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WEATHER DERIVATIVES AND THE MARKET PRICE
OF RISK

JULIUS N. ESUNGE* AND JAMES J. NJONG

ABSTRACT. Weather derivatives are becoming prominent features in multi-
asset class portfolios of alternative risk. The pricing of these securities is
nonetheless challenging since it requires an incomplete market framework. We
discuss pricing formulas for temperature-based weather derivative options,
constructing mean reverting stochastic models for describing the dynamics of
daily temperature with a constant speed of mean reversion for three cities.
Truncated Fourier series are used to model the volatility, and assuming a
constant market price of risk, we introduce a novel approach for estimating
this constant, using Monte Carlo simulations.

1. Introduction

Natural monopolies and regulated markets are prominent features in the world’s
economies. Unlike deregulated markets, the government controls both entry into
the market and the commodity prices in regulated markets. As a result, the
balance of power in deregulated markets is tilted towards consumers who enjoy
the competition between suppliers. Energy markets across the world are one such
market wherein energy producers for a long time enjoyed the benefits of regulation.
Indeed, though energy producers knew of the adverse effects weather had on the
demand for energy and on their revenues, it never pushed them to confront this
risk since they could adjust for poor returns by increasing prices, thereby shifting
weather-related risk to the consumers. However, following the collapse of Wall
Street in 1929, the US energy market was left with only eight companies bearing
the burden of supplying energy to the entire country. This attracted a lot of
attention from the government. Congress introduced the Public Utility Holding
Company Act (PUHCA) in 1935, and started the deregulation of the US energy
market. Since introducing this act, the energy crisis of the 1970s and other related
events have kept the attention of Congress fixed on energy markets, resulting in
several amendments to PUHCA and the introduction of other legislation such
as the Energy Policy Act of 1992. This continued activity on energy legislation
has led to complete or partial deregulation of the energy markets across the US,
putting energy producers in the cross-hairs of weather-related risk.
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A weather derivative is a contract between two parties that stipulates how pay-
ments will be exchanged between the parties depending on certain meteorological
conditions such as rainfall, temperature, humidity, or snowfall during the contract
period. These derivatives are one in a handful of financial instruments that can
be used to reduce risk associated with unexpected weather. Furthermore, weather
derivatives are possible tools for portfolio diversification because the underlying
weather indices have little or no correlation with other market indices. In ad-
dition, traditional insurance contracts predated weather derivative contracts and
provided security against catastrophic weather events. The difference between
such traditional weather insurance and weather derivatives is that the final settle-
ment payment of a weather derivative contract is calculated from measured values
of the weather itself rather than on an estimate of the loss sustained because of the
weather. This means that weather derivatives are a more general tool than tradi-
tional insurance, because we can use them to cover the adverse effects of weather
on intangibles such as profits and volume of sales [11].

Standardized futures contracts written on temperature indices have been traded
on the Chicago Mercantile Exchange (CME) since October 2003, together with
European call and put options written on these futures [1]. The valuation of
temperature-based weather derivatives requires an incomplete market framework,
since the underlying temperature indices on which the options are written are not
tradable. To understand the risk involved in such trading, robust pricing models
of both futures and options are called for [3]. Pricing formulas for temperature-
based weather derivative contracts must take into account the dynamics of daily
temperature. The challenge posed by this need to capture temperature dynamics
is inherent in the high locality property of temperature which warrants us to
construct a model for every city in which trading is of interest.

Previously used approaches for pricing weather derivatives include the Actuar-
ial Method, Historical burn Analysis (HBA) and Index modelling. While the first
two all turned out to be faulty, the latter was deemed to be computationally too
expensive and lead to loss of data in both extreme and common events. Daily
Average Temperature (DAT) modelling was introduced to counter the challenges
of these methods, and outside of providing more accurate results, it proved to be
computationally less demanding. DAT modelling is rooted in finding a stochastic
process that describes the dynamics of daily average temperature. However, deriv-
ing an accurate model for the daily average temperature is not a straightforward
process.

