Effect of Oxidation Level on the Interfacial Water at the Graphene Oxide-Water Interface: From Spectroscopic Signatures to Hydrogen-Bonding Environment

Rolf David
Aashish Tuladhar
Le Zhang
Christopher Arges
Revati Kumar

Follow this and additional works at: https://digitalcommons.lsu.edu/chemistry_pubs

Part of the Physical Chemistry Commons
Effect of Oxidation Level on the Interfacial Water at the Graphene Oxide–Water Interface: From Spectroscopic Signatures to Hydrogen-Bonding Environment

Rolff David, Aashish Tuladhar,* Le Zhang, Christopher Arges, and Revati Kumar*

ABSTRACT: The interfacial region of the graphene oxide (GO)-water system is nonhomogenous due to the presence of two distinct domains: an oxygen-rich surface and a graphene-like region. The experimental vibrational sum-frequency generation (vSFG) spectra are distinctively different for the fully oxidized GO-water interface as compared to the reduced GO-water case. Computational investigations using ab initio molecular dynamics were performed to determine the molecular origins of the different spectroscopic features. The simulations were first validated by comparing the simulated vSFG spectra to those from the experiment, and the contributions to the spectra from different hydrogen bonding environments and interfacial water orientations were determined as a function of the oxidation level of the GO sheet. The ab initio simulations also revealed the reactive nature of the GO-water interface.

I. INTRODUCTION

Graphene oxide (GO), whether a single layer or a few layers of exfoliated sheets from graphite oxide, has recently received a lot of attention in the literature due to a range of potential applications.1−35 GO consists of graphene sheets with oxygenated groups, and a number of studies have revealed a wide range of oxygen functional groups, such as hydroxyls and epoxides,11 carboxylic acids, or sulfonates groups,8,36 on these sheets as well as how these groups are arranged on the surface.37−41 A key question that arises is how, depending on their number and partitioning, these oxygen functional groups can favor or prohibit reactions at the GO-liquid interface in aqueous media. To probe interfaces, several surface-specific techniques can be used such as environmental scanning electron microscopy (ESEM), Auger electron spectroscopy (AES), etc.42−46 One method, vibrational sum-frequency generation (vSFG),47,48 has received a lot of attention for characterizing the graphene-oxide-water interface by ab initio molecular dynamics (AIMD) at different levels of oxidation was performed to provide insight on the effect of the different structural domains of graphene-oxide (organic, aromatic rich regions vs oxygen-rich hydrophilic regions) on the interfacial water structure. Furthermore, the effect of the oxidation level of the GO sheet on the water structure was also studied. These results are put into perspective with the experimental vSFG spectra of these systems as a function of oxidation level, thereby not just confirming the accuracy of said ab-initio methods but also providing insight into the molecular origins of the spectral signatures in the experimental vSFG spectra. This paper is divided into four sections. Both the computational and experimental methods are outlined in Section II, the results are described and discussed in Section III, and the conclusions are presented in Section IV.

