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BERRY-ESSEEN BOUNDS FOR APPROXIMATE MAXIMUM
LIKELTHOOD ESTIMATORS IN THE o-BROWNIAN BRIDGE

KHALIFA ES-SEBAIY, JABRANE MOUSTAAID*, AND IDIR OUASSOU

ABSTRACT. Let T' > 0, a > % In this work we consider the problem of
estimating the drift parameter of the a-Brownian bridge defined as dX; =
—aqf(_’ftdt + dWi, 0 < t < T, where W is a standard Brownian motion.
Assume that the process X is observed equidistantly in time with the step
size A, = %, t; = 1Ay, © = 0,...,n. We will propose two approximate
maximum likelihood estimators &, and &y, for the drift parameter o based on
the discrete observations X¢,,% = 0, ...,n. The consistency of those estimators
is studied. Explicit bounds for the Kolmogorov distance in the central limit

theorem for the estimators &, and &, are obtained.

1. Introduction

Let T € (0,00) be fixed. We consider the a-Brownian bridge process X :=
{Xi, t €[0,T)}, defined as the solution to the stochastic differential equation

X
Xo=0; dX, = —aTijtdt +dW;, 0<t <T, (1.1)

where W is a standard Brownian motion, and « > 0 is unknown parameter to be
estimated.

Because (1.1) is linear, it is immediate to solve it explicitly; one then gets the
following formula:

t
X, = (T—t)“/ (T—s)“dW, 0<t<T. (1.2)
0

An important problem related to the a-Brownian bridge (1.1) is to estimate the
parameter o when one observes the whole trajectory of X. For more information
and further references concerning the subject, we refer the reader to [2], as well as
[9] and [8].

The maximum likelihood estimator (MLE) of the unknown parameter « based
on continuous observations, is given by

at=—<OtT)i‘uqu>/(/ot(T)fi)2du>, t<T. (1.3)
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n (1.3), the integral with respect to X must of course be understood in the It
sense.

From a practical point of view, in parametric inference, it is more realistic and
interesting to consider asymptotic estimation for the diffusion processes based on
discrete observations. We assume that the process X is observed equidistantly
in time with the step size A,, := HLH, t; = iA,, i1 = 0,...,n and T, denotes the
length of the observation window. Then we will consider the following approximate
maximum likelihood estimators

X,
v (X X,
& = _Zz 1 (T— T 1)( t; tz—1)7 (1.4)
A Zz 1 T t1 1)

and

< —A 41_7) log(n+1)>
&y = — <2 . (1.5)
A Zz 1 t1 1)

To our knowledge there is no study of the asymptotlc behavior of the estimators
G, and @,. Our goal in the present paper is to investigate the consistency and
the rate of convergence to normality of the estimators &, and &,,.

In the case of continuous observations, the asymptotic behavior of the MLE
ay, gevin by (1.3), of « based on the observation {X;,0 < s < t} as ¢t T T has
been studied in [2]. They proved that the MLE a; of « is strongly consistent and
asymptotically normal in the case o > % . Recently, Es-Sebaiy and Moustaaid [6]
obtained, when o > %, an optimal rate of Kolmogorov distance for central limit
theorem of the MLE a; in the following sense: there exist constants 0 < ¢ < C' <
00, depending only on « and T, such that for all ¢ sufficiently near 7T,

log (T —
I < sup|P M(a—&t)gz —P(Z <=z2)
|log (T —t) | 2€R 200 -1
¢
" Vg (T =)

where Z denotes a standard normal random variable.

On the other hand, there exists a rich literature on the parametric estimation
problems based on discrete observations. In the case of the Ornstein-Uhlenbeck
process defined as solution to the equation dX; = —0X,dt + dW;, t > 0, Xg =0,
with 6 > 0, Bishwal and Bose [3] obtained an upper bound in Kolmogorov distance
for normal approximation of the approximate maximum likelihood estimators for
the drift parameter 6 on the basis of discrete observations of the process X. We
mention that Es-Sebaiy [5] studied the least squares estimator of § based on the
sampling data X;,i = 1,...,n when the standard Brownian motion W is replaced
by a fractional Brownian motion, see also [14, 15].