Several authors have opted to model the temperature dynamics with continuous
processes which are mean reverting OU processes (see [5] for more about OU
processes). The cyclical nature of the temperature time series justifies the use of
a mean-reverting process in modelling its dynamics. [8] proposed the following
model for the temperature :

th = a(@t — Tt)dt + O'th 5 (11)

where W = (W;,t > 0), the driving noise process, was taken to be the Wiener
process; a the speed of mean reversion; 6 was the seasonal mean and o was the
volatility of the process.
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To capture fully the mean-reveting dynamics of the temperature, it is important
that we have:

However, on solving (1.1) with the requirement that 75 = 6, = C, we find that:

t t
T, =6, — / e R ag, + / oe =R gy, (1.3)
Consequently, leveraging the fact that the expectation of the Ito integral is zero,
we arrive at:

t
E(T}) = 6, — / e~ =R dg, | (1.4)

which does not check (1.2).
To address this issue, the authors of [8] suggested that the term % be added to
the model so that its resulting form be:

do,

dT, = —* + a(, = T,)dt + odWV, . (1.5)

It is then easy to see (see [12] or [8] for proof) that the solution of (1.5) is given
by:

t
T, = 0, +/ oe =R g, (1.6)

which checks (1.2).

Following the introduction of this model, much of the work in continuous process
stochastic modelling of DAT has been around the nature of a, the functional form of
0; that best captures the trend and seasonality in the temperature time series, and
the functional form of o. There has also been some discussion around the driving
noise process in this model, with some authors arguing in favour of fractional
Brownian motion and others a general Lévy process.

Indeed, while Dornier and Querel in [8] assumed a constant speed of mean
reversion and a constant volatility, Alaton et al. in [7] model ¢ = o(t) as a
piece-wise constant function representing a monthly variation in volatility. Their
argument for using a Wiener process as the driving noise process comes from the
observation that the temperature differences are close to normally distributed.
However, they do not provide a statistical test for normality, and the authors
admit that the empirical frequency of small temperature differences are higher
than predicted by the fitted normal distribution. Furthermore, both papers do
not show a study of the possible time dependencies in the residuals observed from
the regression model [3].The model proposed by Brody et al. in [6] where the
Wiener process in equation (1.1) is replaced by a fractional Brownian motion, was
later criticized in [3] where it was shown that a fractional Brownian dynamics does
not seem to be an appropriate model when considering the Norwegian temperature
data. In [3], the authors propose an Ornstein-Uhlenbeck model with seasonal mean
and volatility, where the residuals are generated by a Lévy process rather than a
Brownian motion. They suggest the class of generalized hyperbolic Lévy processes,
a flexible class of Lévy processes capturing the semi-heavy tails and skewness.
Their model pushes the framework of Alaton et al. and the seasonal volatility is
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modeled by a continuous form that repeats annually. The model (1.5) resurfaces in
[4] and then in [12] with the volatility modeled as a stochastic process. Gyamerah
et al. in [9], proposed the so-called novel time-varying mean-reversion Levy regime-
switching model for the dynamics of the deseasonalized temperature. The authors,
however, did not use the proposed model for pricing weather derivative contracts.

[2] returned to the framework in [8], and captured the seasonality and volatility
with truncated Fourier series. According to [1], using truncated Fourier series,
a good fit for both the seasonality and the variance component can be obtained
while keeping the number of parameters relatively low. The Fourier series sim-
plifies the needed calculations for the estimation of the parameters and for the
derivation of the pricing formulas. Zapranis and Alexandridis in [1] follow up on
the work in [2] and model the seasonal cycle using an extension and a combina-
tion of discrete Fourier Transform approach and the regression method. Zapranis
and Alexandridis use a technique called Wavelet Analysis (WA) to decompose the
temperature time series.