II. MATERIALS AND METHODS

II.a. Ab Initio MD Setup. The graphene oxide sheets in this study consist of a single layer composed of 180 carbon atoms (to have an ∼22.0 × 21.2 Å graphene sheet) and a varying number of oxygen functional groups. The GO2/1 and GO2/1 sheets were constructed based on the work of Sinclair et al.57 The former consists of 24 epoxide groups and 20 hydroxyl groups for a ratio C/O of 4.09 for the former, while 50 epoxide groups and 40 hydroxyl groups were introduced for a ratio of C/O of 2.00 for the latter case. The GO/water interface was generated using the packmol software63 by adding 265 water
molecules on one side of the GO sheet generating a solvent layer having a thickness of 20 Å. With the moltemplate software,64 parameter files for both systems were created using the OPLS-AA65 force field for the GO sheet along with the SPC/E66 force field for water. A 70 Å thick layer of vacuum is added in the z-direction (direction perpendicular to the interface) for both sets of systems resulting in a box of dimensions 22.0 × 21.2 × 104.0 Å. All simulations were performed using periodic boundary conditions (PBC). For the classical molecular dynamics (MD) simulations, long-range electrostatic interactions were evaluated using the particle-particle-particle-mesh (PPPM)67 method based on the Ewald summation method with a cutoff of 12.0 Å, while the Lennard-Jones interactions used a simple cutoff at 12.0 Å. All water bonds and angles were constrained using the SHAKE algorithm.68 An initial geometry minimization was performed followed by a 500 ps equilibration run (with a time step of 0.5 fs) in the NVT ensemble (where N indicates the number of particles in the system, V indicates the system volume, and T indicates the absolute temperature of the system) with the temperature set to 300 K with a Nose-Hoover thermostat69,70 and a time constant of 50 fs–1. A production run was performed in the same ensemble for 1 ns with a time step of 0.5 fs. Snapshots were extracted every 200 ps, resulting in five snapshots for each system. For each snapshot, and for both systems, geometry optimization and cell relaxation were done using the CP2K71,72 program with the L-BFGS algorithm.73 The force evaluations were done at the density functional theory (DFT) level with the revPBE74,75 functional and the empirical D376 dispersion, with a DZVP-MOLOPT-SR77 basis set and GTH pseudopotentials.78–80 The c cell parameter was kept fixed at 70.0 Å, giving a vacuum layer 40.0 Å thick, and PBC were applied in all directions using a periodic Poisson solver for electrostatics. For each optimized geometry, a 25 ps long NVT simulation at 300 K with a time step of 0.5 fs was then performed with the canonical sampling through a velocity rescaling (CSVR) thermostat81 and a 100 fs–1 time constant. The position and velocities were extracted every 1 fs, and the first 5 ps of each trajectory were discarded as equilibration. The total sampling for both the GO2/1 and GO4/1 case was 100 ps (5 × 20 ps).

II.b. Preparation of the Graphene Oxide Samples. A large-area oligo-layered GO flake solution having a concentration of 5 mg mL⁻¹ was purchased from NewMater Nanotechnology Co. Ltd. Transparent sapphire circular disks with flat surfaces (surface roughness <1.0 mm) were acquired from Meller Optics, Inc. These disks had an area of 20.27 cm² (diameter of 5.08 cm) and a thickness of 0.33 mm. To attain a conformal graphene flake layer onto the substrate, a dilute solution of GO flakes was prepared by mixing the 5 mg mL⁻¹ graphene oxide with methanol and water with a weight ratio of 1:1740:100 (graphene oxide/methanol/water). The dilute solution was spin-coated onto the transparent sapphire substrate at 3000 rpm for 45 s. Prior to the deposition of the solution on the substrate for spin coating, 1 psi of nitrogen flow was applied to the surface of the sapphire substrate from nearly normal incidence. Two more identical samples were prepared, and these samples were treated thermally to reduce graphene oxide on the graphene substrate. The thermal reduction of graphene oxide thin film was conducted at 300 °C in a nitrogen-filled chamber for 10 min for one sample and 6 h for another sample. The successful reduction of the GO film was evident by the film color change and the vSFG results (vide supra). Figure 1 depicts the scheme to prepare thin GO/rGO (where rGO indicates reduced graphene oxide) films on transparent sapphire substrates.

II.c. Experimental vSFG Setup. A picosecond scanning vibrational sum frequency generation spectrometer (EKSPLA), which has been described in previous works,82,83 was used to perform the vSFG experiments. Briefly, the vSFG spectrometer is a commercial setup that uses a 532.1 nm visible beam and a tunable infrared beam overlapped spatially and temporally at the sample surface. The angle of incidence is 35° and 31° for the visible and IR beams, respectively. The spatial resolution of the setup is ∼6 cm⁻¹. An SSP polarization geometry (where S, S, and P refer to the polarization of sum frequency, visible, and IR photons, respectively) was used. In all experiments, each scan was obtained with an increment of 8 cm⁻¹ and an average over 300 laser shots per point. The energy of the visible beam is typically ∼200 μJ, and that of the IR beam is ∼180 μJ. The SFG photons were detected using a high-gain low-noise photomultiplier (Hamamatsu R585), which is integrated into the Ekspla system. The voltage of the photomultiplier tube (PMT) was set at 1400 V. The vSFG signal is normalized with respect to the visible and IR pulse energy.