The rest of the paper is structured as follows. In Section 2 we give the basic
tools of Malliavin calculus needed throughout the paper. In Section 3 we prove
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the consistency and obtain the rate of convergence to normality of the estimators
&, and @, .

2. Preliminaries

In this section, we recall some elements from stochastic analysis that we will
need in the paper. See [12], and [13] for details. Any real, separable Hilbert
space §) gives rise to an isonormal Gaussian process: a centered Gaussian family
(G(p), o € $H) of random variables on a probability space (€2, F,P) such that
E(G(p)G(%)) = (v,7%)s. In this paper, it is enough to use the classical Wiener
space, where $§ = L2([0,7T]), though any $ will also work. In the case § =
L?([0,T]), G can be identified with the stochastic differential of a Wiener process
{Ws,t € [0, T]} and one interprets G(y) := fOT<p (s) dW (s).

The Wiener chaos of order p, denoted by ), is defined as the closure in L? (2)
of the linear span of the random variables H,(G(p)), where ¢ € 9, ||¢]ls = 1 and
H,, is the Hermite polynomial of degree p. The multiple Wiener stochastic integral
I, with respect to G = W, of order p is an isometry between the Hilbert space
HoP = L2, . ([0,T]") (symmetric tensor product) equipped with the scaled norm
VD! - |lser and the Wiener chaos of order p under L? (Q)’s norm, that is, the
multiple Wiener stochastic integral of order p:

L+ (97 VRl - loer ) — (9,22 ()

is a linear isometry defined by I,,(f®F) = H,(G(f)).
e Multiple Wiener-Itd integral. If f € L?([0,T]") is symmetric, we can also
rewrite I,(f) as the following iterated adapted Itd stochastic integral:

Ip(f) = /[O f(tl, . e ,tp)thl e thp

T]
T t1 tp—1
p'/ thl / thz N / thpf(t]_, ce ,tp). (21)
0 0 0

e The Wiener chaos expansion. For any F' € L?(Q), there exists a unique
sequence of functions f, € H®P such that

F =E[F]|+ ZIp(fp);

where the terms are all mutually orthogonal in L? (2) and

E [1,(f,)*] = plll foller-

e Product formula and contractions. For any integers p, ¢ > 1 and symmetric
integrands f € H®? and g € H®Y,

B0 = 3 1() (Ve 2550 (22)

r=0
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where f ®, g is the contraction of order r of f and g which is an element of
H®P+a=27) defined by

(f @1 9)(81, s Sp—ry T1y ey bgey) 1= /[07T]p+q2r (815 ey Spery Uty ooy Up)
g(t1, e bgmr s UL, oy Uy ) dug .. duy,
while f®,.g denotes its symmetrization. More generally the symmetrization f of
a function f is defined by f(z1,...,2p) = é > f(@oq)s s To(p)) Where the sum
-

runs over all permutations o of {1, ..., p}.

¢ Kolmogorov distance between random variables. If XY are two real-
valued random variables, then the Kolmogorov distance between the law of X and
the law of Y is given by

drot (X, Y):=sup|P(X < 2)—P(Y < 2)|.
z€R

e The derivative operator. We denote by S the class of smooth cylindrical
functionals of the form

F= f(W(hl),WUL?)va(hn))’ (23)

where n > 1 f € Cg° (R™,R) and hy, ho, ..., hy, € 5.
The derivative operator D of a smooth cylindrical random variable F' of the form
(2.3) is defined as the $-valued random variable

DF = Z Ouf (W (1), W (), o W (o)) i

In this way the derivative DF is an element of L? (Q;$)). We denote by D2 the
closure of § with respect to the norm defined by

[F]l12 = E(F?) + E(| DF[3).

