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ABSTRACT 
 

New process monitoring and control strategies are developing every day together with process 

automation strategies to satisfy the needs of diverse industries. New automation systems are being 

developed with more capabilities for safety and reliability issues. Fault detection and diagnosis, 

and process monitoring and supervision are some of the new and promising growth areas in process 

control. With the help of the development of powerful computer systems, the extensive amount of 

process data from all over the plant can be put to use in an efficient manner by storing and 

manipulation. With this development, data-driven process monitoring approaches had the chance 

to emerge compared to model-based process monitoring approaches, where the quantitative model 

is known as a priori knowledge. Therefore, the objective of this research is to layout the basis for 

designing and implementing a multi-agent system for process monitoring and supervision. The 

agent-based programming approach adopted in our research provides a number of advantages, 

such as, flexibility, adaptation and ease of use. In its current status, the designed multi-agent system 

architecture has the three different functionalities ready for use for process monitoring and 

supervision. It allows: a) easy manipulation and preprocessing of plant data both for training and 

online application; b) detection of process faults; and c) diagnosis of the source of the fault. In 

addition, a number of alternative data driven techniques were implemented to perform monitoring 

and supervision tasks: Principal Component Analysis (PCA), Fisher Discriminant Analysis (FDA), 

and Self-Organizing Maps (SOM). The process system designed in this research project is generic 

in the sense that it can be used for multiple applications. The process monitoring system is 

successfully tested with Tennessee Eastman Process application. Fault detection rates and fault 

diagnosis rates are compared amongst PCA, FDA, and SOM for different faults using the proposed 

framework. 
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1. INTRODUCTION 
 
 
 

New process monitoring and control strategies are developing every day together with process 

automation strategies to satisfy the needs of diverse industries. Highly competitive economic 

measures demand lower cost and more efficient processes in manufacturing industries. Together 

with that, increasing environmental concerns and the effort to reduce the shutdown times of 

fabrication plants are pushing optimization and control to their achievable limits. The production 

industry is moving towards better overall system performance, high product quality and economic 

operation with environmental constraints. Together with all these new challenges, technology 

emerges too and new paradigms are developed to overcome emerging problems. New automation 

systems are being developed with more capabilities for safety and reliability issues. Within the 

automatic control of technical systems, supervisory functions serve to indicate undesired or not 

permitted process states. On top of that, the systems take appropriate actions in order to maintain 

the operation and to avoid damage or accidents. To accomplish or aid in accomplishing all these 

tasks, large amounts of data are collected in many chemical processes. The data can be analyzed 

to determine whether or not a fault has occurred in the process, where a fault is generally defined 

as abnormal process behavior. This abnormal process behaviour can be associated with equipment 

failure, equipment wear, or some process disturbances. This task of determining whether a fault 

has occurred is called fault detection. In addition to that, fault diagnosis is the task of determining 

which fault has occurred. Fault detection and diagnosis, and process monitoring and supervision 

are some of the new and promising growth areas in process control. 
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In order to have detailed information about a process, the optimization, control and monitoring of 

processes always involve employing models. In mechanistic models, the structure is based on 

fundamentals and whose parameters are estimated from plant data. On the other hand, in data-

driven or empirical models, the structure and parameters are all identified from plant data. The 

important concern about the type of model to be used depends on the appropriateness of the model 

for the system in terms of its structure and assumptions. For instance, the structure established in 

mechanistic models contains many assumptions, some of which may not be entirely justified. The 

main concern about assumptions in a model depends on the structure of the disturbances in the 

system. This structure is rarely available from theory, and there exists many information rich 

variables cannot be incorporated into the mechanistic model, simply because the modeler cannot 

blend this information into the model. Thus, the seemingly unusable information is omitted and 

left out of the model. 

 

Due to many different notions such as increased automation, faster sampling rates and advances 

in computing power, large amount of process data is available online and continuously stored. For 

many supervisory tasks such as process monitoring, diagnosis of process malfunctions, detection 

of mode change this stored data can be used in order to make use of the knowledge embedded in 

the data. However, in the majority of production plants all around the world, such supervisory 

tasks are left to the operator, in spite of having the measured data readily available at hand. This 

overwhelming task for the plant operators and engineers result in overload, and thus leading to 

erroneous decisions in some cases. Accordingly, it should be obvious that there is a need for 

approaches that can automatically capture and interpret knowledge. By doing this, the real-time 

decision-making burden on the operator can be substantially reduced. 
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In the first place, model-based fault detection and diagnosis schemes are relatively well 

established; however it is still very difficult to create the necessary nonlinear mathematical models 

for large scale processes. In addition to this, regular sensor measurements and records from 

historical data are kept in such industrial processes. With the help of the development of powerful 

computer systems, this extensive amount of process data from all over the plant can be put to use 

in an efficient manner by storing and manipulation. With this development, data-driven process 

monitoring approaches had the chance to emerge compared to model-based process monitoring 

approaches, where the quantitative model is known as a priori knowledge. Process operators are 

already keen on using this available data to minimize plant downtime and optimize process 

automation. However, without the use of helpful software development to aid this task, the task 

becomes rather overwhelming. By designing a superior and robust fault detection and diagnosis 

scheme using model-free and non-parametric methods the overall safety and reliability 

requirements of most critical factors in the process design can be successfully achieved. 

 

 

1.1. THESIS AIM 

 

One great challenge in the field of data-driven process monitoring is to develop an overall 

framework for advanced process monitoring with capabilities to organize, filter and manipulate 

data with the aim to detect abnormal events using an artificially-intelligent environment. 

Integration of these operational tasks in chemical plants will significantly help the automation of 

the system and this will be a positive step towards keeping the plant operational in the case of fault 

scenarios. The goal of the overall framework design and implementation is the automation of the 

processes of detecting faults and diagnosing their causes where possible.  
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Agent-based programming is a recent programming approach that offers various advantages for 

the implementation of the overall framework for advanced process monitoring. The agent-based 

approach helps for the coordination mechanism for each possible interaction which would have to 

be designed by hand. By using the agent-based programming approach the decisions being made 

in the system are automated, consistent and the approach reduces the overall development time. 

Therefore, the objective of this research is to layout the basis for designing and implementing a 

multi-agent system for process monitoring and supervision. The designed multi-agent system 

architecture has the three different functionalities ready for use for fault detection and diagnosis: 

Principal Component Analysis (PCA), Fisher Discriminant Analysis (FDA), and Self-Organizing 

Maps (SOM). The process system designed in this research project is generic in the sense that it 

can be used for multiple applications. The process monitoring system is successfully tested with 

Tennessee Eastman Process application. Fault detection rates and fault diagnosis rates are 

compared amongst PCA, FDA, and SOM for different faults. 

 

 

1.2. THESIS ORGANIZATION 

 

The thesis is organized as follows.  Chapter 2 presents a brief introduction to process monitoring, 

and fault detection and diagnosis as well as a discussion of process faults and overview of process 

monitoring strategies are discussed. An introduction to model-based process monitoring methods 

and an introduction to data-driven process monitoring methods together with providing an 

overview of the methods.  
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Chapter 3 starts with describing multivariate statistics and giving an introduction to pattern 

classification. This section also covers statistical process monitoring methods (components of the 

proposed framework) including Principal Component Analysis (PCA), Fisher Discriminant 

Analysis (FDA), and Self-Organizing Maps (SOM). The section goes into detail about how each 

method is implemented and used in fault detection and diagnosis procedures. 

 

Chapter 4 introduces multi-agent based systems. JADE, the middleware used in this research 

project, is discussed in detail in this section; together with the detailed description of the multi-

agent system architecture designed in this research project for process monitoring.  

 

Chapter 5 present the results for the research project together with introducing the Tennessee 

Eastman Process application. Finally, in Chapter 6 an overall discussion of the main findings and 

the conclusions for the thesis are given. 
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2. PROCESS MONITORING 
 
 

2.1. FAULT DETECTION AND DIAGNOSIS  

 

More complicated technical processes require advanced automation techniques to ensure safety 

and reliability issues. As automation gets more advanced the reliance on human operators to deal 

with abnormal events decrease considerably. Drawbacks of the reliance on human operators are 

thoroughly discussed in Venkatasubramanian et al. (Venkatasubramanian, Rengaswamy, Yin, & 

Kavuri, A Review of Process Fault Detection and Diagnosis Part I: Quantitative Model-Based 

Methods, 2003). The points can be summarized as below: 

  

 Modern process plants are overwhelming to control by the help of human operators 

regarding their size and complexity; since there may be as many as 1500 process variables 

observed every few seconds, which leads to information overload. 

 Time constraints for fault detection systems are of great importance in modern process 

plants for economic and safety issues. The correct decision making procedure for human 

operators lag fairly behind compared to automated systems. 

 Process measurements of variables are insufficient, incomplete and/or unreliable more 

frequently than expected due to a variety of causes such as sensor biases or failures. 

 

Considering all the disadvantages that human operators possess, it should be no surprise that 

human operators cause serious problems by making wrong decisions. Venkatasubramanian et al. 

claim that about 70% of the industrial accidents are caused by human errors, as revealed by 

industrial statistics. These abnormal events have significant impacts related to economy, safety 
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and environment. The estimates show that the petrochemical industry alone in the US is subjected 

to approximately 20 billion dollars in annual losses just because of poor abnormal event 

management. (Nimmo, 1995) Laser states that similar accidents costs British economy for a 

revenue loss up to 27 billion dollars every year (Laser, 2000). Together with that, another 

significant impact of abnormal events is accidents such as Union Carbide’s Bhopal, India accident 

and Occidental Petroleum’s Piper Alpha accident. (Lees, 1996) 

 

Himmelblau defines a fault associated with a process as a departure from an acceptable range of 

an observed variable or a calculated parameter (Himmelblau, 1978). Similarly, a fault is defined 

as an unpermitted deviation of at least one characteristic property or variable of the system in 

Chiang (Chiang, Russell, & Braatz, 2001). Faults can be categorized according to their time 

dependencies as can be seen from Figure 2.1 (Isermann, 2005). Abrupt faults are stepwise faults, 

incipient faults are drift-like faults and intermittent are occasional faults. 

 

 

 

Figure 2.1: Time dependency of faults: (a) abrupt; (b) incipient; (c) intermittent (Isermann, 

2005). 
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Faults can be further classified with regard to the process models (Isermann, 2005). As can be seen 

from Figure 2.2, additive faults influence a variable 𝑌 by an addition of the fault: 𝑓. Multiplicative 

faults influence a variable 𝑌 by the product of another variable 𝑈 with the introduction of the fault: 

𝑓. Additive faults appear as offsets of sensors, whereas multiplicative faults are parameter changes 

within a process. In addition, any kind of fault we come across in an industrial facility can be 

generally grouped in three categories according to their causes described by Venkatasubramanian 

et al.:  gross parameter changes in a model, structural changes and malfunctioning sensors and 

actuators. (Venkatasubramanian, Rengaswamy, Yin, & Kavuri, A Review of Process Fault 

Detection and Diagnosis Part I: Quantitative Model-Based Methods, 2003) 

 

 

Figure 2.2: Basic models of faults: (a) additive fault; (b) multiplicative fault (Isermann, 2005). 