The graphene oxide film grown on an alumina substrate was placed in a precleaned (thorough rinsing with detergent and a copious amount of ion-exchanged nanopure deionized water followed by drying with compressed N₂ and finally UV/ozone cleaned (Novascan Technologies) for 15 min) home-built Teflon sample cell that was designed to allow for the
introduction of an aqueous solution without moving the sample surface. Laboratory-equilibrated deionized water (pH ≈ 6) was used for the experiments. The schematic experimental geometry is shown in Scheme S1 in the Supporting Information.

II.d. Surface-Specific Velocity-Velocity Correlation Function from Simulations. In this study, the surface-specific velocity-velocity correlation function (ssVVCF) formalism proposed by Otho et al.84 was used. The method is described in detail in ref 84, and here just a brief description of the method is presented. In the case of just the IR spectrum, the IR response function (from the fluctuation–dissipation theorem) is related to the time derivative dipole–dipole correlation function.85 The molecular dipole moment in turn is related to the permanent dipole moment of the molecule and the transition dipole moment of the normal mode. The latter is determined by multiplying the transition dipole by the normal mode vector in the molecular frame. Finally, the molecular dipole moment is converted to the lab frame through a rotational matrix that is applied to both the permanent and transition dipole moments in the molecular frame. The O–H stretch response is the one under consideration and can be considered to be decoupled from librational motion. The latter is dominated by the dynamics of the permanent dipole moment. Since the main contribution to the O–H stretch normal mode is the O–H vector,86 the normal mode vector in the laboratory frame can be replaced by the bond vector resulting in a simplified description for the IR response to the O–H stretch that is proportional to the O–H stretch velocity autocorrelation function. A similar reasoning was applied by Otho et al. for the SFG response function (which now also includes the polarizability tensor), connecting both the IR and SFG response to essentially different velocity–velocity type correlation functions.

\[\chi_{xxz}(\omega) = \frac{Q(\omega)\mu(\omega)\alpha(\omega)}{i\omega^2} \chi_{xxz}^{\text{ssVVCF}}(\omega) \]

where \(Q(\omega) \) is the harmonic quantum-correction factor87 and is given by

\[Q(\omega) = \frac{\beta \hbar \omega}{1 - e^{-\beta \hbar \omega}} \]

with \(\beta = \frac{1}{kT} \) and \(T \) is the temperature set to 300 K. \(\hbar \) is the reduced Planck’s constant and \(k \) is the Boltzmann constant.

Figure 2. Ratio of the density of water over the bulk density of water as a function of the distance to the instantaneous water interface for (a) GO2/1 and (b) GO4/1. (c) Representation of the GO4/1 system with the instantaneous water interfaces (in purple), the GO sheet, and the water layers. Water layers are yellow, purple, and black, representing L1, L2, and L3, respectively. Carbon is in gray; for waters beyond the L3 layer, the oxygen atoms are in red, and the hydrogen atoms are in white.
The non-Condon effects were taken into account by the frequency-dependent transition dipole moment and the frequency-dependent transition polarizability \(\mu(\omega) \) and \(\alpha(\omega) \), respectively, parametrized in the work of Corcelli and Skinner \(^{88,89}\)

\[
\mu(\omega) = \left(1.377 + \frac{53.03(3737.0 - \omega)}{6932.2} \right) \mu_0
\]

\[
\alpha(\omega) = \left(1.271 + \frac{6.287(3737.0 - \omega)}{6932.2} \right) \alpha_0
\]

where \(\omega \), in (3) and (4), is specifically expressed in cm\(^{-1}\).

