5* (APA, 2013) included a number of changes to the ASD diagnosis. In direct contention with the *DSM-IV-TR* and *ICD-10*, the *DSM-5* combined the ASD diagnoses (i.e., Asperger's disorder, autistic disorder, PDD-NOS, childhood disintegrative disorder, Rhett's disorder) previously nested within the PDDs category into a single ASD diagnosis (Gibbs et al., 2012; Frazier et al., 2012; Tsai & Ghaziuddin, 2013). The *DSM-5* also made changes to the diagnostic criteria for ASD. As opposed to the trio of core features (i.e., socialization, communication, and restricted and repetitive behaviors and interests [RRBIs]), the *DSM-5* included only two symptom domains (i.e., social communication and interaction, and RRBIs). Factor analytic research was influential in the decision to combine the communication and socialization domains (Boomsma et al., 2008; Gotham, Risi,
Pickles, & Lord, 2007; Lord & Jones, 2012). Despite the controversy surrounding the transition from a triad of core symptoms to a dyad, multiple researchers have demonstrated the construct validity of a two domain ASD model (Boomsma et al., 2008; Georgiades et al., 2007; Lang et al., 2006; Mandy et al., 2012).

In order to meet criteria for an ASD diagnosis in the DSM-5, an individual must exhibit deficits for all three symptoms in the social domain, and two of four symptoms within the RRBIs domain. Volkmar and Reichow (2013) noted that the DSM-5 contains fewer criteria overall, and in the instance of the social/communication domain requires the individual to meet each criteria for a diagnosis. Further, the criteria provided by the DSM-5 include specific examples of symptoms for each criterion. The inclusion of specific examples among the symptoms appearing in DSM-5 has historical significance. A significant controversy appearing in the literature during the development of the DSM-IV was the removal of the symptom examples that had appeared in the DSM-III-R. Volkmar (1998) noted that the inclusion of specific examples decreased the attention given to a symptom construct. The inclusion of specific symptoms in diagnostic criteria was linked to a dimensional approach to diagnosis which also included a rating of the observed symptom severity. This approach is also noted to closely align with the use of structured diagnostic interviews or assessments. Although such measures often demonstrate strong reliability, their relation to a categorical diagnostic approach is indirect (Volkmar, 1998). In line with the previously noted dimensional approach, revisions in the DSM-5 ASD category also included the specification of the observed degree of impairment (Grzadzinski, Huerta, & Lord, 2013). In addition to a diagnosis, clinicians are required to specify the degree of impairment observed within each symptom domain (i.e., social/communication and RRBIs). Ratings are arranged on a three-point scale (i.e., "Requiring very substantial support", "Requiring substantial support", and "Requiring support") and are also associated with specific examples and individual descriptors (APA, 2013).

Revisions in the DSM-5 were reportedly made to increase the diagnostic specificity of the ASD diagnosis and its stability across time (APA, 2011, 2013; Gibbs et al., 2012; Grzadzinski et al., 2013).
Multiple researchers have demonstrated an increase in diagnostic specificity based upon *DSM-5* changes to diagnostic criteria (Frazier et al., 2012, McPartland, Reichow, & Volkmar, 2012). However, the same researchers have also reported decreased sensitivity (81% vs. 95%), especially in higher functioning individuals (Frazier et al., 2012; McPartland et al., 2012). Utilizing data from the *DSM-IV* field trials to investigate *DSM-5* criteria, McPartland and colleagues (2012) demonstrated that 40% of children who met *DSM-IV* criteria did not meet *DSM-5* ASD criteria. Investigation of the effects of changes in the *DSM-5* for specific ASD diagnoses (e.g., Asperger’s syndrome, PDD-NOS) has suggested that sensitivity and specificity vary dependent upon the group observed (Mattila et al., 2011; Mayes, Black, & Tierney, 2013; McPartland et al., 2012). For example, diagnostic sensitivity for those with autism was observed to be high (98%); however, the same criteria failed to identify 73% of individuals with a previous diagnosis of PDD-NOS (Mayes et al., 2013). Multiple researchers have suggested that a change in symptom requirements would increase sensitivity with minimal effects on specificity (Matson, Hattier, & Williams, 2012; Mayes et al., 2013). The changes proposed by researchers most often consisted of requiring one less symptom from the social communication and social interaction domain (Frazier et al., 2012; Matson et al., 2012). Frazier and colleagues (2012) observed that altering the minimum criteria requirements in the *DSM-5* did not significantly decrease specificity (95% vs. 97%) but increased diagnostic sensitivity (93% vs. 81%).

The changes in the *DSM-5* have caused researchers to express concern about the potential ramifications for individuals and their families (Gibbs et al., 2012; Matson et al., 2012; Mazefsky, McPartland, Gastgeb, & Minshew, 2013; Taheri & Perry, 2012; Wilson et al., 2013; Worley & Matson, 2012). McPartland and colleagues (2012) noted that although the changes did increase diagnostic specificity, they also have negative effects for individuals and their families, researchers, and clinicians. Specifically, these changes may reduce the availability of treatment to individuals who do not meet *DSM-5* criteria. Researchers have reported that as much as 40% of individuals with a previous diagnosis of ASD may not meet *DSM-5* criteria despite presenting with significantly greater numbers of ASD
symptoms than atypically developing peers (Gibbs et al., 2012; Matson et al., 2012; Mattila et al., 2011; Mayes et al., 2013; McPartland et al., 2012; Worley & Matson, 2012). Gibbs and colleagues (2012) noted that those children who were diagnosed as ASD under DSM-IV-TR criteria most often did not meet DSM-5 criteria due to a failure to meet the proposed criteria within the RRBI's domain. The authors noted that although the children observed presented with multiple RRBI's, these behaviors were often captured by a single DSM-5 criterion.

In direct contention with the above research, the American Psychiatric Association (as cited in Gibbs et al., 2012) produced a press release indicating that their own field trials had not resulted in the under-identification of individuals with ASD. The impacts of diagnostic changes are not limited to a single age group and have been observed to affect adults, children, and infants. Further, the changes that have been implemented decreased the applicability of previous research, on-going longitudinal research, and measures developed based upon that research (McPartland et al., 2012).

Current Criteria/Core Features

The recognition of three core symptoms in ASD populations can be traced back to Kanner's early work (1943) describing what would become the core features of the ASD diagnosis. Sigman, Dijamco, Gratier, and Rozga (2004) defined a core deficit as a behavior that distinguishes children with ASD from atypically and typically developing peers. These core symptoms include RRBI's, and deficits in the development and use of social and communication skills (Matson, Dempsey, LoVullo, & Wilkins, 2008). Until the release of the DSM-5 (APA, 2013), these core symptoms were considered separate domains used in determining diagnosis. The following discussion of core ASD symptoms will be organized to reflect the recent changes to the ASD diagnostic structure appearing in the DSM-5.

Social communication and interaction deficits are considered hallmark symptoms of ASD (Bellini, Peters, Benner, & Hopf, 2007; Constantino et al., 2004; Ozonoff & Miller, 1995). Social communication skills include a variety of verbal and non-verbal behaviors utilized in social interactions (Wetherby, Watt, Morgan, & Shumway, 2007). Deficits commonly observed in ASD populations include
a decreased sharing of enjoyment, impaired joint attention skills, use of gestures/pointing, social relationship maintenance, information synthesis, emotion regulation, reciprocity, imitation, preferring to play alone/withdrawal, and perspective taking (Bellini et al., 2007; Cox et al., 1999; Kanner, 1943; Kanner & Eisenberg, 1957; Wing, Gould, & Gillberg, 2011). Deficits in social interactions often also include impairments in social smiling, facial expression, eye contact, social communication, and expressing and receiving affection (Wing et al., 2011). Rutter (1978) noted that the evaluation of eye contact should emphasize the manner in which eye contact is used (e.g., to communicate), not the overall amount.

In ASD populations, deficits in social communication abilities are one of the earliest indicators of ASD (Wetherby et al., 2007). Delay, regression, or the complete absence of language abilities are often reported as a source of initial concern by parents of children with ASD (DeGiacomo & Fombonne, 1998; Howlin & Moore, 1997; Kozlowski, Matson, Horovitz, Worley, & Neal, 2011; Mitchell et al., 2006; Wetherby et al., 2004). Language development is uniquely intertwined with an individual’s ability to communicate and socialize. Researchers have consistently demonstrated a strong relationship between an individual’s social skills (e.g., joint attention) and future language acquisition (Carpenter, Pennington, & Rogers, 2002; Dawson et al., 2004; Mundy, Sigman, Ungerer, & Sherman, 1987; Stone, Ousley, & Littleford, 1997a).

The expression of communication abilities is noted to be variable in ASD populations (Bartak, Rutter, & Cox, 1975; Kjelgaard & Tager-Flusberg 2001; Luyster, Kadlec, Carter, & Tager-Flusberg, 2008). Individuals may be completely non-verbal and exhibit deficits in non-verbal communication, while others may possess varying degrees of both verbal and non-verbal abilities. Researchers estimate that between 25-50% of individuals with ASD may not develop functional verbal language capabilities (Lord et al., 2004; Noens & Van Berckelaer-Onnes, 2005; Rutter, 1978; Sigman, 1998; Sigman & McGovern, 2005). Even when individuals exhibit verbal communication skills, their use of language may not be functional and include idiosyncratic speech, pronoun reversal, word repetition, and/or echolalia.
Echolalia or stereotyped language is identified as the repetitive use of scripts out of context and in a nonfunctional manner (Kanner, 1946; Prizant, 1981). Regardless of communicative ability, individuals with ASD often exhibit deficits in the pragmatic use of communication (Cromer, 1981; Luyster, Kadlec, Carter, & Tager-Flusberg, 2008; Tager-Flusberg, 1985). Pragmatic communication has previously been described as the use of verbal and nonverbal communication that is appropriate for a given social situation (Bates, 1976). Although language use is not always without meaning and may be used to make demands, it is rarely used to socialize (Folstein, 1999).

The effects of deficits in social skills are cumulative and can impair multiple domains (Bellini et al., 2007; Weiss & Harris, 2001). Further, regardless of primary diagnosis, deficits in the use of social skills are significant given their association with prognosis and quality of life (Kapp-Simon, McGuire, Long, & Simon, 2005; Lord & Ventner, 1992; Matson & Swiezy, 1994; Parker & Asher, 1987; Pilling et al., 2002). Poor social skill development is associated with peer rejection and low academic achievement, as well as increased risk for psychopathology (e.g., anxiety, depression, and substance abuse; Bellini, 2006; La Greca & Lopez, 1998; Tantam, 2000; Welsh, Park, Widaman, & O'Neil, 2001). Although social skills deficits do not preclude children with ASD from forming meaningful relationships with others, they do temper their quality (Naber et al., 2007; Travis & Sigman, 1998). Furthermore, these impaired relationships are not self-correcting and may persist across time without appropriate interventions (Matson & Horovitz, 2010; Travis & Sigman, 1998). In ASD populations, Dominick, Davis, Lainhart, Tager-Flusberg and Folstein (2007) found a positive relationship between the presence of deficits in social communication skills and atypical and challenging behaviors (e.g., self-injurious behavior [SIB], temper tantrums, sleep patterns).

Despite the prevalence of these deficits and the negative outcomes associated with their presence, few individuals receive adequate social skills interventions (Hume, Bellini, & Pratt, 2005). Matson and Wilkins (2007) noted that a critical problem in the treatment of social skills deficits is the failure to
consider the role of thorough assessment prior to intervention. Treatment should be informed by the identification of individual strengths and weaknesses. Conceptualization of specific social skills as behavioral cusps may help to inform the development of adequate social skills intervention programs (Bosch & Fuqua, 2001). Identifying specific behavioral targets ahead of time that are feasible and socially relevant and exposing the child to additional social interactions may help to streamline interventions and increase treatment efficacy (Matson & Wilkins, 2007).

A variety of terms are often used interchangeably to describe the broad behavioral domain of RRBIs (e.g., stereotypic behavior, ritualistic behavior, posturing, and self-stimulatory behavior; Bodfish, Symons, Parker, & Lewis, 2000). Stereotypic behavior is broadly defined as repetitive movements that are not associated with an immediate function or purpose (Baumeister & Forehand, 1973; Berkson & Davenport, 1962; Matson, Kiely, & Bamburg, 1997). RRBIs have also been described as a broad class of repetitive behaviors or interests that are inappropriate, rigid, and invariable (Turner, 1999). Rutter (1978) noted that although RRBIs may persist across an individual’s lifespan, the features and function of the behavior may differ across time. The manifestation of repetitive behaviors is not unique to ASD populations and may be seen in other disorders such as intellectual disability (ID), obsessive-compulsive disorder, Tourette syndrome, and schizophrenia (Bodfish et al., 2000). RRBIs have also been observed in typically developing infants but often decrease after 12 months of age (Evans et al., 1997; Thelen, 1979). Despite their occurrence in other populations, RRBIs are significantly more prevalent in ASD populations after 24 months of age when compared to typically developing and atypically developing peers (Lord, 1995; Matson et al., 2009).

A variety of RRBIs have been described in ASD populations and include stereotyped or repetitive motor movements (e.g., rocking, full body movements, and hand and/or finger mannerisms; Dawson, Osterling, Meltzoff, & Kuhl, 2000; Klin et al., 2004; Osterling, Dawson, & Munson, 2002; Szatmari et al., 2006) and stereotypical object use, speech, and compulsions (e.g., verbal and nonverbal compulsions or rituals; Gabriels, Cuccaro, Hill, Ivers, & Goldson, 2005). Inappropriate toy play is also prevalent and
may include repetitively lining up or organizing toy items (Bryson et al., 2007; Paterson & Arco, 2007). Individuals with ASD are also noted to utilize idiosyncratic language at significantly greater rates than typically developing peers (Adams, Green, Gilchrist, & Cox, 2002; Volden & Lord, 1991; Volden, Mulcachy, & Holdgrafer, 1997). Idiosyncratic speech is described as the use of verbal speech which is inappropriate or unrelated to the context in which it is used (Hale & Tager-Flusberg, 2005).

In addition to other RRB symptoms, individuals with ASD may also display narrow or restricted interests (Gabriels et al., 2005) or carry out nonfunctional activities that impair daily functioning. Although some behavioral patterns may have initially served a basic functional purpose, the manner in which they are carried out may become non-functional and idiosyncratic. Insistence on sameness and ritualized patterns of behavior encompass a broad range of behaviors such as marked resistance to environmental change (Rutter, 1978) but may also include rigid and narrow patterns of thought and/or play behavior (DeLong, 1999; Rutter, 1978). Individuals with ASD may exhibit marked resistance to changes in routine and/or the environment which may result in severe behavioral outbursts (Cuccaro et al., 2003; Dettmer, Simpson, Myles, & Ganz, 2000; Schreibman, Whalen, & Stahmer, 2000; Shao et al., 2003; Szatmari et al., 2006). McPartland, Reichow, and Volkmar (2012) noted that fixated interests or activities may be abnormal in intensity and/or area of focus. The intensity of the individual’s restricted interests often impede the development of interpersonal relations because they are not shared by others or are not socially relevant (Mercier, Mottron, & Belleville, 2000). Researchers have noted that the manifestation of restricted interests may be particularly difficult to observe in infants and toddlers (Wing et al., 2011).

Unusual sensory responses, interests, and/or sensorimotor abnormalities are commonly observed in ASD populations (Dawson et al., 2000; Gabriels et al., 2005; Klin et al., 2004; Osterling et al., 2002; Williams, 1999). Sensory abnormalities are not limited to interests and activities and may also include abnormal pain responses. Atypical response to pain is a phenomenon commonly noted in ASD populations (Billstedt, Gillberg, & Gillberg, 2007; Cesaroni & Garber, 1991; Leekam, Nieto, Libby,
Wing, & Gould, 2007; Williams, 1999). However, research of this topic has been noted to be methodologically limited due to its current reliance on parent-report and the dearth of standardized assessment measures (Nader, Oberlander, Chambers, & Craig, 2004). Nader and colleagues (2004) reported that children they observed did not differ from typically developing peers with regard to pain experience. Further, researchers have made the distinction between pain sensitivity and pain reactivity (Tordjman et al., 2009). Tordjman and colleagues (2009) reported that although individuals did not exhibit directly observable symptoms of pain they did demonstrate robust physiologic pain responses.

Sensory abnormalities are reportedly present in as much as 90% of the ASD population (Baranek, David, Poe, Stone, & Watson, 2006; Leekam et al., 2007; Ornitz, Guthrie, & Farley, 1978; Volkmar, Cohen, & Paul, 1986). Sensory abnormalities may include impairments in auditory (Bettison, 1994; Dahlgren & Gillberg, 1989; Rosenhall et al., 1999), visual (Baranek, Foster, & Berkson, 1997a; Frankel, Freeman, Ritvo, Chicamin, & Carr, 1976; Hermelin & O’Connor, 1970), and tactile domains (Baranek, Foster, & Berkson, 1997b; Blakemore et al., 2006; Kern et al., 2001; O'Riordan & Plassetti, 2006; Wilbarger & Wilbarger, 1991). Auditory deficits may be so severe that the child may be initially considered deaf (Wing, 1966). Deficits may include hyper- or hypo-sensitivity to sounds (Berard, 1993; Bettison, 1994) and abnormal sound processing (Condon, 1975; Courchesne, Akshoomof, & Townsend, 1990). Individuals with ASD may visually fixate on object movement or be hyper- or hypo-sensitive to light (Baranek et al., 1997b; Kern et al., 2001). Leekam and colleagues (2007) observed that sensory abnormalities of smell/taste (e.g., strong preference for certain smells or tastes, craving certain foods, unusual exploration of objects with taste and smell) often distinguished ASD and non-ASD populations. Some researchers have demonstrated that tactile perception does not significantly differ between ASD and typically developing populations (Cascio et al., 2008; O'Riordan & Plassetti, 2006).

Although atypically developing children have been observed to exhibit some sensory impairment, it often only occurs in a single sensory domain (Freeman et al., 1981; Leekam et al., 2007; Rogers, Hepburn, & Wehner, 2003; Wing, 1969). In comparison, children with ASD are likely to exhibit multiple
sensory abnormalities across domains (Kientz & Dunn, 1996; Leekam et al., 2007). Regardless of the impacted domain, these sensory abnormalities are noted to be pervasive and impairing across the lifespan (Leekam et al., 2007). Factors such as age and level of intellectual functioning have been shown to mediate the expression of sensory abnormalities. Minimal research has been conducted to explore the differences in sensory abnormalities between ASD populations and those with ID only. However, an investigation by Freeman and colleagues (1981) indicated that minimal differences in sensory abnormalities were present between these groups.

RRBIs have immediate and longituoidal negative effects for both the individual and their caretakers. These behaviors are negatively correlated with social development and learning (Koegel, Firestone, Kramme, & Dunlap, 1974; Lovaas, Koegel, Simmons, & Long, 1973). Researchers have also demonstrated that RRBIs impair daily functioning by consuming an individual’s time and impeding participation in activities and instruction (Gordon, 2000; Koegel et al., 1974; Lam & Aman, 2007; Varni, Lovaas, Koegel, & Everett, 1979). Sensitivity to sensory input may also negatively impact social interactions (Leekam et al., 2007). Further, if particular behaviors are disrupted or if an individual is prevented from performing a R RBI, he/she may become agitated, noncompliant, and/or anxious (Gordon, 2000).

Comorbid Symptoms

Matson and Nebel-Schwalm (2007a) described comorbidity as the presence of two or more disorders at the same time in the same individual. Researchers investigating psychological conditions in children have repeatedly demonstrated elevated rates of comorbidity when children are diagnosed with attention-deficit/hyperactivity disorder (ADHD; Caron & Rutter, 1991; Kadesjö & Gillberg, 2001), depression (Angold, Costello, & Erkanli, 1999), anxiety (Caron & Rutter, 1991), mania (Lainhart & Folstein, 1994; Matson et al., 1996), and eating disorders (Lewinsohn, Striegel-Moore, & Seeley, 2000). However, similar research in ASD populations has largely been ignored until recently. Aside from those symptoms directly associated with ASD, children with ASD often present with additional impairments

15
(e.g., activity, attention, and emotion; Lainhart, 1999; Leyfer et al., 2006). Estimates suggest that 65-94% of children with ASD meet criteria for at least one comorbid psychological disorder (Ghaziuddin, Weidmer-Mikhail, & Ghaziuddin, 1998; Mukaddes & Fateh, 2010; Simonoff et al., 2008). In some instances, an individual’s symptom expression may be better explained by more than one comorbid disorder. While investigating comorbid conditions, Simonoff and colleagues (2008) reported that nearly half (41%) of their ASD sample met diagnostic criteria for two or more comorbid conditions.

Additional deficits commonly observed in ASD populations include epilepsy (Gillberg, 1991b), anxiety (Davis III et al., 2011), ADHD (Caron & Rutter, 1991), ID (Battaglia & Carey, 2006), visual impairments (Ek, Fernell, Jacobson, & Gillberg, 1998), tics (Canitano & Vivanti, 2007), audiological deficits (Rosenhall et al., 1999), and speech/language disorders (Billstedt, 2000). In addition to psychological impairment, comorbid medical symptoms are also commonly observed in ASD populations (e.g., feeding and sleep difficulties, immune system dysregulation, and seizure activity; Polimeni, Richdale, & Francis, 2005; Tuchman & Rapin, 2002; Warren et al., 1996).

Some researchers have expressed that the consideration of comorbid conditions has negatively impacted our understanding of ASD, yet others have countered that it is necessary and relevant to diagnosis and intervention implementation (Kazdin, 1993; Matson & Nebel-Schwalem, 2007a; Muris et al., 1998; Simonoff et al., 2008). Disagreement about the presence of comorbid conditions is not unique to ASD populations as it has been observed in other disorders (e.g., ID; Matson & Barrett, 1982). The degree of difficulty surrounding differential diagnosis is variable and dependent upon the impairments observed (Matson & Nebel-Schwalm, 2007a; Paclawskyj, Matson, Bamburg, & Baglio, 1997). For instance, symptoms of social anxiety are harder to distinguish from ASD than symptoms of depression.

Regardless of primary diagnosis, the presence of comorbid conditions negatively impacts an individual and their family (Gold, 1993; Leyfer et al., 2006). In addition to core symptoms, the manifestation of challenging behaviors may be related to the manifestation of comorbid conditions (Newschaffer et al., 2007). Comorbid conditions are also associated with significant increases in
impairment, the need for additional interventions, and decreased quality of life (Leyfer et al., 2006; Simonoff et al., 2008). Given the observed benefit of individualized interventions, the identification of comorbid conditions has been suggested to aid case formulation and the identification of additional treatment goals (Leyfer et al., 2006; Simonoff et al., 2008). Measures of comorbid psychopathology may also be used to monitor treatment effects (Matson & Nebel-Schwalm, 2007a).

Intellectual disability. Intellectual functioning has previously been identified as a moderator of ASD symptom expression (Matson et al., 2008). Specifically, the authors observed that a lower IQ was associated with increased severity of ASD symptomology in ID populations. The prevalence of ID in ASD populations is high, with estimates ranging from 40% to 75% (Battaglia & Carey, 2006; Betancur, 2011; Chakrabarti & Fombonne, 2001; Yeargin-Allsopp et al., 2003). The comorbid occurrence of ID in ASD populations is estimated to be 70%, while only 40% of those with ID have a comorbid diagnosis of ASD (La Malfa et al., 2004). However, the co-occurrence of these two conditions is variable and influenced by multiple factors (e.g., diagnostic criteria, population sampled, and ASD diagnoses included; Matson & Shoemaker, 2009). For instance, other researchers reported that only 28% of their sample with an ID diagnosis met criteria for ASD (Bryson, Bradley, Thompson, & Wainwright, 2008). Given the importance of behavior and compliance during the assessment of intellectual functioning, Rapin (2003) cautioned against the strict interpretation of results of intellectual functioning for toddlers. Further, given the limited predictive validity of intellectual functioning assessments in infants and toddlers, a comorbid diagnosis of ID is often deferred until a later age and may be overlooked once an initial ASD diagnosis is given (Charman et al., 2005).

