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THE VALUE OF INFORMATION UNDER PARTIAL

INFORMATION FOR EXPONENTIAL UTILITY

FARAI JULIUS MHLANGA* AND MBAKISI DUBE

Abstract. The paper investigates the value of information to an investor
under the partial information setting for exponential utility. The only in-
formation available to the investor is the one generated by the asset price
processes and, in particular, the underlying appreciation rate of the risky
asset cannot be observed directly. Filtering theory is used to find a filtered
estimate of the underlying appreciation rate. This brings about two max-
imisation problems from which we determine the optimal expected utilities
of wealth under partial and full information, via Hamilton-Jacobi-Bellman
equations. The value of information is, therefore, calculated as the di↵er-
ence between the two optimal expected utilities. The e↵ect of parameter
changes on the value of information is determined by carrying out numerical
simulations.

1. Introduction

The accessibility and flow of information can be associated with a financial
value and this value is referred to as the value of information. The value of
information which depends, in general, on the whole model, assets, strategies and
agents preferences, plays a crucial role in all behavioural sciences, but particularly
in finance, see Yang et al. [18]. In particular, Copeland and Friedman [5] used it to
make optimal informed decisions, while Gottardi and Rahi [8] used it for portfolio
management purposes.

The present paper examines the value of information of an investor by study-
ing the utility maximisation problems from terminal wealth for the cases: partial
information and full information. In our case, full information refers to the case
when the investor is aware of the appreciation rate of the risky asset, and partial
information means that the investor can observe the asset price only but not the
appreciation rate and the driving Brownian motion. The case of partial informa-
tion is more realistic as asset prices are published and are available to the public
whereas the appreciation rate and the driving Brownian motion are not.
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The optimisation setting with full information goes back to Merton [15], who
solved the problem in a Black-Scholes environment via the Hamiltonian-Jacobi-
Bellman (HJB) equation and dynamic programming. Merton’s work was extended
by several authors, see for example, Karatzas et al. [9], Cox and Huang [6],
Kohatsu-Higa and Sulem [10] and Björk et al. [2]. However, the optimal portfolio
is characterised through a representation theorem for martingales and explicit
solutions may be obtained in very few cases.

Utility maximisation problems under partial information have been studied via
the stochastic filtering techniques and by using martingale approach, see for ex-
ample, Lakner [11, 12], Pham and Quenez [16], Sass and Haussmann [17], Yang
and Ma [19]. In addition, dynamic programming approach has been applied to
solve utility maximisation problems under various setups, see for example, Yang
et al. [18], Brendle [3, 4], Bai and Guo [1], Mania and Santacroce [14]. Lakner
[11, 12] studied the problem in general terms and derived, using martingale meth-
ods, the structure of the optimal investment and consumption strategies. Explicit
expressions for the terminal wealth and the optimal portfolio strategy are derived
in the case of logarithm, power, and exponential utilities. However, no numerical
solutions were provided. Brendle [3, 4] treated the case where the linear di↵usion
maybe correlated with the stock prices and obtained explicit results for power and
exponential utilities. Sass and Haussmann [17] provided some numerical results
but the results are limited to the case where the unobserved process is a finite state
Markov process. A few papers addressed the issue of the value of information, see
for example, Yang et al. [18], Brendle [3, 4], Yang and Ma [19].

The focus of the present paper is on the value of information which is not the
case in most of the cited papers. The special feature is that the only information
available to the investor is the one generated by the asset price, and the unobserv-
able process will be modelled by a linear stochastic di↵erential equation. The two
level of observations correspond to whether the appreciation rate and the driving
Brownian motion are observable or not. We are in the same framework studied
in Yang et al. [18] and Bai and Guo [1]. Instead of using the logarithmic utility
as in Yang et al. [18], we use the exponential utility. We illustrate how model
parameters such as the volatility and the mean risk-aversion parameters a↵ect the
value of information. Bai and Guo [1] obtained closed-form solutions in two cases
of exponential utility and logarithmic utility. We use stochastic filtering theory to
derive analytical tractable formulae for the optimal expected utilities from which
we define the value of information. In addition, numerical results are presented.
We mention that the value of information is not explicitly computed in Bai and
Guo [1] and no numerical results are given.