Finally, \(\chi^{\text{avVCF}}(\omega) \) is given by

\[
\chi^{\text{avVCF}}(\omega) = \int_0^\infty \text{d}r e^{-\text{int}} \left(\sum_i g(r_i(0)) r_0^{-\text{OH}}(0) \cdot \frac{r_0^{-\text{OH}}(t)}{|r_0^{-\text{OH}}(t)|} \right)
\]

where \(i \) and \(j \) are the \(i \)th and \(j \)th oscillators, respectively. \(r_0^{-\text{OH}}(t) \) is the \(z \) component of the velocity of the \(i \)th oscillator, and \(r_0^{-\text{OH}}(t) \) and \(r_0^{-\text{OH}}(t) \) are, respectively, the velocity vector and the displacement vector of the \(j \)th oscillator. \(r_i \) is the distance between the \(i \)th center of mass and the \(j \)th center of mass of the respective oscillators, and \(g(r) \) is a switching function:

\[
g(r_i) = \begin{cases} 1, & r_i \leq 2.0 \, \text{Å} \\ 0, & r_i > 2.0 \, \text{Å} \end{cases}
\]

This switching function controls the cross-correlation terms between two oscillators: an \(r_i \) cutoff at 2.0 Å ensures only intramolecular coupling terms. The time correlation was evaluated for a \(t_{\text{max}} \) of 10 ps. A smoothing Hann window function, \(f(t) \), was applied to the Fourier transform of the time correlation function.

\[
f(t) = \begin{cases} \cos \left(\frac{\pi t}{2\tau} \right), & 0 < t < \tau \\ 0, & t > \tau \end{cases}
\]

The parameter \(\tau \) was set to 0.50 ps.

Additional details including other switching functions that were used are given in the Supporting Information.

III. RESULTS AND DISCUSSION

III.a. Average Water Density Fluctuations from the Instantaneous Water Interface. To characterize the interface between the GO sheet and the water, the Willard-Chandler instantaneous interface \(^{20}\) was employed, as it provides a robust definition of the interfacial region. The ratio of the water density to the bulk density of water as a function of the distance to the instantaneous water interface is reported in Figure 2. Well-defined water layers, based on the minima in the density distributions in Figure 2, can be seen. This type of layering has also been seen for water next to other solid interfaces in studies performed by Gaigeot et al.\(^{91,92}\) In the GO\(_{4/1}\) case three distinct layers of water, namely, L1, L2, and L3, with increasing distance from the instantaneous interface are seen. A fourth layer, L0, is only present in the case of GO\(_{2/1}\) in the negative distance region (on the other side of the instantaneous interface) and corresponds to a small number of waters “trapped” on the GO sheet by the oxygen functional groups. Between the GO\(_{2/1}\) and GO\(_{4/1}\), the major difference for the density resides in the L1 layer, which is more structured for GO\(_{4/1}\) due to a sharper peak, as well as the presence of an L0 layer solely in the case of GO\(_{2/1}\).

III.b. Hydrogen Bond Analysis of the Interfacial Waters. The hydrogen bond network of the waters was analyzed for both cases. A naming scheme for the different hydrogen bonding classes of water based on the work of Skinner et al.\(^{93}\) was used here. A water is defined as residing in a hydrogen-bonding class \(N_a \) where \(N \) is the total number of hydrogen bonds (see Scheme S2 for definition of a hydrogen bond) a water molecule is involved in, and the subscript \(a \) refers to the number of hydrogen bonds involving the H atoms of the water under consideration: \(a \) is \(S \) for a single donor water, \(D \) is for a double donor water, and \(T \) and \(Q \) are for triple and quadruple donor waters, respectively. Water–Water hydrogen bonds are considered as well as water-oxygen-bearing groups hydrogen bonds. Figure 3 shows the percentage of hydrogen-bonding classes for all water within the L0 (Figure 3a) and L1 (Figure 3b) layers for GO\(_{2/1}\) and the L1 layer for GO\(_{4/1}\). The composition of the L0 layer is very different from

![Figure 3](https://dx.doi.org/10.1021/acs.jpcb.0c05282)

8170
that of the L1 layer, with the major class in L1 being 4D, while 3D is the dominant hydrogen-bonding configuration of waters in L0.

Although double donors are the most common in both L0 and L1, the waters in L0 tend to accept fewer hydrogen bonds. This point is reinforced by the second major class present in L0, namely, 4T, which like 3D has only one acceptor hydrogen bond (the same goes for 2S and 5Q). This can be explained by a specific orientation of the water molecule in this L0 layer, where a water oxygen is less readily accessible to other waters (or hydroxyl groups) to accept hydrogen bonds, but its hydrogens are available to donate hydrogen, a point that will be discussed further. Additionally, in this layer ~92% of the water molecules present are engaged in a hydrogen bond with an oxygen-bearing group: this is due to a higher number of oxygenated defects and due to the “trapped” position of the water. Approximately 44% of these waters are both donating and accepting from an oxygen-bearing group.