 

 

Gross parameter changes in a model are caused by the uncaptured dynamics that are occurring 

below the selected level of detail of the model. These detailed dynamics, which are highly 

nonlinear and cumbersome to model are typically lumped as parameters and these include 

interactions across the system boundary. Parameter failures arise when there is a disturbance 

entering the process from the environment through independent variables. An example of such a 

malfunction is the change in the heat transfer coefficient due to fouling in a heat exchanger. 
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As the name suggests, structural changes refer to changes in the process itself and occur due to 

hard failures in equipment. Structural malfunctions result in a change in the dynamic behavior and 

thus the information flow amongst various variables. In order to handle such a failure in a model-

based approach, the system would require the removal of the appropriate model equations and 

restructuring the remaining equations in order to describe the current situation of the process. An 

example of a structural failure would be failure of a stuck valve or a broken or leaking pipe. 

 

Malfunctioning sensors and actuators usually lead to the introduction of gross errors in the data. 

These failures could be due to a fixed failure, a constant bias in either positive or negative direction 

or an out-of range failure. A failure in one of the sensors and actuators could cause the plant state 

variables to deviate beyond acceptable limits since some of the instruments provide feedback 

signals which are essential for the control of the plant. For this reason, the failure must be detected 

promptly and corrective actions are accomplished in time. It is the purpose of fault detection and 

diagnosis system to detect any instrument fault as quickly as possible in order to prevent a possible 

serious degradation in the performance of the control system. 

 

In addition to these faults; unstructured uncertainties, process noise and measurement noise exist 

in historical data, which are outside the scope of fault detection and diagnosis. Unstructured 

uncertainties are mainly faults that are not modelled as a priori knowledge. Process noise refers to 

the mismatch between the actual process and the predictions from model equations. Measurement 

noise refers to high frequency additive component in the sensor measurements. These 

abnormalities in the data should be filtered out in data preprocessing phase before starting fault 

detection and diagnosis. 
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The faults in the process need to be detected, diagnosed and then removed to ensure that the process 

operations satisfy the required performance specifications. The main goal of process monitoring 

is to ensure the success of the planned operations by recognizing anomalies in the behavior of the 

system (Chiang, Russell, & Braatz, 2001). The process monitoring system provides essential 

information about the status of the process and assists the plant operator and maintenance 

personnel to make appropriate remedial actions to remove the abnormal behavior from the process. 

Katipamula & Brambley defines the primary objective of a fault detection and diagnosis (FDD) 

system as early detection of faults and diagnosis of their causes (Katipamula & Brambley, 2005). 

This enables the correction of the faults before additional damage to the system or loss of service 

occurs. Fault detection is mainly accomplished by continuously monitoring the operations of a 

system, using FDD to detect and diagnose abnormal conditions and the faults associated with them, 

then evaluating the significance of the detected faults, and deciding how to respond. Successfully 

implemented process monitoring systems ensures that downtime is minimized, safety of plant 

operations is improved and manufacturing costs are reduced.  

 

Chiang et al. defines the four procedures associated with monitoring as: fault detection, fault 

identification, fault diagnosis and process recovery; adopting the terminology given by Raich and 

Cinar (Chiang, Russell, & Braatz, 2001; Raich & Cinar, 1996). Fault detection is defined as 

determining whether a fault has occurred. The vital point of fault detection is early detection, which 

may provide invaluable warning on emerging problems, even before the problems start affecting 

the system directly.  After the fault is detected, appropriate actions can be taken to avoid serious 

process upsets. Fault identification is defined as identifying the observation variables most relevant 

that can be used for diagnosing the fault. To eliminate the effect of the fault in a more efficient 
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manner, fault identification focuses the plant operator’s or engineer’s attention on the subsystems 

most applicable for the diagnosis of the fault. Fault diagnosis is defined as determining which fault 

occurred by determining the cause of the observed out-of-control status. In a more specific 

definition, Isermann defines fault diagnosis as determining the type, location, magnitude, and time 

of the fault (Isermann, Model Based fault Detection and Diagnosis Methods, 1995). Fault 

diagnosis procedure is an essential step for take action against the fault and eliminating it 

decisively. The final step in the process monitoring loop is process recovery and it is defined as 

removing the effect of the fault. Process recovery can also be called intervention and is a necessary 

step to close the monitoring loop as can be seen from Figure 2.3. Whenever a fault is detected, 

fault identification, fault diagnosis, and process recovery procedures are implemented respectively. 

If the system does not come across a fault, only the fault detection procedure is repeated until a 

new fault is detected. 

 

 

Figure 2.3: A schema of the process monitoring loop. (Chiang, Russell, & Braatz, 2001) 

 

 

In a complete and successful process monitoring scheme, the procedures defined above are 

implemented as shown in Figure 2.3. On the other hand, in practice it may not always be necessary 
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to use the scheme as it is. For example, a fault diagnosis phase may be implemented without 

identifying the variables affected by the fault immediately. In addition to this, in an ideal process 

monitoring system the procedures should be automated as much as possible; however it is not 

necessary to automate all four procedures. Generally, assistance of the plant operators and 

engineers to diagnose the fault is the practical goal of process monitoring; in order to recover 

normal operation. For that reason, plant operators and engineers are incorporated into the process 

monitoring loop efficiently, rather than trying to automate the entire process monitoring scheme. 

 

In-control operations need to be recovered generally after a fault occurs. Even if the fault diagnosis 

procedure is implemented successfully, the optimal approach to take in the process recovery phase 

may not be obvious. Process recovery can be done by reconfiguring the process, repairing the 

process, or retuning the controllers. Extensive amount of information about the topic can be seen 

in literature for retuning controllers and sensor reconstruction (Harris, 1989; Rhinehart, 1995; 

Dunia, Qin, F., & J., 1996). Although process recovery is a crucial and essential part of the process 

monitoring loop, it will not be further discussed in this thesis.  

 

As mentioned before, the main idea lying behind process monitoring is to identify some measures 

to represent the state or behavior of the process. These measures can be developed using statistical 

theory, pattern classification theory, information theory, and systems theory (Chiang, Russell, & 

Braatz, 2001). The on-line data collected from the process can be converted into a few meaningful 

measures to assist the plant operators in determining the status of the operations and also 

diagnosing the faults where necessary. For fault detection purposes, certain limits can be defined 

for some of measures so that a fault can be detected whenever one of the evaluated measures goes 
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outside of the defined limits. By using this simple approach, the identified measures have the 

ability to define in-control behavior of the system as well as the out-of-control status. In fault 

identification, measures which accurately characterize the behavior of each observation variable 

can be developed. By doing so, the measure of one variable can be compared against the measure 

for other variables to determine the variable most effected by the corresponding fault. Fault 

diagnosis can be achieved by developing and comparing measures which accurately represent the 

different faults of a certain process. 

 

An ideal process monitoring system must be sensitive and robust against all possible faults. This 

can be achieved by developing multiple measures, where each measure can be efficiently used to 

detect and diagnose a certain type of fault. This approach is handy and necessary since faults are 

manifested in several ways and it is impractical trying to detect and diagnose all these faults using 

only a few process measures. Using multiple process measures with the ability to detect and 

diagnose particular processes overcomes this problem and serves the goal of creating a sensitive 

and robust system against all possible faults.  

 

In the general framework, fault detection and diagnosis requires two important components: a 

priori domain knowledge and a search strategy. The basic a priori knowledge required for process 

monitoring is a set of failures and the relationship between the observations and the failures 

(Venkatasubramanian, Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection and 

Diagnosis Part II: Qualitative Models and Search Strategies, 2003). The observations can also be 

referred as the symptoms of each particular fault. The a priori knowledge for a process monitoring 

system may be explicit as in a table look-up, or it may be inferred from some source of domain 
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knowledge. Firstly, the first-principles knowledge can be used to develop a fundamental 

understanding of the process to develop the a priori domain knowledge. The developed a priori 

domain knowledge is referred as deep, casual or model-based knowledge (Milne, 1987). The 

process monitoring methods which use model-based knowledge are simply called model-based 

process monitoring methods. Secondly, past experience with the process can be the basis for 

developing the a priori domain knowledge. The developed a priori domain knowledge is referred 

as shallow, compiled, evidential, process history-based knowledge (Venkatasubramanian, 

Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection and Diagnosis Part II: 

Qualitative Models and Search Strategies, 2003). The process monitoring methods which use 

process history-based knowledge are simply called data-driven process monitoring methods. 

 

Data-driven process monitoring methods are directly derived from process data. Modern industrial 

systems are getting fairly larger every day and even a single unit in an industrial plant can be 

considered as a large-scale system. Modern processes require heavy instrumentation as large-scale 

systems and produce an exceptionally large amount of data continuously. Although this data is 

readily available for plant operators and engineers, it is beyond the capabilities of a human being 

to effectively assess process operations simply from observing the data. The strength of data-

driven process monitoring techniques lies within their ability to transform the high-dimensional 

data produced by the large-scale industrial systems into a lower-dimensional data. In the process 

of lowering the dimension of the data, the important information hidden in the data is captured. By 

using the lower-dimension data created, with the help of some meaningful statistics a successful 

process monitoring system can be established for a large-scale system. The main drawback of data-
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driven process monitoring techniques is that their strength is highly dependent on the quality and 

quantity of the available process data. 

 

On the other hand, model-based process monitoring methods uses mathematical models often 

constructed from first principles. The model-based approach is applicable to rather simple and 

information-rich systems, where satisfactory models and enough sensors are available for the 

process. Most model-based methods are based on parameter estimation, observer-based design, 

and/or parity relations (Chiang, Russell, & Braatz, 2001). Most applications of model-based 

process monitoring systems have been to systems with a relatively small number of inputs, outputs, 

and states. It is challenging to apply this approach to systems containing a large number of inputs, 

outputs, and states, which is the case for most modern industrial plants and operations. This is 

mainly because of the fact that model-based systems require detailed models in order to be 

effective. Detailed models for large-scale systems are very hard and expensive to obtain given all 

the cross couplings and nonlinearities associated with a multivariable system (Chiang, Russell, & 

Braatz, 2001). The main advantage of model-based process monitoring systems is the ability to 

incorporate physical understanding of the process into the process monitoring scheme. It is model-

based process monitoring systems’ requirement to have detailed analytical models readily 

available to outperform data-driven process monitoring methods. 