Theorem 2.1 ([11]). Let F = I,(g) with ¢ > 2 and g € L*>([0,T]?). Then,
1 2
(1210713 ] (2.0

Proposition 2.2 ([11]). Let F = I,(g) with ¢ > 2 and g € L*>([0,T]"). Then,

1 2
(1 - DF||%>
q

< (1=qg)2e.)’ (2.6)

dpot (F,N) < (| E

where N ~ N (0,1).

E (2.5)

q—1

q—1
23 (g =21 (- 1P ( _ 1) % g 0 913 0m00

r=1
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Lemma 2.3 (Wick’s lemma). Let (Z1, 25,23, 7Z4) be a Gaussian random vector
with zero mean . Then

E[Z12:257,) = E[Z1 25| E [Z3Z4) + B |21 25| E [ Z2Z4) + E [ 2, Z4) E [Z2Z3] .

Throughout the paper Z denotes a standard normal random variable. Also, C
denotes a generic positive constant (perhaps depending on « and T, but not on
anything else), which may change from line to line.

3. Asymptotic Behavior of the Approximate Maximum Likelihood
Estimators

This section is devoted to study the consistency and the asymptotic distribution
of the approximate maximum likelihood estimators &,, and &, given by (1.4) and
(1.5) respectively.

Let us fix the notations needed in what follows. Define for every t € [0,T),

X, Tn
Y, = ——, Bp := Y. dW,
t T _ t’ Th /O t ty

n

n t;
Lo= AL A=Y Vi [, v
=1 -

1=

1
Tn n t;
Iy, = / Y2dt, B, ::Z/ Vi, dW;.
0 i=17ti-1

Notice that for every ¢, s € [0,T), the covariance of X; and X is

=" (I-t) (Tl‘%‘ (T~ (s A t))”“) if o # 1,
Cov (X, Xs) = (3.1)
(T = )" (T = )" log (725 a=1.
In particular X; is a normally distributed random variable with mean EX, = 0
and with variance

_\ 2« _ .
o (1717 — i3 ifa# g,
E[X?] = (3.2)
(T —t)log (%) a=1.
In order to prove our main results we will make use of the following lemmas.
Lemma 3.1. Suppose that o > % Let 0 <e < 1. Then
C

P (A I7, — 1] >¢) < g T 1) (3:3)
and
B (A (fu = I1,) | > €) € o, (3.4)
e2log” (n+1)
where A, = —22+1

log(n+1) *
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Proof. Applying the 1t6 formula, see [7], we have
20— 1 2 X, X7
—Ir — 1= awy — ————>——. 3.5
log(n +1) T log(n + 1) /0 (T—t) " Aylog(n+1) (3:5)
On the other hand, by combining the Lemma 2.3 and (3.2), we get that

9 3 AniT172o¢AfL(x 2
B[} =3 (B [x3,])" = 2B TR

Ty th
sl = 6 (Tt)z]dt

/Tn (T _ t) _ T1—20¢(T _ t)?a @t
0 (200 — 1) (T —t)°
(2a — 1) log(n + 1) + Tt22A22=1 1

_ T . (3.6)

)

and

Hence, by Chebyshev inequality we have
P(|Anlr, — 1] > ¢)

1
< SE [MTH ~1p]

_1lg / 7,
=2k log n+1) W = A, log(n +1)
2
1 Ty X4
< W) | 2B {QT]
€ log n+ 1 A2log™(n+1)

2 4 E|X
= —2 72 E [ITn] + [2 Tn}
e | log"(n+1) A2log”(n+1)

_ 2 {4 (2a = 1)log(n+1) + T 2*Ale—! —1)

g2 (2 — 1)2log*(n + 1)

L 38 T1-20 720
(200 — 1)* A2 log?(n + 1)

< ¢
~ e2log(n+1)
Again, by Chebyshev inequality we have
/\n
P (1A (In = I1,)| > £) < Z5E [|(I — Ir,)
On the other hand

2] . (3.7)

E (|(I - Ir,)I’] (Y2, - Y?) dt
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n

= E Z(/tt Yy, +Y3) (YtH—Yt)dt>2

i=1
tj

+2Z/tL {E [(Y;z‘—l - Yt) (Kfj—l + YS)

i<j b1t
(Yti—l + Y;f) (Ytj—l - YS)] } dsdt
= bl,n + bg’n.