For the L1 layer, compared to GO4/1, GO2/1 tends to have GO2/1 with fewer 3D (−8.6%) and 4D (−2.5%) waters compared to GO4/1, while having a greater number of 3S (+2.9%) waters. Additionally, GO2/1 has a larger percentage of waters with, overall, four or a higher number of total hydrogen bonds that are double or triple the donor (4T, +0.8%, 5D, +1.8%, and 5T, +2.4%). Additionally, overall one can see an increase of single donors (+3.3%) and triple donors (+4.0%) at the expense of the double donors (−9.0%). Between GO4/1 and GO2/1, there is an increase in the number of waters engaged in hydrogen bonds (donating or accepting) with an oxygen-bearing group (+6.4%), the most increase comes from the waters accepting at least one hydrogen bond from an oxygen-bearing group (+9.8%) or both accepting and donating one (+6.0%). Compared to the L0 layer, in the L1 layer for GO2/1, only 8.3% of the waters are both accepting and donating to an oxygen-bearing group.

To summarize, the L1 layer, for both systems, has 4D as the major class, with the second one being 3D. GO2/1 sees a small decrease in 4D and a bigger one in 3D, but its number of highly hydrogen-bonded waters (4T, 5D, 5T) is greater than GO4/1, due to an increase of waters engaged in hydrogen bonds (donating or accepting) with an oxygen-bearing group (+6.4%).

III.c. Interfacial Water Orientation. To have a better understanding of the orientation of the water molecules around the interface between the graphene oxide sheet and water, the orientation of the water molecules was examined. Figure 4 shows the joint distribution of the θ_{DW} angle and the θ_{HH} angle for (a) GO2/1 L1, (b) GO4/1 L1, and (c) GO2/1 L0. (d) Definition of the water orientation angle (θ_{DW}). V_{DW} is the water bisector and V_S is the vector normal to the instantaneous surface (always pointing in the direction of the water molecule). (e) Definition of the water orientation angle (θ_{HH}). V_{HH} is the vector connecting the two hydrogen atoms of a water molecule vector, and V_S is the vector normal to the instantaneous water surface (always pointing in the direction of the water molecule). All distributions were normalized to have unit area.

Figure 4. Two-dimensional histograms of the joint distribution of the θ_{DW} angle and the θ_{HH} angle for (a) GO2/1 L1, (b) GO4/1 L1, and (c) GO2/1 L0. (d) Definition of the water orientation angle (θ_{DW}). V_{DW} is the water bisector and V_S is the vector normal to the instantaneous surface (always pointing in the direction of the water molecule). (e) Definition of the water orientation angle (θ_{HH}). V_{HH} is the vector connecting the two hydrogen atoms of a water molecule vector, and V_S is the vector normal to the instantaneous water surface (always pointing in the direction of the water molecule). All distributions were normalized to have unit area.
For the unreduced system, there is a major peak in the high-sapphire interface obtained by SSP polarization are reported. This peak around 3500 cm\(^{-1}\), which can be attributed to methine groups resulting from water and hydroxyl groups, is typically attributed to hydrogen-bonded OH bonds (from water and hydroxyl groups) whether pointing away from or toward the instantaneous interface, slightly pointing toward it. The region with values from 145° to 150° and from 115° to 120° for \(\theta_{DW}\) and \(\theta_{HH}\) (a representative structure is shown in Figure 5c), where both OH bonds are almost parallel to the instantaneous interface, slightly pointing toward it. The region from 170° to 175° and a \(\theta_{HH}\) value from 90° to 95° (Figure 5d). This configuration has both hydrogens pointing toward the instantaneous surface, which combined with the fact that in L0 water molecules are situated between the graphene sheet and the instantaneous interface, makes these hydrogens effectively pointing away from the graphene sheet.