 

In the general sense, a process monitoring scheme can be seen as a series of transformations or 

mappings on process measurements, which aids the diagnostic decision making procedure. The 

various transformations that process data go through during the fault detection and diagnosis 

process can be seen from Figure 2.4. The measurement space in Figure 2.4 is a space of 
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measurements with no a priori problem knowledge relating these measurements 

(Venkatasubramanian, Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection and 

Diagnosis Part I: Quantitative Model-Based Methods, 2003). These measurements are the input to 

the process monitoring system. The feature space in Figure 2.4 is a space of feature points obtained 

as a function of the measurements by utilizing a priori problem knowledge. In the feature space, 

in order to extract useful features about the process behavior with the goal of helping process 

monitoring; the measurements are analyzed and combined with the aid of a priori process 

knowledge. The mapping from the feature space to decision space is generally established by 

meeting an objective function; such as minimizing the misclassification rate. This transformation 

from the feature space to decision space is generally achieved by using a discriminant function. In 

some cases, the transformation can also be achieved using simple threshold functions. The decision 

space is a space of points having the dimension of the number of decision variables, which are 

obtained by suitable transformations of the feature space. The class space is a set of integers having 

the dimension of the number of failure classes. The failure class index categorically shows the 

belongingness of specific measurement patterns to a specific class; including the normal region. 

As can be seen from Figure 2.4, the class space is the final step in the process monitoring scheme. 

As a result, it is the final interpretation provided by the process monitoring system to be delivered 

to the plant operator or the engineer. The transformations from the decision space to the class space 

can be performed using threshold functions, template matching or symbolic reasoning 

(Venkatasubramanian, Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection and 

Diagnosis Part I: Quantitative Model-Based Methods, 2003). 
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Figure 2.4: Transformations in a diagnostic system (Venkatasubramanian, Rengaswamy, Yin, & 

Kavuri, A Review of Process Fault Detection and Diagnosis Part I: Quantitative Model-Based 

Methods, 2003). 

 

 

2.2. MODEL-BASED PROCESS MONITORING METHODS 
 
 

Model-based process monitoring techniques generate features using detailed mathematical models 

based on the measured input and output for the system. For model-based approaches, residuals, 

parameter estimates, and state estimates are commonly used features. Either directly or after some 

transformation, faults are detected and diagnosed by comparing the observed features with the 

features associated with normal operating conditions (Chiang, Russell, & Braatz, 2001). 

 

Model-based fault detection and diagnosis techniques emerged in 1970s and developed extensively 

since then (Ding, 2008). All model-based fault detection and diagnosis techniques have 

implemented algorithms which explicitly use a process model to use with on-line process data, 

which is collected and recorded during the system operation. Detection of faults in the processes, 

actuators and sensors is achieved by using the dependencies between different measurable signals. 

Mathematical process models are developed in order to express these dependencies (Isermann, 

2005). The so called strength of a model is simply based on its redundancy to the actual process. 

In other words, how well the model can simulate the behavior of the actual system designates the 

redundancy of the model. Redundancy can be constructed both by using hardware and software 

components (Ding, 2008).  
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Hardware redundancy requires redundant sensors to reconstruct the crucial components of a 

system using the identical hardware. Hardware redundancy based process control methods are well 

utilized in the control of such safety-critical systems as aircraft space vehicles and nuclear power 

plants (Venkatasubramanian, Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection 

and Diagnosis Part I: Quantitative Model-Based Methods, 2003). However, it is obvious that the 

applicability of hardware redundancy is limited due to the extra cost and additional space required 

in reconstruction. Analytical redundancy addresses these problems and is achieved from the 

functional dependence among the process variables. Analytical redundancy is usually provided by 

a set of algebraic or temporal relationships among the states, inputs and the outputs of the system. 

After analytical redundancy is readily available, fault detection can simply be achieved by 

calculating the residual for each data point. The residual is defined in Equation 2.1 as the difference 

between the measured process variables; 𝑦, and their redundancy: �̂�; 

 

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑦 − �̂� 

 

Eq. 2.1 

Fault detection using analytical redundancy consists of residual generation and then evaluation. 

By checking the actual system behavior against the system model for consistency, fault detection 

can be achieved. Calculated residuals express inconsistencies and thus can be used for detection 

and isolation purposes as can be seen from Figure 2.5. The residuals should be close to zero when 

no fault occurs; but should show greater values when there is a change in the system. An explicit 

mathematical model of the system is required for the generation of the diagnostic residuals. For 

the creation of the model, either an analytical model derived using the first principles or an 

empirically obtained black-box model can be used.   
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Figure 2.5: General scheme for using analytical redundancy (Venkatasubramanian, 

Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection and Diagnosis Part I: 

Quantitative Model-Based Methods, 2003). 

 

 

Analytical models derived using the first principles are obtained based on a physical understanding 

of the process. In the development of model equations in chemical engineering processes mass, 

energy and momentum balances are used together with constitutive relationships such as equations 

of state. Models developed using first principles are generally very complex and often nonlinear, 

which makes the design of fault detection and diagnosis systems more challenging. With the 

improvement in more advanced computer systems and an improved understanding of nonlinear 

controller design analytical models for process monitoring are improving.  

 

The problem that fault detection and diagnosis systems come across is to identify the state of a 

process based on its behavior. In the physical environment, the behavior of a process is monitored 

through its sensor outputs and actuator inputs as observed variables. Whenever a fault occurs, the 

relationship among these observed variables change and as a result a nonzero residual is generated. 
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Most process monitoring methods used nowadays have black-box plant models such as input-

output or state-space models and assume linearity of the plant (Venkatasubramanian, 

Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection and Diagnosis Part I: 

Quantitative Model-Based Methods, 2003). The assumption of linearity gives birth to accuracy 

issues with the model. Unlike the black-box models, models created using first principles bear 

certain physical meanings. These physical meanings have great conveniences in fault detection 

and diagnosis, and controller design. Since most model-based approaches assume system linearity, 

their application to a non-linear system requires a model linearization around the operating point. 

Several factors such as system complexity, high dimensionality, process nonlinearity, and lack of 

useful data make it very difficult and often impractical to develop and accurate mathematical 

model for large-scale industrial systems. This fact limits the usefulness of model-based process 

monitoring systems in real industrial processes. Another problem related to model-based 

approaches is the simplistic approximation of the disturbances that include modelling errors. In 

most cases, model-based approaches only include additive modeling uncertainties for 

disturbances. However, in practice, multiplicative modeling uncertainties are caused by parameter 

drifts. This point is a serious limitation of all the model-based process monitoring schemes that 

have been developed so far (Venkatasubramanian, Rengaswamy, Yin, & Kavuri, A Review of 

Process Fault Detection and Diagnosis Part I: Quantitative Model-Based Methods, 2003). Based 

on the drawbacks of model-based methods stated above, it is obvious that data-driven process 

monitoring methods require more attention. 
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2.3. DATA-DRIVEN PROCESS MONITORING METHODS 
 

 

As discussed before, model-based process monitoring methods require a priori knowledge about 

the system, whereas for data-driven process monitoring methods only the availability of large 

amount of historical process data is needed. The historical data provided by the process can be 

transformed and presented to the process monitoring system as a priori knowledge in different 

ways. This transformation and presentation is known as feature extraction (Venkatasubramanian, 

Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection and Diagnosis Part III: Process 

History Based Methods, 2003). The quantitative extraction techniques can be broadly group into 

two subcategories: statistical and non-statistical methods. Self-Organizing Maps (SOM), which 

are a form of neural networks, are an important example of non-statistical data classifiers. 

Examples for statistical feature extraction methods can be Principal Component Analysis (PCA) 

and Fisher Discriminant Analysis (FDA). 

 

Limit sensing and discrepancy detection are amongst traditional process monitoring methods. 

Limit sensing is an easy to implement and understand method and it arises an alarm when 

observations cross predefined thresholds. However, since limit sensing ignores the interactions 

between the process variables for various sensors, it lacks sensitivity to some process upsets 

(Chiang, Russell, & Braatz, 2001). The way that discrepancy detection raises an alarm is by 

comparing simulated to actual observed values. Discrepancy detection highly depends on model 

accuracy. As discussed in model-based process monitoring methods, model inaccuracies are 

unavoidable in practice. Discrepancy detection can lack robustness since it is very difficult to 

distinguish genuine faults from errors in the model. Robust discrepancy detection statistics and 
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techniques have been studied; but it can be concluded that effective statistics are difficult to obtain 

especially for large-scale systems (Chiang, Russell, & Braatz, 2001).  

 

Limit sensing is similar to univariate statistical techniques in the sense that it determines thresholds 

for each observation variable without using any information from other variables. Both methods 

ignore spatial correlations; which are the correlations among the observation variables, and serial 

correlations; which are the correlations among measurements of the same variable taken at 

different times. Limit sensing lacks sensitivity to many faults; because it does not take the spatial 

correlations. Limit sensing can also lack robustness; because it ignores serial correlations (Chiang, 

Russell, & Braatz, 2001).  

 

Multivariate statistical techniques in process monitoring statistics emerged from the need to handle 

spatial correlations. Principal component analysis (PCA) is the most basic and widely used data-

driven process monitoring technique for industrial systems. PCA is a dimensionality reduction 

technique which has been studied extensively over the last two decades. PCA accounts for 

correlations among variables and is an optimal dimensionality reduction technique in terms of 

capturing the variance of the data. Using multivariate statistics, the lower-dimensional 

representations of the data produced by PCA can improve the proficiency of fault detection and 

diagnosis. Principal component analysis can be useful for identifying either the variables 

responsible for the fault or the variables most affected by the fault. For applications where the 

desired amount of important information in the data can be captured in only two or three 

dimensions; the dominant process variability can be visualized in a single plot. Although this is 

not the case for the majority of process monitoring applications, other plots such as T2 and Q charts 
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can be used for visualization purposes. These charts are irrespective of how many dimensions 

required in the lower-dimension space and look similar to univariate charts but are based on 

multivariate statistics. These control charts can aid plant operators and engineers to observe and 

understand significant trends in process data. PCA will be discussed in detail in Section 3.3. 

 

Another dimensionality reduction technique commonly used in process monitoring practice is 

Fisher Discriminant Analysis (FDA). FDA aids pattern classification by determining the portion 

of the observation space that is most effective in discriminating amongst several classes. For fault 

diagnosis purposes, discriminant analysis is applied to this portion of the observation space. An 

important feature of FDA is that it is applied to the data in all the classes simultaneously. When 

the discriminant function is evaluated for each class, all fault class information is utilized. For this 

theoretical superiority of FDA over PCA, better fault diagnosis performance is expected from 

FDA. Although this is case for many applications and their specific faults; there are still many 

cases that PCA over performs FDA in fault diagnosis. FDA will be discussed in detail in Section 

3.4. 

 

Self-Organizing Maps (SOM) are pattern recognition techniques that use the association between 

data patterns and fault classes without an explicit modelling of internal process states or structures. 

SOM is related to the data-driven process monitoring techniques, such as PCA and FDA, in terms 

of modeling the relationship between data patterns and fault classes. PCA and FDA are 

dimensionality reduction techniques based on rigorous multivariate statistics. Furthermore, Self-

Organizing Maps are black box methods which learn the pattern based entirely from the training 

sessions for the specific map. SOM will be discussed in detail in Section 3.5. The process 
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monitoring measures for Principal Component Analysis (PCA), Fisher Discriminant Analysis 

(FDA), and Self-Organizing Maps (SOM) can be calculated based entirely on data. For the cases 

where a detailed first-principles or any other mathematical model is available, model-based 

process monitoring techniques can provide more effective fault detection and diagnosis than data-

driven process monitoring techniques.  