We begin with studying the term b; ,. Using Lemma 2.3 together with Cauchy
Schwarz inequality, we have

E| (Vi + %) (Y, =) <3E[ (Vi + )| B[ (v, - )]

Moreover, by (3.1), we have

(20 = DE|(Yir_, - 3)?]

= (T —tiq) " =T 2 (T — ;) 2 (T —t) =T 2 (T — )2
—2(T —t;q) (T =) 2T 2 (T — t;_)* (T —t)*

= (T—tiy) "+ (T =) —2(T —t;_) (T —t)*"!
_pl-2a ((T )T (T — t)a_1>2

<(T—ti) ' +(T=1)".

Similarly, we can obtain

(2a — 1)E [(YtH + Ytﬂ <4(T -t

This implies that,

b, < E Zn:An /tti (Vi +Y3)* (Y, — Y2)  dt
i=1 i1
< canzn:/tti (T —)~" ((T—ti,l)*1 + (T—t)*l) dsdt
i=17ti-1
— A, {Xn: ((T R ti_l)—l)
=1
+ i (T —ti_1) " (log(T — t;_1) — log(T — ti))}
=1
N {Aln % N Ain é log(k :/,1_3_; log(k) }
< CAH{L%+;+A1§;2}<C' (3.8)
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We now study b3 ,. Applying Lemma 2.3, we can write
E [(Kfi—l + Y;f) (Ytj—l + YS) (Ytz‘—l o Y;) (Y;f.f—l o Ys)]
=E [(Yfi—l + Y;f) (Ytj—l + YS)] E [(Y;fi—l - Y%) (ij—l - YS)]
E [(Yti—l + Yi) (Yti—l - Kf)] E [(Ytj—l + YS) (Ytj—l - Ys)]
B[V, +Y) (%, — V)] B[(%, , +Y) (¥, %)
= Uip + Uz +Usp.
Hence,

T 22/ U B[V, V) (Y, + V)]

i<j —1Jtj1

B (¥ ~16) (O, = Ya)]) dct

+QZ/ B[V, +Y5) (Yi, — V)]

B[, +Y7><n —Y.)]} dset
23 [0 [0 Bl ) i 1)

[(Y;j—l + YS) (Yti—l - Yz)] } dsdt
=t Vi(n) + Va(n) + V3(n).

First we study the term V;(n). Let us consider two cases. Assume first that o > 1,
SO

(2a - 1>E [(Y;fi—l - Yt) (Y;fj—l - YS)]

= (=t =@ =) (T —ti) = (T =)

712 ((T e (T - tH)‘H))
<0,

where we used ¢;_; <t < t;, tj_1 < s < t; and a > 1 in the last inequality.
Moreover

(20— 1E [(Yti—l + Yt) (Ytj—l + YS)]
= (T =t;)" 7+ —9)"7)
((T — b)) =TV (T = )T (T =) =T (T - tYH)
> 0.
This gives
Vi(n) <0. (3.9)

In the second case, we suppose % <a<l1,so
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0<@a-DE[(Yi, —Y) (Y, - ¥)] < ((T—t;0) 7 = (7= 9"
(=t —@-07)
< C(s—tj-1) (t—tj-1)
(T—s)" (T —t) 7",
and
0<@a-DE[(Y:, , +Y) (Ys, , +Y))] < C(T -9 (T—t)".
Thus

ti tj
Ml < €3 [0 [T ot - ) 07 (@ - ™ dtds
i<j Ytim1 Yt
n ti
< CZ/ (t—t; 1) (T —t)>* "t x
i=1"ti-1
n t;
Z/ (s— ;1) (T — 5)%* 3 ds
j=1"7ti-1
n t; n t; )
< C(AnZ/ (T—t)2a1dt> AnZ/ (T — s)** 3 ds
i=1 Jti—1 j=1"ti—1
< C=T*2A22 = TN+ T72A2)
< C (3.10)

For the term V5(n), when o > 1, we have
(20 — 1) |Uz |
= ‘((T _ t¢,1)71 . (T o t)fl _ 2 (T _ ti71)2a72 + T1-2a (T _ t)2a72)

((T - tjfl)il — (T - s)f1 — Tl (T - tj,1)2a*2 4 T2 (T — 3)2'1*2)‘
<(@-n"' Tt +C) (M9 = (T —t) ' +C).