When compared to either condition in isolation, researchers note that the co-occurrence of ID and ASD is associated with significant increases in the severity of symptoms observed (Matson & Shoemaker, 2009). Increases in the severity of ID have also been suggested as a risk factor for ASD (Vig & Jedrysek, 1999). Researchers have suggested that the presence of ID in ASD populations may also negatively impact communication skill acquisition, repetitive behaviors, tantrum behavior, aggression, and SIB
(Allen, 2008; Bartak & Rutter, 1976; Billstedt et al., 2005; Deb & Prasad, 1994; La Malfa et al., 2004; Totsika et al., 2008). These impairments are associated with the provision of care (Van Bourgondien & Schopler, 1990) and negatively impact an individual’s quality of life (Allen, 2008; Garcia-Villamisar & Dattilo, 2010). Specifically, the presence of ASD and comorbid ID has been noted to negatively affect integration into traditional residential treatment facilities (Van Bourgondien & Elgar, 1990).

Deficits in intellectual functioning may also negatively affect the consideration of additional comorbid conditions in ASD populations (Long, Wood, & Holmes, 2000). The direct effect of comorbid ASD and ID on the manifestation of additional symptoms of psychopathology is a source of disagreement amongst researchers (LoVullo & Matson, 2009). Researchers have previously failed to find a difference in the manifestation of comorbid symptoms in those with ID and ASD and those with ID only (Tsakanikos, Bouras, Sturmey, & Holt, 2006). Other researchers report elevated rates of comorbid symptoms when ASD co-occurs with ID (Bradley, Summers, Wood, & Bryson, 2004).

Depression. Mood disorders such as depression and bipolar disorder have been observed to frequently co-occur with ASD (Ghaziuddin, Ghaziuddin, & Greden, 2002; Mukaddes & Fateh, 2010; Sterling, Dawson, Estes, & Greenson, 2008). However, our current assessment and identification practices may result in an underestimation of their prevalence. Similar to ID populations, the manifestation and expression of depression symptoms may be moderated by the severity of ASD (Ghaziuddin et al., 2002; Matson, Barrett, & Helsel, 1988). For instance, differential rates of depression have been observed in individuals with autism (2%; Ghaziuddin, Tsai, & Ghaziuddin, 1992) when compared to those with Asperger’s syndrome (30%; Ghaziuddin et al., 1998; Wing, 1981). Yet this difference may have largely been influenced by participant age as researchers have noted that symptoms of depression increase as children with ASD age (Brereton, Tonge, & Einfeld, 2006).

The early identification and intervention of mood disorder symptoms is an important focus given the negative long-term impact of mood disorders (Cui & Vaillant, 1997). Symptoms of depression may also exacerbate aggressive behaviors, non-compliance, SIB, and withdrawal in children with ASD
An advanced understanding of symptom manifestation is currently inhibited by the relative dearth of measures available for the assessment of depression symptoms in ASD populations (Ghaziuddin et al., 2002; Stewart et al., 2006). A majority of the researchers investigating symptoms of depression in ASD populations have relied upon informant report. However, researchers have criticized this approach given the lack of insight into emotions and deficits in communicative abilities (Stewart et al., 2006). Stewart and colleagues (2006) also noted the negative effects of symptom overlap when diagnosing depression in ASD populations. Specifically, the authors suggested that symptoms of depression such as sleep disturbance, decreased appetite, and social withdrawal are commonly observed in those with ASD. Mukaddes and Fateh (2010) also suggested that the underlying causes of depression may vary dependent upon ASD severity, further complicating identification and intervention. Moving forward it will be important to develop assessments appropriate for assessing depression in ASD. Researchers have previously demonstrated the efficacy of behavioral and pharmacological interventions in treating symptoms of depression in those with ASD (Perry, Marston, Hinder, Munden, & Roy, 2001; Sterling et al., 2008).

Attention-deficit/hyperactivity disorder. Research on ADHD in ASD populations has previously been limited due to specifications in diagnostic manuals which prohibited the diagnosis of ADHD in individuals with ASD (Billstedt, 2000). Neuropsychological researchers have reported that individuals with ASD exhibit attentional deficit symptoms similar to those with ADHD (Ehlers et al., 1997; Nydén, Gillberg, Hjelmquist, & Heiman, 1999). Based upon the existing research, the estimated prevalence of ADHD in children with ASD ranges from 31%-70% (Leyfer et al., 2006; Mukaddes & Fateh, 2010; Tani et al., 2005).

The presence of attentional deficits in ASD populations is associated with direct and indirect negative effects. Researchers have previously observed increased rates of challenging behaviors in individuals diagnosed with comorbid ASD and ADHD (Jang et al., 2013; Tureck, Matson, May, &
Konst, Matson, and Turygin (2013) found significantly greater rates of tantrum behaviors in those with comorbid ASD and ADHD when compared to peers with ASD or ADHD only. Researchers have previously observed an increase in the rate of comorbid diagnoses when ASD and ADHD co-occur. Specifically, Simonoff and colleagues (2008) reported that 84% of children with comorbid ASD and ADHD met criteria for at least one additional psychological disorder. Awareness of attentional deficits is crucial given the negative impact these symptoms may have on daily functioning, treatment implementation, and educational attainment (Mukaddes & Fateh, 2010).

Anxiety. Symptoms of anxiety may interfere with a child’s development of adaptive skills and increase levels of emotional distress (Muris et al., 1998). Although anxiety symptoms may not be the primary target for intervention, they are still noted to impact daily functioning and quality of life (Muris et al., 1998). A broad range of anxiety symptoms including separation anxiety, social anxiety, and panic symptoms have been observed in ASD populations (Bellini, 2004; Gillott, Furniss, & Walter, 2001; Kim, Szatmari, Bryson, Streiner, & Wilson, 2000). The effects of anxiety are widespread and have been associated with suicidal ideation, substance abuse, depression, and isolation (Tantam, 2000). Davis III and colleagues (2011) found that anxiety symptoms may vary in severity across the lifespan but are nevertheless present in individuals with ASD. Researchers have also demonstrated that the early identification and treatment of anxiety symptoms may decrease their continuation or severity in adulthood (Davis III, Ollendick, & Nebel-Schwalm, 2008).

Rates of comorbid anxiety disorders and ASD widely vary with estimates ranging from 17 to 84% (de Bruin et al., 2007; Leyfer et al., 2006; Mukaddes & Fateh, 2010; Muris et al., 1998; Sukhodolsky et al., 2008). These rates are significantly elevated compared to the rates observed in typically developing peer populations (8.9%; Bernstein & Borchardt, 1991; Costello, 1989; Muris et al., 1998). The observed variance in prevalence rates may be partially attributed to factors such as participant age, ASD symptom severity, IQ, and the measures administered. Additionally, the wide variety of anxiety disorders (e.g., OCD, social anxiety disorder, and specific phobias) may influence prevalence estimates.
Specific phobias are commonly observed in children with ASD (de Bruin et al., 2007; Leyfer et al., 2006; Mukaddes & Fateh, 2010). Reports from research and evidence from individual case studies indicate that individuals with ASD exhibit significant levels of fear and anxiety (Matson & Love, 1990; Rumsey, Rapoport, & Sceery, 1985). In a systematic review of the research literature on anxiety symptoms in ASD populations, van Steensel, Bögels, and Perrin (2011) reported that specific phobia was one of the most prevalent comorbid conditions. Across the 31 manuscripts reviewed, approximately 30% of participants met criteria for a diagnosis of specific phobia. However, Mukaddes and Fateh (2010) have noted that future research is necessary to determine if specific phobias are distinct and different from the sensory abnormalities observed in ASD populations.

Social anxiety symptoms are also commonly observed in children with ASD. However, differential diagnosis is necessary given the socialization deficits associated with ASD. In this regard, Bellini (2006) noted that social anxiety differs from the indifference towards social situations exhibited by those with ASD. Individuals with comorbid ASD and social anxiety may desire social interaction but experience significant worry or fear due to skills deficits. Prevalence estimates of social anxiety are variable and range from 20-57% (Bellini, 2004; Simonoff et al., 2008; White & Roberson-Nay, 2009). Similar to social anxiety, the comorbid diagnosis of OCD has received criticism due to the observed symptom overlap with the core symptoms of ASD (Mukaddes & Fateh, 2010). However, Ghaziuddin (2005) asserted that a diagnosis of OCD may be warranted when new obsessions or compulsions emerge or if preexisting behaviors change in function or intensity. The reported prevalence of OCD in ASD populations is variable with estimates ranging from 2.8% to 37% (de Bruin et al., 2007; Ghaziuddin et al., 1998; Leyfer et al., 2006).

Eating difficulties. Williams, Dalrymple, and Neal (2000) noted that in addition to core symptoms, individuals with ASD often exhibit highly restricted eating habits and idiosyncratic food preferences. The eating difficulties in ASD populations are varied and not restricted to a particular psychological diagnosis (e.g., anorexia). Commonly reported mealtime problems include food refusal,
food selectivity, pica, choking, gagging, and overeating (Billstedt, 2000; Schwarz, 2003). Food selectivity is commonly observed and has previously been described as food refusal and acceptance of a minimal variety of foods (Bandini et al., 2010). Quantitative research has further demonstrated that when compared to typically developing peers, children with ASD eat fewer different types of food and exhibit more inappropriate behavior during mealtimes (Schreck, Williams, & Smith, 2004). These negative mealtime behaviors are often exacerbated by deficits in communication and/or oral-motor functioning and may be maintained by parental reinforcement (Page & Boucher, 1998; Shaw, Garcia, Thorn, Farley, & Flanagan, 2003).

Factors such as environmental context, food presentation method, and the type of food presented may each be functions contributing to the presence of eating difficulties (Ahearn, Castine, Nault, & Green, 2001; Schreck et al., 2004; Schreck & Williams, 2006). Schreck and colleagues (2004) noted that food selectivity did not appear to be a result of a decreased opportunity to consume a variety of foods. Instead, the authors noted that food selectivity was partially a function of the familial diet; however, this factor accounted for very little variance in a subsequent regression analysis. Contrary to anecdotal evidence, researchers have thus far failed to find evidence supporting hypotheses that food selectivity in ASD populations is related to core ASD symptoms (e.g., sensory deficits; Schreck & Williams, 2006).

Schreck and colleagues (2004) noted that children’s eating problems result in additional parental stress. This stress is often heightened by the underlying importance of food consumption and the emphasis on growth monitoring during infancy. Despite the known prevalence of eating problems in ASD population, formal assessment is often deferred unless the individual is identified as failing to thrive (Hutchinson, 1999). Given the potential long-term negative impact that poor nutrition may have on growth and development, researchers have expressed significant concern regarding the deferment of formal assessment until an individual is suspected to be malnourished (Schwarz, 2003).

Sleep habits. Research on sleep problems is problematic due to the lack of a formal definition of what constitutes a sleep problem. Richdale and Schreck (2009) noted that researchers and clinicians often
fail to utilize formal diagnostic sources when evaluating sleep behaviors; they found that researchers often formulate their own operational definitions of sleep behaviors and rely upon parent- and self-report. Although operational definitions of sleep disturbance vary, they most often include three common components, the frequency of the behavior (e.g., waking and/or resistance), duration of the behavior, and persistence (Richadale & Schreck, 2009). In response to criticism surrounding the assessment of sleep disturbance, recent sleep studies have confirmed parent report with procedures such as actigraphy and polysomnography (Allik, Larsson, & Smedje, 2006; Elia et al., 2000; Limoges, Mottron, Bolduc, Berthiaume, & Godbout, 2005; Miano et al., 2007; Wiggs & Stores, 2004).

Prior to the age of 6, sleep difficulties are relatively common in both typically and atypically developing populations. Sheldon, Ferber, and Kryger (2005) reported that approximately 50% of typically developing children exhibit sleep problems. Researchers have reported that approximately 80% of children with ASD exhibit sleep difficulties (Allik et al., 2006; Polimeni et al., 2005; Sheldon et al., 2005). Symptoms consistent with insomnia are often reported in ASD populations (Malow et al., 2006). Additional difficulties may include a decrease in total sleep time (Schreck & Mulick, 2000) and night waking (Malow et al., 2006). Whereas sleep problems in typically developing populations may decrease after age 6, sleep problems in children and young adults with ASD may persist into adulthood in the absence of intervention (Paavonen et al., 2008; Tani et al., 2004). The negative effects of sleep problems are pervasive and include deficits in attention, mood regulation, behavior, health, and cognitive development (Keren, Feldman, & Tyano, 2001; Lavigne et al., 1999; Sadeh, Gruber, & Raviv, 2002).

Assessment of comorbid conditions. The assessment and diagnosis of comorbid conditions in those with ASD is often hindered by deficits in cognition (e.g., executive functioning and information processing; Matson, LoVullo, Rivet, & Boisjoli, 2009; Minshew, Goldstein, & Siegel, 1997; Pennington & Ozonoff, 1996; Tager-Flusberg & Sullivan, 1994) and communication (Leyfer et al., 2006; Lord & Paul, 1997; Simonoff et al., 2008). Additionally, Reiss and Szyszko (1983) noted that the attribution of comorbid symptoms to a primary diagnosis of ASD also contributes to the under identification of
comorbid conditions. Despite the complexity of assessing and identifying comorbid impairments, this information is essential for case formulation and intervention (Goldstein, Naglieri, & Ozonoff, 2008). Aside from intellectual and communication abilities, Ghaziuddin, Ghaziuddin, and Greden (2002) suggested that the presence of comorbid conditions is also a prognostic indicator.

Historically, the identification of comorbid conditions was also interfered by a lack of appropriate measures. Leyfer and colleagues (2006) noted that researchers were often forced to utilize measures that were developed and standardized for the general population. Such measures included the Conners Rating Scale (Conners, 1973), the Child Behavior Checklist (Achenbach & Edelbrock, 1983), and the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS; Puig-Antich & Chambers, 1978). The use of measures without normative ASD data is less than ideal, given the previously noted negative impact of differences in cognition and communication. Measures such as the Behavior Problems Inventory (Rojahn, Matson, Lott, Esbensen, & Smalls, 2001) and the Developmental Behavior Checklist (Einfeld & Tonge, 1995) that were designed to assess comorbid conditions in individuals with developmental disabilities are more appropriate; however, their use in ASD populations has not been explicitly validated (Leyfer et al., 2006). The shortage of assessments has led some researchers to revise previously existing measures to create new measures that were appropriate for the ASD population (e.g., Autism Comorbidity Interview-Present and Lifetime [ACI-PL]; Leyfer et al., 2006) and to create new measures designed specifically for the assessment of comorbid conditions in ASD populations (e.g., Autism Spectrum Disorder-Comorbid for Children [ASD-CC]; Matson & González, 2007).

Challenging Behaviors

The presence of challenging behaviors is a primary source of referral for psychological evaluation and treatment (Mandell, Novak, & Zubritsky, 2005; Mudford and colleagues, 2008). Challenging behaviors has previously been described as behaviors that significantly limit an individual’s access to services, and whose frequency and/or intensity place the individual or those around the individual at risk for bodily harm (Emerson, 2001). In addition to placing the individual at risk for serious mental and
physical impairments, challenging behaviors are associated with significant distress for individuals and their families (Mukaddes & Topcu, 2006; Murphy et al., 2005). Challenging behaviors negatively impact quality of life (Mukaddes & Topcu, 2006) and may limit the services available to an individual (Borthwick-Duffy, Eyman, & White, 1987; Hastings & Brown, 2002; Oliver, Murphy, & Corbett, 1987). Moreover, challenging behaviors may limit an individual’s participation in leisure activities and social interactions, further impeding the development of social skills (Chadwick, Walker, Bernard, & Taylor, 2000). Current research suggests that over half (64.3%) of individuals with ASD exhibit challenging behaviors (Murphy, Healy, & Leader, 2009). In the absence of adequate intervention, challenging behaviors may persist across the lifespan in ASD populations Mukaddes & Topcu, 2006; Murphy et al., 2005; Nissen & Haveman, 1997; Oliver et al., 1987).

Research of challenging behaviors in ASD populations most often includes the investigation of behaviors such as stereotypy, SIB, aggression, and noncompliance/property destruction (Baghdadli, Pascal, Grisli, & Aussiloux, 2003; Kiernan & Kiernan, 1994; McClintock, Hall, & Oliver, 2003). Over half of individuals exhibit multiple forms of challenging behaviors (Emerson et al., 2001a) such as property destruction, stereotypy, SIB, and aggression (Borthwick-Duffy, 1994).

Multiple factors are hypothesized to impact the expression of challenging behaviors in ASD populations. For instance, researchers have observed a positive relationship between the severity and intensity of challenging behaviors and the severity of ASD symptomology (Matson, Wilkins, & Macken, 2008; O'Brien & Pearson, 2004; Reese et al., 2005). Furthermore, deficits in communication and social skills are also a risk factor for developing challenging behaviors (Borthwick-Duffy, 1996; Koegel, Koegel, & Surratt, 1992). An interaction between the level of cognitive functioning and the presence of challenging behaviors in those with ASD has also been found. Specifically, the prevalence of challenging behaviors increases with decreases in intellectual functioning (Holden & Gitlesen, 2006; O'Brien & Pearson, 2004; Reese et al., 2005). Researchers have also found that cognitive function may have a differential effect on the exhibition of challenging behaviors. Holden and Gitlesen (2006) observed SIB
to be more common as the severity of ID increased, while aggression was observed to increase as cognitive function increased. These findings have important implications for researchers and clinicians, especially following the diagnostic changes appearing in the *DSM-5* (APA, 2013). Changes to the *DSM-5* require consideration and communication of those specific impairments observed, given that the severity of symptoms is not readily communicated with the use of a single broad ASD diagnosis.

Challenging behavior interventions should be based upon functional assessment (Ellingson, Miltenberger, Stricker, Galensky, & Garlinghouse, 2000). Assessment of behavioral function is conducted to identify those factors that reliably predict and/or maintain the targeted behavior (Horner & Carr, 1997). Behavioral procedures have been found to be effective in the management of challenging behaviors (Downs, Downs, & Rau, 2008; Machalicek, O’Reilly, Beretvas, Sigafoos, & Lancioni, 2007; Ringdahl, Call, Mews, Boelter, & Christensen, 2008). Specific behavioral intervention strategies include the use of differential reinforcement procedures (Braithwaite & Richdale; Durand, 1999; Taylor, Hoch, & Weissman, 2005) and alteration of the environment (i.e., altering behavioral antecedents; Kuoch & Mirenda, 2003; Prupas & Reid, 2001; Schmit, Alper, Raschke, & Ryndak, 2000). Additional treatment approaches in ASD populations have also included the use of atypical antipsychotics such as risperidone (McCracken et al., 2002). However, there is limited research currently available to demonstrate the efficacy and safety of pharmacological interventions in children with ASD. Moreover, pharmacological interventions often result in short-term side effects such as drowsiness, drooling, fatigue, dizziness, and increased appetite and long-term side effects such as tardive dyskinesia (McCracken et al., 2002).

Aggression. Use of the term aggression encompasses a wide variety of behaviors including kicking, slapping, pushing/pulling, pinching/scratching, and punching (Harris, 1993). Aggressive behaviors are common in ASD populations (Billstedt, 2000) and occur most often in adolescent and adult populations (Horrigan & Barnhill, 1998). Procedures derived from positive behavior support and applied behavior analyses are often used to treat aggressive behaviors (Carr & Horner, 2007; Carr et al., 2002).
Intervention targets are often derived from functional assessments (Matson et al., 2009; Matson & Nebel-Schwalm, 2007a).

Self-injurious behavior. Matson and Nebel-Schwalm (2007a) noted that SIB is not a symptom considered for the diagnosis of ASD although it is a common comorbid condition. The term “SIB” encompasses a wide variety of behaviors including head hitting, biting, scratching, and punching/slapping (Emerson et al., 2001b). Additional forms of SIB such as head banging, hair pulling, and biting are often prevalent in individuals with comorbid ASD and ID (Gillberg & Coleman, 1992). Baghdadli and colleagues (2003) demonstrated that deficits in expressive and receptive communication skills may moderate SIBs. Estimates of the prevalence of SIBs in ASD populations are variable and dependent upon the populations sampled but range from 20%-71% (Ando & Yoshimura, 1979; Janicki & Jacobson, 1983).

Noncompliance/property destruction. Noncompliance is a prevalent challenging problem observed in individuals with developmental disabilities (Schoen, 1983). Luiselli (2009) defined non-compliant behavior as a failure to perform specific behaviors following a request. Noncompliance may be further identified as either an active (e.g., aggression) or passive behavior (e.g., ignoring; Luiselli, 2009). Regardless of form and function, noncompliance in ASD populations has particularly negative effects. Compliance is directly related to the exhibition of additional challenging behaviors such as SIB, tantrums, and aggression (Cataldo, Ward, Russo, Riordan, & Bennett, 1986; Russo, Cataldo, & Cushing, 1981). Noncompliance further complicates the introduction and shaping of appropriate adaptive behaviors and skills (Luiselli, 2009). Interventions used to increase compliance include procedures such as behavioral momentum (Mace et al., 1988) and time-out (Handen et al., 1992).

Assessment of challenging behaviors. A growing amount of research has focused on the prevalence of challenging behaviors in ASD populations (Carcani-Rathewell, Rabe-Hasketh, & Santosh, 2006). When compared to typically developing peers, adults with ASD are four times as likely to exhibit challenging behaviors (McCarthy et al., 2010). Despite the increased prevalence, the influence of
multiple factors (e.g., age, gender, and ASD severity) on the manifestation of challenging behaviors is not clear (McCarthy et al., 2010). The assessment of challenging behaviors is an important initial step in intervention (Matson & Nebel-Schwalm, 2007b). Initially a broad assessment helps to identify target behaviors for which specific follow-up assessments may be used to identify information relevant to intervention (e.g., maintaining variables and rate). Preliminary research has suggested that in the absence of intervention challenging behaviors are stable and persistent for children and adolescents (Horner, Carr, Strain, Todd, & Reed, 2002; Matson, Mahan, Hess, Fodstad, & Neal, 2010). The presence of challenging behaviors is negatively associated with long-term outcome and is positively associated with an increase in the use of pharmacologic interventions (Advokat, Mayville, & Matson, 2000), an elevated risk for injury (Lee, Harrington, Chang, & Connors, 2008), and poor public perception (Morton & Campbell, 2008).

Matson and Nebel-Schwalm (2007b) suggested that the negative effect of challenging behaviors on development is poorly understood and cautioned against a simplistic approach to challenging behavior assessment given the variety of factors (e.g., settings and reinforcement) that directly influence their maintenance. The assessment of challenging behaviors is necessary when developing effective interventions and provides an objective measure of treatment effects (Ellingson et al., 2000; Matson, & Minshawi, 2007; Matson & Nebel-Schwalm, 2007b). Despite the prevalence of challenging behaviors there are few measures currently available that have adequate normative samples and demonstrate good psychometric properties to assess children with ASD (Matson & Nebel-Schwalm, 2007b).