The main results are contained in Theorem 4.1 and Theorem 5.1. Theorem 4.1
gives the optimal expected utility function and its corresponding optimal trading
strategy for the partial information case when the exponential utility function is
used. Theorem 4.2 is a verification result which verifies that the results in Theorem
4.1 are indeed optimal for the problem under consideration. Theorem 5.1 gives the
optimal expected utility function and its corresponding optimal trading strategy
for the full information case when the exponential utility function is used. Theorem
5.2 is a verification result which verifies that the results in Theorem 5.1 are indeed
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optimal. Definition 6.1 gives the value of information for the exponential utility
case.

The paper is structured as follows. In Section 2, we describe the market model,
the information structure and formulate the optimization problem. In Section 3 we
construct the filtering estimate for the appreciation rate. We also show how wealth
process can be reduced to a wealth process with full information via filtering argu-
ments. In Section 4 we derive the optimal expected utility and its corresponding
optimal trading strategy under partial information using the dynamic program-
ming approach. A verification theorem is stated and proved. Section 5 deals with
the optimal expected utility and its corresponding optimal trading strategy under
full information. We also state and prove the verification theorem. In Section
6, we present the definition of the value of information. Numerical results are
presented in Figures 1 – 3 in Section 7. The figures show the impact of changes
in model parameters on the value of information. Some economical and intuitive
explanations are also presented. A brief conclusion is given in Section 8.

2. Model Setup

Suppose (⌦,F ,F,P) is a filtered probability space equipped with a filtration
F = {F}0tT satisfying the usual conditions, and that T > 0 is a fixed time
horizon. We consider a financial market with two types of assets which are a risk-
free asset (e.g a bond) and a risky asset (e.g a stock). The price at any time t of
the risk-free asset is denoted by S

0
t whereas that of the risky asset is denoted by

St. The price of the risk-free asset S0
t is governed by an equation of the form

dS
0
t = rS

0
t dt, S

0
0 = S

0
, (2.1)

where the interest rate r > 0 is constant. The price of the risky asset S = (St) is
given by

dSt = St(µtdt+ �dW
1
t ), S0 = S � 0 (2.2)

where the volatility � is a known positive constant and W
1 is a Brownian motion.

We assume that the volatility � is non-singular, hence invertible. In contrast
to most of the literature on real option theory but similar to Lakner [11], the
appreciation rate process is assumed to be a stochastic process and governed by

dµt = (1µt + 0)dt+ �1dW
1
t + �2dW

2
t , 0  t  T, (2.3)

where 0, 1, �1 and �2 are constants and W
2 is a Brownian motion which is

independent of W 1. If 1 is negative then the mean appreciation rate process will
be an Ornstein-Uhlenbeck process with mean reverting drift.

We denote the total amount of the investor’s wealth at time t with Xt and
the amount invested into the risky asset with ⇡t. The remains Xt � ⇡t will be
invested into the riskless asset. We refer to ⇡t as the portfolio strategy. Under the
assumption that the portfolio is self-financing, the total wealth process Xt evolves
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according to the dynamics

dXt = ⇡t
dSt

St
+ (Xt � ⇡t)

dS
0
t

S
0
t

= (rtXt + ⇡t(µt � rt)) dt+ ⇡t�dW
1
t . (2.4)

At each time t < T , the investor chooses the portfolio position based on informa-
tion available to them at that time. The investor’s information can be modelled
by a filtration. We describe two filtrations:

(1) Consider the case where the investor observes the asset price but not
the appreciation rate. In this setting the investment strategy should be
adapted to the filtration {Gt : t � 0} where

Gt = �(Ss, 0  s  t).