III.d. vSFG Spectra of the Graphene Oxide-Water Interface

As mentioned in the Introduction, the vSFG spectroscopic technique is highly surface-specific due to its dependence on \(\chi^{(2)}\), the second-order nonlinear susceptibility, and is thus zero in a centrosymmetric environment.\(^{37,49}\) The experimental intensity (SSP polarization) \(I_{exp} \propto |\chi^{(2)}_{xxz}|^2\), where \(\chi^{(2)} = \chi^{(2)R} + \chi^{(2)NR}\), with the two terms being the resonant \(\chi^{(2)R}\) and nonresonant \(\chi^{(2)NR}\) parts, respectively. At a fixed visible frequency, the nonresonant term is constant.\(^{94}\) However, it should be pointed out that there could be a small \(\chi^{(3)}\) contribution to the experimental intensity,\(^{95,96}\) which was neglected in this work and will be examined in future work.

In Figure 6a, the experimental spectra of the water-GO-sapphire interface and from the reduction of the graphene oxide.\(^{104}\) After 10 min of reduction, one can see the disappearance of the 3700 cm\(^{-1}\) peak, a growth of a peak around 3500 cm\(^{-1}\), and a specific peak growing at 2900 cm\(^{-1}\), which can be attributed to methine groups resulting from the reduction of the graphene oxide.\(^{104}\) After 6 h of reduction, the system presents no major difference with the system after 10 min of reduction. One would expect that the more oxidized graphene oxide would present fewer high-frequency intensities at the interface due to the presence of more oxygen-bearing groups available for hydrogen bonding, resulting in a lower number of weak or free OH oscillators: this is not the case, thereby underlining the need for molecular simulations of these two systems to obtain insight on the local structure of these interfaces. A simulated spectrum can be obtained via the surface-specific velocity-velocity correlation function formalism proposed by Otho et al.\(^4\) from molecular dynamics simulations. Here the resonant component of the second-order susceptibility was calculated. This method ensures a fast convergence, thus preventing the need for very long sampling trajectories. Figure 6b shows the simulated \(|\chi^{(2)R}_{xxz}|^2\) spectra.
where only the OH oscillators from the water (no contribution from GO hydroxyl groups) within 11 Å of the instantaneous interface (to avoid the other interface, namely, the air–water present in the simulation) are taken into account. The simulated spectra with confidence intervals are given in the Supporting Information (Figure S3). The spectrum from the air–water interface can be found in Figure S4 in the Supporting Information and reproduces the experimental spectrum of air–water interface from the literature, further validating the functional used in the AIMD simulations. These simulated systems, compared to the experimental one, possess no sapphire support for the graphene oxide sheet, and any interpenetrated waters between the substrate and GO are absent.100 For GO2/1, the peaks are slightly red-shifted (100 cm⁻¹)105 compared to the experimental results, with a major peak at 3600 cm⁻¹, consistent with the experimentally reduced GO, and gains three peaks at 3450, 3300, and 3150 cm⁻¹ and a broad region below 3200 cm⁻¹, which means that, for GO4/1, OH bonds from water also account for this region, suggesting a strong hydrogen-bonding environment not only due to hydroxyl groups. Once again, the simulated spectrum for GO4/1 qualitatively reproduces the main features of the experimental vSFG spectrum. To get further insight into the interface, the resonant imaginary component, \(\text{Im} [\chi_{xxz}^{(2)}] \), which is equal to \(\text{Im} [\chi_{xxz}^{(1)}] \) since typically the nonresonant part is real,109 was examined. The sign of the imaginary part reflects the direction of the transition dipole (i.e., OH bond) with respect to the interface:109 a positive sign for \(\text{Im} [\chi_{xxz}^{(2)}] \) corresponds to a bond with the H atom pointing upward (away from the interface), and a negative sign corresponds to an OH bond with H pointing downward (toward the interface). Figure 7a,b shows the imaginary component \(\text{Im} [\chi_{xxz}^{(2)}] \) for the GO2/1 and GO4/1 interfaces, and the component for each layer is reported, corresponding to the depth from the interface, and as expected the L1 layer, in both systems, is the major contributing component to \(\text{Im} [\chi_{xxz}^{(2)}] \).