Measures currently used to assess challenging behaviors in ASD populations include the PDD Behavior Inventory (PPDBI; Cohen, 2003; Cohen, Schmidt-Lackner, Romanczyk, & Sudhalter, 2003), the Overt Aggression Scale (OAS; Hellings et al., 2005; Yudofsky et al., 1986), the ASD-PBC (Matson & González, 2007), and the Behavior Problems Inventory (BPI; Rojahn et al., 2001; Sturmey, Fink, & Sevin, 1993; Sturmey, Sevin, & Williams, 1995). The Disability Assessment Schedule (DAS-B; Holmes, Shah, & Wing, 1983) has also been used to assess challenging behaviors in ASD populations; however, this scale is intended for use in ID populations (McCarthy et al., 2010).
Prevalence

Prevalence has been defined by as the estimated total number of cases of a disease or disorder at a single point in time (Dorland, 1994). The prevalence rate for ASD has continuously increased across time. Previous inconsistencies in the application of ASD diagnoses according to the DSM-IV-TR may have been responsible for the variability observed in recent estimates of ASD prevalence (Mahjouri & Lord, 2012). Factors external to ASD and diagnostic variability are also hypothesized to significantly influence estimated prevalence rates: resource allocation, awareness, a growing body of research, changes in research methodology, and changes in diagnostic criteria (Mahjouri & Lord, 2012; Saracino, Noseworthy, Steiman, Reisinger, & Fombonne, 2010). Mahjouri and Lord (2012) suggested that the allocation of state and federal resources for programs that serve individuals with ASD has increased research in this area and efforts to identify individuals with ASD across multiple sites (Palmer, Blanchard, Jean, & Mandell, 2005).

During the 1980's the estimated prevalence rate of ASD was reported to be 5 per 10,000 individuals (Gillberg, Steffenburg, & Schaumann, 1991). More recent estimates of ASD prevalence have ranged from 181/10,000 (Kawamura, Takahashi, & Ishii, 2008) to 70/10,000 (Saracino et al., 2010). Based upon a multi-site study carried out by the Autism and Developmental Disabilities Monitoring Network (AADM), the Centers for Disease Control (CDC) estimated that 11.3 in 1000 children met DSM-IV-TR criteria for ASD (Baio, 2012). In the investigation carried out by the AADM, large variability in prevalence estimates was noted across sites despite the utilization of a standardized assessment approach (Baio, 2012). Specifically, estimates ranged from 4.8 per 1000 children to 21.2 per 1000 children.

As noted previously, multiple researchers have estimated that diagnostic changes in the DSM-5 may significantly alter the prevalence of ASD (Gibbs et al., 2012; Mahjouri & Lord, 2012; Matson et al., 2012a, b; Mattila et al., 2011; Mayes et al., 2013; McPartland et al., 2012; Worley & Matson, 2012).
With the recent release of the *DSM-5*, no research is currently available to verify estimates made based upon the criteria proposed prior to the final release of the *DSM-5*.

Etiology

The heterogeneity of ASD remains a point of controversy as evidenced by the recent changes in the *DSM-5* (APA, 2013). This variability may be clearly observed in the different symptom profiles observed in ASD populations. Although some children may exhibit symptoms of ASD from early infancy, estimates suggest that nearly half may only begin exhibiting symptoms following a period of regression in areas such as verbal and nonverbal communication and social skills (Geschwind & Levitt, 2007; Rogers, 2004). Multiple researchers have documented periods of regression in ASD populations. On average this period of regression occurs during the second year of life and may affect both verbal and non-verbal communication skills (e.g., use of words, and pointing or imitation skills; Volkmar & Cohen, 1989; Werner & Dawson, 2005). Further, there is significant variability in the severity of ASD symptoms and in the manifestation of comorbid disorders (e.g., ID, obsessive-compulsive disorder, ADHD; Newschaffer et al., 2007).

As research and awareness of ASD has increased, so have attempts to identify causal factors associated with the disorder. Initial hypotheses regarding the underlying etiology were controversial (Matson & Minshawi, 2006). For example, Kanner (1943) suggested a link between ASD and the personalities of parents who exhibited limited social abilities. Along the same psychodynamic approach, the idea of "refrigerator mothers" being a causal factor of ASD prevailed for a period of time (Bettelheim, 1967). Additional psychoanalytic theories concerning mother-child dyads as the cause for ASD were promoted by both Mahler (1968) and Tustin (1981). Following advancements in both research practices and theoretical orientation, these early theories have been replaced by learning, neurobiologic, and genetic theories (Matson & Minshawi, 2006). However, not all of the emerging theories have been supported by scientific evidence. Although it has since been retracted, research by Wakefield et al. (1998) suggesting that measles-mumps-rubella (MMR) vaccination was associated with ASD generated significant
controversy among researchers, professionals, and parents (DeStefano & Thompson, 2004; Takahashi et al., 2003). Despite the retraction and failures to replicate the original study (Honda, Shimizu, & Rutter, 2005; Takahashi et al., 2003), the negative effects have persisted (D’Souza, Fombonne, & Ward, 2006; Wilson, Mills, Ross, McGowan, & Jadad, 2003). In a survey of parents with children with ASD, nearly 30% of respondents endorsed the belief that an immunization was responsible for their child’s disorder (Harrington, Patrick, Edwards, & Brand, 2006). In a survey of parents with infants, Smith, Yarwood and Salisbury (2007) found that 10% of parents surveyed still consider the MMR to be a high risk factor. Brown and colleagues (2010) noted that multiple factors influence parental decisions regarding vaccinations. The authors noted that researchers and practitioners must work to address concerns and be prepared to discuss the appropriate research supporting vaccinations when necessary.

Genetic theories. Epidemiology researchers have previously suggested a strong genetic role in ASD populations (Betancur, 2011; Chudley, 2004; Cook, 2001; Muhle, Trentacoste, & Rapin, 2004). In ASD populations, the estimated variance in phenotype accounted for by the genotype (i.e., heritability) is 90% (Bailey et al., 1995; Schaefer & Mendelsohn, 2008). Further, parents and siblings of individuals with ASD show significantly greater rates of ASD symptoms than control groups (Bishop et al., 2004; Bolton et al., 1994). Additional support for a genetic component is derived from the elevated concordance rates observed in monozygotic twins (70%) when compared to dizygotic twins (3%; Betancur, 2011; Cook, 2001; Lotspeich & Ciaranello, 1993; Muhle et al., 2004; Spence, 2004). Since concordance among monozygotic twins is less than 100%, it is hypothesized that a multi factor inheritance is likely to be the cause (Herbert, Sharp, & Gaudiano, 2002).

As previously indicated there is a wide degree of variability in ASD symptom manifestation. Geschwind and Levitt (2007) suggested that ASD should not be considered a unidimensional syndrome given its heterogeneity. Instead, they hypothesized that a variety of etiologic factors are associated with the manifestation of ASD symptoms (Abrahams & Geschwind, 2008). Chromosomal loci commonly associated with ASD symptom expression are present at: 2q, 7q 22-31, 13q, 15q11-13, 16p, and 17q 11
The investigation of specific genetic factors has identified chromosomal abnormalities that may increase the risk of developing ASD. For example, a variation of the HOXA1 gene on chromosome 7 has been suggested to double the risk of developing ASD (Rodier, 2000). However, with the exclusion of chromosomes 14 and 20, each of the autosomes and gonosomes has been associated with the expression of ASD symptoms (Gillberg, 1998). Based upon this observation the author concluded that ASD is likely caused by the mutation of several different genes across multiple chromosomes. Although the increased prevalence of ASD among males also suggests a genetic factor, extensive research utilizing whole genome screens of the X chromosome in ASD populations has identified only minor links to date (Schaefer et al., 2008).

Individuals with specific genetic disorders (e.g., fragile X syndrome, neurofibromatosis, tuberous sclerosis, angelman syndrome, and phenylketonuria) are at an increased risk for developing ASD (Blomquist et al., 1985; Cook et al., 1997; Matsuura et al., 1997; Peters, Beaudet, Madduri, & Bacino, 2004; Santangelo & Folstein, 1999; Trottier, Srivastava, & Walker, 1999). However, despite the elevated levels of risk associated with these syndromes, they do not individually account for more than 2% of identified ASD cases (Abrahams & Geschwind, 2008). In a similar manner, the increased prevalence of comorbid ID (40-70% of those with ASD) also hints at underlying genetic factors (Battaglia & Carey, 2006; Betancur, 2011; Chakrabarti & Fombonne, 2001; Chudley et al., 1998; Gillberg, 1998; Mauk, 1993; Sponheim & Skjeldal, 1998; Yeargin-Allsopp et al., 2003). Abrahams and Geschwind (2008) noted that the lack of a single overarching genetic cause is reminiscent of ID which is also associated with multiple contributing factors. Researchers have previously noted that 4-34.1% of those with ID demonstrate chromosomal abnormalities (Xu & Chen, 2003). While discussing genetic factors, Betancur (2011) highlighted the overlap of genes and loci identified in ASD populations that have also been identified in those with ID and/or epilepsy.
The use of clinical geneticists has increased recently as genetic consultation is sought to provide insight into specific factors that may have led to the presence of ASD symptoms (Schaefer et al., 2008). When considering genetic consultation, individuals should consider the heterogeneity of genetic factors, cost, and the variability of existing tests (Schaefer et al., 2008). On average, chromosomal analyses are noted to produce higher diagnostic yields than other genetic analyses in ASD populations (Reddy, 2005; Shevell et al., 2001; Weidmer-Mikhail, Sheldon, & Ghaziuddin, 1998). However, the use of genetic evaluation to identify copy number variations, genetic syndromes, and mutations is only successful in approximately 6-20% of ASD cases (Abdul-Rahman & Hudgins, 2006; Abrahams & Geschwind, 2008; Battaglia & Carey, 2006; Betancur, 2011; Schaefer & Lutz, 2006; Shevell, Majnemer, Rosenbaum, & Abrahamowicz, 2001).

Non-genetic risk factors. In utero experiences have also been linked to an increased risk for ASD (Herbert et al., 2002). Specifically, researchers have previously suggested that exposure to ethanol, thalidomide, rubella infection, and valproic acid during pregnancy may each elevate the risk for developing ASD (Rodier, 2000). Although the casual link has been reported, investigations of each of these factors have only accounted for a minute portion of the overall ASD population (Herbert et al., 2002).

Given the sex differences in ASD populations, Baron-Cohen (2002) hypothesized that ASD represents an extreme variation of the male-typical cognitions and behaviors due to exposure to elevated levels of testosterone during prenatal development (Knickmeyer & Baron-Cohen, 2006). Consistent with this hypothesis, Auyeung and colleagues (2009) found a strong positive association with levels of fetal testosterone and ASD symptom manifestation. However, this line of research is in its infancy, and further studies are needed (Knickmeyer & Baron-Cohen, 2006).

Neurobiological theories. Current neurobiological research may be separated into two broad domain areas, cellular accounts and hypotheses surrounding regional or systematic abnormalities (Abrahams & Geschwind, 2008). Cellular explanations include factors such as atypical brain
connectivity and abnormalities in synaptic functioning (Bear, Huber, & Warren, 2004; Chugani, 2004; Dölen et al., 2007; Geschwind & Levitt, 2007; Krey & Dolmetsch, 2007; Tabuchi et al., 2007; Zoghbi, 2003). A wide variety of regional hypotheses including impaired cerebellum functioning (Hebert et al., 2005), abnormal mirror neuron activity (Dapretto et al., 2006; Ramachandran & Oberman, 2006), epigenetic factors and theories (Hogart, Nagarajan, Patzel, Yasui, & LaSalle, 2007; Jiang et al., 2004), and hyperactivation of the immune system have been proposed (Vargas, Nascimbene, Krishnan, Zimmerman, & Pardo, 2005). Research investigating each of the above theories is in its infancy and continues to be conducted (Abrahams & Geschwind, 2008).

Macrocephaly is a condition associated with a head circumference that is 1.88 standard deviations greater than the normative data for an individual’s gender and age (Fidler, Bailey, & Smalley, 2000). According to its definition and diagnostic criteria, macrocephaly occurs in only 3% of the world’s population (Herbert, 2005). However, nearly 20% of those diagnosed with macrocephaly are also diagnosed with ASD (Aylward, Minshew, Field, Sparks, & Singh, 2002; Deutsch & Joseph 2003; Fombonne, Roge, Claverie, Courty, & Fremolle, 1999; Lainhart et al., 1997; Stevenson, Schroer, Skinner, Fender, & Simensen, 1997). Researchers have also noted atypical patterns of brain growth in individuals with ASD (Herbert, 2005). Specifically, they have noted accelerated growth in brain volume early in development but not at later points when it is typically observed (Aylward et al., 2002; Courchesne et al., 2001). The abnormal growth is most often attributed to atypical increases in white matter (Courchesne et al., 2001; Herbert et al., 2003a). However, replication of these initial observations has not been consistent (Lotspeich et al., 2004). Despite the overlap with macrocephaly, this condition does not solely account for the deficits observed in ASD (Lainhart et al., 1997; Miles, Hadden, Takahashi, & Hillman, 2000) and is not specific to ASD populations (Gaziuddin, Zaccagnini, Tsai, & Elardo, 1999; Herbert et al., 2003b).

Mirror neurons are activated when we perform actions and see others perform the same action (Ramachandran & Oberman, 2006; Rizzolatti & Craighero, 2004). These neurons are hypothesized to help us infer other's intentions and are thus integral components in social interaction (e.g., imitation,
Multiple researchers have demonstrated deficits in mirror neuron functioning in ASD populations (Iacoboni & Dapretto, 2006; Nishitani, Avikainen, & Hari, 2004; Oberman et al., 2005; Theoret et al., 2005). Hirstein, Iversen, and Ramachandran (2001) proposed that atypical connectivity surrounding the amygdala, limbic structures, frontal lobes, and sensory input results in abnormal emotional responding. However, this hypothesis has been criticized because it fails to explain the presence of RRBIs symptoms required for a diagnosis of ASD (Ramachandran & Oberman, 2006).

Infants and Toddlers

Typical developmental progression. Prior to a discussion of atypical development, it is important to present a brief overview of typical developmental progression. The increased focus on the early identification of ASD and other developmental disorders has forced researchers to create guidelines which aid in systematically differentiating between typical, delayed, and atypical development in infants and toddlers. Given the heterogeneity observed in developmental progression (Dodson & Alexander, 1986; Green & Palfrey, 2002; Shelov & Altmann, 2009; Shelov & Hannemann, 1991), these guidelines often encompass a wide age range and are not clear-cut.

In 2004 the CDC created a program to educate parents and health care professionals to help monitor a child’s cognitive, communication, motor, emotional, and social development. The CDC’s information was largely derived from the work of the American Academy of Pediatrics (2008) and Shelov and Altmann (2009). The following information was derived from the works of Fenson and colleagues (1994), Green and Palfrey (2002), and Shelov and Altmann (2009) unless otherwise noted. It is important to note that these guidelines do not represent firm rules that clearly differentiate typical and atypical development (Fenson et al., 1994; Green & Palfrey, 2002; Shelov & Altmann, 2009).

During the first year of life, initial developments in communication include cooing, babbling, and imitating simple sounds. The infant may build upon these initial skills by stringing babbling into a series of consonants and using sounds to communicate emotion. At one year children should begin responding to simple requests and utilizing/imitating simple gestures (e.g., shaking head "no"). At this point, their
babbling should begin to incorporate alterations in tone, and they may begin to imitate/approximate simple words presented by a parent or caretaker. During this period, children may also begin communicating using simple words or phrases (e.g., “mama”). As children approach their second birthday, their vocabulary should consist of approximately 15 to 20 words.

Socially, children should begin social smiling when engaging with parents and caretakers during the first year. Closer to their first birthday, infants should begin to respond to their name, exhibit an interest in others, and enjoy and seek out simple interaction games (e.g., peek-a-boo) with preferred persons. Children’s emotional state may change depending on their familiarity with individuals or the situation at hand. During this period, children should also begin to display a preference for certain objects or persons. Children may also begin to use sounds and physical actions to gain caretaker's attention and exhibit an understanding of social cues.

The presence of RRBIs within the first year of life is not a symptom clearly differentiating typical from atypical development. Researchers have previously reported that both typically and atypically developing children exhibit various forms of RRBIs (Evans et al., 1997; Morgan, Wetherby, & Barber, 2008). Further, the severity and frequency of these behaviors do not significantly differ across populations (Baranek, 1999; Osterling et al., 2002). Although RRBIs are present during the first year, typically developing children begin to exhibit them less frequently after their first birthday (Evans et al., 1997; Thelen, 1979).

By 2 years of age children may begin to point to identify objects such as toys or body parts when they are named. In addition to imitating simple words heard in conversation and following basic instructions, children should also begin to verbally identify objects as they are presented or identified. At this point children should begin to identify the names of familiar persons and may begin to communicate using simple sentences. Following their second birthday their vocabulary is expanding rapidly and includes approximately 50 words.
Around 2 years of age children may become visibly excited when interacting with peers and display affection for others. In addition to parallel play, children may also begin to seek out and incorporate their peers in activities and display turn taking behavior. Their imitation skills may increase to include novel or more difficult behaviors/activities or expand upon previously learned behaviors.

At this age, the manifestation of RRBIs in typically developing children has decreased and differs significantly in frequency from those with ASD (Lord, 1995; Matson et al., 2009). However, typically developing children may continue to exhibit some RRBIs (Richler, Bishop, Kleinke, & Lord, 2007). Further, Leekam and colleagues (2007) also suggested that gender may influence the exhibition of RRBIs. Specifically, within this age range the authors observed that typically developing males exhibited more RRBIs than typically developing females.

At 3 years of age children should be able to communicate their age, gender, and name when prompted. In addition to naming familiar objects, they should also be able to identify preferred peers. Their speech should be intelligible and readily understood by unfamiliar persons. Further, they should be able to converse with others using complex sentences and be able to tell simple stories. Their vocabulary has increased to include as many as 1,000 words, and they are beginning to display a basic understanding of grammar. At this point they should understand prepositions (e.g., under) and begin to incorporate the use of personal pronouns into their speech.

Socially, children should be able to take turns in games and begin to understand possessive pronouns (e.g., mine, hers). At this age children should display a wide range of facial expressions that align with the environmental context and their emotional state. Although they may exhibit discomfort following major changes in routines, they should readily separate from parents/caretakers. Children should also be able to readily imitate both peer and adult behavior and engage in make-believe or pretend play.

Some researchers have argued that typically developing children continue to exhibit RRBIs up until 4 years of age and decline thereafter (Evans et al., 1997; MacDonald et al., 2007). Despite the
disagreement about when RRBIs decline in typically developing children, researchers assert that there is a clear and quantifiable difference in the expression of RRBIs in ASD populations compared to their typically developing peers (Bodfish et al., 2000). MacDonald and colleagues (2007) noted strong differences in the exhibition of repetitive behavior in typically developing toddlers by 2 years of age. However, the authors noted that these differences became significantly greater by age 3.

Atypical developmental progression. Little is known about the developmental course of infants with ASD during their first year of life (Werner et al., 2000). Given the noted variability in typical development, it is difficult to identify atypical development during the first year of life as a reliable predictor of later ASD diagnosis (Werner et al., 2000). However, as children age, initial developmental delays become pronounced deficits; that are associated with significant impairments in daily functioning and impede further development (Desombre et al., 2006; Landa & Garrett-Mayer, 2006; Werner et al., 2000). The study of early developmental progression is hindered by a conservative diagnostic approach, as ASD is often not diagnosed until a child is 3 or 4 years of age (DeGiacomo & Fombonne, 1998; Kozlowski et al., 2011; Matson, 2005).

Existing information on early ASD development has been derived from three primary sources of information: retrospective parent-report, high-risk infant studies, and video review (Wetherby et al., 2007). Given the unreliability of retrospective parent-report (Zwaigenbaum et al., 2005; Zwaigenbaum et al., 2007), researchers have previously employed two alternative methodologies to study atypical development during the first year of life. One approach involves analyzing home-video footage of an infant or toddler later diagnosed with ASD (Osterling & Dawson, 1994; Werner et al., 2000). Although this approach has been criticized due to methodological flaws (i.e., contextual limitations, selection bias), it has still yielded valuable insight into atypical development during the first year of life (Zwaigenbaum et al., 2007). A second approach involves the analysis of the developmental course of newborns identified as high-risk for developing ASD (i.e., having an older sibling with ASD; Bryson et al., 2007;
Zwaigenbaum et al., 2007). Despite noted limitations, these retrospective and prospective approaches have provided preliminary insight into the developmental course of ASD.

A majority of parents first express concern about their child's development around 18 months of age (Howlin & Moore, 1997; Siegel, Pliner, Eschler, & Elliot, 1988). During their first year of life, children with ASD may display limited facial expressions and imitation capabilities (Adrien et al., 1993; De Giacomo & Fombonne, 1998; Sigman & Ungerer, 1984). Zwaigenbaum and colleagues (2005) noted that infants with ASD often exhibit multiple visual impairments (e.g., eye-contact, impaired visual attention, visual tracking). When compared to typically developing peers, infants with ASD engage in less social smiling, imitation, and exploration of their environment (Baranek, 1999; Losche, 1990; Osterling & Dawson, 1994; Zwaigenbaum et al., 2005). Bryson and colleagues (2007) reported that infants with ASD display less interest in interacting with others. During this period researchers have also noted that children with ASD exhibit significant deficits in receptive (e.g., response to name) and expressive (e.g., pointing) joint attention skills (Osterling & Dawson, 1994).

During the second year of life developmental delays become more pronounced (Desombre et al., 2006; Landa & Garrett-Mayer, 2006; Werner et al., 2000). Impairments in social skills include decreased sharing of enjoyment or interests (Lord, 1995; Wetherby et al., 2004) and deficits or the complete absence of social referencing abilities (e.g., coordination of gaze and emotional expression to share affective states; Wetherby et al., 2007). Deficits in joint attention skills include deficits in following other’s attentional focus, directing other’s attention, and a failure to integrate vision and attention (Stone, Ousley, Yoder, Hogan, & Hepburn, 1997b; Wetherby, Prizant, & Hutchinson, 1998). The development of verbal communication skills varies significantly among toddlers with ASD (Tager-Flusberg, Joseph, & Folstein, 2001; Wetherby et al., 2004). In comparison to typically and atypically developing peers, toddlers with ASD exhibit deficits in their use of babbling and single word (Werner & Dawson, 2005).

Toddlers with ASD may also regress in skill development between their first and third birthdays (Goldberg et al., 2003). As much as 40% of toddlers with ASD will exhibit a period of regression with
regard to the use of expressive language (Hoshino et al., 1987; Kurita, 1985, 1996; Rutter & Lord, 1987). Deficits in verbal communication are often compounded by impairments in non-verbal communication. Toddlers with ASD often fail to employ gestures such as declarative pointing, head nodding, waving, and showing to communicate (Loveland & Landry, 1986; Stone et al., 1997b; Werner & Dawson, 2005; Wetherby et al., 1998). During this developmental period deficits in age-appropriate play (i.e., using a toy in the intended manner) become increasingly evident. In addition toddlers with ASD may also exhibit impairments in make-believe or pretend play (Dawson & Adams, 1984; Stone et al., 1990; Wetherby et al., 1998).