 

Venkatasubramanian et al. states that no single method used in data-driven fault detection and 

diagnosis techniques perform absolutely superior to other methods (Venkatasubramanian, 

Rengaswamy, Yin, & Kavuri, A Review of Process Fault Detection and Diagnosis Part III: Process 

History Based Methods, 2003). Thus it should be concluded that some of these methods can 

complement one another to give birth to better process monitoring systems. Integrating these 

different methods such as Principal Component Analysis (PCA), Fisher Discriminant Analysis 

(FDA), and Self-Organizing Maps (SOM) into a single overall process monitoring system by 

designing a multi-agent system architecture in order to develop a more capable process monitoring 

system became the motivation for this thesis. A multi-agent system architecture is designed in this 

research project in order to accomplish this goal in an efficient and user-friendly manner. 

Furthermore, integrating these complementary features in a way to develop hybrid methods can 

overcome the limitation of individual solution strategies of each method. 

 

 

2.4. CONCLUSIONS 

 

This Chapter of the thesis started with presenting a brief introduction to process monitoring, and 

fault detection and diagnosis as well as a discussion of process faults and overview of process 
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monitoring strategies. In addition, an introduction to model-based process monitoring methods and 

an introduction to data-driven process monitoring methods are provided together with an overview 

of the methods. To sum up, both data model-based and data-driven process monitoring techniques 

have their advantages and disadvantages for specific applications and it should be concluded that 

no single approach is best for all applications. Chiang et al. suggests that usually the best process 

monitoring scheme employs multiple statistics or methods for fault detection, identification, and 

diagnosis (Chiang, Russell, & Braatz, 2001). Incorporating several techniques for process 

monitoring is beneficial in many applications. Thus, this was an important motivation for 

designing an overall process monitoring framework that has the options for using PCA, FDA and 

SOM for fault detection and diagnosis. The details of the designed architecture will be explained 

in Section 4.2. 
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3. STATISTICAL PROCESS MONITORING METHODS 
 
 
 

As discussed above, model-based process monitoring methods assume the quantitative model as a 

known priori. On the other hand, multivariate statistical process monitoring methods such as 

Principal Component Analysis (PCA), Fisher Discriminant Analysis (FDA), and Self-Organizing 

Maps (SOM) are only dependent on large amounts of historical data for detection and diagnosis 

of abnormal process behaviors. Statistical process monitoring methods are especially popular in 

large-scale industrial applications; because they are easy to design and simple to operate (Chiang, 

Russell, & Braatz, 2001). The common goal in PCA, FDA, and SOM is to present the desired 

process behavior to the plant operator or engineer in an efficient manner; without directly 

representing all the raw data produced by the system. This is done with the help of different 

statistical tools to carry out feature extraction, discriminant calculation and maximum selection 

procedures explained in Section 3.2. It should be obvious that multivariate methods are far more 

superior against univariate methods, which only monitor the magnitude and variation of single 

variable. Use of multivariate statistical process monitoring methods increase the reliability and 

robustness of the process monitoring system against plant-wide disturbances. 

 

The remainder of this Section is organized in five parts. Section 3.1 describes multivariate statistics 

including an introduction about data pretreatment. The developmental procedure from univariate 

statistical monitoring to T2 statistic is also presented in this Section. Section 3.2 describes pattern 

classification and its use in process monitoring strategies. Section 3.3 presents Principal 

Component Analysis (PCA) in detail, together with the use of PCA in fault detection and diagnosis. 

Section 3.4 presents Fisher Discriminant Analysis (FDA) in detail, together with how FDA is used 
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in fault detection and diagnosis. Finally, Section 3.5 presents Self-Organizing Maps (SOM) in 

detail, together with the use of SOM in fault detection and diagnosis. 

 

 

3.1. MULTIVARIATE STATISTICS 

 

Data-driven process monitoring methods can be effective when characterization of the process 

data variations are done successfully. Ogunnaike and Ray states that there are two types of 

variations for process data: common cause and special cause (Ogunnaike & Ray, 1994). The 

common cause variations are variations entirely due to random noise, such as noise associated with 

sensor readings. Special cause variations account for all the variations which are not attributed to 

common cause variations. Most special cause variations may be removed by standard process 

control strategies; however common cause variations generally cannot be removed just using 

standard process control strategies. The main reason is that common cause variations are inherent 

to process data and since variations in the process data are inevitable, multivariate statistics are 

used in most process monitoring schemes (Chiang, Russell, & Braatz, 2001).  

 

The main assumption for using statistical theory for process monitoring is the realization is normal 

operation. That is, the characteristics of the data variations are relative unchanged unless a fault 

occurs in the system. This fault free data set is called the normal operating region. This assumptions 

is already backed up with various definitions of faults in industrial systems provided in the Section 

2.1; namely fault being an abnormal process condition. This assumption leads to the realization 

that the properties of data variations, such as the mean and the variance of the data, are repeatable 

for same operating conditions, although the actual values of data may not be very predictable 
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(Chiang, Russell, & Braatz, 2001). This feature of repeatability of the statistical properties is 

crucial for statistical process monitoring; since it allows thresholds for certain measures. By doing 

this, out-of-control status can be defined effectively and more importantly automatically. Making 

use of this feature is an important step in automating a data-driven process monitoring scheme.  

 

 

3.1.1. DATA PRETREATMENT 
 
 

Data pretreatment is often necessary for the data in the training set in order to extract the 

information in the data relevant to process monitoring efficiently (Chiang, Russell, & Braatz, 

2001). The training set consists of the available off-line data for analysis before the process 

monitoring scheme is implemented on-line. This data is used to develop measures representing the 

in-control operations (normal operating region) together with different faults. This off-line data set 

is generally referred as unclean before data pretreatment. The pretreatment procedure to generate 

clean data generally consists of three tasks: removing variables, auto-scaling and removing 

outliers.  

 

Removing variable refers to the variables that have no information relevant to process monitoring. 

An example for such a variable can be one which is known to exhibit extremely large measurement 

errors; as in the case of a poorly calibrated sensor. These type of variables should be removed 

before further analysis, since they can effect process monitoring measures negatively. Another 

case can be that some of the variables may be physically separate from the portion of the process 

which is being monitored. These type of in appropriate variables should be removed before further 

analysis in order to improve the proficiency of the process monitoring method. 
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alert a fault alarm when both T2-statistic and Q-statistic alert for a fault, which can be seen in 

Figure 5.10. As can be seen from Figure 5.10, although the T2-statistic has considerably more 

faulty points beyond the threshold, the Q-statistic behaves more conservatively resulting in a lower 

overall fault detection rate. Furthermore, both FDA and SOM are very successful in detecting Fault 

11. 

 

Figure 5.10: T2-statistic chart (a), and Q-statistic chart (b) for Fault 11 test run. 

 

Fault diagnosis result are very low for PCA for Fault 11 as can be seen from Table 5.5, for which 

some portion is caused by the low fault detection rate. In addition, a significant amount, 50.73 %, 

of the points are classified as Fault 13 by PCA. Furthermore FDA misclassifies 13.10 % of points 

for Fault 13, 10.81 % of points for Fault 8, and 4.99 % of points for Fault 4, while classifying 

70.79 % of points correctly as Fault 11. The high confusion rate can be understood by analyzing 

the FDA plot for Fault 11 provided in Figure 5.11: 
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Figure 5.11: Data Projected into component planes for Fault 11 test run for: (a) the whole region; 

(b) zoomed towards NOR and faulty points. 

 

 

As can be seen from Figure 5.11, Fault 11 expands the Normal Operating Region (NOR) in a 

specific direction with a close intersection with the NOR and other close-by faulty points. This 

causes the high confusion rate in PCA and FDA. SOM also misclassifies an insignificant 1.87 % 

of the points for Fault 14. Even though Fault 4 and Fault 11 affect the same process variable, fault 

detection and diagnosis rates differ. This is mostly the situation for PCA, however FDA also differs 

for fault diagnosis rates. SOM detects and classifies Fault 4 and Fault 11 very closely; however 

the faults misclassified also differ for the SOM case. This adds to the discussion that no single 

method works best for all fault scenarios; results can even change when the same process variable 

is affected by different faults. 

 

Fault 13 is a slow drift in the kinetics of the reaction taking place in the reactor as can be seen 

from Table 5.3. Fault 13 requires many adjustments by the control system to accommodate for the 

changing composition of the reactor output. As can be seen from Table 5.4, fault detection rate for 

Fault 8 is very close to unity for PCA, FDA and SOM, which suggests successful fault detection 

using all three different methods. The FDA chart for Fault 8 can be seen in detail in Figure 5.12. 
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As can be seen from Figure 5.12, Fault 13 expands the Normal Operating Region (NOR) while 

still intersecting with the NOR. As mentioned above, Fault 13 is the most common fault to be 

confused with other faults. Faults 2, 4, 8, 11, and 14 is misclassified by PCA to an extent as being 

Fault 13; simply because of being in very close proximity of the NOR. FDA misclassified some 

points belonging to the test data for Faults 8 and 11, and SOM misclassified some points belonging 

to the test data for Fault 8 as Fault 13. 

 

 

 

Figure 5.12: Data Projected into component planes: a) green training data b) red Fault 13 test 

run. 

 

 

Fault diagnosis results for Fault 13 using PCA is very close to unity as can be seen from Table 5.5, 

which resembles successful fault diagnosis. This also explains how Faults 2, 4, 8, 11, and 14 can 

be misclassified as Fault 13; simply because PCA seems to classify a broad range of points close 

to the NOR as Fault 13. FDA is unsuccessful in classifying Fault 13 with a misclassification rate 
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of 54.68 % of the test points as Fault 8, and 4.78 % of the test points as Fault 11. SOM is again 

successful in diagnosing Fault 13 with only a small misclassification rate of 3.33 % for Fault 8. 

 

Fault 14 is a sticky valve in the reactor cooling water as can be seen from Table 5.3. Its effect on 

the rest of the process is similar to the earlier random variation faults where it creates variations 

that would not be observed under normal operation. As can be seen from Table 5.4, fault detection 

rate for Fault 14 is very high for FDA and SOM, but very low for PCA. The low fault detection 

behavior is mainly caused again by the choice to alert a fault alarm when both T2-statistic and Q-

statistic alert for a fault, which can be seen in Figure 5.13. As can be seen from Figure 5.13, 

although the Q-statistic has considerably more faulty points beyond the threshold, the T2-statistic 

behaves more conservatively resulting in a lower overall fault detection rate. This is the opposite 

case for Fault 11, where the T2-statistic alerted more faults then the Q-statistic. Furthermore, both 

FDA and SOM produce very successful results in detecting Fault 11. 