This implies

Va(n)| < cz/tt /tt (-t =@ -ti)™ +0) (3.11)
((T T (Tt C) dsdt
<

0<i,j<n

c Y /t /t ((T—t)fl—(T—ti,l)*HC) (3.12)

(=9 = (@=t;)7" +C) dsat
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(i/t (-0 =@ -t )" +0) dt>2

n 2
= C Z log (T — t;_1) 1og<T—ti)—An<T—ti1>1+An)>

i=1

E
n
n—|—1 }

‘When % < a <1, we have

IN

ntl 2
= C{log (n+1) ;E nAn}

IN

(3.13)

(20 =12 [Usnl < (=87 = (T —tia) ™ + T2 (= 1) (T = )

(=9 = (T —ty) T+ T2 = tym0) (T = 0)™7),
which leads to

Vam)| < c(Z/ (-0 =@t

STV () (T — )% 3) dt)

n+1 2
= C {log (n+1)— Z % 4T 2N (Aia—2 _ TQQQ)}
k=2

+1
< (3.14)

For V3(n), we can write

i = 23 [ [T @M (0 - Y BV (e, - V)]

+E [Yt11—1 (Ytj—l - Y‘?)] E [YS (Yti—l B Yt)]
+E [YE (Y;fj—l - YS)] E [Y;fj—l (Y;fi—l - Y;f)]
+ E [Yt (Ytj—l - YS)] E [YS (Yti—l - Yt)])
= V31(n) + Vs 2(n) + Va3(n) + Vsa(n)
On the other hand, we have
(2a—1) ‘E [Y;fj—l (Yti—l - Y;f)”

- ‘(T —t;1)* 7! ((T —ti1) "= (T -1

FTIE (T = )" TR (T ) )

2
S C{ +T2a 2A2a 1 An}

)
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and
(20— 1) |E[Yt (Ytj ol
’ —tj 1) — 5 1‘( — i) =T 2 (TftH)‘H)
S R
Hence, when % 5 < a <2, we have
(20 -1 [E[Y;,_, (Yoo, - V)]
<O —t; ) (= ti) (M=) "+ (=) (T - )"7)
and
2a—1D)|EY;,_, (Yi,_, —Y)]| S Cls —t;21) (T —tie) " (T —5)" >
When a > 2, we have
(20~ [E[Y,, (Vi —Y)]]
<C(T—t;20)"" (<t—tz DT =) (= i) (T = 12)" 7))
and
2a—-1)|E[V;, , (W, , = Y)]| < Cls —t;1) (T —t;i1) (T —t;_1)""2.

As a consequence, when « > 2, we have

V3,1(n
t’ b 2 1
< CZ/ / (s =tj—1) (T —tima) " (T —t;-1)" " (T = t;—1)""
1<J
((t (T =) (i) (T — tH)H) dsdt
S CZ/ / S—tj 1 —tl 1) a(T_tjil)a—Q
i<j -1
(T —t; 1) (b= tiy) (T — )" " dsdt
/ / S*tj 1 7tl 1) a(T*tj_l)a_2
(T*tj_l)a 1(257157;_1) (T*ti_l)a Qdet
t; tj
< CZ/ / (s —t; 1) (T —tiiy) 2 (T —t;_1) > (t — t;_1)dsdt
/ / (s—t; 1) (T —t; 1) > T273(t — t;_y)dsdt
n+1 n+1 1
2
< (Z k2> +CnAnZ e
k=2
< C.