Infantile Onset of Psychopathology

Within the *DSM-5* (APA, 2013), the ASD diagnosis is classified as a neurodevelopmental disorder. The *DSM-5* includes a total of 17 neurodevelopmental disorders including ASD, ADHD, ID, communication disorders, specific learning disorders, and motor disorders. The classification of ASD as a neurodevelopmental disorder is commensurate with researchers who have repeatedly demonstrated the presence of symptoms within the first year of life (DeGiacomo & Fombonne, 1998; Dixon, Granpeesheh, Tarbox, & Smith, 2011; Osterling, Dawson, & Munson, 2002; Werner, Dawson, Osterling, & Dinno, 2000). Researchers have suggested that abnormal brain development initially occurs during the prenatal period in ASD populations (Bauman & Kemper, 2003; Rodier, 2002). Yet these abnormalities may continue after birth as well, as indicated by the atypical patterns of brain maturation previously discussed (e.g., Courchesne et al., 2001; Courchesne & Pierce, 2005; Lainhart et al., 1997).

Rydz and colleagues (2006) estimated that 12-16% of children are identified as having a developmental disability. An individual is identified as developmentally delayed when they are two or more standard deviations below average in one or more developmental domains (e.g., speech/language, cognition, gross/fine motor, social/personal) on a standardized, norm-referenced assessment of adaptive functioning (Shevell et al., 2003). The typical approach to assessing developmental progression entails a review of developmental history and discussion of parental concerns (Illingworth, 2013; Sand,
Silverstein, Glascoe, Gupta, Tonniges, & O'Connor, 2005). However, multiple researchers have questioned the sensitivity of this approach (Glascoe, 2005; Hamilton, 2006). Aylward (2009) demonstrated that exclusive reliance upon this method failed to identify as much as 45% of those with developmental disabilities. This method prevails despite the policy put in place by the American Academy of Pediatrics (2001) which recommends regular screening of infants and toddlers. Researchers have demonstrated that systematic screening and testing significantly improves the identification of atypical development (Guevara et al., 2013).

Early Identification

A majority of parents report that they expressed concern about their child’s development before 18 months of age (Siegel et al., 1988). Despite this information, the average diagnosis is not made until nearly two years after parents initially expressed concern (Bryson, Rogers, & Fombonne, 2003). Screening administered by a pediatrician is typically the only evaluation children receive prior to school enrollment (Kleinman et al., 2008). Parents of children identified as atypically developing report being evaluated by an average of three professionals during the time preceding initial diagnosis of their child. At this point a large amount of research is available to support the efficacy and stability of an ASD diagnosis around 24 months of age (Charman & Baird, 2002; Eaves & Ho, 2004; Howlin & Moore, 1997; Wetherby et al., 2007). Additional research has noted that children as young as 18 months may be reliably identified in severe cases (Baird et al., 2001; Baron-Cohen, Cox, Baird, Swettenham, & Nighingale, 1996). Further, these early diagnoses have also been observed to be stable and reliable across time (Lord, 1995; Stone et al., 1999). Diagnostic differentiation has been an important factor in early diagnosis. Multiple behaviors such as joint attention (Lewy & Dawson, 1992; McEvoy, Rogers, & Pennington, 1993; Mundy, Sigman, Ungerer, & Sherman, 1986), imitation (Sigman & Ungerer, 1984; Stone, Lemanek, Fishel, Fernandez, & Altemeier, 1990), and functional play (Mundy et al., 1986; Sigman & Ungerer, 1984; Stone et al., 1990) are noted to help differentiate children with developmental delays from those with ASD.
Despite the evidence of diagnostic reliability at younger ages (Charman & Baird, 2002; Cox et al., 1999; Filipek et al., 2000; Lord, 1995; Lord & Risi, 2000; Moore & Goodson, 2003; Stone et al., 1999), the average age of ASD diagnosis remains closer to 4 years of age (Howlin & Moore, 1997; Mandell, Novak, & Zubritsky, 2005; Siegel, Pliner, Eschler, & Elliott, 1988). Mandell and colleagues (2005) identified multiple factors that impede early diagnosis. Specifically, they found that living in rural areas; low socio-economic status, abnormal pain response, and hearing impairment were each associated with delaying the initial ASD diagnosis. Researchers have also noted that ethnicity may indirectly affect early identification. Specifically, Mandell, Listerud, Levy, and Pinto-Martin (2002) reported that African-American children are diagnosed three years later on average when compared to peers from other ethnic backgrounds. Additional factors that interfere with early referral and evaluation include delays in service provision and a relative lack of qualified providers (Dosreis, Weiner, Johnson, & Newschaffer, 2006; Wiggins, Baio, & Rice, 2006; Zwaigenbaum & Stone, 2006). Factors such as the presence of stereotypic behaviors or severe language deficits led to diagnosis a year earlier on average. An additional factor that is associated with earlier diagnosis is service provider selection. Individuals referred to a specialist were diagnosed nearly a half a year earlier than children who sought services from multiple primary care physicians (Mandell et al., 2005). In a recent national survey, professionals working with infants and toddlers with ASD reported that 88% of them diagnosed toddlers with ASD between 18 and 35 months of age (Shaw & Hatton, 2009).

Researchers’ attempts to accurately identify ASD symptoms at earlier points in development have also increased (Charman & Howlin, 2003; Filipek et al., 2000; Lord et al., 2005). Initially, retrospective studies based on parental recall of a child’s first year of life were analyzed (Dahlgren & Gillberg, 1989; Ornitz et al., 1978). Researchers suggested that nearly half of the parents interviewed recalled abnormalities such as lack of eye contact and limited reaction to parental attempts to play and interact (De Giacomo & Fombonne, 1998; Gillberg et al., 1990; Hoshino et al., 1987; Rogers & DiLalla, 1990; Volkmar, Stier, & Cohen, 1985). Although exploratory in nature, multiple confounding factors (e.g.,
inaccuracy, bias) were present in the research of retrospective parent-report (Osterling & Dawson, 1994; Reznick, 2006). Since then multiple researchers have utilized alternative techniques (e.g., home videos) to analyze the manifestation of ASD symptoms in infants (Adrien et al., 1993; Osterling & Dawson, 1994). Osterling and Dawson (1994) were able to reliably identify children that would be later diagnosed with ASD. In comparison to control groups, children later diagnosed with ASD were noted to differ both qualitatively and quantitatively (Lösche, 1990). The use of home videos to analyze infantile populations had methodological flaws as well. These videos are often not standardized, do not present the same information across children, and provide only a limited sample of behavior (Osterling & Dawson, 1994; Reznick, 2006). Early attempts focused on sensorimotor and cognitive deficits, failing to specifically assess ASD symptomology to allow for differential diagnosis (Osterling & Dawson, 1994). More recently, researchers have demonstrated that behaviors observed around 12 months of age in home videos may distinguish those who will later be diagnosed with ASD from typically developing peers, yet the reliability of this approach was reported to increase by 18 months of age (Baranek, 1999; Baranek et al., 2005). Reznick (2006) cautioned against efforts to diagnose children younger than 18 months due to the limited validity and sensitivity of those measures currently available. Further, the natural heterogeneity surrounding skill development around 12 months in the typically developing population further complicates identifying atypical development and differential diagnosis (Reznick, 2006).

The increased interest surrounding ASD has led to significant policy changes which emphasize screening for developmental delays during well-baby visits (Johnson & Myers, 2007). The American Academies of Neurology, Pediatrics, and Child and Adolescent Psychiatry advocate the use of a two-stage screening procedure for ASD (Bryson et al., 2003). According to the proposed guidelines, initial screening should assess for the presence of global developmental delays, while follow-up assessment should include assessment of symptoms specific to ASD (e.g., socialization and language development; Bryson et al., 2003). Wetherby and colleagues (2004) demonstrated the utility of screening assessments for identifying atypically developing children for follow-up assessment. Multiple measures (e.g., the
Infant-Toddler Checklist (ITC; Wetherby, Goldstein, Cleary, Allen, & Kublin, 2003; Wetherby & Prizant, 2002), the Screening Tool for Autism in Two-Year-Olds (STAT; Stone, Coonrod, & Ousley, 2000), the Modified Checklist for Autism in Toddlers (M-CHAT; Robins, Fein, Barton, & Green, 2001); and the Baby and Infant Screen for Children with Autism Traits (BISCUIT; Matson, Boisjoli, & Wilkins, 2007) have since been developed and implemented as screens for ASD symptomology.

Early identification measures. Despite the availability of screening measures, researchers have continuously noted the dearth of diagnostic measures with sound psychometric properties that are appropriate for infants and toddlers (Baird et al., 2001; Baron-Cohen et al., 2000; Filipek et al., 2000; Zwaigenbaum et al., 2005). Glascoe (2005) suggested that sensitivity for a single administration of a diagnostic screener should be between 70 and 80%. The following is a review of measures that are commonly employed to screen for ASD in infant and toddlers and their psychometric properties.

The Infant-Toddler Checklist (ITC; Wetherby et al., 2003; Wetherby & Prizant, 2002) is an individual component of the broader Communication and Symbolic Behavior Scales - Developmental Profile assessment (CSBS-DP; Wetherby & Prizant, 2002). Comprised of 24 items, the ITC is a broad developmental screener focusing on deficits in language and communication. Normative data for the ITC was derived from 2000 infants and toddlers ranging from 6 to 24 months of age (Wetherby & Prizant, 2002). However, positive predictive value for identifying developmental delay is generally low for younger age groups and was 79% for participants between 21-24 months of age. Wetherby and colleagues (2003) reported that the sensitivity and specificity of the ITC was 87% and 75%, respectively. However, the ITC does not provide for differential diagnosis. Specifically, a positive result from an ITC screening does not distinguish between the presence of a communication delay and ASD (Wetherby et al., 2008).

The Screening Tool for Autism in Two-Year-Olds (STAT; Stone & Ousley, 1997) is an interactive measure that was designed specifically to differentiate children with developmental delays from those with ASD (Stone et al., 2000). The STAT is especially useful in assessing lower functioning populations,
as the items (n=12) do not require language comprehension skills (Stone et al., 2000). The recommended age range of the STAT is 24 to 35 months. During validation research, Stone and colleagues (2000) observed that the STAT has a specificity of 86% and sensitivity of 83%. Stone, Coonrod, Turner, and Pozdol (2004) indicated that the STAT has good test-retest reliability and inter-observer agreement. Additional research has suggested that the STAT may be used to identify children younger than 24 months of age with modification of the cutoff scores (Stone, McMahon, & Henderson, 2008). Specifically, the authors noted that with cutoff score modification, the sensitivity was 93% and specificity was 83% in infants ages 14 months and older.

The Checklist for Autism in Toddlers (CHAT) has previously been used as a screen for ASD in children as young as 18 months (Baron-Cohen et al., 1992). It combines both informant-report (nine items) and direct observation (five items). Although it is noted to exhibit good specificity, it has been noted to demonstrate poor sensitivity (Reznick, 2006). In 2001, the CHAT was revised and reintroduced as the Modified Checklist for Autism in Toddlers (M-CHAT; Robins et al., 2001). Revisions included the removal of the direct observation component and shifted the target population to include toddlers 16 to 30 months of age (Robins et al., 2001). The M-CHAT contains a total of 23 items which are rated in a “yes/no” format by informants (Robins et al., 2001). Kleinman and colleagues (2008) reported that the M-CHAT has a positive predictive value of 74%, which was consistent with earlier work by Robins and colleagues (2001). Matson and colleagues (2009b) reported that the M-CHAT had a specificity of 87% and sensitivity of 74%. These values are consistent with previous investigations of the M-CHAT (Eaves et al., 2006; Wong et al., 2004).

Despite the above revisions, researchers continue to question the psychometric properties of the M-CHAT due to its restricted normative sample, limited item content, and response format (Reznick, 2006). Eaves, Wingert, and Ho (2006) questioned the specificity of the M-CHAT in high-risk samples (i.e., individuals previously identified as “at-risk” for ASD) and suggested that the measure should not be used to rule out an ASD diagnosis. Ventola and colleagues (2007) noted that the M-CHAT failed to
differentiate between those with ASD and those with other developmental disorders. Further, Matson and colleagues (2009b) noted that the *M-CHAT* failed to reliably differentiate between ASD subtypes.

The *Quantitative Checklist for Autism in Toddlers (Q-CHAT; Allison et al., 2008)* is the latest revision of the *CHAT*. The *Q-CHAT* represents a shift in diagnostic approach from categorical to dimensional (Allison, Auyeung, & Baron-Cohen, 2012). This revision contains 25 items that are scored on a 5-point Likert-type scale. Item scoring was altered from the “yes-no” format in an attempt to improve reliability. Informant response is based upon the extent to which the target behavior is observed (Allison et al., 2012). Allison and colleagues (2008) observed that the *Q-CHAT* is a valid measure of ASD symptoms and demonstrates adequate test-retest reliability. However, these results should be interpreted with caution given the low response rate observed (33%) and the length of time separating administrations (one month; Allison et al., 2008).

The *BISCUIT* (Matson et al., 2007) is an informant-based assessment battery for infants and toddlers 17 to 37 months of age. Composed of three individual assessments, the *BISCUIT* may be used to assess ASD symptomatology (*Baby and Infant Screen for Children with aUtIsm Traits - Part 1, BISCUIT-Part 1*), comorbid psychopathology (*Baby and Infant Screen for Children with aUtIsm Traits - Part 2, BISCUIT-Part-2*), and challenging behaviors (*Baby and Infant Screen for Children with aUtIsm Traits - Part 3, BISCUIT-Part-3*). The entire *BISCUIT* battery may be administered to a parent, caregiver, or guardian in approximately 30 minutes. Scale development and item selection were based on the methodology recommended by Devellis (1991) and Crocker and Algina (1986). Each portion of the *BISCUIT* is read to a parent/caregiver who is then asked to compare their child to a same-aged peer. Items are rated as “0” = not different; no impairment, “1” = somewhat different; mild different, and “2” = very different; severe impairment.

The *BISCUIT-Part 1* contains 62 items and was designed to gather information relevant to the diagnosis of autistic disorder and PDD-NOS but may also be employed to monitor symptom manifestation during intervention (Matson et al., 2007). Researchers have previously demonstrated the
diagnostic sensitivity (93%) and specificity (86%) of the BISCUIT-Part 1, which has a positive predictive value of 88% (Matson, Wilkins, Sharp, Knight, Sevin, & Boisjoli, 2009b). Matson, Wilkins, and Fodstad (2011) reported that the BISCUIT-Part 1 also demonstrated good convergent validity with the M-CHAT. The BISCUIT-Part 1 also demonstrates excellent internal consistency (97%; Matson et al., 2009a).

Early Intervention

Given the complex etiology and current lack of prenatal procedures available to identify the presence of ASD, significant amounts of research have instead focused on early identification and intervention (Galli, Carminati, Gerber, Baud, & Baud, 2007). Ramey and Ramey (1998) broadly identified early intervention as a method used to enrich a toddler’s development through the implementation of a variety of activities. Early identification is beneficial for multiple reasons including the early diagnosis and identification of comorbid conditions, increased understanding of the services and support available, and earlier enrollment in the appropriate interventions (Dover & Le Couteur, 2007).

The emphasis placed upon early identification is largely driven by researchers who have demonstrated the necessity and efficacy of early intervention in ASD populations (Dawson & Osterling, 1997; Myers & Johnson, 2007; Reichow & Wolery, 2009). In contrast with childhood interventions, the emphasis of early intervention often entails intervention during the second and third year of life. Researchers have demonstrated that intervention provided at age 3 has a significantly greater impact than the same intervention occurring after 5 years of age (Woods & Wetherby, 2003). However, some caution is necessary. Despite the increased stress upon early identification, Matson, Wilkins, and Gonzalez (2008) emphasized that early identification is advantageous only if it aids in the provision of care, has predictive validity, and is reliable. Further, the goals and efficacy of treatment should be understood and clearly communicated to parents and caretakers. Despite various claims, Volkmar (1998) argued that autism is not a transient entity; symptom severity may decrease following treatment, but this does not mean an individual has been “cured.” Instead, the early intervention process is multidimensional and ongoing. Prior to the provision of services, a thorough assessment is necessary to identify targets for
intervention (Ramey & Ramey, 1998). Further, early diagnosis and intervention should be complemented by continuous assessment in order to monitor change and treatment efficacy (Dover & Le Couteur, 2007).

Early intervention programs most often target social and communication skills and may also seek to reduce comorbid symptoms and challenging behaviors (Howlin, Magiati, & Charman, 2009). Although the field surrounding ASD includes alternative therapies such as chelation therapy, acupuncture, and play therapy, these therapies often have limited empirical support (Green, Pituch, Itchon, Choi, O’Reilly, & Sigafoons, 2006; Howlin et al., 2009). At present few of the proposed ASD interventions are empirically supported with early intensive behavioral interventions (EIBI) being an exception. Researchers have previously identified EIBI as the only “well-established” ASD intervention currently available (Rogers & Vismara, 2008).

Early intensive behavioral interventions. A major component of early behavioral intervention has been the use of operant conditioning techniques (Cannella, O’Reilly, & Lancioni, 2006; Green et al., 2006; Matson & Minshawi, 2006). EIBI programs also incorporate multiple components from the field of applied behavior analysis (ABA) such as discrete trial training and pivotal response training (Maurice, Green, & Luce, 1996; Schreibman & Koegel, 2005). However, a variety of intervention techniques have been used. Interventions such as differential reinforcement (Harris, Handleman, & Fong, 1987), time-out (Durand & Carr, 1987), or a combination of the two (Rolider & Van Houten, 1985) are more acceptable than other techniques such as electric shock (Linscheid, Iwata, Ricketts, Williams, & Griffin, 1990).

Researchers have used ABA techniques for treating symptoms of ASD for nearly 50 years (Matson & Smith, 2008). Initially, this approach most often consisted of targeting a single symptom or challenging behavior at a time. Although traditional behavior analytic research focused upon specific behaviors (Matson, 2007b), their methodologies have been increasingly adapted to create broader ASD intervention programs. In 1973, Lovaas and colleagues published research which simultaneously targeted a broad group of behaviors and symptoms with a combination of individually validated treatment
methods. This research was significant as it emphasized an organized approach to concurrently treating multiple symptoms with an array of interventions.

Multiple factors such as symptom severity, participant age, and comorbid psychopathology influence the interpretation of results from EIBI interventions (Matson & Smith, 2008; Symes, Remington, Brown, & Hastings, 2006). Agreement concerning the intensity and duration of intervention necessary to produce positive treatment effects is largely absent. However, given the heterogeneity of symptoms observed and targets for intervention, a uniform approach may never be fully reached. At present general consensus suggests that intervention should occur prior to 36 months of age and include between 20 and 40 hours of intervention per week (Howlin et al., 2009; Matson et al., 2008; Matson & Konst, in press).

Matson (2007) noted that to date a majority of research has failed to include measures of core symptoms of ASD as an outcome measure. This oversight has generated a significant amount of controversy in EIBI research. Despite criticism for focusing on cognitive functioning as an outcome of early intervention, researchers continue to consistently report changes in IQ as an outcome variable (Howlin et al., 2009). Analysis of changes in core ASD symptoms (e.g., social communication) are not as prevalent but have increased in recent years (e.g., Howlin et al., 2007; Kasari, Freeman, & Paparella, 2006; Yoder & Stone, 2006).

Early intensive behavioral intervention evidence. Given the large amount of interventions currently available and new ones that continue to be introduced and implemented without empirical support, Matson and Smith (2008) noted the importance of acceptance of EIBI by parent groups. In a 2007 survey, parents of children with ASD indicated that they were currently using between four and six therapies to treat their child, and had previously tried as many as nine different interventions (Goin-Kochel, Myers, & MacKintosh, 2007).

Following two years of EIBI, individuals receiving treatment exhibited significantly greater gains in multiple domains (i.e., daily living skills, intelligence, social skills, and language) when compared to a
control group (Remington et al., 2007). The authors also reported that parental stress was not negatively impacted by enrollment in EIBI. Early interventions have also been suggested to help decrease the development of secondary deficits and challenging behaviors (Bryson et al., 2003). Multiple meta-analyses have been carried out surrounding the use of EIBI in ASD populations. Researchers have reported that EIBI is an effective intervention for ASD (Eldevik et al., 2009; Howlin et al., 2009; Makrygianni & Reed, 2010; Reichow & Wolery, 2009; Virues-Ortega, 2010). Following a systematic review of EIBI literature, Eldevik and colleagues (2009) observed that on average studies reported that EIBI had a large effect on IQ ($Hedge's \, g = 1.10$) and a moderate effect on adaptive behaviors ($Hedge's \, g = .66$).

Research of early brain development has also been presented as evidence supporting the efficacy of early intervention in ASD populations (Shore, 1997). Researchers have suggested that the timing of intervention is crucial in consideration of brain plasticity. Huttenlocher (1994) hypothesized that the success of early intervention may be due in part to increased brain plasticity. Additional researchers have noted that early experiences may help shape and develop neural connections (Fischer & Rose, 1994). Positive predictors of treatment outcome have also been noted to include communication skills and intellectual functioning (Howlin, 1997). In addition to evidence directly supporting early intervention, Shore (1997) reported that the absence of stimulation and/or the accumulation of negative experiences during early development may have significant negative longitudinal ramifications.

Aside from immediate advantages of EIBI, Chasson and colleagues (2007) estimated that early intervention may also help to negate or decrease the demand for long-term special education resources. Upon reaching school-age, children with ASD often receive services through special education programs. Special education programs are variable in both the services rendered and populations they treat (e.g., ID, Down's syndrome). Despite their prevalence, researchers have largely failed to observe significant gains in cognitive, social, language functioning, and adaptive behaviors for children with ASD who have been enrolled in special education programs (Freeman et al., 1985; Howard et al., 2005; Smith et al., 2000).
Purpose

The knowledge base related to ASD has seen a substantial increase since Kanner’s (1943) initial description of the disorder. This growth in knowledge has resulted in an increased emphasis on the importance of early identification and intervention. Researchers have demonstrated the increased efficacy of ASD interventions in toddlers (2-3 years of age) compared to the same interventions delayed by two years (Fenske, Zalenski, Krantz, & McClannahan, 1985; Lovaas & Smith, 1988). However, the benefit of early intervention is only possible following accurate identification. Accurate identification is reliant upon the continuation of research surrounding ASD assessments as new information and changes to the ASD diagnostic category are introduced.

The BISCUIT-Part-1 is a measure often used to assess toddlers between 17 and 37 months of age for symptoms of ASD (Matson, Wilkins, & Fodstad, 2011). Two additional components of the BISCUIT assessment battery are also advantageous for early intervention as they assess symptoms of comorbid psychopathology (BISCUIT-Part 2; Matson, Boisjoli, Hess, & Wilkins, 2011) and challenging behaviors (BISCUIT-Part 3; Rojahn et al., 2009). A growing body of research has demonstrated the validity and reliability of each individual component of the BISCUIT assessment battery in ASD populations (Matson et al., 2009b).

A cutoff score of 17 was identified as ideal during the development of the BISCUIT-Part 1 (Matson et al., 2009b). Researchers reported that this cutoff score provided good sensitivity (84%) and specificity (86%) when differentiating toddlers with atypical development from those with PDD-NOS. A separate cutoff score (i.e., 39) was identified to differentiate between toddlers with PDD-NOS and those with autistic disorder (sensitivity, 84% and specificity, 83%; Matson et al., 2009b). The standard deviation from the central tendency method approach was employed to identify cutoff score ranges for the remaining components of the BISCUIT battery (Matson, Fodstad, Mahan, & Rojahn, 2010; Matson, Fodstad, Mahan, & Sevin, 2009). More recently, researchers revised the cutoff scores of each BISCUIT component to better reflect the effects of age and development upon symptom manifestation (Horovitz &
This approach is commonly employed in measures of psychological impairment and cognitive functioning, especially for infants and toddlers (Achenbach & Rescorla, 2000; Matson, Kozlowski, Neal, Worley, & Fodstad, 2011).