We follow [1, 2, 7] to construct temperature models for Seattle, New York
and Cincinnati. Thereafter, we employ Girsanov’s theorem together with the risk
neutral valuation formula, to find prices for weather derivative options. In view
of this, the rest of this paper is organised as follows: in Section 1.1 we discuss the
rudimentary notions of the weather derivatives market and temperature indices,
and follow this with Section 2 where we construct temperature models for all three
cities using 25 year temperature data for each city to estimate the parameters of the
ensuing models. The temperature data sets we use are sourced from both Kaggle?
and the National Oceanic and Atmospheric Administration (NOAA) website?.
All data sets contained daily temperature reading from 1990 to 2016 and with the
exception of Seattle’s set, they contained missing values which we fill using the
approach outlined in [1]. We use 25 years of the time series to train the model and
the remaining 1 year to test the model. The pricing of weather derivatives options
is carried out in Section 3.1 prior to outlining how Monte Carlo simulations were
used to estimate the constant Market Price of Risk (MPOR) in Section 3.3. The
paper concludes with a summary and discussion of the results, in Section 4.

1.1. The Weather Derivatives Market

Since the underlying indices of weather derivatives is temperature which cannot
be traded, weather events must be clearly defined in order to make clear the
terms of the contract. Temperature indices are the degree-day indices. These are
representative values of the difference between the temperature of a given day and
the reference temperature.

Definition 1.1 (Temperature). For a given day «, let T .. and T)%.  be, respec-

tively, the maximum and minimum temperatures for the day, measured in degree

IThe seattle data set is the set used for the Did it rain in Seattle challenge on Kaggle
and can be found on hitps://www.kaggle.com/chandraroy/seattle-weather-forecast-using-logistic-
Tegression

2The recordings for New York are taken from the New Brookswick weather station while
those for Cincinnati are from the Brooksville weather station. Both sets can be found on
https://gis.ncde.noaa.gov/maps/ncei/summaries/daily
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Celsius. The average temperature for the day is:
T: 4+ T%

Ta; _ —max min
2
Definition 1.2 (Degree Days). Denote by T,.s the reference temperature for a
particular region and period. For a given day i, let T; be the temperature for that
day:
(1) A heating degree day (HDD,) generated on day ¢ is:
HDD; = maz{Tre; — T;,0}
(2) A cooling degree day (CDD;) generated on day i is:
CDD; = max{T; — Ty.s,0}.

The HDD index is a measure of cold in a winter period while the CDD index is a
measure of heat in a summer period.

Typically the HDD season runs from November to March while the CDD season
is from May to September with April and October standing out as the “shoulder
months” [7]. The payout from a weather derivative contact is usually contingent
on the accumulation of some weather index over the specified contract period. For
example, given a contract period of n days, the accumulated HDD index over the
period is defined by

n
H, = Z HDD;

i=1
Consequently, for an uncapped HDD call option with strike K and tick size 7, the
payout X is

X =n mazx{H, — K,0}

Usually, the buyer of a HDD call pays the seller a premium at the beginning
of the contract. At the end of the contract period, if the number of HDDs for
the contract period is greater than the predetermined strike level, the buyer will
receive a payout X as defined above. In contrast, the seller of a put option pays
the buyer a premium, and if the number of HDDs for the contract period is below
the strike, the buyer pays the seller. The pay out function for a put option is:

X =n max{K — H,,0}

2. Modelling Daily Average Temperatures

In this section, we find a continuous stochastic process for describing the evo-
lution of temperature. Our approach is consistent with the underlying ideas in
[2, 7]. Figure 1 shows plots of the tidy data and a table of summary statistics for
all three cities. From it, we observe that temperature follows a predicted cycle
and moves around a seasonal mean which is affected by urbanization trends. Con-
sequently, following [8], we model the dynamics of DAT with the mean reverting
Ornstein-Uhlenbeck process:

dS(t)

AT, = | == +a(S(t) = 1)) | dt + o(t)dB,. (2.1)
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Seattle DAT Cincinnati DAT
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FIGURE 1. Daily Average Temperature for all three cities for the
years from 1990 to 2015 and a table of summary statistics of the
respective temperature time series.

In what follows, we find a functional form of S(¢) and o(t) and use the linear
approach from [1] to estimate the value of the constant a.

