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AN ASYMPTOTIC FORMULA FOR INTEGRALS OF

PRODUCTS OF JACOBI POLYNOMIALS

MAXIM DEREVYAGIN* AND NICHOLAS JURICIC

Dedicated to Professor Leonard Gross on the occasion of his 88th birthday

Abstract. We recast Byerly’s formula for integrals of products of Legendre

polynomials. Then we adopt the idea to the case of Jacobi polynomials.
After that, we use the formula to derive an asymptotic formula for integrals
of products of Jacobi polynomials. The asymptotic formula is similar to an
analogous one recently obtained by the first author and Jeff Geronimo for a

different case. Thus, it suggests that such an asymptotic behavior is rather
generic for integrals of products of orthogonal polynomials.

1. Introduction

In [4] the Alpert multiresolution analysis was studied and important in this
study was the integral

fn,m =

∫ 1

0

p̂n(t)p̂m(2t− 1)dt,

where p̂n is the orthonormal Legendre polynomial to be precisely defined in the
next section. These coefficients are entries in the refinement equation associated
with the multiresolution analysis and they have been shown to satisfy a variety of
difference equations. As a matter of fact, it turns out that more general coefficients
of the form

un,m =

∫
R
Pn(t)Qm(αt+ β)dσ(t),

where {Pn}∞n=0 and {Qn}∞n=0 are two families of orthonormal polynomials, σ is a
measure on R with finite moments, and the numbers α ̸= 0, β are complex, satisfy
a generalized wave equation on the two dimensional lattice

an+1un+1,m + bnun,m + anun−1,m =
cm+1

α
un,m+1 +

dm − β

α
un,m +

cm
α

un,m−1

for n,m = 0, 1, 2, . . . (see [3] for details). It was also observed in [3] that a
damped oscillatory behavior took place for such coefficients. In particular, for the
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coefficients

f (λ)
n,m =

∫ 1

0

p̂(λ)n (t)p̂(λ)m (2t− 1)(t(1− t))λ−1/2dt,

where p̂
(λ)
n are the orthonormal ultraspherical polynomials and λ > −1/2, it was

shown that

f (λ)
n,m = km

cos
(
π
(
m+ λ

2 − n
2 + 1

4

))
√
πnλ+1/2

+O

(
1

nλ+3/2

)
, (1.1)

as n → ∞, where the coefficient km can be explicitly found in terms of m.
The goal of the present paper is to obtain an asymptotic formula similar to

(1.1) for the integrals∫ 1

x

P (α,β)
n (t)P (α,β)

m (t) (1− t)α(1 + t)βdt,

as n → ∞, where x, m are fixed, and P
(α,β)
n (x) are Jacobi polynomials. First, we

recast a useful formula by Byerly in the case of Legendre polynomials and then
we will derive the desired formula.

2. Legendre Polynomials

Recall that the Legendre polynomial Pn of degree n is a polynomial solution to
the second order differential equation

(1− x2)y′′(x)− 2xy′(x) + n(n+ 1)y(x) = 0. (2.1)

Actually, it is not so hard to check that for every nonnegative integer n equation
(2.1) has a unique polynomial solution up to a multiplicative constant. To be
definite, throughout this section we assume that Pn is a monic polynomial.

In his book published in 1893, W.E. Byerly noted the following relation for
Legendre polynomials that showed itself to be useful in a few instances where
Legendre polynomials appear.

Proposition 2.1 (See p. 172 in [2]). Let n and m be nonnegative integers such
that n ̸= m. Then we have that∫ 1

x

Pn(t)Pm(t) dt =
(1− x2) [Pm(x)P ′

n(x)− Pn(x)P
′
m(x)]

n(n+ 1)−m(m+ 1)
, (2.2)

where x is any real number.

Proof. Evidently, the polynomials Pn and Pm satisfy the differential equations

d

dt

[
(1− t2)

dPn(t)

dt

]
= −n(n+ 1)Pn(t) (2.3)

and
d

dt

[
(1− t2)

dPm(t)

dt

]
= −m(m+ 1)Pm(t). (2.4)
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Multiplying (2.3) by Pm and (2.4) by Pn, respectively, and then subtracting them
and integrating the result gives

[n(n+ 1)−m(m+ 1)]

∫ 1

x

Pn(t)Pm(t) dt

=

∫ 1

x

Pn(t)
d

dt

[
(1− t2)

dPm(t)

dt

]
dt−

∫ 1

x

Pm(t)
d

dt

[
(1− t2)

dPn(t)

dt

]
dt. (2.5)

After integrating each of the integrals on the right-hand side of (2.5) by parts we
arrive at (2.2). �

Formula (2.2) immediately implies the orthogonality of Legendre polynomials.