Horovitz and Matson (2013a, 2013b, 2014) separated toddlers into three age-bands: 17-23 months, 24-30 months, and 31-37 months. The authors then calculated two cutoff scores for each respective age group. One cutoff score was identified to differentiate atypical development from PDD-NOS, and a separate score was identified to distinguish between PDD-NOS and autistic disorder (Horovitz & Matson, 2014). Based upon their analyses, the following cutoff scores were identified for the BISCUIT-Part 1. For the 17-23 month age range scores less than 14 were identified as optimal to differentiate atypical development from PDD-NOS (sensitivity, 93% and specificity, 76%) and scores greater than 39 differentiated those with PDD-NOS from those with autistic disorder (sensitivity, 80% and specificity, 81%). For the 24-30 month age range scores less than 18 were identified as optimal to differentiate atypical development from PDD-NOS (sensitivity, 85% and specificity, 85%) and scores greater than 47 were observed to differentiate those with PDD-NOS from those with autistic disorder (sensitivity, 64% and specificity, 90%). For the 31-37 month age range scores less than 19 were identified as optimal to differentiate atypical development from PDD-NOS (sensitivity, 88% and specificity, 89%; Horovitz & Matson, 2014) and scores greater than 34 differentiated those with PDD-NOS from those with autistic disorder (sensitivity, 88% and specificity, 72%).

Recent changes to the ASD diagnostic category and the symptoms required for diagnosis have prompted a reevaluation of the cutoff scores for the BISCUIT. Changes to the ASD diagnostic category in the DSM-5 (APA, 2013) have modified the diagnostic criteria and removed the PDD-NOS diagnosis. Researchers investigating the implications of the changes to the ASD symptom structure and diagnostic categories have suggested that as many as 40% of children may no longer meet criteria for an ASD diagnosis (Gibbs et al., 2012; Mattila et al., 2011; Matson et al., 2012a, 2012b; Mayes et al., 2013; McPartland et al., 2012; Worley & Matson, 2012). Given the observed differences in previous BISCUIT-
Part 1 cutoff scores used to differentiate autistic disorder and PDD-NOS, it is clear that a difference in symptom manifestation was apparent between these two groups (Matson et al., 2009b). The combination of these two diagnostic groups and changes in diagnostic criteria required additional evaluation of the cutoff scores for the BISCUIT assessment battery.

Given the positive effects of early intervention, a valid and reliable approach to early identification is paramount. Differential diagnosis is important to identify those individuals who would most benefit from participation in intervention services as early as possible. In addition to differential diagnosis, the assessment of challenging behaviors (BISCUIT-Part 3) and comorbid conditions (BISCUIT-Part 2) were also updated to reflect diagnostic changes as this information may be integrated into case conceptualization, treatment plans, and future research. Although the BISCUIT-Part 2 and Part 3 have not previously differentiated between PDD-NOS and autistic disorder, the recent diagnostic changes may result in some individuals previously diagnosed with ASD as no longer meeting diagnostic criteria. Given this information, it was necessary to evaluate the cutoff scores for all three components of the BISCUIT assessment battery.

Study One

A total of three studies are included in the current analysis. The first study focused on the identification of cutoff scores for the BISCUIT-Part 1 that best discriminated between toddlers with ASD and atypical development. Initially, a Receiver Operating Characteristic analysis for the total sample was conducted to identify a cutoff score that differentiated between ASD and atypical development regardless of participant age. To better account for differences in developmental progression, age-based cutoff scores (i.e., 17-23 months, 24-30 months, and 31-37 months) were also calculated. This analysis was used to determine the effect of individual age cohorts on the discriminating ability of the BISCUIT-Part 1 and to determine if age-based scoring procedures were appropriate. The discriminative abilities of the BISCUIT-Part 1 were further analyzed by calculating the Area Under Curve (AUC). The AUC was selected to evaluate the sensitivity and specificity of the BISCUIT-Part 1.
Study Two

The second study focused on identifying cutoff score ranges for the BISCUIT-Part 2 that best discriminated the severity of comorbid psychopathology symptoms within diagnostic groups (i.e., ASD and atypical development). Although the BISCUIT-Part 2 scoring procedures have not previously differentiated between different ASD diagnoses, the previous cutoff scores were calculated using individuals with a PDD-NOS and/or autistic disorder diagnosis. Utilizing the standard deviation from central tendency method, new cutoff scores were calculated for the total score of the BISCUIT-Part 2 and each factor (n=5). The cutoff scores identified differentiated between symptom severity for the three age groups within each diagnostic category. Age-based cutoff scores were calculated to examine the impact of age on the manifestation of comorbid symptoms and advance previous BISCUIT-Part 2 research (Horovitz & Matson, 2013a).

Study Three

The third study sought to identify cutoff scores for the BISCUIT-Part 3 that best discriminated the severity of challenging behaviors within each diagnostic group. The third component of the BISCUIT assessment battery is used to identify challenging behaviors frequently identified in individuals with ASD (i.e., aggressive/disruptive behavior, stereotypic behavior, and SIB). Similar to the BISCUIT-Part 2, the BISCUIT-Part 3 did not previously differentiate between ASD diagnoses. New cutoff scores were created for the BISCUIT-Part 3 by employing the standard deviation from the central tendency method. A range of cutoff scores was calculated for the BISCUIT-Part 3 total score and each subscale. Cutoff scores differentiating symptom severity were identified for each age group within each diagnostic category. Age-based scoring procedures were included to account for the impact of age upon the exhibition of challenging behaviors and to advance previous BISCUIT-Part 3 research (Horovitz & Matson, 2013b).
Method

Participants

Participants in each study were infants and toddlers that received services from Louisiana's EarlySteps program between 2006 and 2013. EarlySteps is a component of Louisiana's Early Intervention System which was implemented in 2004 as part of the Individuals with Disabilities Education Act, Part C. EarlySteps was designed to provide services to families of infants less than 36 months of age with medical conditions that may cause, or are associated with, developmental delays. In the absence of a diagnosed medical condition, the child may also qualify for services if they exhibit significant delays (i.e., 1.5 standard deviations) in two or more developmental domains (e.g., vision, cognition, hearing, communication). Participants admitted to the program are eligible to receive multiple services (e.g., audiology, psychological, nutrition, speech therapy, and occupational therapy) based upon the impairments observed during initial and follow-up evaluations.

A total of 6,860 participants were initially identified for inclusion in the current analyses. However, 12 participants were removed because their age was unidentified, or they fell outside of the normative age range of the BISCUIT (i.e., 17-37 months). The remaining sample included 6,848 participants. Individuals were separated into two categories based upon primary diagnosis (ASD or atypical development). Participants placed in the atypical development group included those exhibiting conditions such as global developmental delay, epilepsy, Klinefelter’s syndrome, cerebral palsy, and Down’s syndrome. The identification of these conditions was based upon informant report or the results of their EarlySteps evaluation. Data included in the current analyses were collected during periods when both the DSM-IV-TR (APA, 2004) and DSM-5 (APA, 2013) were used to make diagnostic decisions. Due to the significant changes to the ASD category, a discussion of the diagnostic process used for the current studies is warranted. The DSM-5 explicitly states that individuals with any pre-existing ASD diagnosis (e.g., PDD-NOS, autistic disorder) according to the DSM-IV-TR may retain their ASD diagnosis (APA, 2013). However, in order to make an ASD diagnosis for the current analyses, a licensed clinical
psychologist reviewed each individual’s scores on the M-CHAT (Robins et al., 2001) and the Battelle Developmental Inventory-Second Edition (BDI-2; Newborg, 2005) and evaluated their performance based upon the DSM-5 diagnostic criteria for ASD (APA, 2013). Using this procedure, an ASD diagnosis was based upon the observed manifestation of symptoms and was not made based upon a previous DSM-IV-TR ASD diagnosis.

While making diagnostic decisions, the clinical psychologist was blind to the individual’s DSM-IV-TR diagnoses and their performance on the BISCUIT assessment battery. Of those participants identified, 943 participants met DSM-5 criteria for an ASD diagnosis and 5,905 were identified as atypically developing. Individual diagnostic categories were then further separated into groups based upon participant age at the time of initial assessment. Participant age was used to separate participants into one of three groups within each diagnostic group: 17 to 23 months, 24 to 30 months, and 31 to 37 months. The use of age cohorts was selected to advance research recently conducted on the BISCUIT (Horovitz & Matson, 2013a, 2013b, 2014). The age groups were also utilized to reflect the achievement of developmental milestones to allow for refined peer comparisons (Green & Palfrey, 2002; Horovitz & Matson, 2014; Shelov & Hannemann, 1991). The selected age-bands represent an equal distribution of participant age and capture the full range of ages assessed by the BISCUIT. In addition to information regarding diagnostic assessment, demographic information was also collected for each participant and is presented in Table 1.

Participants must have met select criteria prior to inclusion in the current analyses. The participant must have been administered at least one portion of the BISCUIT assessment battery. However, participants were evaluated separately for each study so the absence of one component of the BISCUIT battery did not exclude them from consideration in the remaining studies. At the time of evaluation the participant must have been within the normative age range of the BISCUIT (i.e., 17 to 37 months; Matson et al., 2011). Finally, to be included in the current analyses, the child must have met DSM-5 criteria for an ASD diagnosis or have been identified as atypically developing.
Table 1
Participant Demographics

<table>
<thead>
<tr>
<th></th>
<th>Atypical (n = 2,151)</th>
<th>ASD (n = 263)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>20.35 (1.81)</td>
<td>20.44 (1.81)</td>
</tr>
<tr>
<td>Race/ethnicity (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African-American</td>
<td>34.50</td>
<td>45.30</td>
</tr>
<tr>
<td>Caucasian</td>
<td>54.90</td>
<td>45.30</td>
</tr>
<tr>
<td>Hispanic</td>
<td>5.10</td>
<td>3.10</td>
</tr>
<tr>
<td>Other</td>
<td>5.50</td>
<td>6.30</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>34.80</td>
<td>26.80</td>
</tr>
<tr>
<td>Male</td>
<td>65.20</td>
<td>73.20</td>
</tr>
</tbody>
</table>

24-30 months (n = 3,273)

<table>
<thead>
<tr>
<th></th>
<th>Atypical (n = 2,786)</th>
<th>ASD (n = 487)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>26.67 (1.97)</td>
<td>26.79 (1.95)</td>
</tr>
<tr>
<td>Race/ethnicity (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African-American</td>
<td>38.60</td>
<td>40.50</td>
</tr>
<tr>
<td>Caucasian</td>
<td>50.20</td>
<td>49.30</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4.50</td>
<td>4.50</td>
</tr>
<tr>
<td>Other</td>
<td>6.70</td>
<td>5.70</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>30.90</td>
<td>23.20</td>
</tr>
<tr>
<td>Male</td>
<td>69.10</td>
<td>76.80</td>
</tr>
</tbody>
</table>

31-37 months (n = 1,161)

<table>
<thead>
<tr>
<th></th>
<th>Atypical (n = 968)</th>
<th>ASD (n = 193)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>32.69 (1.42)</td>
<td>32.49 (1.30)</td>
</tr>
<tr>
<td>Race/ethnicity (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African-American</td>
<td>38.10</td>
<td>37.80</td>
</tr>
<tr>
<td>Caucasian</td>
<td>49.30</td>
<td>45.10</td>
</tr>
<tr>
<td>Hispanic</td>
<td>2.90</td>
<td>5.70</td>
</tr>
<tr>
<td>Other</td>
<td>9.70</td>
<td>11.40</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>26.50</td>
<td>21.40</td>
</tr>
<tr>
<td>Male</td>
<td>73.50</td>
<td>78.60</td>
</tr>
</tbody>
</table>

Note: Participant age is reported in months. Standard deviations are provided in parentheses directly beside the mean age.

Measures

The *BISCUIT* assessment battery is comprised of three measures designed to assess for symptoms of ASD (*BISCUIT-Part 1*), comorbid psychopathology (*BISCUIT-Part 2*), and challenging behaviors (*BISCUIT-Part 3*) in infants between the ages of 17 and 37 months (Matson et al., 2007). The entire battery was initially validated in a large sample of atypically developing infants and toddlers. This
sample included toddlers with an ASD diagnosis. The BISCUIT-Part 1 contains 62 items that assess three broad symptom domains: communication, socialization/nonverbal communication, and restricted interests/repetitive behaviors (Matson et al., 2009a). During evaluation, parents or caretakers are asked to compare their child to a typically developing peer and rate each item based upon the degree of impairment or difference in behavior present (Matson et al., 2007). An appendix of developmentally appropriate behaviors typical for toddlers within this age range accompanies the assessment battery as a reference for informants. A Likert-type scale is used to code each item, a rating of "2" is ascribed to behavior that is very different from their peers, and a rating of "0" reflects no difference in behavior relative to their peers (Matson et al., 2007). Administration of the entire battery requires approximately 20-30 minutes (Matson et al., 2011). Researchers have previously demonstrated the diagnostic sensitivity (93%) and specificity (86%) of the BISCUIT-Part 1, which has a positive predictive value of 89% (Matson et al., 2009b). Analysis of the reliability of the BISCUIT battery indicates that each subscale demonstrates excellent internal consistency with values ranging from 91% (BISCUIT-Part 3) to 97% (BISCUIT-Part 1; Matson et al., 2009a).

The early identification of comorbid symptoms is also beneficial due to the increased prevalence of comorbid psychopathological conditions observed in ASD populations (Gadow, DeVincent, Pomeroy, & Azizian, 2004; Ghaziuddin, Tsai, & Ghaziuddin, 1992; Konst & Matson, 2014; Konst, Matson, & Turygin, 2013b). The BISCUIT-Part 2 contains a total of 65 items which are administered to a parent or caregiver by a trained professional. Factor analytic research of the BISCUIT-Part 2 identified a total of five factors (i.e., tantrum/conduct behavior, inattention/impulsivity, eating/sleeping problems, avoidance behavior, and anxiety/repetitive behavior) related to common psychological impairments observed in ASD populations (Matson et al., 2011). Given the observed differences in the manifestation of comorbid symptoms, separate cutoff scores were created for those with ASD and those identified as atypically developing (Matson et al., 2009c). More recently, Horovitz and Matson (2013a) created age-based cutoff
scores for each diagnostic category. Revisions based upon participant age included the creation of cutoff scores for each subscale and the BISCUIT-Part 2 total score.

The BISCUIT-Part 3 is the third scale included in the BISCUIT battery of assessments (Matson et al., 2007). It contains 15 items that are used to assess the presence and severity of challenging behaviors. Items were arranged into three categories of challenging behavior based upon factor analytic research: aggressive/disruptive behavior, stereotypic behavior, and SIB (Matson, Boisjoli, Rojahn, & Hess, 2009). Recently, Horovitz and Matson (2013b) created cutoff scores for the BISCUIT-Part 3 to account for the influence of participant age and developmental course. The authors identified age-based cutoff scores for each factor of the BISCUIT-Part 3 and the total score.

The Battelle Developmental Inventory, Second Edition (BDI-2; Newborg, 2005) is a standardized measure of five developmental domains (i.e., social/personal, motor, communication, cognition, and adaptive; Newborg, 2005). The scale includes normative data for children from birth to 7 years and 11 months of age. The BDI-2 employs three different methods to gather relevant information for each of the 450 items. Assessment administration includes a structured test format and, depending upon the setting and child's capabilities, the evaluator may supplement this information with informant report and direct observation (Bliss, 2007). Item administration is initially informed based upon participant age, but may vary dependent upon their individual level of functioning for each domain. The internal consistency coefficients and inter-rater reliability were observed to be excellent, ranging from 90 to 99% across the individual domains. Test-retest reliability of the BDI-2 was observed to be above 80% in general, but was reported to vary across domains and age groups (Bliss, 2007).

The Modified Checklist for Autism in Toddlers (M-CHAT; Robins et al., 2001) is an informant based screener designed to assess toddlers for ASD symptoms. The M-CHAT consists of 23 items, with six items identified as critical indicators. Item ratings are based upon "yes" or "no" responses. A toddler is identified for follow-up assessment if they "fail" three of the total items, or two or more of the critical items. The M-CHAT demonstrates good sensitivity (87%) and excellent specificity (99%), with a positive
predictive value of 80% (Robins et al., 2001). The measure is also reported to demonstrate good internal consistency (85%; Kleinman et al., 2008; Robins et al., 2001).

Procedure

Participants in the current studies were drawn from a pre-existing database. These individuals were placed into one of two diagnostic categories (i.e., atypical development, ASD) in the database following their participation in the EarlySteps program. As part of their participation in EarlySteps, parents, caregivers, or legal guardians of an infant or toddler were initially administered the BDI-2, BISCUIT, and M-CHAT. Evaluations were conducted by professionals employed by the EarlySteps program. Evaluators had a minimum of a bachelor's degree, but up to a doctoral degree in professional disciplines such as education, speech/language pathology, psychology, early childhood development, and social work. In addition to their primary education, evaluators also held licenses and/or certifications related to their respective fields. Evaluators also received formal training in the administration of standardized assessments and training relevant to each specific measure included in the assessment battery. Informed parental consent to participate in research was given prior to assessment administration. Prior to the collection of data, the current study was approved by the Louisiana State University Institutional Review Board and Louisiana's Office for Citizens with Developmental Disabilities. Following evaluation, the data collected was coded and entered into a secure electronic database for further analysis.

Preliminary Statistics

Study One. Prior to analysis, the dataset was reviewed for missing items and invalid responses. Participants missing more than 10% of the responses for a given component of the BISCUIT were removed from further analysis in each respective study (Donner, 1982; Field, 2009). In order to preserve sample size and score distribution, outliers were identified by grouping participants according to diagnostic group and age group. For Study One, group z-scores for the BISCUIT-Part 1 total score were calculated for each group (n=6). Those z-scores with an absolute value greater than 3.29 were identified
as outliers and removed from the dataset (Field, 2005). The initial sample for Study One included 6,848 participants. However, 32 (0.46%) participants were removed due to missing values and an additional 86 (1.26%) participants were subsequently removed after being identified as outliers. The final sample for Study One included a total of 6,730 participants, with 940 having a DSM-5 ASD diagnosis. A diagram of participant flow for Study One is presented in Figure 1.

![Consort diagram](image)

Figure 1. Study One Consort diagram
Study Two. The total score for each *BISCUIT-Part 2* item was analyzed for missing data and extreme values (Cohen, 2008; Field, 2013). To preserve sample size and score distribution, outliers were identified by grouping participants by diagnostic group and age group. As in Study One, group z-scores for the *BISCUIT-Part 2* total score were calculated for each diagnostic and age group (n=6). Those z-scores with an absolute value greater than 3.29 were identified as outliers and removed from the dataset (Field, 2005). The initial sample for Study Two included 3,527 participants. However, 229 (6.49%) participants were removed due to missing values, and an additional 53 (1.61%) participants were subsequently removed after being identified as outliers. The final sample for Study Two included a total of 3,245 participants, with 503 participants meeting criteria for ASD based upon *DSM-5* criteria. A diagram of participant flow for Study Two is presented in Figure 2.

![Study Two Consort diagram]

Figure 2. Study Two Consort diagram
Study Three. The analysis used to identify outliers and participants with missing data for the BISCUIT-Part 3 was identical to the analysis carried out in Studies One and Two. The initial sample for Study Three included 3,455 participants. However, one participant was removed due to missing values, and an additional 57 (1.65%) participants were subsequently removed after being identified as outliers. The final sample for Study Three included a total of 3,397 participants, with 567 individuals meeting DSM-5 criteria for ASD. A diagram of participant flow for Study Three is presented in Figure 3.

![Figure 3. Study Three Consort diagram](image-url)
Imputation. Prior to further analysis, a Little's Missing Completely At Random test (MCAR) was carried out (Little, 1988). The MCAR was not significant and interpreted as indicating that the missing data was missing at random, and not related to purposeful omission or the dependent variables (Tabachnick & Fidell, 2007; Van Ness, Murphy, Araujo, Pisani, & Allore, 2007).

A multiple imputation procedure was carried out for individuals identified as missing less than 10% of responses. The multiple imputation procedure involves multiple steps for estimating missing item values and is reported to maintain sampling variability (Tabachnick & Fidell, 2007). First, a logistic regression was carried out utilizing diagnostic category, developmental quotient, and participant age as predictor variables. The logistic regression then utilized these variables to create an equation for estimating missing item values for each diagnostic category (Tabachnick & Fidell, 2007). A random sample was then drawn (with replacement) from the cases without missing variables. The identified variable distribution for each missing item was then used to provide an estimate for the missing items in five random samples (with replacement). The average imputed variable across all five samples for each missing item value was then included in a sixth dataset (Mehrotra, Li, Liu, & Lu, 2012; Rubin, 1987). The sixth dataset was then used to carry out Studies One, Two, and Three.
Study One

Statistical Analyses

The first study focused on identifying cutoff scores for the *BISCUIT-Part 1* that best discriminated between toddlers with ASD and those identified as developing atypically. Initially, a ROC analysis for the total sample was carried out. This analysis was used to identify a cutoff score that reliably differentiated between ASD and atypical development regardless of participant age. Following the initial evaluation of the total sample, a ROC analysis was carried out for each proposed age cohort (i.e., 17-23 months, 24-30 months, and 31-37 months). These analyses were used to determine the effect of an individual’s age and development on the discriminating ability of the *BISCUIT-Part 1* and to explore the utility of age-based scoring procedures. ROC curve analyses are an empirical method used to inform decisions regarding the threshold of a diagnostic test (Metz, 1978). A ROC curve is a graphical display used to evaluate the discriminatory accuracy of a given measure over all possible cutoff values for a given sample (Fluss, Faraggi, & Reiser, 2005; Metz, 1978). The ROC curve evaluation is carried out independent of condition prevalence and decision threshold effects because it is constructed based upon the comparison of the true positive fraction and the false positive fraction (Metz, 1978). ROC curve analyses have previously been used in the development of multiple screening and assessment measures (Glascoe & Byrne, 1993; Meisels, Henderson, Liaw, Browning, & Have, 1993).

The performance of the *BISCUIT-Part 1* was further analyzed by calculating the AUC. The AUC was used as a measure of discrimination by evaluating the overall sensitivity and specificity of all cutoff scores identified by the ROC analyses. An AUC value of 1 indicates perfect accuracy, while a value of .50 indicates that the test operates at a level equivalent to random chance. Values between .80 and .90 are suggested to represent good discriminative ability, while values between .90 and 1 are considered to represent excellent discriminative ability (Hanley & McNeil, 1982, 1983; Zou et al., 2007). An alpha level of .05 was used to determine the significance of each AUC value. Finally, cutoff scores for the total sample and each age cohort were then identified utilizing the Youden Index \(J\) (Youden, 1950). The
Youden Index J was used to calculate the cutoff value that maximizes the tradeoff between sensitivity and specificity when weighing both equally (Faraggi, 2000; Greiner, Pfeiffer, & Smith, 2000; Perkins & Schisterman, 2005; Reiser, 2000). Saah and Hoover (1997) identified diagnostic sensitivity as the percentage of participants correctly identified as having a given condition. Conversely, diagnostic specificity is the percentage of participants correctly identified by a measure as not meeting criteria for a specific condition. Greiner and colleagues (2000) noted that the emphasis on both diagnostic sensitivity and specificity allows for the consideration of all information gathered by a diagnostic assessment.