This case will be referred to as the case of partial information.
(2) Consider the case where the information is generated by the noise pro-

cesses. In this setting the investment strategy should be adapted to the
filtration {Ft : t � 0} where

Ft = �(W 1
s ,W

2
s , 0  s  t).

This case will be referred to as the case of full information.

We denote by

A := {⇡ = (⇡s)tsT : ⇡s 2 R, ⇡ is Gs � adapted, (2.4)

has a unique solution, and

Z T

t
(⇡s)

2
ds < 1 a.s.

)
(2.5)

the set of admissible portfolio strategies over the time horizon [t, T ]. Let U : R+ !

R be an increasing, concave and di↵erentiable utility function. The objective of
the investor is to maximise the expected utility from terminal wealth. Precisely,
the optimal portfolio problem is formulated as follows:

max
⇡2A

E [U(XT )] (2.6)

subject to (2.3) and (2.4).
We note that, since {St}0tT is observable, it follows that {Xt}0tT can be

observed but {µt}0tT is an unobservable state process. Therefore, the problem
to be solved is that of maximising expected utility of terminal wealth over the class
of portfolio strategies that are adapted to the observable information G. This leads
to an optimal problem under partial information.

In the present paper we consider the optimisation problem (2.6) under expo-
nential utility function:

U(x) = 1� e
�⌘x

, (2.7)

where ⌘ > 0 is the risk aversion parameter and x is the investor’s initial wealth.
The additive term 1 in (2.7) keeps the range of the function between zero and one
over the domain of non-negative values for x. The exponential utility function
is one of the most used utilities to represent investor’s attitude towards risk in
portfolio optimisation. It has a constant absolute risk aversion which means that
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the investor has the same risk preferences for random outcomes independent of his
wealth.

3. Filtering Estimation for the Appreciation Rate

In this section we apply the filtering technique to estimate the appreciation
rate {µt}0tT given the information flow Gt. The uncertainty of the partially
informed investor over µt is described by a normal distribution with mean

mt = E [µt|Gt] , (3.1)

and variance

�t = E
h
(µt �mt)

2
|Gt

i
(3.2)

with the convention that m0 = E[µ0] and �0 = V ar(µ0).
Then, as the system (2.3) and (2.4) is conditionally Gaussian, the conditional

law of µt with respect to Gt is also of the Gaussian type with mean mt and variance
�t and the pair (m, �) satisfies a system of linear equations given by the so-called
Kalman filter (see Brendle [4]). Results from Liptser and Shiryaev [13] show that
the mean mt follow the stochastic di↵erential equation

dmt = (1mt + 0)dt+
�1�t + �t

�2

✓
dSt

St
�mtdt

◆
. (3.3)

Moreover, the variance �t satisfies the Riccati equation

d�t

dt
= 21�t + �

2
1 + �

2
2 �

✓
�1�t + �

�t

◆2

. (3.4)

We note that (3.4) is a deterministic equation on �t.
As in Liptser and Shiryaev [13], we define the innovation process:

dW :=
1

�

✓
dSt

St
�mtdt

◆
, (3.5)

where W = {Wt}0tT is a Brownian motion with respect to the probability space
(⌦,GT , {Gt}0tT ,P) for t 2 [0, T ]. Combining (2.4) and (3.5) we obtain

dXt = (rtXt + ⇡t(mt � rt)) dt+ ⇡t�dW. (3.6)

Similarly, (3.3) can be written as

dmt = (1mt + 0)dt+
�1� + �t

�
dW. (3.7)

We note that (3.6) and (3.7) describe the dynamics of the wealth process from the
perspective of a partially informed agent.