2.1. Deterministic Seasonal Mean

A closer look at the “denoised” temperature time series reveals that temperatures
have uniform peaks and very weak rising trends. This inspires us to model the
trend with a linear function and the seasonality with a single sine function. Thus,
the deterministic seasonal temperature is modeled by:

S(t) = A+ Bt + Csin(wt + ¢), (2.2)

where the period w = 327”5 and the phase shift ¢ captures the fact that the minimum

and maximum temperatures do not occur on the first of January, or the first of
July, respectively.

Notice that considering a general periodic function in (2.2) will be misleading.
Indeed, it will suggest that temperature follows a fixed periodic cycle, hitting its
annual minimum or maximum at the same date of the year. Moreover it will
suggest that the annual maximum and minim have fixed values, both of which are
not true.

Using historical data, we estimate these parameters using the method of least
squares. That is, observing that Equation (2.2) can be rewritten as:

S(t) = a1 + aot + agsin(wt) + agcos(wt),
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we find the vector £ = (a1, as, as, as) that minimizes the estimation errors. Then

A=ay, B = as, C=\/a§+ai, ¢ =tan"* <a4)_7r
asz

Consequently, we have:

11.7 — (0.00005)¢ + 7.12sin(wt — 1.99)  in Seattle
S(t) =< 11.4+4 (0.0001)t + 12.14sin(wt — 1.99)  in New York
12.9 — (0.00006)t 4 12.14sin(wt — 1.93) in Cincinnati
The equations further emphasize the weak linear trend in the temperature time
series with the remarkably small values coefficients of ¢.

2.2. Estimating the Speed of Mean Reversion

We follow the linear approach to estimate the speed of mean reversion. First, ob-
serve that using the Euler discretization scheme, the SDE (2.1) can be transformed
to
Tt — Tt,1 = Ttm — ngl + a(Ttm — Tt)dt + O'(t)g(t),

where £(t) ~ N(0,1). Using the transformation T; = T, — T/ (this is equivalent
to detrending and deseasonalizing the DAT) we get:

T, = aTy_1 + e(t), (2.3)
where

a=1-q, and e(t) = a(t)&(t).

Equation (2.3) is an AR(1) model of the detrended and the deseasonalized tem-
perature. Using the historical data, we find that:

0.2757, in Seattle

a= 0.3499, in New York
0.2832, in Cincinnati

2.3. Temperature Volatility

Here, we break away from the framework in [7] and follow somewhat the likes of
[1, 2], who use Fourier series to model the volatility of temperature. The volatility
models they proposed were
I J
ot)y=p+ Z cisin(iwt) + Z d;cos(jwt).
i=1 j=1
We replace the constant p with a linear term to capture the trend in the annual
volatility, i.e the fact that there is higher volatility in the winter months than in
the summer months. Consequently, the volatility is modeled by:
I J
ot)=V+Ut+ Z cisin(iwt) + Z d;cos(jwt).
i=1 j=1
Using historical data, one can then find plausible values for I, J and the accom-
panying constants. To achieve this, the average variance for each day of the year
for the 24 years of the data is calculated and then the best model for this values is
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FIGURE 2. Results of a thousand Monte-Carlo simulations plot-
ted over real data.

obtained using the method of least squares. The models for volatility for Seattle,
New York and Cincinnati are respectively the following :

7.48 + 0.64sin(wt) + 1.56cos(wt) + 2cos(2wt) 4+ 0.79cos(3wt),
o(t) = ¢ 20.2 —0.02t + 2.25sin(wt) + 8.25cos(wt),
27.5 — 0.02t 4+ 3.74sin(wt) 4+ 11.5cos(ws),

The above results show that while the volatility frame works in [1, 2] are sufficient
to describe the volatility in Seattle, while the introduction of the linear term
improves the results for both Cincinnati and New York.