Corollary 2.2. The polynomials Pn and Pm are orthogonal with respect to the
Lebesgue measure on [−1, 1] provided that n ̸= m, that is,∫ 1

−1

Pn(t)Pm(t) dt = 0.

Proof. It directly follows from (2.2) if we set x = −1. �

Another aspect of formula (2.2) is that it shows a relation between integrals of
products of orthogonal polynomials and the “augmented Wronskian” introduced
by Karlin and Szegő, who were motivated by some probabilistic problems [6].
Namely, they studied the polynomials

φn(m;x) =

∣∣∣∣Pm(x) Pn(x)
P ′
m(x) P ′

n(x)

∣∣∣∣ .
In these notations, formula (2.2) reads that

φn(m;x) =
n(n+ 1)−m(m+ 1)

1− x2

∫ 1

x

Pn(t)Pm(t) dt

which gives an integral representation of polynomials φn(m;x). In addition, Karlin
and Szegő showed that the polynomials φn(m;x) satisfy a second order differential
equation [6, Chapter 4]. At the same time, in the literature on integrable systems
the family of polynomials φn(m;x) is called the Darboux transformation of the
system Pn(x) (for instance, see [7]) and is known to produce solvable equations if
the original equation is solvable.

3. Jacobi Polynomials

In this section we will apply Byerly’s idea to the Jacobi differential equation. To

this end, let P
(α,β)
n (x) be a polynomial solution of the Jacobi differential equation

(1− x2)
d2y

dx2
+ (β − α− (α+ β + 2)x)

dy

dx
+ n(n+ α+ β + 1)y = 0, (3.1)

where we assume that α, β > −1. It is clear that such a definition determines a
polynomial up to a constant factor. So, to be more precise, one can check that

P (α,β)
n (x) =

(α+ 1)n
n!

n∑
k=0

(−n)k(α+ β + n+ 1)k
(α+ 1)k

(
1− x

2

)k

(3.2)
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is a solution to (3.1), where (a)k is the Pochhammer symbol, that is, (a)0 = 1 and
(a)k = a(a+ 1)...(a+ k − 1) for k = 1, 2, 3, . . . . Besides, formula (3.2) defines the

Jacobi polynomial P
(α,β)
n (x) uniquely.

Next, following Karlin and Szegő [6] let us introduce the “augmented Wron-
skian” of the form

φn(m;α, β, x) =

∣∣∣∣∣∣
P

(α,β)
m (x) P

(α,β)
n (x)

dP
(α,β)
m (x)

dx

dP
(α,β)
n (x)

dx

∣∣∣∣∣∣ .
Remark 3.1. The polynomials φn(m;α, β, x) are in fact the Darboux transform

of P
(α,β)
n (for the definition of the Darboux transform see [7]). Also, the poly-

nomials φn(m;α, β, x) are a particular case of the generalized Jacobi polynomials
introduced in [1].

Theorem 3.2. Let α, β > −1. Then for any nonnegative integers n and m such
that n ̸= m, we have∫ 1

x

P (α,β)
n (t)P (α,β)

m (t)w(t)dt =
w(x)(1− x2)φn(m;α, β, x)

n(n+ α+ β + 1)−m(m+ α+ β + 1)
, (3.3)

where w(t) = (1− t)α(1 + t)β and x is any real number.

Proof. By definition, the polynomials P
(α,β)
n and P

(α,β)
m satisfy the differential

equations

(1−t2)
d2P

(α,β)
n (t)

dt2
+(β−α−(α+β+2)t)

dP
(α,β)
n (t)

dt
+n(n+α+β+1)P (α,β)

n (t) = 0

(3.4)
and

(1−t2)
d2P

(α,β)
m (t)

dt2
+(β−α−(α+β+2)t)

dP
(α,β)
m (t)

dt
+m(m+α+β+1)P (α,β)

m (t) = 0.