11
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When 1 < a < 2, we have

[Vs,1(n
< / / (5= ;1) (T = ti_1) " (T = 8)°2 (T = t;_1)°"!
((t — i) (T =) o (¢ = ti0) (T — 1)) dsdt
< oZ/t / (s—t;_1) (T —ti1) (T —5)*?
(T —t;_)* (b=t 1) (T — )" " dsdt
/t” /t] (5= t5-1) (T = t;1) ™ (T — 5)* "
(T—tJ Dt = tiq) (T — )™ % dsdt
< / / (s— ;1) (T — 8) "2 (¢ — ti1) (T — )" dsdt

+CZ/1 / (5 — ;1) (T — 8)* 2 (¢ — tiy) (T — t) " dsdt

i<j ti—1 Jtj—1

2
"1
logn+1)> +C(AY —T'A,) (Zk logn+1)>

2
< c( - ) +C(A2—Ta—1An)( & )gc’.
n+1 n+1

Finally, when % < a <1, we have
Va1

(n)|
<oz// (s —tj-1) (T — )23 (t — t; 1) x

1<J

IN
/\
ANgE
?r'M—‘

(T tia) (T =)~ dsdt
CZ/{:/‘]1(5_”_1)(1”_5)2&_3 (t—ti2) (T — t)"2 dsdt
<CA‘XIZ/ / s,t] 1 *8)204 3(t7tl 1)( ¢ 1) o gt

CZ/i /1/t,i1(s_tj_l)(T_5)2a_3 (t —ti_q) (T —t) "2 dsdt

S C (1 T—ocAz _ T2a—2A3—2a + Ta—QAEL—a)

2a—1 _ 2a—2 n
+C (A% T**72A,) <n+ 1)
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<cC.

Similarly, we can use the same way as V3 1(n), we get that

Vaa(n)| < C, [Va3(n)] < C, [Vaan)| <C.

As a consequence,

[Va(n)| < C. (3.15)
Combining (3.9), (3.10), (3.13), (3.14) and (3.15), we deduce that
|b2.n| < C. (3.16)

Therefore, the facts (3.8) and (3.16) achieve the proof of the desired result. O

Lemma 3.2. Suppose that o > % Let 0 <e < 1. Then
C

P\, |Bp |>¢) < —o" 3.17
(An |Br, | E)*‘e?log(n—#l) ( )
and
P(An|By—Br|>e) < —C (3.18)
e T _5210g2(n+1)7 '
where )\n:%,

Proof. By using (3.6), we have

2
T,
n Xt
d
/o T

E|Br,|° = E
= E[Ig,]
(2a — 1) log(n + 1) + Tt722A22=1 1

(2a — 1)2
On the other hand by Chebyshev inequality we obtain
P (A, |Br,| >¢) < %E B, |’
' €
C
e2log(n+1)°
Let us now prove (3.18). By Chebyshev inequality we have

1- A2
B (A |By— Br| > L9 < g 1B~ Br, ]
3 g2

Moreover,
n ts T, 2
i X, n X,
E [|anBTw|2} - E / e g, 7/ dw,
' ; oy T=tia) Sy (@T=0)
nLoqt X X ?
= E / < e ) dw,
; ti—1 (T - tlfl) (T - t) !
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n t; X, X 2
= 3 / E ( e ) dt.
i=1 ti—1 (T - tifl) (T - t)
On the other hand,

(w%22><f§wf]

= (T —tiq) " =T 2 (T — ;) 2 (T —t) = T2 (T — t)** 2
—2(T —t;1) (T =) ' + 2T 2 (T — t,_)* (T —t)*
<(T—ti) "+ (T =) —2(T —t;_1) (T —t)*!