3. Pricing HDD Call/Put Options
Consider the SDE :

th = (dfh(ft) + G(S(t) — Tt)> dt + O'tdBt y (31)

and let
g9(t,x) = exp(at)(z — S(t)).
Then it holds first that:

dg ' d%g B o dg ds(t)
e exp(at) ; Tz =0 T aexp(at)(z — S(t)) — exp(at)T,

and then a straight forward application of the It6 formula yields:
d
1 T 0D,

dg(t,z) = dt de = 2 dz? dz
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where p and o are the drift and diffusion coefficients respectively. On further
simplification we get that:

dg(t,Ty) = (,ue(at) + elot) {a(x - S(t) - C@?}) dt + o(t)e' ™ dB,.
But
ds(t
p= Tz(f) +a(S(t) — Ty).
Hence,

dg(t,Ty) = (ue(at) - ,ue(at)) dt + o (t)e"VdB, = o(t)e' ™ dB;.

Integrating both sides from s to ¢, and using the fact that Ty, = = we find that
¢
el (T, — S(1)) — e (z — S(s)) = / o(k)el™®dBy,
which simplifies to

T, = S(t) 4 (z — S(s))e 2% 4 / t o(k)e =R dp,. (3.2)

S

Equation (3.2) then provides that:
¢
Var[Ty|Fs] = / o?(k)e 2R gy (3.3)
and

EP [Ty F,) = S(t) + (x — S(s))e~ =),

Now, denote by A the market price of risk and Q the risk-neutral measure charac-
terized by A. Further, let W = (W, t > 0) be the Q-standard Brownian motion.
Then Equation (2.1) can be transformed to:

th = <dfh(€t) + G(S(t) — Tt) — AO’(t)) dt + Utth~

Consequently, it holds:

t t
T, = S(t) + (Ty — S(s))e 2t — /\/ o(t)e =R gk —|—/ o(t)e Rawy |

S

and taking expectations on both sides we get:
¢
EQ[T}|F,] = EF [T} Fs] — A / o(t)e 2R gk, (3.4)
s

Further, we find that the covariance and variance are related by:

Cov[Ti Ty | Fs] = e~ "D Var(T,|F,).
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3.1. Winter Valuation of HDD and CDD Contracts
The reference temperature for weather derivatives contracts traded at the CME is
18°C and as a result, the payoff function for a degree day contract is defined:

X = amax{H, — K,0},

where « is the tick size, K the strike level, n the number of days in the contract
period and H,, the number of heating degree days in the contract period defined
by
n
H, =Y max{18 —T,,,0}.
i=1
From the temperature time series, we observe that for the winter months,
P(max{18 — T3,,0} = 0) =~ 0.

This observation was first made in [7]. Outside the fact that it eliminates the
maximum function from Equation (3.1), it allows us to leverage the fact that the
OU process is Gaussian to conclude accurately that under the risk-neutral measure

Q,
T, ~ N(u,07)

with the quantities y; and o? given by the Equations (3.4) and (3.3), respectively.
In light of this, we can rewrite equation (3.1) as

H,=18n-> T,
i=1
whence we get:

uy = E9[H,|F] = 18n — Y E%(T,,|F]

=1

and
vy =Var[H,|F] = Var (Z[Tti m)
i=1
= ZV@T[TtiLFt] +2ZZCOU[Tti7Tt1|‘Ft] .
i=1 i=1 i<j
That is:

Hn ~ N(Ut,'l)t) .
It follows from the fundamental theorem of asset pricing that the price C(t) at

any time t of a winter weather derivative call option with tick size n and strike
level K is

Oty = e "t VEg[pmax{H, — K,0}|F]
= ne_r(t"_t)/ (x — K) fu(z)de.
K

o
= ogpne Tt ((Kun)CD(an) + 62> ,
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where ¢ is the density function of the standard normal distribution.
Moreover, using the same contract parameters for a put option and the above
transformations, the price of a put option is given by:

P(t) = e "t YEg[pmax{K — H,,0}|F]