(3.5)

We multiply (3.4) by P
(α,β)
m and (3.5) by P

(α,β)
n , respectively, and then subtract

the results to get a differential equation for P
(α,β)
n (t)P

(α,β)
m (t). After using the

product rule on φn(m;α, β, x) and rewriting the differential equation becomes

−CP (α,β)
n (t)P (α,β)

m (t) = (1− t2)φ′
n(m;α, β, t)+(β−α−(α+β+2)t)φn(m;α, β, t),

(3.6)
where C = n(n+ α+ β + 1)−m(m+ α+ β + 1). We now multiply (3.6) by w(t)
and integrate over [x, 1] to obtain

−C

∫ 1

x

P (α,β)
n (t)P (α,β)

m (t)w(t)dt =

∫ 1

x

(1− t2)φ′
n(m;α, β, t)w(t)dt

+

∫ 1

x

(β − α− (α+ β + 2)t)φn(m;α, β, t)w(t)dt.
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After handling the left integral on the right-hand side by parts, we are left with

−C

∫ 1

x

P (α,β)
n (t)P (α,β)

m (t)w(t)dt = −(1− x2)w(x)φn(m;α, β, x)

−
∫ 1

x

φn(m;α, β, t)(1− t2)w′(t)dt+

∫ 1

x

(β − α− (α+ β)t)φn(m;α, β, t)w(t)dt.

(3.7)

Then one can check that∫ 1

x

φn(m;α, β, t)(1− t2)w′(t)dt =

∫ 1

x

(β − α− (α+ β)t)φn(m;α, β, t)w(t)dt,

which completes the proof. �

As in the case of Legendre polynomials, formula (3.3) immediately leads to
orthogonality.

Corollary 3.3. Let α, β > −1. Then the polynomials P
(α,β)
n and P

(α,β)
m are

orthogonal with respect to the weight w(x) = (1− x)α(1 + x)β on [−1, 1] provided
that n ̸= m, that is,∫ 1

−1

P (α,β)
n (t)P (α,β)

m (t) (1− t)α(1 + t)β dx = 0.

The following result is another consequence of formula (3.3), and a well-known
form of this result will be used in the next section.

Corollary 3.4. Let α, β > −1 and let w(t) = (1 − t)α(1 + t)β. Then for any
n,m ≥ 1 and n ̸= m, we have∫ 1

−1

(∫ 1

x

P (α,β)
n (t)w(t)dt

∫ 1

x

P (α,β)
m (t)w(t)dt

)
dx

(1− x2)w(t)
= 0. (3.8)

Remark 3.5. It follows from (3.3) that∫ 1

x

P (α,β)
n (t)w(t)dt =

(1− x2)w(x)φn(0;α, β, x)

n(n+ α+ β + 1)

and thus (3.8) can be rewritten in the following manner∫ 1

−1

φn(0;α, β, t)φm(0;α, β, t)(1− t2)w(t)dt = 0, (3.9)

which in particular shows that the integral from (3.8) exists.

Proof. To apply formula (3.3), note that n > 0 and P
(α,β)
0 ≡ 1 to get the identity∫ 1

x

P (α,β)
n (t)w(t)dt =

(1− x2)w(x)(P
α,β)
n (x))′

n(n+ α+ β + 1)
. (3.10)

Substituting this expression into (3.8) yields a cancellation, leaving

1

n(n+ α+ β + 1)

∫ 1

−1

(
(P (α,β)

n (x))′
∫ 1

x

P (α,β)
m (t)w(t)dt

)
dx.
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After integrating by parts and using the fundamental theorem of calculus on the
term ∫ 1

x

P (α,β)
m (t)w(t)dt,

the integral in (3.8) becomes (up to a constant factor which is not important since
we have 0 on the right-hand side)(

P (α,β)
n (x)

∫ 1

x

P (α,β)
m (t)w(t)dt

) ∣∣∣x=1

x=−1
+

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)w(x)dx = 0.

Observe that
∫ 1

−1
P

(α,β)
m (t)w(t)dt = 0 and

∫ 1

−1
P

(α,β)
n (x)P

(α,β)
m (x)w(x)dx = 0 us-

ing Corollary 3.3. �
Remark 3.6. Since

φn(0;α, β, x) = (P (α,β)
n (x))′

formula (3.9) implies the following well-known formula

d

dx

[
P (α,β)
n (x)

]
=

(
n+ α+ β + 1

2

)
P

(α+1,β+1)
n−1 (x). (3.11)

Here we are taking into account the normalization given by (3.2).