= (T —ti_y) " = (T —1t) (T =)' = 2(T —t;1) (T —t)**

= (T —t;) " = (T =) 2T =) (T =) = (T = t1)™")

(2a — E

42
_1+2

<@t (@=07+2(T =0 (alt =) (T 0) ")
=C(t—tiq) (T —1)7.
Thus
n t;
E [|Bn - BTnﬂ < CZ/ (t—t;1) (T — ) 2dt
i=1Yti-1
< C ( n ) .
- n+1
Then the desired result is obtained. O

3.1. Consistency of the approximate maximum likelihood estimators.
The following result establishes the consistency of the approximate maximum like-
lihood estimators &,, and &;,.

Theorem 3.3. Suppose that o > % Then, we have
&, — «a and &, — «,
in probability as n — oo.
Proof. By using (1.1), we have
aly, + Z?:l Yti—l (Xti B Xti—l)
I,
ti
aly, + ZZL:l }/ti—l ftFl dX
I,
aly+ Y0 Ye, [ (—aYidt + dWy)
In
« (Iﬂ - Z?:l ftil Y%i71Y1-5dt) + Z?:l }/%i—l ft:,l th
I,

a—a&, =

A, B,
= oy 3.19
In I’!L ( )



BERRY-ESSEEN BOUNDS FOR APPROXIMATE MLES 15

(3.20)

o — Qy =

and again by (1.1) together with (3.5) we can write
2 I, I,
Let 0 <e < 1and )\, = —22=L_ We have
aA,, + B, -
I, c
= P
< P(|An(adn + Br)|>e(l =€)+ P(|Andn — 1] > €)

200 — 1 (In - IT,I,) + BTn .
= log(n+1) "
P(la—dn| >e) = ]P’(
An (@A, + By) )
= J,+ K,.

We begin by studying the term J,,. We have,
Jn = P(|A (@dn + By)| > e(l—¢))
= P(A (@A, + (By—Br,)+ Br,)| >¢e(1—¢))

IP’<a)\n|An > 5(13€)> +]P’<)\n B, — Br,| > dls))

3
1_
4P ()\n By, | > e( . E)) .

IN

Proceeding similar to the estimation of E [\(In - ITn)ﬂ, we deduce that

e(l—e¢) C
v (M" Aal > =3 ) = log?(n + 1) (e(1 — €))* (3.21)

Therefore, from Lemma 3.2, we obtain
C
(e(1 —¢))log(n +1)

For the term K, it follows from Lemma 3.1 that

In <

(3.22)

K, = P(|/\n ([n — ITT,,) + )\nITT,, — ].‘ > E)

e g
P (|)\n (I, — Ir,)| > 5) +P <|>\nITn —1 > 5)
__¢
e2log(n+1)"

Combining (3.22) and (3.23), we deduce that &, converges in probability to « as
n — o0o. The proof of the consistency of &, is quite similar to the proof above.
Thus the desired result is obtained. O

IA

(3.23)

3.2. Rate of convergence of the approximate maximum likelihood esti-
mators. In order to investigate the Berry-Esseen-type bounds in the Kolmogorov
distance for the approximate maximum likelihood estimators &, and &,,, we will
need the following lemmas.
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Lemma 3.4 ([10], page 78). Let f and g be two real-valued random variables with
g#0P—a.s. Then, for any e > 0,

drol <£,Z) < dpor (f, Z) +P(|g — ].| > 6) + €,

where Z ~ N (0,1).

Lemma 3.5 ([1], page 280). Let f and g be two real-valued random variables.
Then, for any e > 0,

diot (f +9,2) < dkor (f, Z) +P(lg| > €) + \/%,

where Z ~ N (0,1).

In the next Theorem we give an explicit bounds for the Kolmogorov distance
in the central limit theorem for the estimators ¢, and a,.

Theorem 3.6. Let 0 <e <1 and a > % Then there exist a positive constant C,
depending only on o and T, such that

ilelg P (B (a0 —ép) < 2) —P(Z < 2)| (3.24)
< ¢ + ¢ + 3¢
~ Vlog(n+1)  e?log(n+1) ’
and
sup P (B (0= ,) < 2) = P(Z < ) (3.25)

C

C
< +
~ Vlog(n+1)  e*log(n+1)

+ 2¢,

where B, = 1/ logé"fll).