 

 

Figure 5.13: T2-statistic chart (a), and Q-statistic chart (b) for Fault 14 test run. 
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Fault diagnosis result are very low for PCA for Fault 14 as can be seen from Table 5.5, for which 

a significant portion is caused by the low fault detection rate. In addition, a significant amount, 

17.98 %, of the points are classified as Fault 13 by PCA, and 9.04 % of the points are classified as 

Fault 11. Furthermore, FDA is also very unsuccessful in diagnosing Fault 14 with a fault diagnosis 

rate of 1.46 %. In addition, FDA misclassifies 58.00 % of points for Fault 8, 32.85 % of points for 

Fault 11, and 6.24 % of points for Fault 13. The high confusion rate can again be understood by 

analyzing the FDA plot for Fault 14 provided in Figure 5.14. As can be seen from Figure 5.14, 

Fault 14 expands the Normal Operating Region (NOR) slightly while intersecting with the NOR 

considerably. Visually it is really challenging to differentiate the Fault 14 class without zooming 

further into the NOR in the plot. Finally SOM has a fault diagnosis rate very close to unity for 

Fault 14, which resembles successful diagnosis. 

 

 

Figure 5.14: Data Projected into component planes for Fault 14 test run for: (a) the whole region; 

(b) zoomed towards NOR and faulty points. 
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5.3. CONCLUSIONS 

 

In this Chapter of the thesis, we have started by giving a description of the Tennessee Eastman 

Process application. The designed multi-agent system for process monitoring and supervision is 

tested on the application and using various different fault scenarios. The results of the runs are 

presented also in this section and the results are discussed in many aspects. The results in general 

confirmed the expected case for no single process monitoring method being absolutely superior to 

another in all possible given conditions. Certain methods proved to work better in fault detection 

and diagnosis compared to other methods for a given process and a given fault related to that 

process. For the Tennessee Eastman application test case and for the set of faults considered in this 

research project, namely Fault 1, 2, 4, 8, 11, 13, and 14, the dominant method in terms of successful 

fault detection rates turned out to be Fisher Discriminant Analysis (FDA). In addition to that, 

comparing the methods used in terms of fault diagnosis reveals that the most successful technique 

as Self-Organizing Maps (SOM). 

 

.  
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6. CONCLUSIONS & RECOMMENDATIONS 
 

 

The advancements in computational technology leads to innovations and improvements in 

countless different fields. Control systems and instrumentation has benefited from these 

improvements considerably and continue to improve everyday by increasing the computational 

ability of processors to enhance process control, optimization, and process monitoring. In the field 

of process monitoring, on top of the information provided by the relatively well established model 

based process monitoring techniques, extensive amount of process data from all over the plant can 

be made use of more efficiently nowadays. In order to make use of this extensive data, data-driven 

process monitoring techniques can be exploited to get the most information from the data available 

about the system of interest. Therefore, the objective of this research was to layout the basis for 

designing and implementing a multi-agent system for process monitoring and supervision, which 

solely used process data. The architecture implemented various different techniques developed in 

history in order to make them useful in an overall process monitoring framework. The process 

monitoring system developed in this research project has three different functionalities ready for 

use for any process monitoring application; provided that the data sets for normal operating region 

and faults are available. The three different methods used for fault detection and diagnosis in the 

process monitoring system are Principal Component Analysis (PCA), Fisher Discriminant 

Analysis (FDA), and Self-Organizing Maps (SOM).  

 

The process monitoring system designed in this research project is successfully tested with the 

Tennessee Eastman Process application explained in detail in Section 5.1. Fault detection rates and 

fault diagnosis rates are compared amongst PCA, FDA, and SOM for different faults using the 
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results produced by the process monitoring system. The comparison was done considering the fact 

that no single process monitoring method is absolutely superior to another in all possible given 

conditions. Certain methods work better in fault detection compared to other methods for a given 

process and a given fault related to that process. In addition to that, some other methods might 

work better in fault diagnosis for a given process and a given fault related to that process. This was 

also the case observed in this research project with some exceptions. For the set of faults 

considered in this research project, namely Fault 1, 2, 4, 8, 11, 13, and 14, the dominant method 

in terms of successful fault detection rates turned out to be Fisher Discriminant Analysis (FDA) as 

can be seen from Section 5.2. Self-Organizing Maps (SOM) also performed very close to FDA in 

terms of successful fault detection rates with a slight decline in performance. Principal Component 

Analysis performed relatively worse than FDA and SOM in detecting faults, especially for Faults 

4, 11, and 14. Since Faults 11, 13, and 14 are dynamic faults, less successful results for both fault 

detection and fault diagnosis were expected in certain methods. Comparing the methods used in 

terms of fault diagnosis reveals that the most successful technique as Self-Organizing Maps (SOM) 

in all of the faults except Fault 8. Fault 8 is the only fault FDA was able to outperform SOM in 

fault diagnosis. SOM being the most successful fault diagnosing method is somewhat expected in 

the set of faults selected for this research project; since there are many dynamic faults in the data 

set. The main reason for this success is the aforementioned non-linear nature of Self-Organizing 

Maps (SOM). Furthermore, as can be seen from Section 5.2, dynamic faults came out to be 

problematic to diagnose successfully for FDA, whereas FDA always outperformed PCA except 

Fault 13. PCA was not very successful in overall fault diagnosis compared to FDA and SOM 

except for Fault 13. Fault 13 is very successfully diagnosed by PCA, even better than both FDA 
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and SOM. All these results confirm the fact that certain methods work better in fault detection and 

diagnosis compared to other methods for a given process and a given fault related to that process. 

 

This research project sets up the foundation for a very promising generic process monitoring 

system designed using multi-agent systems. The selection of multi-agent based programming 

enables easy modifications in every aspect of system from communication of agents to 

responsibilities and functionalities of each agent. Furthermore, the use of MATLAB scripts in 

executing various functionalities enables the easy add-on function for any new functionality 

planned to be incorporated into the system. Using these advantages for easy add-ons for the process 

monitoring system, new functionalities can be always added on top of the methods currently in 

use. Some new methods to consider for enhancing the functionality of the fault detection and 

diagnosis aspects can be: Partial Least Squares (PLS), Independent Component Analysis (ICA), 

Artificial Neural Networks (ANN), and different hybrid methods. In addition, it is also possible to 

evolve the current process monitoring system into an intelligent system. This can be done by 

implementing an adaptability function to the system by making the system choose which 

functionality is performing best for the current mode of operation on the current system. This 

adaptability function can be based on historical data gathered by the process monitoring system 

judging the performance of the system in terms of correct fault detection rates and fault diagnosis 

rates. Using this data stored in the system, the system will know which method works better for a 

certain fault after consulting the plant operator or engineer. Using this adaptability function 

properly, the drawback for no ultimate superior functionality for every fault and every process can 

be overcome in a degree. Thus the overall strength and automation of the process monitoring 

system will be increased drastically.  
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APPENDIX: AGENT JAVA CODES 
 
 

A.1. OPERATOR AGENT 
 

package Onur; 

import jade.core.Agent; 

import jade.core.AID; 

import jade.core.behaviours.*; 

import jade.lang.acl.ACLMessage; 

import jade.lang.acl.MessageTemplate; 

@SuppressWarnings("serial") 

 

public class OperatorAgent extends Agent { 

 

private OperatorGUI myGui; // The GUI 

public final static String HistoricalDT = "HistoricalDT"; 

public final static String HistoricalDT1 = "HistoricalDT1"; 

public final static String HistoricalDT2 = "HistoricalDT2"; 

public final static String OnlineDM = "OnlineDM"; 

public final static String OnlineDM1 = "OnlineDM1"; 

public final static String OnlineDM2 = "OnlineDM2"; 

public final static String OnlineDG = "OnlineDG"; 

public final static String FaultDetected = "FaultDetected"; 

public final static String NewCluster = "NewCluster"; 

  

protected void setup()  

    {  

 // Set up the GUI 

 myGui = new OperatorGUI(); 

 myGui.setAgent(this); 

 myGui.setVisible(true);        

      System.out.println("LSU PSE Agent Research Project. "); 

      System.out.println("Agent "+ "[" + getLocalName() + "]" + " has been initiated...\n");  
  

      addBehaviour(new ReceiveStatusOfModules());           

    } 

   

OnlineDataManipulation odm = new OnlineDataManipulation(this,3000); 

OnlineDataGeneration odg = new OnlineDataGeneration(this,3000); 

OnlineDataManipulation1 odm1 = new OnlineDataManipulation1(this,3000); 
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OnlineDataManipulation2 odm2 = new OnlineDataManipulation2(this,3000); 

 

public void behaSend1() { 

 addBehaviour( new HistoricalDataTraining() ); 

  } 

public void behaSend2() { 

 addBehaviour( odm ); 

  } 

public void behaSend3() { 

 removeBehaviour( odm ); 

  } 

public void behaSend4() { 

 addBehaviour( odg ); 

  } 

public void behaSend5() { 

 removeBehaviour( odg ); 

  } 

public void behaSend6() { 

 addBehaviour( new HistoricalDataTraining1() ); 

  } 

public void behaSend7() { 

 addBehaviour( odm1 ); 

  } 

public void behaSend8() { 

 removeBehaviour( odm1 ); 

  } 

public void behaSend9() { 

 addBehaviour( new HistoricalDataTraining2() ); 

  } 

public void behaSend10() { 

 addBehaviour( odm2 ); 

  } 

public void behaSend11() { 

 removeBehaviour( odm2 ); 

  } 

  

public class HistoricalDataTraining extends OneShotBehaviour {   

 public void action() { 

  ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

   msg.addReceiver(new AID("PreprocessingAgent", AID.ISLOCALNAME)); 

   msg.setContent(HistoricalDT); 
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  ACLMessage msg1 = myAgent.receive(tpl); 

  ACLMessage msg2 = myAgent.receive(tp2); 

 

  if( msg1 != null ) { 

  System.out.println( "\n[" + getLocalName() + "]" 

  + " received a message from [Fault Diagnosis Agent]"); 

  System.out.println("An new Cluster has been detected"); 

   } else {block();}      

    

  if( msg2 != null ) { 

  String msgsender = msg2.getSender().getName(); 

  System.out.println( "\n[" + getLocalName() + "]" 

  + " received a message from [Fault Detection Agent]");    
   

  System.out.println("An ONLINE FAULT has been detected"); 

  removeBehaviour( odm ); 

System.out.println("Online Data Manipulation has been STOPPED."); 

removeBehaviour( odg ); 

  System.out.println("Online Data Generation has been STOPPED."); 

   } else {block();}   

  }  

}  

} 

 

 

 

A.2. DATA PREPROCESSING AGENT 
 

package OMatlab; 

import jade.core.Agent; 

import jade.core.AID; 

import jade.core.behaviours.*; 

import jade.lang.acl.ACLMessage; 

import jade.lang.acl.MessageTemplate; 

import matlabcontrol.MatlabConnectionException; 

import matlabcontrol.MatlabInvocationException; 

import OMatlab.MatlabConnectVariable;  

@SuppressWarnings("serial") 

public class PreprocessingAgent extends Agent { 

 public final static String NEWDATA = "NEWDATA"; 

 public final static String HistoricalDT = "HistoricalDT"; 
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public class onlineCheck extends OneShotBehaviour{ 

 public void action() {    

   try { 

   OnurMConnect.MConnect4(); 

   double result = OnurMConnect.result4; 

    ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

  AID.ISLOCALNAME)); 

     msg.setContent(OnlineDM); 

    

   if (result == 1.0){ 

System.out.println("Existing outliers removed from online data");  

    myAgent.send(msg); 

     System.out.println("Message sent to Fault Detection Agent." ); 

   } 

   else if (result == -1.0){ 

    System.out.println("No new data added");  

   } 

   else { 

System.out.println("No outliers detected in the online data"); 

   myAgent.send(msg); 

   System.out.println("Message sent to Fault Detection Agent." ); 

   }  

  } catch (MatlabConnectionException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } catch (MatlabInvocationException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace();} 

   } 

    

  } 

  

public class onlineCheck1 extends OneShotBehaviour {   

 public void action() { 

   OnurMConnect.MConnect1(); 

  System.out.println("No outliers detected in the online data"); 

    ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

   msg.addReceiver(new AID("FaultDetectionAgent", AID.ISLOCALNAME)); 

     msg.setContent(OnlineDM1); 

     myAgent.send(msg); 

   }} 
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public class onlineCheck2 extends OneShotBehaviour { 

 public void action() { 

   OnurMConnect.MConnect1(); 

  System.out.println("No outliers detected in the online data"); 

    ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

   msg.addReceiver(new AID("FaultDetectionAgent", AID.ISLOCALNAME)); 

     msg.setContent(OnlineDM2); 

     myAgent.send(msg); 

   }} 

   

public class ReceiveStatusOfModules extends CyclicBehaviour { 

 public void action() { 

   MessageTemplate tpl = MessageTemplate.and( 

   MessageTemplate.MatchContent(HistoricalDT), 

  MessageTemplate.MatchSender( new AID("OperatorAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp2 = MessageTemplate.and( 

   MessageTemplate.MatchContent(OnlineDM), 

  MessageTemplate.MatchSender( new AID("OperatorAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp3 = MessageTemplate.and( 

   MessageTemplate.MatchContent(OnlineDG), 

  MessageTemplate.MatchSender( new AID("OperatorAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp4 = MessageTemplate.and( 

   MessageTemplate.MatchContent(HistoricalDT1), 

  MessageTemplate.MatchSender( new AID("OperatorAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp5 = MessageTemplate.and( 

   MessageTemplate.MatchContent(OnlineDM1), 

  MessageTemplate.MatchSender( new AID("OperatorAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp6 = MessageTemplate.and( 

   MessageTemplate.MatchContent(HistoricalDT2), 

  MessageTemplate.MatchSender( new AID("OperatorAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp7 = MessageTemplate.and( 

   MessageTemplate.MatchContent(OnlineDM2), 

  MessageTemplate.MatchSender( new AID("OperatorAgent",AID.ISLOCALNAME) )); 

  

 ACLMessage msg1 = myAgent.receive(tpl); 

 ACLMessage msg2 = myAgent.receive(tp2); 

 ACLMessage msg3 = myAgent.receive(tp3); 

 ACLMessage msg4 = myAgent.receive(tp4); 

 ACLMessage msg5 = myAgent.receive(tp5); 

 ACLMessage msg6 = myAgent.receive(tp6); 

 ACLMessage msg7 = myAgent.receive(tp7);   
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 if( msg1 != null ) { 

    System.out.println( "\n[" + getLocalName() + "]" 

+ " received a message from [Operator Agent]"); 

System.out.println("P.C.A. Data Training is being started up..."); 

    addBehaviour(new historicalCheck()); 

   } else {block();}      

    

 if( msg2 != null ) { 

   String msgsender = msg2.getSender().getName(); 

   System.out.println( "\n[" + getLocalName() + "]" 

   + " received a message from [Operator Agent]"); 

  System.out.println("Online Data Manipulation is being started up..."); 

   addBehaviour(new onlineCheck()); 

   } else {block();} 

    

 if( msg3 != null ) { 

   String msgsender = msg3.getSender().getName(); 

   System.out.println( "\n[" + getLocalName() + "]" 

   + " received a message from [Operator Agent]"); 

 System.out.println("Online Data Generation is being started up...");   
   

   addBehaviour(new OnlineDataGenerator());  

    } else {block();} 

    

 if( msg4 != null ) { 

    addBehaviour(new historicalCheck1());  

    } else {block();} 

    

 if( msg5 != null ) {     

    addBehaviour(new onlineCheck1());  

    } else {block();} 

    

 if( msg6 != null ) { 

    addBehaviour(new historicalCheck2());  

   } else {block();} 

   

 if( msg7 != null ) {     

    addBehaviour(new onlineCheck2());  

   } else {block();}  

  } 

 } 
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public class MessageSender extends OneShotBehaviour { 

  public void action() { 

   ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

    msg.addReceiver(new AID("WhateverAgent", AID.ISLOCALNAME)); 

    msg.setContent(NEWDATA); 

    myAgent.send(msg); 

    System.out.println("Message sent to Whatever Agent." ); 

  }}  

} 

 

 

 

A.3. FAULT DETECTION AGENT 
 

package OMatlab; 

import java.util.Arrays; 

import jade.core.Agent; 

import jade.core.AID; 

import jade.core.behaviours.*; 

import jade.lang.acl.ACLMessage; 

import jade.lang.acl.MessageTemplate; 

import matlabcontrol.MatlabConnectionException; 

import matlabcontrol.MatlabInvocationException; 

import OMatlab.MatlabConnectVariable; 

import OMatlab.PreprocessingAgent.historicalCheck1; 

import OMatlab.PreprocessingAgent.onlineCheck1; 

@SuppressWarnings({ "serial", "unused" }) 

 

public class FaultDetectionAgent extends Agent {  

 public final static String NEWDATA = "NEWDATA"; 

 public final static String HistoricalDT = "HistoricalDT";  

 public final static String HistoricalDT1 = "HistoricalDT1"; 

 public final static String HistoricalDT2 = "HistoricalDT2"; 

 public final static String OnlineDM = "OnlineDM"; 

 public final static String OnlineDM1 = "OnlineDM1"; 

 public final static String OnlineDM2 = "OnlineDM2"; 

 public final static String NewCluster = "NewCluster"; 

 public final static String FaultDetected = "FaultDetected"; 

private MatlabConnectVariable OnurMConnect = new MatlabConnectVariable(); 

 private double[][] array1; 
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 protected void setup()  

     {  

         System.out.println("LSU PSE Agent Research Project. "); 

   System.out.println("Agent "+ "[" + getLocalName() + "]" + " has been initiated...\n");  
   

         addBehaviour(new ReceiveStatusOfModules());   

     } 

 

 public class historicalCheck extends OneShotBehaviour { 

   public void action() { 

    try { 

     OnurMConnect.MConnect9();  

     OnurMConnect.MConnect2(); 

     double result = OnurMConnect.result2; 

     

     if (result == 1.0){ 

System.out.println("P.C.A. Model has been trained using Historical Data."); 

System.out.println("-----------------------------------------------------You can start Online 
Process Monitoring.---------------------------------------------------");  

     } 

     else { System.out.println("PCA Model training has 
failed");}            

    } catch (MatlabConnectionException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace(); 

    } catch (MatlabInvocationException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace();} 

   }} 

  

 public class historicalCheck1 extends OneShotBehaviour { 

   public void action() { 

    try { 

     OnurMConnect.MConnect11();    

    System.out.println("F.D.A. Model has been trained using Historical 
Data."); 

System.out.println("-----------------------------------------------------You can start Online 
Process Monitoring.----------------------------------------------------");    
            

    } catch (MatlabConnectionException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace(); 

    } catch (MatlabInvocationException e) { 

     // TODO Auto-generated catch block 
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     e.printStackTrace();} 

   }} 

  

 public class historicalCheck2 extends OneShotBehaviour { 

   public void action() { 

    try { 

     OnurMConnect.MConnect13();    

     System.out.println("S.O.M. Model has been trained using 
Historical Data."); 

System.out.println("-----------------------------------------------------You can start Online 
Process Monitoring.----------------------------------------------------");    
             

    } catch (MatlabConnectionException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace(); 

    } catch (MatlabInvocationException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace();} 

   }} 

  

 public class onlineCheck extends OneShotBehaviour{ 

  public void action() {    

   try { 

   OnurMConnect.MConnect5(); 

   double result = OnurMConnect.result5; 

   OnurMConnect.MConnect7(); 

   OnurMConnect.MConnect8(); 

    

   ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

   msg.addReceiver(new AID("OperatorAgent", AID.ISLOCALNAME)); 

msg.addReceiver(new AID("FaultDiagnosisAgent", AID.ISLOCALNAME)); 

     msg.setContent(FaultDetected); 

    

   if (result == 1.0){ 

System.out.println("WARNING: ONLINE FAULT DETECTED!"); 

System.out.println("!TURNED OFF! Contribution Plot."); 

         System.out.println("Creating the Contribution Plot.");  

    OnurMConnect.MConnect6(); 

    myAgent.send(msg); 

   } 

 

else {System.out.println("No fault detected in the online data");} 
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  } catch (MatlabConnectionException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } catch (MatlabInvocationException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace();} 

   }  

  } 

  

 public class onlineCheck1 extends OneShotBehaviour { 

   public void action() { 

   OnurMConnect.MConnect1(); 

    ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

 msg.addReceiver(new AID("FaultDiagnosisAgent", AID.ISLOCALNAME)); 

     msg.setContent(OnlineDM1); 

     myAgent.send(msg); 

   }} 

    

 public class onlineCheck2 extends OneShotBehaviour { 

   public void action() { 

   OnurMConnect.MConnect1(); 

    ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

 msg.addReceiver(new AID("FaultDiagnosisAgent", AID.ISLOCALNAME)); 

     msg.setContent(OnlineDM2); 

     myAgent.send(msg); 

   }} 

  

 public class ReceiveStatusOfModules extends CyclicBehaviour { 

  public void action() { 

   MessageTemplate tpl = MessageTemplate.and( 

   MessageTemplate.MatchContent(HistoricalDT), 

 MessageTemplate.MatchSender( new AID("PreprocessingAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp2 = MessageTemplate.and( 

   MessageTemplate.MatchContent(OnlineDM), 

 MessageTemplate.MatchSender( new AID("PreprocessingAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp3 = MessageTemplate.and( 

   MessageTemplate.MatchContent(HistoricalDT1), 

 MessageTemplate.MatchSender( new AID("PreprocessingAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp4 = MessageTemplate.and( 

   MessageTemplate.MatchContent(OnlineDM1), 

 MessageTemplate.MatchSender( new AID("PreprocessingAgent",AID.ISLOCALNAME) )); 
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   MessageTemplate tp5 = MessageTemplate.and( 

   MessageTemplate.MatchContent(HistoricalDT2), 

 MessageTemplate.MatchSender( new AID("PreprocessingAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp6 = MessageTemplate.and( 