For the GO4/1 case, the \(\chi_{xxz}^{(2)} \) shows the characteristic loss of the high-frequency dominant peak at 3600 cm⁻¹, consistent with the experimentally reduced GO, and gains three peaks at 3450, 3300, and 3150 cm⁻¹ and a broad region below 3200 cm⁻¹, which means that, for GO4/1, OH bonds from water also account for this region, suggesting a strong hydrogen-bonding environment not only due to hydroxyl groups. Once again, the simulated spectrum for GO4/1 qualitatively reproduces the main features of the experimental vSFG spectrum. To get further insight into the interface, the resonant imaginary component, \(\text{Im} [\chi_{xxz}^{(2)}] \), which is equal to \(\text{Im} [\chi_{xxz}^{(1)}] \) since typically the nonresonant part is real,109 was examined. The sign of the imaginary part reflects the direction of the transition dipole (i.e., OH bond) with respect to the interface:109 a positive sign for \(\text{Im} [\chi_{xxz}^{(2)}] \) corresponds to a bond with the H atom pointing upward (away from the interface), and a negative sign corresponds to an OH bond with H pointing downward (toward the interface). Figure 7a,b shows the imaginary component \(\text{Im} [\chi_{xxz}^{(2)}] \) for the GO2/1 and GO4/1 interfaces, and the component for each layer is reported, corresponding to the depth from the interface, and as expected the L1 layer, in both systems, is the major contributing component to \(\text{Im} [\chi_{xxz}^{(2)}] \).

For GO2/1, the spectrum of the L0 layer has a negative broad region from ~3100 to ~3600 cm⁻¹. This is in keeping with the angle distribution in Figure 4c, where all the water molecules
are pointing away from the graphene-oxide sheet toward the instantaneous surface/interface. This broad negative range is consistent with Figure 3a, where the majority (80%) of water molecules are double (or more) donors, presenting very few “free” or weakly hydrogen-bonded OH bonds and are oriented away from the interface.

When looking at the L1 layer, GO2/1 shows a negative region from ~3200 to ~3500 cm⁻¹ and a sharper positive peak at ~3600 cm⁻¹, which are in keeping with the angle distribution in Figure 4a, where the water presents both orientations: one with the water oriented with the H of the OH bond pointing away from the instantaneous interface (Figure 5a) thereby contributing to the negative region in the imaginary spectrum and another one with, this time, an OH bond with the H pointing toward (Figure 5b) the GO sheet and the instantaneous interface (contributing to the positive peak at higher frequencies).

For the L1 layer of GO4/1 (Figure 4b), Imω presents a major broad negative peak centered at ~3400 cm⁻¹, a small positive peak at ~3700 cm⁻¹, and a small positive component in the low-frequency region (less than 3000 cm⁻¹). This is consistent with the angle distribution with most waters having an OH pointing away from the surface (Figure 4b and Figure 5a).

For further insight, Imω is reported in Figure 7c,d for each major water hydrogen-bond class in the L1 layer for GO2/1 and GO4/1, respectively. The 4p class of water, which is the major class for both systems, gives rise to markedly different spectra in the two cases. Additionally, the other two hydrogen-bonding classes that contribute to the spectrum of GO2/1 are 3p and 5p, whereas for the GO4/1 case the only other major contribution apart from 4p waters is from the 3p waters.

The ϑH/D/ϑH/I joint distribution for the 4p waters in the L1 layer for the two GO interfaces (Figure SSa,b) clearly shows a broad distribution for the GO2/1 case, while for the GO4/1 case the waters are predominantly such that one OH bond points away from the interface with the other parallel to the interface (Figure 5a) with a minor peak with the waters almost parallel to the interface but pointing slightly toward the interface. This is in keeping with the Imω spectra for the 4p waters in the L1 layer, which has large positive and negative contributions for the GO4/1 case, whereas the positive contribution is considerably dampened in the GO4/1 case. The 3p waters also show a broad distribution (Figure SSc,d) for the GO2/1 case, whereas for the GO4/1 case the waters are oriented with one OH pointing away from the interface and the other parallel to the interface or a minor peak with waters almost parallel but pointing slightly away from the interface. This again reflects the features of the Imω spectra for the two interfaces with a positive and negative region for the GO4/1 case but only a negative region for the GO2/1 case. The 5p case (Figure SSf) has waters for both interfaces essentially oriented with one OH pointing toward the interface and the other parallel to the interface corresponding to an essentially strong positive feature in the spectrum.