In order to further evaluate the applicability of age-based scoring procedures for the *BISCUIT-Part 1*, the positive predictive value (PPV) and negative predictive value (NPV) were calculated. These scores were calculated for the total sample and each age group. Altman and Bland (1994) defined PPV as the proportion of patients who are correctly diagnosed and have positive test results. The NPV is the proportion of individuals who are correctly diagnosed and do not have positive results.

Results

Total sample. A ROC analysis was initially carried out for the full sample regardless of participant age to analyze the discriminative ability of the *BISCUIT-Part 1*. This initial analysis produced the curve depicted in Figure 4. The calculated ROC curve had an $AUC = .96$, $p<.01$, which is considered to represent excellent diagnostic discrimination (Hanley & McNeil, 1982, 1983; Zou et al., 2007). The Youden Index J was also calculated to identify the cutoff point that optimized the tradeoff between diagnostic sensitivity and specificity while weighting both equally. In Figure 4, Youden Index J is considered the point of the ROC curve that falls furthest from the line indicating chance performance. This calculation was carried out for all possible cutoff scores utilizing the following formula; sensitivity + specificity − 1 (Youden, 1950). Prior to cutoff score selection, the sensitivity, specificity, and Youden Index J were each examined. Table 2 depicts cutoff scores for the total sample and their respective sensitivity, specificity, and Youden Index J. For the full sample the optimal cutoff value for differentiating between atypical development and ASD was a score greater than or equal to 25, Youden
Index $J = .81$. This cutoff value was associated with excellent diagnostic sensitivity (94%) and good diagnostic specificity (87%). The PPV for the total sample cutoff score of 25 was 56%, while the NPV was 99%.

![ROC Curve](image)

Figure 4. ROC curve depicting the trade-off between diagnostic sensitivity and 1-specificity for range of BISCUIT-Part 1 cutoff scores for the complete sample.

Table 2
Potential Cutoff Scores for the Total Sample

<table>
<thead>
<tr>
<th>Cutoff score</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Youden Index J</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥22</td>
<td>.9597</td>
<td>.8304</td>
<td>.7901</td>
</tr>
<tr>
<td>≥23</td>
<td>.9565</td>
<td>.8430</td>
<td>.7995</td>
</tr>
<tr>
<td>≥24</td>
<td>.9480</td>
<td>.8558</td>
<td>.8038</td>
</tr>
<tr>
<td>≥25*</td>
<td>.9395</td>
<td>.8676</td>
<td>.8071</td>
</tr>
<tr>
<td>≥26</td>
<td>.9257</td>
<td>.8767</td>
<td>.8024</td>
</tr>
<tr>
<td>≥27</td>
<td>.9161</td>
<td>.8859</td>
<td>.8020</td>
</tr>
<tr>
<td>≥28</td>
<td>.9066</td>
<td>.8946</td>
<td>.8012</td>
</tr>
</tbody>
</table>

* selected cutoff score

Participants 17 to 23 months of age. The analyses carried out for the total sample were also conducted for each age group. These analyses were necessary to observe any potential difference in symptom manifestation across age groups and determine the appropriateness of age-based scoring procedures for the BISCUIT-Part 1. The ROC analysis for the 17 to 23 month age group produced the
curve appearing in Figure 5. The BISCUIT-Part 1 demonstrated excellent discriminating ability within this age group (AUC = .97, p < .01; Hanley & McNeil, 1982, 1983; Zou et al., 2007). The optimal cutoff point identified for this age group was a score greater than or equal to 27 (Youden Index J = .84). This cutoff score was associated with excellent diagnostic sensitivity (95%) and good diagnostic specificity (89%). The PPV for this age group was 74% and the NPV was 97%. Table 3 depicts potential cutoff scores considered for this age group and their respective sensitivity, specificity, and Youden Index J.

![ROC Curve](image)

Figure 5. ROC curve depicting the trade-off between diagnostic sensitivity and 1-specificity for range of BISCUIT-Part 1 cutoff scores for participants 17-23 months of age.

<table>
<thead>
<tr>
<th>Atypical development Vs. ASD</th>
<th>Cutoff score</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Youden Index J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥24</td>
<td>.9696</td>
<td>.8610</td>
<td>.8306</td>
</tr>
<tr>
<td></td>
<td>≥25</td>
<td>.9620</td>
<td>.8727</td>
<td>.8347</td>
</tr>
<tr>
<td></td>
<td>≥26</td>
<td>.9506</td>
<td>.8811</td>
<td>.8317</td>
</tr>
<tr>
<td></td>
<td>≥27*</td>
<td>.9506</td>
<td>.8871</td>
<td>.8377</td>
</tr>
<tr>
<td></td>
<td>≥28</td>
<td>.9354</td>
<td>.8937</td>
<td>.8291</td>
</tr>
<tr>
<td></td>
<td>≥29</td>
<td>.9278</td>
<td>.9016</td>
<td>.8294</td>
</tr>
<tr>
<td></td>
<td>≥30</td>
<td>.9202</td>
<td>.9076</td>
<td>.8278</td>
</tr>
</tbody>
</table>

* selected cutoff score

Participants 24 to 30 months of age. Next a ROC analysis was carried out for the 24 to 30 month age group to identify the cutoff score that differentiates atypical development from ASD. The
ROC analysis for this age group produced the curve presented in Figure 6. The BISCUIT-Part 1 was observed to demonstrate excellent discriminating ability within this age group ($AUC = .96, p < .01$; Hanley & McNeil, 1982, 1983; Zou et al., 2007). Table 4 depicts potential cutoff scores considered for this age group and their respective sensitivity, specificity, and Youden Index J. The optimal cutoff point identified for this age group was a score greater than or equal to 25 (Youden Index $J = .81$). This cutoff score was associated with excellent diagnostic sensitivity (94%) and good diagnostic specificity (87%). The PPV for this age group based upon the selected cutoff score was 56%, while the NPV was 99%.

Table 4
Potential Cutoff Scores for Toddlers 24-30 Months of Age

<table>
<thead>
<tr>
<th>Atypical development Vs. ASD</th>
<th>Cutoff score</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Youden Index J</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥22</td>
<td>.9630</td>
<td>.8254</td>
<td>.7884</td>
<td></td>
</tr>
<tr>
<td>≥23</td>
<td>.9609</td>
<td>.8388</td>
<td>.7997</td>
<td></td>
</tr>
<tr>
<td>≥24</td>
<td>.9547</td>
<td>.8532</td>
<td>.8079</td>
<td></td>
</tr>
<tr>
<td>≥25</td>
<td>.9444</td>
<td>.8662</td>
<td>.8107</td>
<td></td>
</tr>
<tr>
<td>≥26</td>
<td>.9321</td>
<td>.8745</td>
<td>.8066</td>
<td></td>
</tr>
<tr>
<td>≥27</td>
<td>.9177</td>
<td>.8850</td>
<td>.8027</td>
<td></td>
</tr>
<tr>
<td>≥28</td>
<td>.9115</td>
<td>.8941</td>
<td>.8056</td>
<td></td>
</tr>
</tbody>
</table>

* selected cutoff score

Figure 6. ROC curve depicting the trade-off between diagnostic sensitivity and 1-specificity for range of BISCUIT-Part 1 cutoff scores for participants 24-30 months of age.

Participants 31 to 37 months of age. Finally, a ROC analysis was also carried out for those participants between 31 and 37 months of age. The ROC analysis for this age group produced the curve
presented in Figure 7. The BISCUIT-Part 1 was observed to demonstrate excellent discriminating ability within this age group ($AUC = .95, p < .01$; Hanley & McNeil, 1982, 1983; Zou et al., 2007). Table 5 depicts potential cutoff scores considered for this age group and their respective sensitivity, specificity, and Youden Index J. The optimal cutoff point identified for this age group was a score greater-than or equal to 23 ($Youden Index J = .75$). This cutoff score was associated with excellent diagnostic sensitivity (92%) and good specificity (84%). The PPV for this age group based upon the selected cutoff score was 84%, while the NPV was 97%.

Table 5
Potential Cutoff Scores for Toddlers 31-37 Months of Age

<table>
<thead>
<tr>
<th>Cutoff score</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Youden Index J</th>
</tr>
</thead>
<tbody>
<tr>
<td>>20</td>
<td>.9378</td>
<td>.7915</td>
<td>.7293</td>
</tr>
<tr>
<td>>21</td>
<td>.9275</td>
<td>.8091</td>
<td>.7366</td>
</tr>
<tr>
<td>>22</td>
<td>.9275</td>
<td>.8299</td>
<td>.7574</td>
</tr>
<tr>
<td>>23*</td>
<td>.9171</td>
<td>.8413</td>
<td>.7584</td>
</tr>
<tr>
<td>>24</td>
<td>.9016</td>
<td>.8517</td>
<td>.7533</td>
</tr>
<tr>
<td>>25</td>
<td>.8964</td>
<td>.8600</td>
<td>.7564</td>
</tr>
<tr>
<td>>26</td>
<td>.8756</td>
<td>.8734</td>
<td>.7490</td>
</tr>
</tbody>
</table>

* selected cutoff score

Figure 7. ROC curve depicting the trade-off between diagnostic sensitivity and 1-specificity for range of BISCUIT-Part 1 cutoff scores for participants 24-30 months of age.

Discussion
Researchers have previously questioned the validity of the PDD-NOS diagnosis based upon the descriptor provided in the DSM-IV-TR (Luteijn et al., 2000b; Walker et al., 2004). Specifically, Luteijn and colleagues (2000b) criticized the diagnostic criteria for PDD-NOS, suggesting that it was unclear and ambiguous, which led to differences in interpretation and application. The current research is based upon the DSM-5 ASD diagnosis which removed the need for differentiation between the various ASD diagnoses. The identification of new cutoff scores for the BISCUIT-Part 1 utilizing a large normative population with DSM-5 diagnoses provided a scoring approach that is in line with the current diagnostic criteria (APA, 2013).

Previous investigations have demonstrated the discriminative abilities of the BISCUIT-Part 1 with and without the use of age-based scoring procedures (Horovitz & Matson, 2014; Matson et al., 2009b). Given that the proposed study did not alter the content of the BISCUIT-Part 1, it was hypothesized that the measure would continue to discriminate between diagnostic groups at levels significantly greater than chance. This hypothesis was confirmed by the ROC analyses carried out in Study One. The AUC statistic was significant for the total sample and each individual age group suggesting that the BISCUIT-Part 1 discriminates between atypical development and ASD at levels greater than chance regardless of participant age. With AUC values ranging from .95 (31-37 months of age) to .97 (17-23 months of age), the cutoff scores selected for the BISCUIT-Part 1 are considered to demonstrate excellent discriminative ability for the total sample and each respective age group (Hanley & McNeil, 1982, 1983; Zou et al., 2007). Furthermore, the AUC values observed were greater than those reported for cutoff scores previously used for the BISCUIT-Part 1 (AUC = .84 to .95; Horovitz & Matson, 2014). In order to utilize all of the information gathered during an assessment, the Youden Index \(J \) was calculated to identify cutoff scores that placed a balanced emphasis on diagnostic sensitivity and specificity. As depicted in Table 6, the selected cutoff scores for the BISCUIT-Part 1 demonstrate excellent diagnostic sensitivity and good diagnostic specificity.
It was hypothesized that the computed analyses would identify new cutoff scores and increase the diagnostic sensitivity and specificity of the BISCUIT-Part 1. Given the removal of a diagnostic category, a direct comparison between previously identified cutoff scores for the BISCUIT-Part 1 and the results of the current analysis was not possible within the confines of the current dataset. However, a general discussion is warranted. Previously selected cutoff scores for the BISCUIT-Part 1 included diagnostic sensitivity values ranging from 64 to 93% and diagnostic specificity values ranging from 72 to 89%. Those cutoff scores identified by the current analysis demonstrate less variability and are higher on average with regard to diagnostic sensitivity (92 to 95%) and diagnostic specificity (84 to 89%). The Youden Index J values ($J = .76 - .84$) identified by the current analysis was also greater than those previously identified for distinguishing between PDD-NOS and atypical development ($J = .70$) and between PDD-NOS and autistic disorder ($J = .55$; Horovitz & Matson, 2014).

A multitude of factors likely contributed to the observed increases in diagnostic sensitivity and specificity. The DSM-5 committee members indicated the goal of restructuring the ASD category was to increase diagnostic sensitivity and specificity (APA, 2011, 2013; Frazier et al., 2012; Gibbs et al., 2012; Grzadzinski et al., 2013; McPartland et al., 2012). To do so, the committee altered the criteria necessary for an ASD diagnosis (Boomsma et al., 2008; Gotham et al., 2007; Lord & Jones, 2012) and consolidated previous ASD diagnostic groups (Gibbs et al., 2012; Frazier et al., 2012; Tsai & Ghaziuddin, 2013). Further, the sample used in the current analysis (N = 6,730 participants, 940 of whom met criteria for a DSM-5 ASD diagnosis) was roughly twice the size of the sample (N = 3,062) utilized by Horovitz and Matson (2014). The standardization sample previously used included a total of 892 participants with
ASD. This included 505 participants who met criteria for autistic disorder and 387 participants who met criteria for PDD-NOS.

Aside from analyzing potential cutoff scores for the total sample, Study One also analyzed and selected cutoff scores for three separate age ranges (17-23, 24-30, and 31-37 months of age). The selection of age-based cutoff scores was included to advance previous research (Horovitz & Matson, 2014) and to allow for refined peer comparisons (Green & Palfrey, 2002; Horovitz & Matson, 2014; Shelov & Hannemann, 1991). Relative to the cutoff scores generated by the age-based analysis previously conducted (Horovitz & Matson, 2014), the current analysis identified cutoff scores that increased the diagnostic sensitivity and specificity of the BISCUIT-Part 1. Tables 2, 3, 4, and 5, allow for a visual analysis of the changes in diagnostic sensitivity and specificity across a range of potential cutoff scores for the total sample and each age group. Given the influence of developmental progression, it was hypothesized that a range of cutoff scores based upon participant age would better differentiate between atypical development and ASD than a single cutoff score for the total sample.

The hypothesis that cutoff scores for individual age groups would differ from the cutoff scores identified for the total sample was partially upheld. Specifically, the cutoff scores identified for the 17-23 and 31-37 month age groups did differ from the cutoff score identified for the total sample. For example, the use of the cutoff score identified for the total sample (i.e., 25) for the 17-23 month old group would result in an increase in diagnostic sensitivity and a decrease in specificity. The reverse scenario was observed for the 31-37 month age group, as a cutoff score of 25 decreased diagnostic sensitivity and increased diagnostic specificity. However, the cutoff score identified for the total sample, regardless of participant age, is largely consistent with the cutoff score and psychometric properties identified for the 24-30 month age group. This is likely due to sample distribution, as the 24-30 month age group was the largest single group for both diagnostic categories. The identified cutoff scores for each age group were selected utilizing the Youden Index \(J \) in order to give equal weight to diagnostic sensitivity and specificity (Faraggi, 2000; Greiner, Pfeiffer, & Smith, 2000; Perkins & Schisterman, 2005; Reiser, 2000). Given the
observed variation in cutoff scores, the use of age-based cutoff scores should be continued to maximize the psychometric properties of the BISCUIT-Part 1. Further, the use of age-based scoring procedures resulted in PPVs and NPVs that were greater than or equal to those calculated for the total sample cutoff score.

Previous researchers have noted that in the absence of intervention, the severity of ASD symptoms increases as children age (Charman et al., 2005; Moore & Goodson, 2003; Starr et al., 2003). Based upon this finding, it was hypothesized that the cutoff scores necessary to distinguish between diagnostic groups would increase with participant age. This hypothesis was not confirmed by the results of the current research. In fact, the BISCUIT-Part 1 score necessary to distinguish between participants with atypical development and ASD gradually decreased across age groups. However, this does not refute previous research suggesting that ASD symptom severity increases in the absence of intervention. Rather, the results of the current study suggest that the symptom severity necessary for differential diagnosis decreases as individual’s age. This finding is consistent with previous research. For example, researchers have found that atypically developing children exhibit some symptoms consistent with ASD (i.e., RRBIs) early in the lifespan, but the frequency of this behavior decreases after the second birthday. Both atypically and typically developing toddlers are reported to exhibit RRBIs during the first year of life (Evans et al., 1997; Morgan, Wetherby, & Barber, 2008). Researchers have also demonstrated that the manifestation of RRBIs does not significantly differ across populations during the first year of life (Baranek, 1999; Osterling et al., 2002). The frequency and severity of RRBIs is reported to be significantly different by two years of age (Lord, 1995; Matson et al., 2009). However, it should be noted that typically developing children do continue to exhibit some RRBIs even after their second birthday (Richler et al., 2007).

With regard to the current results, this pattern of manifestation could result in decreasing score elevations for atypically developing children as their age increases, decreasing the score necessary to differentiate between ASD and atypical development. Further, the general variability of development
may also lead to the need for a higher cutoff score for younger participants relative to older participant groups. For example, researchers have noted significant variation in the development of language, communication, and social skills for toddlers during their first year of life which may complicate differential diagnosis (Landa, Holman, & Garrett-Mayer, 2007; Maestro et al., 2005). However participants closer to 24 months of age may be more readily distinguished from their peers as language and social skills impairments become more discrepant (Baghdadli et al., 2003; Charman et al., 1997; De Giacomo & Fombonne, 1998; Landa & Garrett-Mayer, 2006; Sullivan et al. Landa, 2007; Wetherby et al., 2004).

From a broader standpoint, this research continues to demonstrate the ability of clinicians and researchers to accurately identify ASD in infants and toddlers (Baird et al., 2001; Baron-Cohen et al., 1996; Charman & Baird, 2002; Eaves & Ho, 2004; Howlin & Moore, 1997; Wetherby et al., 2007). Previously, researchers have suggested that developers of diagnostic screeners should strive for diagnostic sensitivity between 70 and 80% (Glascoe, 2005). The diagnostic sensitivity and specificity for each of the selected cutoff scores from the current analyses demonstrate the utility of the BISCUIT-Part 1 as a screening measure for ASD despite recent diagnostic changes. The identification of new cutoff scores for the BISCUIT-Part 1 utilizing a large normative population with DSM-5 diagnoses provided a scoring approach that is in line with the current diagnostic criteria (APA, 2013).
Study Two

Statistical Analyses

The second study focused on the identification of cutoff scores for the BISCUIT-Part 2 that best discriminate the severity of comorbid psychopathology symptoms for each diagnostic group (i.e., ASD and atypical development). Although previous calculations of the cutoff scores for the BISCUIT-Part 2 did not differentiate between ASD diagnostic categories, they were calculated based upon the symptom manifestation observed within individuals with PDD-NOS and autistic disorder. Researchers have previously reported that recent changes to the ASD diagnostic category may cause some individuals previously diagnosed with ASD to no longer meet diagnostic criteria (Gibbs et al., 2012; Matson et al., 2012a, 2012b; Mattila et al., 2011; Mayes et al., 2013; McPartland et al., 2012; Worley & Matson, 2012). New cutoff scores were calculated based upon the symptom manifestation observed for individuals meeting DSM-5 criteria for a diagnosis of ASD. Cutoff scores were calculated for the BISCUIT-Part 2 total score and each factor (n=5) for the total sample and each age group (n=3) across each diagnostic category. Age-based scoring procedures were included to capture differences in symptom manifestation across developmental periods and to remain consistent with those procedures previously used for the development of the BISCUIT.

The standard deviation from the central tendency method was used to calculate cutoff scores for the BISCUIT-Part 2. This method has previously been employed to develop scores for the adolescent version of the BISCUIT, the ASD-CC (Thorson & Matson, 2012), as well as previous versions of the BISCUIT-Part 2 (Horovitz & Matson, 2013a; Matson et al., 2009c). The standard deviation from the central tendency method has also been used in the development of cutoff scores for other clinical measures such as the Psychological Assessment Tool 2.0 (Pai et al., 2008).

Following the correction for outliers, the mean and standard deviation for the total score and each of the five factors of the BISCUIT-Part 2 were calculated for each diagnostic category and their respective age groups. Cutoff scores were then calculated for each age group within each diagnostic
category. Given that scoring of the BISCUIT-Part 2 utilizes whole numbers, the calculated means, standard deviations, and cutoff scores were rounded to the nearest whole number when necessary. This process created a total of six cutoff scores for each of the six groups (e.g., ASD, 17-23 months; atypical development, 17-23 months). Previously researchers have indicated that scores greater than two standard deviations from the mean are of clinical significance (Jacobson & Traux, 1991). Based upon this criterion, scores identified as being more than two standard deviations above the mean were identified as falling in the severe impairment range. Scores between one and two standard deviations above the respective group mean were classified as indicating moderate impairment. Finally, scores within one standard deviation of the mean were identified and described as indicating no/minimal impairment.

Results

Total sample. Initially, cutoff scores were calculated for each diagnostic category regardless of participant age. For the ASD diagnostic category, the mean level of symptom endorsement was 32.49, with a standard deviation of 20.85. Based upon the procedures outline above, a total score on the BISCUIT-Part 2 less than or equal to 53 for participants with ASD was considered to be indicative of no/minimal impairment. A total score greater than or equal to 54 and less than or equal to 74 was classified as indicating moderate impairment. Finally, a total score greater than or equal to 75 was classified as indicating severe impairment. The cutoff score ranges each of the BISCUIT-Part 2 factors are presented in Table 7.

Table 7
BISCUIT-Part 2 Cutoff Scores for the Total ASD Sample

<table>
<thead>
<tr>
<th>Category</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>32.49</td>
<td>20.85</td>
<td>0-53</td>
<td>54-74</td>
<td>≥75</td>
</tr>
<tr>
<td>Tantrum/conduct behavior</td>
<td>10.96</td>
<td>7.83</td>
<td>0-19</td>
<td>20-27</td>
<td>≥28</td>
</tr>
<tr>
<td>Inattention/impulsivity</td>
<td>8.88</td>
<td>5.59</td>
<td>0-14</td>
<td>15-20</td>
<td>≥21</td>
</tr>
<tr>
<td>Avoidance behavior</td>
<td>2.72</td>
<td>3.04</td>
<td>0-6</td>
<td>7-9</td>
<td>≥10</td>
</tr>
<tr>
<td>Anxiety/repetitive behavior</td>
<td>4.21</td>
<td>3.36</td>
<td>0-8</td>
<td>9-11</td>
<td>≥12</td>
</tr>
<tr>
<td>Eating/sleep problems</td>
<td>2.86</td>
<td>1.79</td>
<td>0-5</td>
<td>6-7</td>
<td>8</td>
</tr>
</tbody>
</table>
These procedures were also carried out for the atypically developing diagnostic category, regardless of participant age. The average value of symptom endorsement for this group was 8.83, with a standard deviation of 11.92. A score less than or equal to 21 was classified as indicating no/minimal impairment. A score greater than or equal to 22 and less than or equal to 33 was classified as indicating moderate impairment, while a total score greater than or equal to 34 was classified as indicating severe impairment. The cutoff scores ranges for each BISCUIT-Part 2 factor appear in Table 8.