Proof. Using (3.19) and Lemma 3.4, we obtain

P( W(a—d@y)—mzs@

“ek 2 — 1
log(n+1) (aA, + B,
— sup |P <:z|-P(z<
ser ( 20— 1 T, )<7)FPE=)
20 — 1
—sup|P (| ————— (@A, + B, <z| -P(Z<
i ( logln + ) (*4n T P ) (7=

20— 1

Pl
( log(n + 1)
= K1 +K2 +e.

In—1’>5>+5

On the other hand, from Lemma 3.5, we have

200 —1
]P’( 1)Bn§z>—IP’(Z§z)

K; = sup

Z€R log(n +
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20— 1

P P
+ <a log(n +1) E>+E

= L1 —|—L2+E.

Ap| >

Again using Lemma 3.5, we obtain

200 —1
Ly = P —— (B, — B B < -P(Z<
= snfe (i e P B <) -Piz ey
200 —1
= sup|P |/ ——— By <z|-P(Z<2)|+
sl (e <) - <o
200 —1
P,/ —=2"- B —B .
( 10g(n+1)| T">€>+E

From Lemma 3.2, we deduce that

2a — 1 C
P —|B, — B <. 3.26
( log(n T 1)| n Tn| > €> =3 log(n T 1) ( )
Moreover, it follows from (1.2) and (2.1) that,
200 — 1

log (n+1) T

2a —1
log (n+1)

-1
= 2a T — )" (T =)~ dW,.dW,
1og (n+1)

1 a_l Tn Tn a1
=3 gt 1) T—sVvr)" " (T—sAr) “dW,.dW;

= I2 an )

where fr, is a symmetric function defined by

1 20 — 1 a1 —a
fr, (u,v) = N\ om0 (T —uvo)" (T —unv) " Lygqg,p2(u,v).
Since the function fr, is symmetric, we have
2a0 — 1 20—2 -2
||an||52§®2 = m/ (T—x\/y) o (T—Z‘/\y) adxdy

2a — 1 " 2a 2 —2a

= d (T - T-— d

210g n+1) / y/ v) ( z) v

- s, (0T
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1 (A, /T)* ! 1
210g(n+1)<0g(n+ L G s R P
Thus,
A /T)Qafl _ 1
2 2 -1 — ( n
7. 52 (2a —1)log(n+1)’
hence
C
2 202 —1 _
| ||an||f)®2 | 10g(’fl+1)
Moreover, from [6], we have
C
2
< .
I fr, @1 fr,|l§e2 < log(n + 1)
Consequently, by combining (2.4) and (2.7), we obtain
20— 1 C
sup |P —Bp <z| -PZ<2)| < —m—88. 3.27
Jek ( log(n+1) " = ) Z<2) = Vlog(n+1) (3217
For the term Loy, by using (3.21), we deduce that
200 —1
P — A, > <. 3.28
< « \/ log(n + 1) E) ~ e2log(n+1) (3:28)
Finally, from Lemma 3.1, we have
C
Ky< — —~ (3.29)

~ e2log(n+1)°
Combining (3.26), (3.27), (3.28) and (3.29) we deduce (3.24). The proof of (3.25)

is quite similar to the proof above. Thus the desired result is obtained.
|

Corollary 3.7. Let % <B< % and o > % Then there exist a positive constant
C, depending only on o and T', such that

P < log(n + 1)

Sub 20— 1

(v — ) §z> -P(Z<z)| < Clogﬁf%(n—l—l),
z€ER

and

2€ER 20— 1

sup]P’( wm(ac‘u@ﬁz)?(Zﬁz) < C’logﬁ_%(nJrl).

Example 3.8. Upon choosing = % we obtain
P ( log(n + 1) C

log%(n + 1)7

IN

sup

—a) <z | —P(Z<
B a>_z> (Z <)

and

IN

sup [P M(afdn)gz —P(Z<2) #
z€R 200 -1 log3 (n +1)
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