   MessageTemplate.MatchContent(OnlineDM2), 

 MessageTemplate.MatchSender( new AID("PreprocessingAgent",AID.ISLOCALNAME) )); 

  

   ACLMessage msg1 = myAgent.receive(tpl); 

   ACLMessage msg2 = myAgent.receive(tp2); 

   ACLMessage msg3 = myAgent.receive(tp3); 

   ACLMessage msg4 = myAgent.receive(tp4); 

   ACLMessage msg5 = myAgent.receive(tp5); 

   ACLMessage msg6 = myAgent.receive(tp6); 

    

   if( msg1 != null ) { 

   String msgsender = msg1.getSender().getName(); 

    System.out.println( "\n[" + getLocalName() + "]" 

+ " received a message from " + msgsender); 

System.out.println("PCA Model Training is being started up."); 

    addBehaviour(new historicalCheck()); 

   } else {block();}      

    

   if( msg2 != null ) { 

   String msgsender = msg2.getSender().getName(); 

    addBehaviour(new onlineCheck()); 

   } else {block();} 

    

   if( msg3 != null ) {   

    addBehaviour(new historicalCheck1());  

   } else {block();} 

   

   if( msg4 != null ) {     

    addBehaviour(new onlineCheck1());  

   } else {block();} 

    

   if( msg5 != null ) {   

    addBehaviour(new historicalCheck2());  

   } else {block();} 

   

   if( msg6 != null ) {     

    addBehaviour(new onlineCheck2());  
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   } else {block();}    

  } 

 } 

} 

 

 

 

A.4. FAULT DIAGNOSIS AGENT 
 

package OMatlab; 

import java.util.Arrays; 

import jade.core.Agent; 

import jade.core.AID; 

import jade.core.behaviours.*; 

import jade.lang.acl.ACLMessage; 

import jade.lang.acl.MessageTemplate; 

import matlabcontrol.MatlabConnectionException; 

import matlabcontrol.MatlabInvocationException; 

import OMatlab.MatlabConnectVariable; 

@SuppressWarnings({ "serial", "unused" }) 

 

public class FaultDiagnosisAgent extends Agent { 

 public final static String NEWDATA = "NEWDATA"; 

 public final static String HistoricalDT = "HistoricalDT";  

 public final static String OnlineDM = "OnlineDM"; 

 public final static String OnlineDM1 = "OnlineDM1"; 

 public final static String OnlineDM2 = "OnlineDM2"; 

 public final static String NewCluster = "NewCluster"; 

 public final static String FaultDetected = "FaultDetected"; 

 private MatlabConnectVariable OnurMConnect = new MatlabConnectVariable(); 

 private double[][] array1; 

  

 protected void setup()  

     {  

         System.out.println("LSU PSE Agent Research Project. "); 

         System.out.println("Agent "+ "[" + getLocalName() + "]" + " has been initiated...\n");    

         addBehaviour(new ReceiveStatusOfModules());                

     } 

  

 public class onlineCheck extends OneShotBehaviour{ 

  public void action() {    
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   try { 

    OnurMConnect.MConnect10(); 

    double result = OnurMConnect.result10;  

    System.out.println("The classification result is: FAULT # " + 
result); 

    

  } catch (MatlabConnectionException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } catch (MatlabInvocationException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace();} 

   }  

  } 

   

 public class onlineCheck1 extends OneShotBehaviour { 

   public void action() { 

    try { 

     OnurMConnect.MConnect12(); 

     double result = OnurMConnect.result12; 

     System.out.println("GUESSED CLASS: " + result);  
  

    } catch (MatlabConnectionException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace(); 

    } catch (MatlabInvocationException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace();} 

   }} 

  

 public class onlineCheck2 extends OneShotBehaviour { 

   public void action() { 

    try { 

     OnurMConnect.MConnect14(); 

     double result = OnurMConnect.result14; 

     if (result == 1.0){ 

      System.out.println("WARNING: ONLINE FAULT 
DETECTED!"); 

      double result1 = OnurMConnect.result141; 

     System.out.println("GUESSED CLASS: " + result1); 

     } 

     else {System.out.println("No fault detected in the online 
data");}         



 

139 

 

    } catch (MatlabConnectionException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace(); 

    } catch (MatlabInvocationException e) { 

     // TODO Auto-generated catch block 

     e.printStackTrace();} 

   }} 

  

 public class ReceiveStatusOfModules extends CyclicBehaviour { 

  public void action() { 

   MessageTemplate tp1 = MessageTemplate.and( 

     MessageTemplate.MatchContent(FaultDetected), 

     MessageTemplate.MatchSender( new 
AID("FaultDetectionAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp2 = MessageTemplate.and( 

     MessageTemplate.MatchContent(OnlineDM1), 

     MessageTemplate.MatchSender( new 
AID("FaultDetectionAgent",AID.ISLOCALNAME) )); 

   MessageTemplate tp3 = MessageTemplate.and( 

     MessageTemplate.MatchContent(OnlineDM2), 

     MessageTemplate.MatchSender( new 
AID("FaultDetectionAgent",AID.ISLOCALNAME) )); 

  

   ACLMessage msg1 = myAgent.receive(tp1); 

   ACLMessage msg2 = myAgent.receive(tp2); 

   ACLMessage msg3 = myAgent.receive(tp3); 

    

   if( msg1 != null ) { 

   String msgsender = msg1.getSender().getName(); 

    addBehaviour(new onlineCheck()); 

   } else {block();} 

   

   if( msg2 != null ) { 

   String msgsender = msg2.getSender().getName(); 

    addBehaviour(new onlineCheck1()); 

   } else {block();} 

    

   if( msg3 != null ) { 

   String msgsender = msg3.getSender().getName(); 

    addBehaviour(new onlineCheck2()); 

   } else {block();} 
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  } 

 } 

  

  public class MessageSender extends OneShotBehaviour { 

  public void action() { 

   ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

    msg.addReceiver(new AID("OutlierAgent", AID.ISLOCALNAME)); 

    msg.setContent(NEWDATA); 

    myAgent.send(msg); 

    System.out.println("Message sent to WhicheverAgent." ); 

  }} 

} 

 

 

A.5. OPERATOR AGENT USER INTERFACE  
 

package Onur; 

 

import java.awt.BorderLayout; 

import java.awt.EventQueue; 

import java.io.IOException; 

import java.io.OutputStream; 

import java.io.PrintStream; 

import javax.swing.DefaultComboBoxModel; 

import javax.swing.JComboBox; 

import javax.swing.JFrame; 

import javax.swing.JPanel; 

import javax.swing.JTextArea; 

import javax.swing.SwingUtilities; 

import javax.swing.border.EmptyBorder; 

import javax.swing.JScrollPane; 

import javax.swing.JTextPane; 

import java.awt.SystemColor; 

import javax.swing.JButton; 

import java.awt.event.ActionListener; 

import java.awt.event.ActionEvent; 

import java.awt.event.ItemEvent; 

import java.awt.event.ItemListener; 

import javax.swing.JMenuBar; 

import javax.swing.JMenu; 

import javax.swing.JMenuItem; 



 

141 

 

import Onur.AboutDialog; 

import javax.swing.JPopupMenu; 

import java.awt.Component; 

import java.awt.event.MouseAdapter; 

import java.awt.event.MouseEvent; 

import javax.swing.JToggleButton; 

 

@SuppressWarnings({ "serial", "unused" }) 

public class OperatorGUI extends JFrame { 

 private JTextArea textArea = new JTextArea(); 

 private JPanel contentPane; 

 public String cluster;  

 private OperatorAgent myAgent; // Reference to the agent class 

 public void setAgent(OperatorAgent a) { 

 myAgent = a;  

 } 

   

private void updateTextArea(final String text) { 

 SwingUtilities.invokeLater(new Runnable() { 

 public void run() { 

 textArea.append(text); }}); 

 }      

  

private void redirectSystemStreams() { 

 OutputStream out = new OutputStream() { 

 @Override 

 public void write(int b) throws IOException { 

 updateTextArea(String.valueOf((char) b)); 

 } 

 @Override 

public void write(byte[] b, int off, int len) throws IOException { 

 updateTextArea(new String(b, off, len));}        

 @Override 

 public void write(byte[] b) throws IOException { 

 write(b, 0, b.length); } 

  };     

 System.setOut(new PrintStream(out, true)); 

 System.setErr(new PrintStream(out, true)); 

 }  

   

 /** Launch the application. **/ 
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 public static void main(String[] args) { 

  EventQueue.invokeLater(new Runnable() { 

   public void run() { 

    try { 

     OperatorGUI frame = new OperatorGUI(); 

     frame.setVisible(true); 

    } catch (Exception e) { 

     e.printStackTrace(); 

    } 

   } 

  }); 

 } 

 

 /** Create the frame. */ 

 public OperatorGUI() { 

  setTitle("Operator Agent GUI"); 

  setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  setBounds(100, 100, 645, 525); 

  JMenuBar menuBar = new JMenuBar(); 

  setJMenuBar(menuBar); 

  JMenu mnFile = new JMenu("File"); 

  menuBar.add(mnFile);  

  JMenuItem mntmItem = new JMenuItem("Item 1"); 

  mnFile.add(mntmItem); 

  JMenu mnAbout = new JMenu("About"); 

  menuBar.add(mnAbout); 

  JMenuItem mntmAboutThisGui = new JMenuItem("About this GUI"); 

  mntmAboutThisGui.addActionListener(new ActionListener() { 

   public void actionPerformed(ActionEvent e) { 

    AboutDialog ad = new AboutDialog(); 

    ad.setVisible(true); 

   } 

  }); 

  mnAbout.add(mntmAboutThisGui); 

  contentPane = new JPanel(); 

  contentPane.setBorder(new EmptyBorder(5, 5, 5, 5)); 

  setContentPane(contentPane); 

  contentPane.setLayout(null); 

   

  final JPopupMenu popupMenu = new JPopupMenu(); 

  addPopup(contentPane, popupMenu); 
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  JMenuItem mntmAbout = new JMenuItem("About"); 

  mntmAbout.addActionListener(new ActionListener() { 

   public void actionPerformed(ActionEvent e) { 

    AboutDialog ad = new AboutDialog(); 

    ad.setVisible(true); 

   } 

  }); 

  popupMenu.addMouseListener(new MouseAdapter() { 

   @Override 

   public void mouseReleased(MouseEvent e) { 

    if (e.getButton() == MouseEvent.BUTTON3) 

            { 

     popupMenu.show(e.getComponent(), e.getX(), e.getY()); 

            } 

   } 

  }); 

  popupMenu.add(mntmAbout); 

   

  JScrollPane scrollPane = new JScrollPane(); 

  scrollPane.setBounds(10, 28, 610, 307); 

  contentPane.add(scrollPane); 

  scrollPane.setViewportView(textArea); 

  textArea.setEditable(false); 

   

  JTextPane txtpnConsoleOutput = new JTextPane(); 

  txtpnConsoleOutput.setEditable(false); 

  txtpnConsoleOutput.setBackground(SystemColor.control); 

  txtpnConsoleOutput.setText("Console Output:"); 

  txtpnConsoleOutput.setBounds(0, 8, 99, 20); 

  contentPane.add(txtpnConsoleOutput); 