4. Asymptotic Formula for the Integrals in Question

In this section we will obtain an asymptotic formula for the integral∫ 1

x

P (α,β)
n (t)P (α,β)

m (t)w(t)dt

when x and m are fixed and n → ∞. To begin with, let us recall a classical
asymptotic result for Jacobi polynomials.

Proposition 4.1 ([5]). Let α, β > −1 and set

N = n+
α+ β + 1

2
, γ = − (α+ 1/2)π

2
.

Then for a fixed θ ∈ (0, π), we have

P (α,β)
n (cos θ) =

k(θ)√
n

cos(Nθ + γ) +O(n−3/2), (4.1)

as n → ∞, where

k(θ) =
1√
π
[sin(θ/2)]−α−1/2[cos(θ/2)]−β−1/2. (4.2)

To apply the above statement to our integrals, note that combining (3.3) and
(3.11) gives

n(n+ α+ β + 1)−m(m+ α+ β + 1)

(1− x2)w(x)

∫ 1

x

P (α,β)
n (t)P (α,β)

m (t)w(t)dt

=
n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x)P (α,β)

m (x)− m+ α+ β + 1

2
P

(α+1,β+1)
m−1 (x)P (α,β)

n (x).

(4.3)

Then the latter formula and Proposition 4.1 lead to the following result.
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Theorem 4.2. Let α, β, N , and γ be as in Proposition 4.1. Suppose n and m
are nonnegative integers, m is fixed, and n ̸= m. Then for a fixed θ ∈ (0, π) we
have ∫ 1

cos θ

P (α,β)
n (t)P (α,β)

m (t)w(t)dt =
ℓ(θ)

n3/2
sin(Nθ + γ) +O(n−5/2) (4.4)

as n → ∞, where

ℓ(θ) =
2α+β+1

√
π

[sin(θ/2)]
α+1/2

[cos(θ/2)]
β+1/2

P (α,β)
m (cos θ).

Proof. For convenience, let us set

In =

∫ 1

cos θ

P (α,β)
n (t)P (α,β)

m (t)w(t)dt.

Next, applying Proposition 4.1 to P
(α+1,β+1)
n−1 and P

(α,β)
n , we arrive at

P
(α+1,β+1)
n−1 (x) =

[sin(θ/2)]−α−3/2[cos(θ/2)]−β−3/2√
(n− 1)π

cos(Nθ + γ − π/2) +O(n−3/2)

(4.5)
and

P (α,β)
n (x) =

[sin(θ/2)]−α−1/2[cos(θ/2)]−β−1/2

√
nπ

cos(Nθ + γ) +O(n−3/2), (4.6)

as n → ∞ and where we set x = cos θ. Observe that cos(Nθ + γ − π/2) =
sin(Nθ + γ) and so (4.5) takes the form

P
(α+1,β+1)
n−1 (x) =

[sin(θ/2)]−α−3/2[cos(θ/2)]−β−3/2√
(n− 1)π

sin(Nθ+γ)+O(n−3/2). (4.7)

Now, combing (4.6) and (4.7) with (4.3), we get

(n(n+ α+ β + 1)−m(m+ α+ β + 1))In
(1− x2)w(x)

[sin(θ/2)]α+3/2[cos(θ/2)]β+3/2

=
n+ α+ β + 1

2
√
(n− 1)π

P (α,β)
m (x) sin(Nθ + γ) +O(n−1/2). (4.8)

Then since x = cos θ, the weight function can be rewritten in the following way

w(x) = (1− cos θ)α(1 + cos θ)β = 2α+β [sin(θ/2)]2α[cos(θ/2)]2β .

Also, we have 1− x2 = sin2 θ = 4[sin(θ/2)]2[cos(θ/2)]2. As a result, (4.8) reduces
to

(n(n+ α+ β + 1)−m(m+ α+ β + 1))In
2α+β+2[sin(θ/2)]α+1/2[cos(θ/2)]β+1/2

=

√
n

2
√
π
P (α,β)
m (x) sin(Nθ + γ) +O(n−1/2),

which yields (4.4). �
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