Table 8
BISCUIT-Part 2 Total Sample Cutoff Scores for Atypically Developing Participants

<table>
<thead>
<tr>
<th>Factor</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>8.83</td>
<td>11.92</td>
<td>0-21</td>
<td>22-33</td>
<td>≥34</td>
</tr>
<tr>
<td>Tantrum/conduct behavior</td>
<td>3.23</td>
<td>4.76</td>
<td>0-8</td>
<td>9-13</td>
<td>≥14</td>
</tr>
<tr>
<td>Inattention/impulsivity</td>
<td>2.63</td>
<td>3.42</td>
<td>0-6</td>
<td>7-10</td>
<td>≥11</td>
</tr>
<tr>
<td>Avoidance behavior</td>
<td>.59</td>
<td>1.39</td>
<td>0-2</td>
<td>3-4</td>
<td>≥5</td>
</tr>
<tr>
<td>Anxiety/repetitive behavior</td>
<td>.97</td>
<td>1.72</td>
<td>0-3</td>
<td>4-5</td>
<td>≥6</td>
</tr>
<tr>
<td>Eating/sleep problems</td>
<td>.69</td>
<td>1.21</td>
<td>0-2</td>
<td>3-4</td>
<td>≥7</td>
</tr>
</tbody>
</table>

Participants 17 to 23 months of age. Previously, researchers have observed that rates of comorbid psychopathology increase across time (Konst & Matson, 2013). In order to account for the impact of age and development on the manifestation of symptoms of comorbid psychopathology, cutoff scores were calculated for each diagnostic category across each age group. This age-based differentiation was also carried out to be consistent with previous versions of the BISCUIT-Part 2. Initially, cutoff scores were calculated for the BISCUIT-Part 2 total score. For the ASD diagnostic group, the mean level of total symptom endorsement was 29.58, while the standard deviation was 18.80. A total score less than or equal to 48 was considered to indicate no/minimal impairment. A score greater than 48 but less than or equal to 67 was classified as indicating moderate impairment. Lastly, a total score greater than or equal to 68 was classified as indicating severe impairment. The cutoff score ranges for each of the BISCUIT-Part 2 factors were calculated utilizing the same methodology and are presented in Table 9.

Table 9
BISCUIT-Part 2 Cutoff Scores for ASD Participants ASD 17-23 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>29.58</td>
<td>18.80</td>
<td>0-48</td>
<td>49-67</td>
<td>>68</td>
</tr>
<tr>
<td>Tantrum/conduct behavior</td>
<td>9.72</td>
<td>7.39</td>
<td>0-17</td>
<td>18-25</td>
<td>>26</td>
</tr>
<tr>
<td>Inattention/impulsivity</td>
<td>8.42</td>
<td>5.39</td>
<td>0-14</td>
<td>15-19</td>
<td>>20</td>
</tr>
<tr>
<td>Avoidance behavior</td>
<td>2.54</td>
<td>2.75</td>
<td>0-5</td>
<td>6-8</td>
<td>>9</td>
</tr>
<tr>
<td>Anxiety/repetitive behavior</td>
<td>3.85</td>
<td>2.96</td>
<td>0-7</td>
<td>8-10</td>
<td>>11</td>
</tr>
<tr>
<td>Eating/sleep problems</td>
<td>2.91</td>
<td>1.85</td>
<td>0-5</td>
<td>6-7</td>
<td>8</td>
</tr>
</tbody>
</table>

These procedures were then repeated based upon the symptom endorsement observed for participants 17-23 months of age in the atypically developing group. The average total score for this group was 7.95, while the standard deviation was 10.61. Based upon the standard deviation from the central tendency method, a score less than or equal to 19 was classified as indicating no/minimal impairment. A total score greater than 19, but less than or equal to 29, was classified as indicating moderate impairment. Finally, a total score greater than or equal to 30 was classified as indicating severe impairment. The cutoff score ranges for each of the BISCUIT-Part 2 factors are presented in Table 10.

Table 10
BISCUIT-Part 2 Cutoff Scores for Atypically Developing Participants 17-23 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>7.95</td>
<td>10.61</td>
<td>0-19</td>
<td>20-29</td>
<td>>30</td>
</tr>
<tr>
<td>Tantrum/conduct behavior</td>
<td>2.92</td>
<td>4.38</td>
<td>0-7</td>
<td>8-9</td>
<td>>10</td>
</tr>
<tr>
<td>Inattention/impulsivity</td>
<td>2.33</td>
<td>3.07</td>
<td>0-5</td>
<td>6-8</td>
<td>>9</td>
</tr>
<tr>
<td>Avoidance behavior</td>
<td>0.49</td>
<td>1.20</td>
<td>0-2</td>
<td>2-3</td>
<td>>4</td>
</tr>
<tr>
<td>Anxiety/repetitive behavior</td>
<td>0.91</td>
<td>1.54</td>
<td>0-2</td>
<td>3-4</td>
<td>>5</td>
</tr>
<tr>
<td>Eating/sleep problems</td>
<td>0.64</td>
<td>1.10</td>
<td>0-2</td>
<td>3-4</td>
<td>>5</td>
</tr>
</tbody>
</table>

Participants 24 to 30 months of age. Initially cutoff scores were calculated for the BISCUIT-Part 2 total score. For the ASD diagnostic category, the average level of total symptom endorsement was 32.31 with a standard deviation of 21.49. Based upon the procedures and criteria outlined above a total score less than or equal to 54 was classified as indicating no/minimal impairment. A score greater than 54 and less than or equal to 75 was classified as representing moderate impairment. Lastly, a total score greater than or equal to 76 was classified as indicating severe impairment. The cutoff score ranges for each of the BISCUIT-Part 2 factors are presented in Table 11.
Table 11
BISCUIT-Part 2 Cutoff Scores for ASD Participants 24-30 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>32.31</td>
<td>21.49</td>
<td>0-54</td>
<td>55-75</td>
<td>>76</td>
</tr>
<tr>
<td>Tantrum/conduct behavior</td>
<td>10.86</td>
<td>7.72</td>
<td>0-19</td>
<td>20-26</td>
<td>>27</td>
</tr>
<tr>
<td>Inattention/impulsivity</td>
<td>8.83</td>
<td>5.57</td>
<td>0-14</td>
<td>15-20</td>
<td>>21</td>
</tr>
<tr>
<td>Avoidance behavior</td>
<td>2.85</td>
<td>2.97</td>
<td>0-6</td>
<td>7-9</td>
<td>>10</td>
</tr>
<tr>
<td>Anxiety/repetitive behavior</td>
<td>4.30</td>
<td>3.52</td>
<td>0-8</td>
<td>9-11</td>
<td>>12</td>
</tr>
<tr>
<td>Eating/sleep problems</td>
<td>2.83</td>
<td>1.79</td>
<td>0-5</td>
<td>6-7</td>
<td>8</td>
</tr>
</tbody>
</table>

In a similar manner, cutoff scores were calculated for the BISCUIT-Part 2 total score for those participants identified as atypically developing without an ASD diagnosis. Calculations were based upon the mean level of total symptom endorsement for this age group (\(M = 9.22\)) and the observed standard deviation (i.e., 12.34). A total score less than or equal to 22 was considered to represent no/minimal impairment. A score greater than 22 and less than or equal to 34 was classified as indicating moderate impairment. Lastly, a total score greater than or equal to 35 was classified as indicating severe impairment. The cutoff score ranges for each BISCUIT-Part 2 factor are presented in Table 12.

Table 12
BISCUIT-Part 2 Cutoff Scores for Atypically Developing Participants 24-30 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>9.22</td>
<td>12.34</td>
<td>0-22</td>
<td>23-34</td>
<td>>35</td>
</tr>
<tr>
<td>Tantrum/conduct behavior</td>
<td>3.34</td>
<td>4.85</td>
<td>0-8</td>
<td>9-13</td>
<td>>14</td>
</tr>
<tr>
<td>Inattention/impulsivity</td>
<td>2.76</td>
<td>3.53</td>
<td>0-6</td>
<td>7-10</td>
<td>>11</td>
</tr>
<tr>
<td>Avoidance behavior</td>
<td>0.62</td>
<td>1.44</td>
<td>0-2</td>
<td>3-4</td>
<td>>5</td>
</tr>
<tr>
<td>Anxiety/repetitive behavior</td>
<td>0.99</td>
<td>1.79</td>
<td>0-3</td>
<td>4-5</td>
<td>>6</td>
</tr>
<tr>
<td>Eating/sleep problems</td>
<td>0.71</td>
<td>1.26</td>
<td>0-2</td>
<td>2-3</td>
<td>>4</td>
</tr>
</tbody>
</table>

Participants 31 to 37 months of age. Cutoff scores were calculated for the BISCUIT-Part 2 total score for those participants who were between 31 and 37 months of age and diagnosed with ASD. Cutoff score calculations were based upon the mean level of total symptom endorsement for this age group (\(M = 36.14\)) and the standard deviation (i.e., 21.18). Based upon the procedures and criteria outlined above, a total score less than or equal to 57 was identified as representing no/minimal impairment. A score greater than 57 and less than or equal to 79 was classified as indicating moderate impairment.
impaired. Lastly, a total score greater than or equal to 80 was identified as indicating severe impairment. The cutoff score ranges for each of the BISCUIT-Part 2 factors are presented in Table 13.

Table 13
BISCUIT-Part 2 Cutoff Scores for ASD Participants 31-37 Months of Age

<table>
<thead>
<tr>
<th>Factor</th>
<th>Mean (M)</th>
<th>Standard Deviation</th>
<th>No/minimal Impairment</th>
<th>Moderate Impairment</th>
<th>Severe Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>36.14</td>
<td>21.18</td>
<td>0-57</td>
<td>58-79</td>
<td>≥80</td>
</tr>
<tr>
<td>Tantrum/conduct behavior</td>
<td>12.69</td>
<td>8.37</td>
<td>0-21</td>
<td>22-29</td>
<td>≥30</td>
</tr>
<tr>
<td>Inattention/impulsivity</td>
<td>9.54</td>
<td>5.87</td>
<td>0-15</td>
<td>16-21</td>
<td>≥22</td>
</tr>
<tr>
<td>Avoidance behavior</td>
<td>2.63</td>
<td>3.54</td>
<td>0-6</td>
<td>7-10</td>
<td>≥11</td>
</tr>
<tr>
<td>Anxiety/repetitive behavior</td>
<td>4.46</td>
<td>3.40</td>
<td>0-8</td>
<td>9-11</td>
<td>≥12</td>
</tr>
<tr>
<td>Eating/sleep problems</td>
<td>2.86</td>
<td>1.75</td>
<td>0-5</td>
<td>6-7</td>
<td>8</td>
</tr>
</tbody>
</table>

Lastly, these analyses were then carried out for those participants identified as atypically developing without an ASD diagnosis. Calculations were based upon the mean level of total symptom endorsement (M = 9.46) and standard deviation (i.e., 13.05). A total score less than or equal to 23 was considered to represent no/minimal impairment. Scores greater than 23 and less than or equal to 36 are suggested to indicate moderate impairment. Lastly, a total score greater than or equal to 37 was classified as indicating severe impairment. The cutoff score ranges for each of the BISCUIT-Part 2 factors are presented in Table 14.

Table 14
BISCUIT-Part 2 Cutoff Scores for Atypically Developing Participants 31-37 Months of Age

<table>
<thead>
<tr>
<th>Factor</th>
<th>Mean (M)</th>
<th>Standard Deviation</th>
<th>No/minimal Impairment</th>
<th>Moderate Impairment</th>
<th>Severe Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>9.46</td>
<td>13.05</td>
<td>0-23</td>
<td>24-36</td>
<td>≥37</td>
</tr>
<tr>
<td>Tantrum/conduct behavior</td>
<td>3.58</td>
<td>5.18</td>
<td>0-9</td>
<td>10-14</td>
<td>≥15</td>
</tr>
<tr>
<td>Inattention/impulsivity</td>
<td>2.87</td>
<td>3.75</td>
<td>0-7</td>
<td>8-10</td>
<td>≥11</td>
</tr>
<tr>
<td>Avoidance behavior</td>
<td>0.68</td>
<td>1.57</td>
<td>0-2</td>
<td>3-4</td>
<td>≥5</td>
</tr>
<tr>
<td>Anxiety/repetitive behavior</td>
<td>1.03</td>
<td>1.84</td>
<td>0-3</td>
<td>4-5</td>
<td>≥6</td>
</tr>
<tr>
<td>Eating/sleep problems</td>
<td>0.76</td>
<td>1.25</td>
<td>0-2</td>
<td>3-4</td>
<td>≥5</td>
</tr>
</tbody>
</table>

Discussion
Researchers have previously observed elevated rates of comorbid psychological symptoms in ASD populations when compared to their atypically developing peers (Konst & Matson, 2014). Increased rates of comorbid psychopathology are often observed in ASD populations regardless of age and level of functioning (Billstedt, 2000; Hofvander et al., 2009; LoVullo & Matson, 2009; Matson & Nebel-Schwalm, 2007a; Simonoff et al., 2008). However, direct comparisons of the manifestation of comorbid symptoms within ASD populations have identified significantly greater rates of comorbid symptoms in those with autistic disorder in comparison to those with PDD-NOS (Matson et al., 2009c). Given the difference in symptom manifestation within the ASD category and between those with ASD and their atypically developing peers, it was hypothesized that the cutoff scores for the BISCUIT-Part 2 would increase for each diagnostic group following the DSM-5 diagnostic revisions.

The range of cutoff scores for the BISCUIT-Part 2 total score, relative to each age group, is presented in Table 15. On average, the cutoff scores identified for each age group within the current analysis were 11 points higher than those identified previously for individuals with ASD. With regard to the individual atypically developing age groups, those total scores identified by the current analysis were an average of 13 points higher than those previously identified for the BISCUIT-Part 2 (Horovitz & Matson, 2013a). These results directly support the hypothesized increase in cutoff scores necessary for the BISCUIT-Part 2. With regard to specific subscales, the largest average change was a three-point increase for the atypically developing age groups observed on the anxiety subscale. For the ASD population, the largest average change in cutoff score was an increase of three points on the tantrum/conduct behavior subscale. The observed increase in cutoff score ranges is consistent with previous research suggesting that the DSM-5 diagnostic changes identify individuals with greater levels of impairment (Matson, Belva et al., 2012; Worley & Matson, 2012).
Table 15
Selected Cutoff scores for the BISCUIT-Part 2 Total Score

<table>
<thead>
<tr>
<th>Diagnostic group</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Sample</td>
<td>32.49</td>
<td>20.85</td>
<td>0-53</td>
<td>54-74</td>
<td>>75</td>
</tr>
<tr>
<td>17-23 months</td>
<td>29.58</td>
<td>18.80</td>
<td>0-48</td>
<td>49-67</td>
<td>>68</td>
</tr>
<tr>
<td>24-30 months</td>
<td>32.31</td>
<td>21.49</td>
<td>0-54</td>
<td>55-75</td>
<td>>76</td>
</tr>
<tr>
<td>31-37 months</td>
<td>36.14</td>
<td>21.18</td>
<td>0-57</td>
<td>58-79</td>
<td>>80</td>
</tr>
<tr>
<td>Atypical development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sample</td>
<td>8.83</td>
<td>11.92</td>
<td>0-21</td>
<td>22-33</td>
<td>>34</td>
</tr>
<tr>
<td>17-23 months</td>
<td>7.95</td>
<td>10.61</td>
<td>0-19</td>
<td>20-29</td>
<td>>30</td>
</tr>
<tr>
<td>24-30 months</td>
<td>9.22</td>
<td>12.34</td>
<td>0-22</td>
<td>23-34</td>
<td>>35</td>
</tr>
<tr>
<td>31-37 months</td>
<td>9.46</td>
<td>13.05</td>
<td>0-23</td>
<td>24-36</td>
<td>>37</td>
</tr>
</tbody>
</table>

It was hypothesized that the further separation of diagnostic groups into age groups would be necessary in order to account for developmental differences in the manifestation of comorbid symptoms for individuals with ASD. Konst and Matson (2013) demonstrated that the exhibition of comorbid symptoms increased significantly for individuals with ASD across two administrations of the BISCUIT-Part 2. The authors did not observe the same pattern of change in an atypically developing control group. Based upon previous research, it was also hypothesized that the cutoff scores for those with ASD would increase with age. Both hypotheses were confirmed by the results of Study Two. With regard to total score, the cutoff score suggesting severe impairment was 12 points higher for the 31-37 month age group when compared to the cutoff score selected for the 17-23 month age group. A similar pattern was observed for the identified cutoff scores for four of the five subscales of the BISCUIT-Part 2. The cutoff scores identified for the eating/sleep problems subscale did not differ for any age group. However, this may be largely due to a ceiling effect. The eating/sleep problems subscale contains only four items, with a maximum score of eight points. A score of eight was identified as the maximum cutoff score for each ASD age group. Given the observed trend of symptom manifestation and the prevalence of eating and sleep problems observed in ASD populations (Ledford & Gast, 2006; Schreck, Williams, & Smith, 2004), future researchers should evaluate the addition of extra items to further assess these impairments. The
addition of more items may help capture a wider range of symptom manifestation and differentiate symptom severity.

Within the atypically developing group, the total score cutoffs increased across each age cohort. Specifically, the total score cutoff indicating severe impairment was seven points less for the 17-23 month age group than the cutoff score identified for the 31-37 month age group. However, the observed increase in cutoff scores was not evenly dispersed across the BISCUIT-Part 2 subscales. A total of five points separated the youngest and oldest age group cutoff scores representing severe impairment for the tantrum/conduct behavior subscale. The identified cutoff scores for three of five subscales continued to increase across age groups, though to a lesser degree. This trend of increasing severity of comorbid symptoms is similar to the trend observed in those cutoff scores identified for previous atypically developing populations on the BISCUIT-Part 2 (Horovitz & Matson, 2013a). However, the observed increase in the manifestation of comorbid symptoms across age groups is not consistent with previously observed trends in atypically developing populations (Konst & Matson, 2013). The authors reported that the manifestation of comorbid symptoms did not significantly change across two administrations of the BISCUIT-Part 2. Although the observed increases in cutoff scores from the current analysis are unlikely to be significantly different statistically, they do suggest an overall trend of increasing symptom severity.

It is important to also note that there are significant differences between the two studies which impede a direct comparison. First, the current sample is larger than that used by Konst and Matson (N = 205; 2013). Secondly, their research involved two assessments of the same person across time, not different individuals being assessed at various points in development. Finally, the previous researchers combined the ASD diagnostic groups (i.e., PDD-NOS and autistic disorder), whereas the current analysis included the direct implementation of the DSM-5 diagnostic criteria. Although the identification of contributing factors is beyond the scope of the current analysis, it is possible that changes in diagnostic criteria and the ASD categories are associated with the observed shift in symptom manifestation. Mayes and colleagues (2013) suggested that as much as 73% of individuals with a previous PDD-NOS diagnosis
would no longer meet *DSM-5* criteria. The implementation of *DSM-5* changes may have led to some individuals who previously met criteria for PDD-NOS to be placed in the atypical development group. This factor may have contributed to the observed differences in symptom manifestation relative to previous research. Currently, there is limited longitudinal research investigating comorbid symptoms in atypically developing toddlers. Future researchers may wish to examine comorbid symptoms in infants and toddlers to identify additional symptoms that may have a negative impact on an individual’s quality of life.
Study Three

Statistical Analyses

Previously, the cutoff scores for the *BISCUIT-Part 3* did not differentiate between ASD diagnostic groups. However, the cutoff scores for the ASD group were calculated based upon the symptom manifestation observed in individuals with PDD-NOS and autistic disorder. Individuals who previously met criteria for an ASD diagnosis may no longer meet *DSM-5* criteria due to the changes to the ASD diagnostic category and diagnostic criteria (Gibbs et al., 2012; Mattila et al., 2011; Matson et al., 2012a, 2012b; Mayes et al., 2013; McPartland et al., 2012; Worley & Matson, 2012). Study Three focused on identifying cutoff scores for the *BISCUIT-Part 3* that best discriminated the severity of challenging behaviors within each diagnostic group (i.e., ASD and atypical development). New cutoff scores were created for the total score of the *BISCUIT-Part 3* and its three factors for each age group within each diagnostic category. Age-based scoring procedures were included to remain consistent with previous scoring procedures and to capture the effects of development on the expression of challenging behaviors. Cutoff scores for the *BISCUIT-Part 3* were identified based upon the standard deviation from the central tendency method previously described in Study Two. This method was also employed in earlier research which created the previous cutoff scores for the *BISCUIT-Part 3* (Horovitz & Matson, 2013b; Matson et al., 2010).

The third component of the *BISCUIT* assessment battery is used to evaluate challenging behaviors frequently identified in atypically developing populations. For the purposes of the current analysis, the means and standard deviations for the total score and for each of the *BISCUIT-Part 3* factors (i.e., aggressive/disruptive behavior, stereotypic behavior, and SIB) were calculated for each individual diagnostic age group. This created a total of six groups for which cutoff scores were calculated for the total score and each individual factor (n=3). Calculated means, standard deviations, and cutoff scores were rounded to the nearest whole number when necessary. Scores greater than two standard deviations from the mean were considered to be of clinical significance (Jacobson & Traux, 1991). Scores identified
as being within one standard deviation of the calculated group mean were identified as falling in the *no/minimal impairment* range. A classification of *moderate impairment* was ascribed to scores between one and two standard deviations above the respective group mean. Finally, those scores more than two standard deviations above the calculated mean were classified as indicating *severe impairment*.

Results

Total sample. First, cutoff scores were calculated for each diagnostic category regardless of participant age. For the ASD diagnostic category, the mean level of challenging behavior symptom endorsement was 8.39, while the standard deviation was 7.16. In accordance with the standard deviation from central tendency method, a total score less than or equal to 16 was considered to be indicative of *minimal impairment*. A total score greater than or equal to 17 and less than or equal to 23 was classified as indicating *moderate impairment*. Finally, a total score greater than or equal to 24 was classified as indicating *severe impairment* for individuals diagnosed with ASD. The cutoff score ranges for the total ASD sample for each of the *BISCUIT-Part 3* factors are presented in Table 15.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>8.39</td>
<td>7.16</td>
<td>0-16</td>
<td>17-23</td>
<td>≥24</td>
</tr>
<tr>
<td>Aggressive/destructive behaviors</td>
<td>5.10</td>
<td>4.67</td>
<td>0-10</td>
<td>11-14</td>
<td>≥15</td>
</tr>
<tr>
<td>Stereotypies</td>
<td>1.39</td>
<td>1.75</td>
<td>0-3</td>
<td>4-5</td>
<td>6</td>
</tr>
<tr>
<td>SIB</td>
<td>0.71</td>
<td>1.03</td>
<td>0-2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

These analyses were also carried out for the atypical development group. The average total score on the *BISCUIT-Part 3* for this group, regardless of participant age, was 2.32, while the standard deviation was 4.22. Based upon the criteria outlined above, a total score less than or equal to seven was identified as representing *no/minimal impairment*. A total score greater than or equal to eight, but less than or equal to 11 was classified as indicating *moderate impairment*. Lastly, a total score greater than or equal to 12 was classified as indicating *severe impairment*. The cutoff score ranges for the total atypical development sample for each of the *BISCUIT-Part 3* factors are presented in Table 16.
Participants 17 to 23 months of age. Initially cutoff scores were calculated for the BISCUIT-Part 3 total score. For the ASD diagnostic category, the mean level of total symptom endorsement was 7.09, while the standard deviation was 6.57. Based upon the procedures and criteria outlined above, a total score less than or equal to 14 was considered to fall within the no/minimal impairment range. A score greater than 14 and less than or equal to 20 was classified as indicating moderate impairment. Lastly, a total score greater than or equal to 21 was classified as indicating severe impairment. The cutoff score ranges for each of the BISCUIT-Part 3 factors are displayed in Table 17.