K
= e [ (K o) o)
0

o o2 _i
+ —=le T —e 2 .
Vo

3.2. Valuation Using Monte Carlo Simulations

The formulation of pricing formulas considered in the previous section and its
accompanying assumptions do not support the pricing of weather derivative con-
tracts in all seasons and in the event of high volatility (as is characteristic of cold
seasons) we may get highly inaccurate prices. The alternative to this method that
overcomes this risk of inaccurate pricing, and which works for contracts in all sea-
sons, is the use of Monte-Carlo simulations. To use the Monte Carlo method, we
generate a set of paths and calculate the payoff for each path. Then, the average
of the payoffs from all the generated paths is used to represent the expected price
of the derivative [13]. In this regard, the price at time ¢ of an HDD call option in
a time space of length n, with constant interest rate r is given by

N
—r(tn— 1 1
Crpp(t) = e "t t)N ZnE [maz{H], — K,0}], (3.5)

i=1

where 7 is the tick size (or principal nominal) and N is the number of paths
generated.

3.3. Estimating the Market Price of Risk

The discussion in the previous section suggests that we need to simulate tempera-
ture trajectories under the risk neutral measure. That is we need to simulate the
temperature dynamics from Equation (3.5). To do this, we must first find esti-
mates for the parameter A\ which characterizes the risk preferences of the weather
traders. As suggested by [7], the value of A can be estimated by comparing the
market prices for some weather derivatives contracts and settling for the best value
of X\ for which our model gives prices similar to these. The drawback is that the
weather derivatives market is relatively underdeveloped and therefore there are
few contracts that can support this approach. However, this suggestion implies
that the best estimate for the value of A is that for which the predicted degree
days are close to the observed degree days.

Using our test data, we find the approximate values of this parameter through
Mounte Carlo simulations. Guided by the values estimated in [7], we perform two
thousand Monte Carlo simulations of temperature trajectories for the month of
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Monte Carlo Estimates for the MPOR

300 4

-300 1

HDDs(Observed-Predicted)

1.0 0.5 0.0 05 1.0
Market Price of Risk

City — Cincninnati — New York —— Seattle

FIGURE 3. Plot of the difference in HDDs predicted via two thou-
sand Monte Carlo simulations for the different values of the pa-
rameter A showing a negative linear relationship between the vari-
ables.

January in all three cities for each:
re{-1.0,...,-0.02,-0.01,0.0,0.01,0.02,...,1.0}.

The difference between the predicted HDDs and the observed HDDs is then com-
puted and compared for each value of A. Figure 3 shows the results of these sim-
ulations and depicts the inverse relationship between an increase in the value of A
and the accuracy of the predicted HDDs. In Seattle, we found that the only value
of A which gave accurate HDD predictions within a £1 error margin was —0.3.
Moreover, we found that for values of the parameter in the ranges [0.14,0.16] and
[0.13,0.16] for New York and Cincinnati, respectively, the error in the prediction
was between —1 and 1. Therefore, the value of A for the latter cities can be chosen
within these ranges.

4. Conclusion

Weather derivatives have become prominent on the CME in the last decade,
attracting attention from both hedgers and speculators. These derivatives are
attractive to investors because they have little correlation with other market vari-
ables and they provide excellent coverage against uncertainty in daily weather.
The nature of the underlying in these derivatives, however, has been a major
drawback in their pricing and trading.

In this work, we set out to find pricing formulas for weather derivatives in three
cities. The attained aim of our work was to seek continuous stochastic processes
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for describing the evolution of temperature, and then using the Girsanov theorem,
find an equivalent martingale measure which we subsequently use together with
the risk neutral pricing formula to find close form pricing formulas for call and
put options written on HDD indices. We assumed a constant market price of risk,
and we introduced the use of Monte Carlo simulations to estimate these constants.
To the best of our knowledge, this is the first time this has been done. In future
work, we will explore this in detail and follow up on the suggestions in [10] which
allude to a possible time dependence of the market price of risk, whilst exploring
the possibility of modelling volatility with piece-wise non-constant functions with
each piece capturing volatility for each season, and also the use of splines to model
the volatility would be considered.
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