   

  JButton btnHistoricalDataTraining = new JButton("P.C.A. Data Training"); 

  btnHistoricalDataTraining.addActionListener(new ActionListener() { 

   public void actionPerformed(ActionEvent arg0) { 

    myAgent.behaSend1(); 

   } 

  }); 

  btnHistoricalDataTraining.setBounds(10, 346, 178, 28); 

  contentPane.add(btnHistoricalDataTraining); 
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  JToggleButton tglbtnNewToggleButton = new JToggleButton("P.C.A. Online Fault 
Detection"); 

  tglbtnNewToggleButton.addItemListener(new ItemListener() { 

      public void itemStateChanged(ItemEvent ev) { 

         if(ev.getStateChange()==ItemEvent.SELECTED){ 

        myAgent.behaSend2(); 

           System.out.println("'P.C.A. Online Fault Detection' button is 
selected"); 

         } else if(ev.getStateChange()==ItemEvent.DESELECTED){ 

          myAgent.behaSend3(); 

           System.out.println("'P.C.A. Online Fault Detection' button is not 
selected"); 

         } 

      } 

  }); 

   

  tglbtnNewToggleButton.setBounds(397, 346, 223, 28); 

  contentPane.add(tglbtnNewToggleButton);   

   

  JToggleButton tglbtnGenerateDataOnline = new JToggleButton("Generate Data 
Online"); 

  tglbtnGenerateDataOnline.addItemListener(new ItemListener() { 

      public void itemStateChanged(ItemEvent ev) { 

         if(ev.getStateChange()==ItemEvent.SELECTED){ 

        myAgent.behaSend4(); 

           System.out.println("'Generate Data Online' button is selected"); 

         } else if(ev.getStateChange()==ItemEvent.DESELECTED){ 

          myAgent.behaSend5(); 

           System.out.println("'Generate Data Online' button is not 
selected"); 

         } 

      } 

  }); 

  tglbtnGenerateDataOnline.setBounds(198, 372, 189, 58); 

  contentPane.add(tglbtnGenerateDataOnline); 

   

  JButton btnFdaDataTraining = new JButton("F.D.A. Data Training"); 

  btnFdaDataTraining.addActionListener(new ActionListener() { 

   public void actionPerformed(ActionEvent arg0) { 

    myAgent.behaSend6(); 

   } 

  }); 

  btnFdaDataTraining.setBounds(10, 385, 178, 28); 
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  contentPane.add(btnFdaDataTraining); 

   

  JToggleButton tglbtnFdaOnlineFault = new JToggleButton("F.D.A. Online Fault 
Detection"); 

  tglbtnFdaOnlineFault.addItemListener(new ItemListener() { 

      public void itemStateChanged(ItemEvent ev) { 

         if(ev.getStateChange()==ItemEvent.SELECTED){ 

        myAgent.behaSend7(); 

           System.out.println("'F.D.A. Online Fault Detection' button is 
selected"); 

         } else if(ev.getStateChange()==ItemEvent.DESELECTED){ 

          myAgent.behaSend8(); 

           System.out.println("'F.D.A. Online Fault Detection' button is not 
selected"); 

         } 

      } 

  }); 

  tglbtnFdaOnlineFault.setBounds(397, 385, 223, 28); 

  contentPane.add(tglbtnFdaOnlineFault); 

   

  JButton btnSomDataTraining = new JButton("S.O.M. Data Training"); 

  btnSomDataTraining.addActionListener(new ActionListener() { 

   public void actionPerformed(ActionEvent arg0) { 

    myAgent.behaSend9(); 

   } 

  }); 

  btnSomDataTraining.setBounds(10, 424, 178, 28); 

  contentPane.add(btnSomDataTraining); 

   

  JToggleButton tglbtnSomOnlineFault = new JToggleButton("S.O.M. Online Fault 
Detection"); 

  tglbtnSomOnlineFault.addItemListener(new ItemListener() { 

      public void itemStateChanged(ItemEvent ev) { 

         if(ev.getStateChange()==ItemEvent.SELECTED){ 

        myAgent.behaSend10(); 

           System.out.println("'S.O.M. Online Fault Detection' button is 
selected"); 

         } else if(ev.getStateChange()==ItemEvent.DESELECTED){ 

          myAgent.behaSend11(); 

           System.out.println("'S.O.M. Online Fault Detection' button is not 
selected"); 

         } 

      } 

  }); 
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  tglbtnSomOnlineFault.setBounds(397, 424, 223, 28); 

  contentPane.add(tglbtnSomOnlineFault); 

  redirectSystemStreams(); 

 } 

  

 private static void addPopup(Component component, final JPopupMenu popup) { 

  component.addMouseListener(new MouseAdapter() { 

   public void mousePressed(MouseEvent e) { 

    if (e.isPopupTrigger()) { 

     showMenu(e); 

    } 

   } 

   public void mouseReleased(MouseEvent e) { 

    if (e.isPopupTrigger()) { 

     showMenu(e); 

    } 

   } 

   private void showMenu(MouseEvent e) { 

    popup.show(e.getComponent(), e.getX(), e.getY()); 

   } 

  }); 

 } 

 

 public void popup() { 

  OnurComboBox onurcombobox = null; 

  try { 

   onurcombobox = new OnurComboBox(); 

  } catch (IOException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } 

  onurcombobox.setVisible(true); 

//  cluster = onurcombobox.combo;  HAVE TO GET THIS AFTER THE WINDOW IS DISPOSED; SO 
PROBABLY IN A DIFFERENT METHOD AFTWEWARDS. 

//  System.out.println("Cluster :::" + cluster); 

 } 

} 
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A.6. MATLAB CONNECTION CLASS 
 

package OMatlab; 

import matlabcontrol.*; 

import matlabcontrol.extensions.*; 

import java.util.Arrays; 

@SuppressWarnings("unused") 

public class MatlabConnectVariable extends MatlabProxyFactory{  

 private String MConnectStatus; 

 public double result1; 

 public double result2; 

 public double result3; 

 public double result4; 

 public double result5; 

 public double result6; 

 public double result10; 

 public double result12; 

 public double result14; 

 public double result141; 

 public double[][] array1; 

 public double[][] array2; 

 public int i; 

 public boolean conStat; 

  

 public String getMConnectStatus() { 

  return MConnectStatus; 

 } 

 

 MatlabConnectVariable() 

 {   

  if (conStat = true) {  

   MConnectStatus="The MatlabConnect class instance has been initiated";} 

  else {MConnectStatus="WARNING: The MatlabConnect class instance could not been 
initiated";} 

    

 } 

  

 public void MConnect1() throws MatlabConnectionException, MatlabInvocationException 

    { 

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 
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     .setMatlabLocation(null).build();     

       MatlabProxyFactory factory = new MatlabProxyFactory(options); 

        MatlabProxy proxy = factory.getProxy(); 

        conStat = proxy.isConnected();        

        proxy.feval("data_cleaner_script"); 

        result1 = ((double[]) proxy.getVariable("outliers_removed"))[0];           

  proxy.disconnect(); 

 

 } 

    

   

  public void MConnect2() throws MatlabConnectionException, MatlabInvocationException 

    { 

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();     

       MatlabProxyFactory factory = new MatlabProxyFactory(options);        

        MatlabProxy proxy = factory.getProxy(); 

        conStat = proxy.isConnected();        

        proxy.feval("pca_model_script"); 

        result2 = ((double[]) proxy.getVariable("trained"))[0];           

  proxy.disconnect(); 

 

 } 

   

  public void MConnect3() throws MatlabConnectionException, MatlabInvocationException 

    { 

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("Online_Data_Generator"); 

   proxy.disconnect(); 

    } 

   

  public void MConnect4() throws MatlabConnectionException, MatlabInvocationException 

    { 

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 
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     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("online_data_cleaner_script"); 

         result4 = ((double[]) proxy.getVariable("is_outlier"))[0]; 

   proxy.disconnect(); 

    } 

   

 public void MConnect5() throws MatlabConnectionException, MatlabInvocationException 

    { 

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("Tsq_Q_detection_script"); 

         result5 = ((double[]) proxy.getVariable("fault_detected"))[0]; 

   proxy.disconnect(); 

    } 

  

 public void MConnect6() throws MatlabConnectionException, MatlabInvocationException 

    {  

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("contribution_plot_script"); 

   proxy.disconnect(); 

    } 

  

 public void MConnect7() throws MatlabConnectionException, MatlabInvocationException 

    { 

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

   

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 
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         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("dynamic_plot_Tsq"); 

   proxy.disconnect(); 

    } 

  

 public void MConnect8() throws MatlabConnectionException, MatlabInvocationException 

    { 

  MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

     //MatlabProxyFactory factory = new MatlabProxyFactory(); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("dynamic_plot_Q"); 

   proxy.disconnect(); 

    } 

  

 public void MConnect9() throws MatlabConnectionException, MatlabInvocationException 

    { 

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("pca_model1_script"); 

         proxy.feval("pca_model2_script"); 

         proxy.feval("pca_model4_script"); 

         proxy.feval("pca_model8_script"); 

         proxy.feval("pca_model11_script"); 

         proxy.feval("pca_model13_script"); 

         proxy.feval("pca_model14_script"); 

   proxy.disconnect(); 

    } 

  

 public void MConnect10() throws MatlabConnectionException, MatlabInvocationException 

    {   

MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 
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     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("Fault_Diagnosis_script"); 

result10 = ((double[]) proxy.getVariable("classification_result"))[0]; 

   proxy.disconnect(); 

    } 

  

 public void MConnect11() throws MatlabConnectionException, MatlabInvocationException 

{ MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("FDA_Historical_Training"); 

proxy.getVariable("classification_result"))[0]; 

   proxy.disconnect(); 

    } 

  

 public void MConnect12() throws MatlabConnectionException, MatlabInvocationException 

{ MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("FDA_Online_Monitoring"); 

         result12 = ((double[]) proxy.getVariable("guessed_class"))[0]; 

   proxy.disconnect(); 

    } 

  

 public void MConnect13() throws MatlabConnectionException, MatlabInvocationException 

{ MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("SOM_Historical_Training"); 
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   proxy.disconnect(); 

    } 

  

 public void MConnect14() throws MatlabConnectionException, MatlabInvocationException 

{ MatlabProxyFactoryOptions options = new MatlabProxyFactoryOptions.Builder() 

     .setUsePreviouslyControlledSession(true) 

     .setMatlabLocation(null).build();  

  MatlabProxyFactory factory = new MatlabProxyFactory(options); 

         MatlabProxy proxy = factory.getProxy(); 

         conStat = proxy.isConnected();    

         proxy.feval("SOM_Online_Detection"); 

         result14 = ((double[]) proxy.getVariable("fault_detected"))[0]; 

         result141 = ((double[]) proxy.getVariable("guessed_class"))[0]; 

   proxy.disconnect(); 

} 

 } 
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