These procedures were then carried out for the total score from the BISCUIT-Part 3 for those participants identified as atypically developing in the 17 to 23 month age range. Calculations were based upon the mean level of total symptom endorsement for this age group (M = 2.13) and the observed standard deviation (i.e., 3.97). A total score less than or equal to six was identified as representing no/minimal impairment. A score greater than or equal to seven and less than or equal to 10 was classified as indicating moderate impairment. Finally, a total score greater than or equal to 11 was suggested to
indicate severe impairment. The cutoff score ranges for each of the three BISCUIT-Part 3 factors were calculated utilizing identical methodology and are presented in Table 18.

Table 18
BISCUIT-Part 3 Cutoff Scores for Atypically Developing Participants 17-23 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>2.13</td>
<td>3.97</td>
<td>0-6</td>
<td>7-10</td>
<td>≥11</td>
</tr>
<tr>
<td>Aggressive/destructive behaviors</td>
<td>1.46</td>
<td>2.72</td>
<td>0-4</td>
<td>5-7</td>
<td>≥8</td>
</tr>
<tr>
<td>Stereotypies</td>
<td>0.34</td>
<td>0.91</td>
<td>0-1</td>
<td>2-3</td>
<td>≥4</td>
</tr>
<tr>
<td>SIB</td>
<td>0.21</td>
<td>0.58</td>
<td>0-1</td>
<td>2-3</td>
<td>4</td>
</tr>
</tbody>
</table>

Participants 24 to 30 months of age. Identical procedures were repeated for those individuals 24 to 30 months of age with an ASD diagnosis. For the ASD diagnostic category, the mean level of total symptom endorsement was 8.60, with a standard deviation of 7.27. A total score less than or equal to 16 was suggested to indicate no/minimal impairment. A score greater than or equal to 17 and less than or equal to 23 was classified as indicating moderate impairment. Lastly, a total score greater than or equal to 24 was identified as indicating severe impairment. The cutoff score ranges for each of the BISCUIT-Part 3 factors are presented in Table 19.

Table 19
BISCUIT-Part 3 Cutoff Scores for ASD Participants 24-30 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>8.60</td>
<td>7.27</td>
<td>0-16</td>
<td>17-23</td>
<td>≥24</td>
</tr>
<tr>
<td>Aggressive/destructive behaviors</td>
<td>5.29</td>
<td>4.71</td>
<td>0-10</td>
<td>11-15</td>
<td>≥16</td>
</tr>
<tr>
<td>Stereotypies</td>
<td>1.40</td>
<td>1.79</td>
<td>0-3</td>
<td>4-5</td>
<td>6</td>
</tr>
<tr>
<td>SIB</td>
<td>0.70</td>
<td>1.04</td>
<td>0-2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

These procedures were then carried out for those participants identified as atypically developing in the 24 to 30 month age range. The average total score of the BISCUIT-Part 3 for this age group (M = 2.39) and the standard deviation (i.e., 4.31) were used to calculate cutoff score ranges. A total score less than or equal to seven was identified as representing no/minimal impairment. A score greater than or equal to eight and less than or equal to 11 was classified as indicating moderate impairment. Lastly, a
total score greater than or equal to 12 was classified as indicating *severe impairment*. The cutoff score ranges for each of the *BISCUIT-Part 3* factors are presented in Table 20.

Table 20
BISCUIT-Part 3 Cutoff Scores for Atypically Developing Participants 24-30 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>2.39</td>
<td>4.31</td>
<td>0-7</td>
<td>8-11</td>
<td>≥12</td>
</tr>
<tr>
<td>Aggressive/destructive</td>
<td>1.56</td>
<td>2.82</td>
<td>0-4</td>
<td>5-7</td>
<td>≥8</td>
</tr>
<tr>
<td>Stereotypies</td>
<td>0.45</td>
<td>1.04</td>
<td>0-1</td>
<td>2-3</td>
<td>≥4</td>
</tr>
<tr>
<td>SIB</td>
<td>0.21</td>
<td>0.61</td>
<td>0-1</td>
<td>2-3</td>
<td>4</td>
</tr>
</tbody>
</table>

Participants 31 to 37 months of age. Finally, these procedures were repeated for those individuals 31 to 37 months of age. For the ASD diagnostic category, the mean level of total symptom endorsement was 9.46, with a standard deviation of 7.42. Based upon the standard deviation from central tendency method, a total score less than or equal to 17 was identified as representing *no/minimal impairment*. A score greater than or equal to 18 and less than or equal to 24 was classified as indicating *moderate impairment*. Lastly, a total score greater than or equal to 25 was classified as indicating *severe impairment*. The cutoff score ranges for each of the *BISCUIT-Part 3* factors are displayed in Table 21.

Table 21
BISCUIT-Part 3 Cutoff Scores for ASD Participants 31-37 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>9.46</td>
<td>7.42</td>
<td>0-17</td>
<td>18-24</td>
<td>≥25</td>
</tr>
<tr>
<td>Aggressive/destructive</td>
<td>5.72</td>
<td>4.76</td>
<td>0-11</td>
<td>12-15</td>
<td>≥16</td>
</tr>
<tr>
<td>Stereotypies</td>
<td>1.90</td>
<td>1.84</td>
<td>0-4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>SIB</td>
<td>0.73</td>
<td>1.01</td>
<td>0-2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Lastly, these procedures were carried out for those participants who were 31 to 37 months of age and identified as atypically developing. The average total score on the *BISCUIT-Part 3* for this age group (M = 2.51) and the standard deviation (i.e., 4.41) were used to calculate cutoff scores. A total score less than or equal to seven was identified as representing *no/minimal impairment*. A score greater than or equal to eight and less than or equal to 11 was classified as indicating *moderate impairment*. Finally, a
total score greater than or equal to 12 was classified as indicating *severe impairment*. The cutoff score ranges for each of the *BISCUIT-Part 3* factors are presented in Table 22.

Table 22
BISCUIT-Part 3 Cutoff Scores for Atypically Developing Participants 24-30 Months of Age

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>2.51</td>
<td>4.41</td>
<td>0-7</td>
<td>8-11</td>
<td>>12</td>
</tr>
<tr>
<td>Aggressive/destructive behaviors</td>
<td>1.67</td>
<td>2.96</td>
<td>0-5</td>
<td>6-8</td>
<td>>9</td>
</tr>
<tr>
<td>Stereotypies</td>
<td>0.52</td>
<td>1.10</td>
<td>0-2</td>
<td>3-4</td>
<td>>5</td>
</tr>
<tr>
<td>SIB</td>
<td>0.16</td>
<td>0.46</td>
<td>0-1</td>
<td>2-3</td>
<td>4</td>
</tr>
</tbody>
</table>

Discussion

Challenging behaviors have been previously identified as one of the most prevalent reasons for psychological referrals (Robb, 2010). Lecavalier (2006) noted that the presence of ASD was associated with elevated rates of challenging behaviors. In comparison to typically and atypically developing peers, individuals with ASD exhibit significantly greater rates of challenging behaviors (Konst et al., 2013a; Matson, 2009; Tureck et al., 2013). However, differences within previous diagnostic groups have suggested that the severity of ASD symptom manifestation may moderate the exhibition of challenging behaviors. Sipes and colleagues (2011) reported that children with autistic disorder exhibited significantly greater amounts of tantrum behaviors compared to peers with PDD-NOS and those identified as atypically developing. Additional researchers have reported that regardless of primary diagnosis, elevated levels of ASD symptoms were positively associated with the presence of challenging behaviors (Konst et al., 2013).

Researchers have previously reported an increase in the expression of challenging behaviors as children with ASD age (Charman et al., 2005). Lainhart (1999) hypothesized that an increase in the exhibition of challenging behaviors may be associated with increased frustration due to communication deficits. Other researchers have suggested that social skills deficits, increased demands, and the establishment of punishment and reinforcement procedures (e.g., negative reinforcement) may also alter the expression of challenging behaviors (Cheng et al., 2009; Gutierrez et al., 2009; Lacroix et al., 2009;
Matson, Neal et al., 2010; Matson & Sipes, 2010). Based upon this research, it was hypothesized that cutoff scores would increase with participant age for those participants diagnosed with ASD.

Table 23 depicts the identified cutoff score ranges for the BISCUIT-Part 3 total score for each diagnostic group, as well as each age group. The results of Study Three are consistent with the hypothesis that cutoff scores would increase for individuals with ASD relative to participant age. The cutoff score for the 31-37 month age group total score was four points higher than that observed for the 17-23 month age group. This pattern was also consistent across two of the three BISCUIT-Part 3 subscales. As can be seen in Tables 17, 19, and 21, the identified cutoff scores increased as participant age increased for the aggressive/destructive behavior and stereotypic behavior subscales. These results are consistent with previous research demonstrating an increase in the manifestation of challenging behavior across the lifespan (Charman et al., 2005; Horovitz & Matson, 2013b; Matson et al., 2010). However, it should be noted that the cutoff scores identified for the SIB subscale remained consistent for participants with ASD regardless of age. This observation may most likely be attributed to a restriction of range. The SIB subscale contains only two items with a maximum score of four points. Given this restriction of range, it is possible that the observed range of symptom severity is not completely representative of the SIB severity observed in the ASD population. However, the mean level of symptom endorsement across each age group (.70 - .73) does not suggest that this was a significant factor in the current analyses.

Table 23
BISCUIT-Part 3 Total Score Ranges

<table>
<thead>
<tr>
<th>Diagnostic group</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>No/minimal impairment</th>
<th>Moderate impairment</th>
<th>Severe impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sample</td>
<td>8.39</td>
<td>7.16</td>
<td>0-16</td>
<td>17-23</td>
<td>>24</td>
</tr>
<tr>
<td>17-23 months</td>
<td>7.09</td>
<td>6.57</td>
<td>0-14</td>
<td>15-20</td>
<td>>21</td>
</tr>
<tr>
<td>24-30 months</td>
<td>8.60</td>
<td>7.27</td>
<td>0-16</td>
<td>17-23</td>
<td>>24</td>
</tr>
<tr>
<td>31-37 months</td>
<td>9.46</td>
<td>7.42</td>
<td>0-17</td>
<td>18-24</td>
<td>>25</td>
</tr>
<tr>
<td>Atypical development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sample</td>
<td>2.32</td>
<td>4.22</td>
<td>0-7</td>
<td>8-11</td>
<td>>12</td>
</tr>
<tr>
<td>17-23 months</td>
<td>2.13</td>
<td>3.97</td>
<td>0-6</td>
<td>7-10</td>
<td>>11</td>
</tr>
<tr>
<td>24-30 months</td>
<td>2.39</td>
<td>4.31</td>
<td>0-7</td>
<td>8-11</td>
<td>>12</td>
</tr>
<tr>
<td>31-37 months</td>
<td>2.51</td>
<td>4.41</td>
<td>0-7</td>
<td>8-11</td>
<td>>12</td>
</tr>
</tbody>
</table>
Recent investigations of the influence of age upon the manifestation of challenging behaviors in atypically developing populations have suggested that these symptoms remain relatively stable across time. Some researchers have reported that challenging behaviors such as stereotypic behaviors actually decrease with age in typically and atypically developing toddlers (Evans et al., 1997; Thelen, 1979). Given the observed trend in previous research, it was hypothesized that the cutoff scores for atypically developing toddlers identified by Study Three would not increase across age groups. A visual analysis of the score ranges depicted in Table 23 confirmed this hypothesis. Across the three age groups the total score cutoff changed by a total of one point, with the 24-30 and 31-37 month age groups demonstrating no change. This pattern was upheld across each age group for each subscale of the BISCUIT-Part 3. Despite the relative lack of change in cutoff scores across age groups, it is suggested that the use of age-based cutoff scores be maintained to be consistent with the remaining portions of the BISCUIT assessment battery.

The cutoff scores identified for participants with ASD remained relatively consistent with the most recent revision of the BISCUIT-Part 3 cutoff scores (Horovitz & Matson, 2013b). This was not the case for the atypical development group. Specifically, the total score cutoff identified by the current analysis for the BISCUIT-Part 3 increased by a total of five points. Further, the average cutoff score identified for each subscale increased by three points relative to those identified by Horovitz and Matson (2013b). These results are consistent with the concern raised by previous researchers (Matson, Belva, et al., 2012; Worley & Matson, 2012). Specifically, these researchers reported that those individuals with a DSM-IV-TR diagnosis of ASD that did not meet DSM-5 diagnostic criteria exhibited significantly greater symptoms than their atypically developing peers without an ASD diagnosis. With regard to the current analysis, the addition of individuals who no longer met criteria for ASD may have contributed to the observed increase in the expression of challenging behaviors for the atypically developing group.
Conclusion

Stone and colleagues (1999) emphasized that the delivery of efficacious interventions is contingent upon the reliable identification of ASD. With regard to both identification and intervention, researchers have continuously placed a growing emphasis on the term *early*. This trend has stemmed from an accumulation of research demonstrating the decreased efficacy of the same intervention when treatment delivery is delayed by as little as two years (Fenske et al., 1985; Lovaas & Smith, 1988). With respect to assessment, an emphasis on diagnostic sensitivity and specificity has had a significant impact on the development of measures used to identify ASD. Most recently, the DSM-5 was published and included significant revisions to the ASD diagnostic category (APA, 2013; Gibbs et al., 2012; Frazier et al., 2012; Tsai & Ghaziuddin, 2013). Specifically, the diagnostic categories and criteria for diagnosis were modified in an attempt to increase diagnostic sensitivity and specificity (APA, 2011, 2013; Gibbs et al., 2012; Grzdzinski et al., 2013).

One measure designed to assess infants and toddlers for ASD is the BISCUIT assessment battery. This battery includes three separate measures used to assess for ASD symptomology, comorbid psychopathology, and challenging behaviors. Researchers have previously demonstrated the psychometric properties of each BISCUIT component using a large normative sample that included individuals with ASD (Horovitz & Matson, 2013a, 2013b, 2014; Matson et al., 2009b; Matson, Fodstad et al., 2010). Given the significance of the changes to the ASD category appearing in the DSM-5, it is imperative to update ASD assessments. The current analyses sought to update the scoring procedures for each component of the BISCUIT assessment battery using a large sample of infants and toddlers.

The results of Study One advanced previous research of the BISCUIT-Part 1 in multiple ways. The updated scoring procedures not only increased the diagnostic sensitivity and specificity of the BISCUIT-Part 1, but they also demonstrated the continued importance of age-based scoring procedures. Relative to recent research by Horovitz and Matson (2014), the cutoff scores identified in Study One resulted in an increase in diagnostic sensitivity and specificity for each cutoff score across each age
The use of age based cutoff scores also resulted in greater PPV and NPV for each age group relative to the PPV and NPV calculated for the total sample. Further, the current results also demonstrated the utility of the BISCUIT-Part 1 as an assessment measure of ASD in light of recent diagnostic changes. On average, the cutoff scores identified in Study One provided greater diagnostic sensitivity (94%) and specificity (87%) when compared to other early identification measures. For example, Wetherby and colleagues (2003) reported that the ITC has a sensitivity of 87% and specificity of 75%. Additional measures commonly used for the early identification of ASD include the STAT (sensitivity, 93% and specificity, 83%; Stone et al., 2000) and M-CHAT (sensitivity, 74% and specificity, 87%; Matson et al., 2009b). Given the importance of early identification and intervention, the strong psychometric properties of the BISCUIT-Part 1 make it a valuable component of a diagnostic evaluation. With these scoring updates, the BISCUIT-Part 1 is one of the few early identification measures with research demonstrating its consistency with the DSM-5.

Additional analyses also updated the scoring procedures for the BISCUIT-Parts 2 and 3. Although these measures did not previously distinguish between PDD-NOS and autistic disorder, the normative sample used to create cutoff scores for the ASD category included participants with a PDD-NOS or an autistic disorder diagnosis. Given the observed impact of DSM-5 changes on the PDD-NOS population (Gibbs et al., 2012; Mattila et al., 2011; Matson et al., 2012a, b; Mayes et al., 2013; McPartland et al., 2012; Worley & Matson, 2012), it was necessary to analyze both measures to update the cutoff scores used. The total score cutoff scores identified for the BISCUIT-Part 2 increased by more than 10 points for each diagnostic category. With regard to specific subscales, the largest average change observed for the ASD population was the tantrum/conduct behavior subscale. With regard to the atypical development group, the largest average increase observed was related to the anxiety subscale. The BISCUIT-Part 3 cutoff scores identified for the ASD category increased but were relatively consistent with those observed by Horovitz and Matson (2013b). However, the cutoff scores for the atypical development group increased relative to previously identified cutoff scores. The accurate identification of
symptoms of comorbid psychopathology and challenging behaviors is a pivotal component of an
evaluation and is necessary for the delivery of efficacious treatment (Gold, 1993; Kazdin, 1993; Leyfer et
al., 2006; Matson & Nebel-Schwalem, 2007a; Muris et al., 1998; Simonoff et al., 2008). Aside from the
symptom manifestation observed for the atypically developing group on the BISCUIT-Part 3, the use of
age-based scoring procedures increased diagnostic accuracy for each component of the BISCUIT battery.
Across each study, those cutoff scores identified without regard for participant age were not appropriate
for more than one age group. Based upon these results, the continued use of age-based cutoff scores is
appropriate and may also serve to enhance scale interpretation and the development of individualized
interventions.

Future research should continue to monitor the impact of changes appearing in the DSM-5 and
how these changes influence individuals no longer meeting criteria for ASD. This should include
monitoring symptoms of comorbid psychopathology and challenging behaviors. Future researchers
should continue to assess comorbid symptoms and challenging behaviors in this population to increase
our knowledge of the early expression of these symptoms. Increased understanding of the emergence of
these symptoms would aid in the development of early identification measures and inform treatment
approaches. The results of Study Two suggested that further research may be necessary for the
eating/sleep problems subscale of the BISCUIT-Part 2. Specifically, each ASD age group elevated the
subscale to the maximum level possible given the current amount of items for this subscale. This
restriction of range may have limited differentiation across age groups and may fail to capture the true
variation in severity of eating and sleeping problems during assessment. The importance of this research
is underscored by the prevalence of sleeping and eating problems in ASD populations (Ledford & Gast,
2006; Schreck, Williams, & Smith, 2004). A similar situation was identified by Study Three. The range
of symptom endorsement for the SIB subscale reached the maximum possible score for each age group
within the ASD category. Given the negative impact of SIB and its prevalence in ASD populations
(Ando & Yoshimura, 1979; Janicki & Jacobson, 1983), future researchers should consider the identification of additional items to be included in the BISCUIT-Part 3.

Additional research on early identification in general and the BISCUIT battery specifically may include the exploration of additional factors that may influence diagnosis. Aside from age and developmental progression, factors such as ethnicity and gender have also been suggested to be potential factors that influence the early identification of ASD (Mandell et al., 2002). Researchers have reported that relative to caucasian Americans, ethnic minorities are less likely to be diagnosed with ASD (Kogan et al., 2008; Palmer et al., 2010; Rosenberg et al., 2009). A review of the demographic information presented in Table 1 does not immediately suggest that this was the case for the current analyses. Specifically, the demographic information for individuals meeting criteria for ASD was consistent with recent information from the US Census Bureau (2013). As a state, 32% of Louisiana residents identified themselves as African-American, 64% as caucasian, 4.7% as hispanic, and 1.5% as Asian. However, it is important to note that the nature of the services provided by EarlySteps is unique and different from the populations analyzed by previous researchers. Konst and Matson (in press) noted that a family’s referral to a traditional clinic setting had multiple factors such as transportation, cost, and waitlists that may act as barriers to seeking services. Therefore, future research analyzing factors that hinder the availability of psychological services to minority groups remains paramount. Researchers have also previously identified intellectual functioning as a factor that may moderate ASD symptom severity (Matson et al., 2008). Given the prevalence of comorbid ID in ASD populations (Battaglia & Carey, 2006; Betancur, 2011; Chakrabarti & Fombonne, 2001; Yeargin-Allsopp et al., 2003), the influence of intellectual functioning on assessment and early identification should also be examined.

As our conceptualization of ASD continues to develop and progress, it will be necessary to also update those measures used to assess ASD symptomology across the lifespan. The continued development of ASD assessment measures is important for accurate identification, the delivery of interventions, financial reimbursement, and the advancement of future research. The current analyses are
an initial step toward demonstrating the utility of the BISCUIT assessment battery following the recent revisions to the ASD category in the DSM-5. However, the factors contributing to this increase in sensitivity and specificity should not be overlooked. Specifically, the complete removal of a contentious diagnostic category (i.e., PDD-NOS) has far reaching implications for families, researchers, and clinicians. The specific ramifications of these changes will only become more salient with further research.
References

Opinion in Paediatrics, 2, 685-693.

MedCalc (Version 13.3.3) [Computer software]. Mariakerke, Belgium: MedCalc Software bvba.

Appendix

ACTION ON PROTOCOL CONTINUATION REQUEST

TO: Johnny Matson
Psychology

FROM: Dennis Landin
Chair, Institutional Review Board

DATE: June 5, 2014
RE: IRB# 2609

TITLE: Developing the Autism Spectrum Disorder (ASD)

New Protocol/Modification/Continuation: Continuation

Review type: Full ______ Expedited X ______ Review date: 6/5/2014

Risk Factor: Minimal ______ Uncertain ______ Greater Than Minimal ______

Approved ______ X ______ Disapproved ______

Approval Date: 6/5/2014 Approval Expiration Date: 6/4/2015

Re-review frequency: (annual unless otherwise stated)

Number of subjects approved: 2000

LSU Proposal Number (if applicable): __________

Protocol Matches Scope of Work in Grant proposal: (if applicable) __________

By: Dennis Landin, Chairman ________

PRINCIPAL INVESTIGATOR: PLEASE READ THE FOLLOWING –
Continuing approval is CONDITIONAL on:

1. Adherence to the approved protocol, familiarity with, and adherence to the ethical standards of the Belmont Report, and LSU's Assurance of Compliance with DHHS regulations for the protection of human subjects*
2. Prior approval of any change in protocol, including revision of the consent documents or an increase in the number of subjects over that approved.
3. Obtaining renewed approval (or submittal of a termination report), prior to the approval expiration date, upon request by the IRB office (irrespective of when the project actually begins); notification of project termination.
4. Retention of documentation of informed consent and study records for at least 3 years after the study ends.
5. Continuing attention to the physical and psychological well-being and informed consent of the individual participants, including notification of new information that might affect consent.
6. A prompt report to the IRB of any adverse event affecting a participant potentially arising from the study.
8. SPECIAL NOTE:

*All investigators and support staff have access to copies of the Belmont Report, LSU's Assurance with DHHS, DHHS (45 CFR 46) and FDA regulations governing use of human subjects, and other relevant documents in print in this office or on our World Wide Web site at http://www.lsu.edu/irb
Vita

Matthew Jason Konst, a native of Morganton, North Carolina, is a veteran of the United States Marine Corps, having earned the rank of E-5, Seargent. He received his Master’s Degree in Clinical Psychology from Louisiana State University (LSU). His research and professional interests have centered upon serving individuals with developmental disabilities broadly and Autism Spectrum Disorders (ASD) specifically. Specific areas of interest have included early assessment and identification of ASD, comorbid psychopathology, and manifestation of symptoms across the lifespan. He was accepted to the Johns Hopkins University School of Medicine Predoctoral Internship at the Kennedy Krieger Institute. He anticipates graduating with his Doctor of Philosophy Degree in Clinical Psychology from LSU in August 2016.