Closer examination of the hydrogen bonds of the 4p waters that are within the first maxima of the L1 region (distance from the instantaneous surface is less than or equal to the first peak, 1.75 Å for GO2/1, 1.25 Å for GO4/1) show some interesting features (see the Supporting Information for the definition of the r-α pair). For the OH₂ donor vectors pointing toward the interface (ϑOH ≥ 110°), the joint distribution of the hydrogen-bond distance (r) and hydrogen-bond angles (α) (Figure 8a) show significant deviation from the bulk water case (Figure S6).

For GO2/1 with larger angles and longer distances, suggesting that these hydrogen bonds are much weaker than the case of bulk water and hence are much less red-shifted. This effect is less pronounced for the GO4/1 case (Figure 8b), and coupled with the fact that these orientations are far fewer in the GO4/1 case, the positive feature at high frequencies is considerably dampened.

From this decomposition analysis, one can see that, in addition to the differences in the distribution of the hydrogen-bonding classes of water, the interfacial waters at the GO2/1- and GO4/1-water interfaces are oriented differently depending on the oxidation level of the graphene-oxide sheet resulting in very different vSFG spectra. The combined analysis of the orientation and hydrogen-bonding environment gives substantial insight into the type of interaction with water and the graphene-oxide surface. The 5p class, increasing only by 2.4% between GO4/1 and GO2/1 and accounting for less than 10%, becomes the second most-dominant feature of the spectra for GO2/1, and the 3p class decreasing from 24.9% to 16.3% in GO2/1, still being the second most-populous class, is not a dominant feature any more in the vSFG spectra. The 4p class, varying from 44.5% to 42.0%, drastically changes its contribution to the vSFG spectra between GO4/1 and GO2/1.

III.e Reactivity of the GO-Water Interface.

The AIMD simulations reveal several spontaneous epoxide (Figure 9a) opening events forming a charged pair of an alkoxide ion and a...
Figure 9. Reactive event chain in the GO$_{4/1}$. (a) Epoxide and water. (b) Epoxide opening to form an alkoxy and a carbocation. (c) Water hydrogen abstraction by the alkoxy to form a hydroxy group. (d) Addition of the hydroxide (previously formed from the water) on the carbocation to form a new hydroxy group. Reactive species are highlighted and are represented with ball and sticks. The other part of the GO surface is represented with sticks. Only a portion of the GO sheet is shown with just the reactive water (the remaining waters and GO sheet are not shown for the sake of clarity). Carbons, oxygens, and hydrogens are represented in gray, red, and white, respectively.

Role in the vSFG spectra and sheds light on the interactions specific to this interface. The ab initio MD simulations are in good agreement with the experiments, highlighting the fact that the DFT method used here is adequate for this system and details how the water molecules are adapting to the dihydroxyl groups.

IV. CONCLUSION

This paper demonstrates that the orientation and the hydrogen-bonding class of water molecules plays a major role in the vSFG spectra and sheds light on the interactions specific to this interface. The ab initio MD simulations are in good agreement with the experiments, highlighting the fact that the DFT method used here is adequate for this system and details how the water molecules are adapting to the dihydroxyl groups.

ACKNOWLEDGMENTS

R.D. and R.K. acknowledge support from the National Science Foundation, Grant No. CHE-1845795, as well as LSU-HPC and LONI for computer time. A.T. acknowledges the support provided by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and Chemical Sciences, Geosciences, and Biosciences Division at The Pacific Northwest National Laboratory (PNNL), operated by Battelle for the U.S. DOE under Contract No. DE-AC05-76RL01830. vSFG experiments...
were performed at the Environmental Molecular Sciences Laboratory, a DOE office of Science User Facility sponsored by the Office of Biological and Environmental Research that is located at PNNL.

REFERENCES