4. Optimal Investment under Partial Information

The investor wants to maximise the expected utility of the wealth at some
future time T > 0 under partial information for exponential utility. Suppose that
at time t = 0 we have X0 = x > 0. Moreover, we assume that the utility function
is given by (2.7). The original problem reduces to maximising (2.6) subject to
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constraints (3.6) and (3.7), that is, under partial information, the value function
for the investor in the reduced model is then

�(t, x,m) = sup
⇡2G

Et,x,m[U(XT )], (4.1)

where Et,x,m[·] is the conditional expectation given that Xt = x and mt = m. Let
C
1,2,2 denote the functional space of the function �(t, x,m) such that �(t, x,m)

and its partial derivatives �t, �x, �xx, �m, �xm, �mm are continuous on [0, T ]⇥
R+

⇥ R. Now we can define a di↵erential operator L⇡t :

(L⇡t�) (t, x,m) = �t + (1m+ 0)�m + (rtx+ (m� rt)⇡t)�x

+
1

2

✓
�1� + �t

�

◆2

�mm +
1

2
�
2
⇡
2
t�xx + (�1� + �t)⇡t�xm.

By using the principle of stochastic optimality, we have the following HJB equation:

sup
⇡2G

{(L⇡t�) (t, x,m)} = 0, (4.2)

with the terminal condition

�(T, x,m) = U(x), (4.3)

for (x,m) 2 R+
⇥R. Therefore for each (t, x,m) we try to find the value ⇡⇤

t which
maximises (4.2). We now assume that H(t, x,m) 2 C

1,2,2 is a candidate solution
of the HJB equation (4.2), that is,

sup
⇡2G

{(L⇡tH) (t, x,m)} = 0, H(T, x,m) = U(x). (4.4)

From (4.4) we find out that the first order condition for an optimal investment
strategy is given by

⇡
⇤
t = �

(m� rt)Hx + (�1� + �t)Hxm

�2Hxx
. (4.5)

Substituting (4.5) into (4.4) we get the following nonlinear boundary value problem
for H:

Ht + (1m+ 0)Hm + rtxHx +
1

2

✓
�1� + �t

�

◆2

Hmm

�
((m� rt)Hx + (�1� + �t)Hxm)2

2�2Hxx
= 0 (4.6)

with terminal condition

H(T, x,m) = 1� e
�⌘x

. (4.7)

To find the solution H(t, x,m) we proceed as follows. We look for a candidate
solution of (4.6) in the form:

H(t, x,m) = 1� e
�⌘xer(T�t)+f(t,m)

. (4.8)
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Substituting (4.8) and its partial derivatives into (4.6), we obtain:

ḟ(t,m) + (1m+ 0)f
0(t,m) +

1

2

✓
�1� + �t

�

2◆
(f 02(t,m) + f

00(t,m))

�
((m� rt) + (�1� + �t)f 0(t,m))2

2�2
= 0. (4.9)

We assume the solution of the form

f(t,m) = A(t)m2 +B(t)m+ C(t). (4.10)

Di↵erentiation yields

ḟ(t,m) = A
0(t)m2 +B

0(t)m+ C
0(t). (4.11)

f
0(t,m) = 2mA(t) +B(t), (4.12)

f
00(t,m) = 2A(t). (4.13)

Substituting (4.11) - (4.13) into (4.9) we obtain:

[A0(t)m2 +B
0(t)m+ C

0(t)] + (1m+ 0)[2mA(t) +B(t)]

+
1

2

✓
�1� + �t

�

◆2

[2A(t) + (2mA(t) +B(t))2]

�
((m� rt) + (�1� + �t)[2mA(t) +B(t)])2

2�2
= 0. (4.14)

Rearranging and grouping terms according to the order of m we obtain
"
A

0(t) + 21A(t) + 2

✓
�1� + �t

�

◆2

A
2(t)�

(1 + 2(�1� + �t)A(t))2

2�2

#
m

2

+

"
B

0(t) + 1B(t) + 20A(t) + 2

✓
�1� + �t

�

◆2

A(t)B(t)

�
(1 + 2(�1� + �t)A(t))((�1� + �t)B(t)� rt)

�2

�
m

+

"
C

0(t) + 0B(t) +
1

2

✓
�1� + �t

�

◆2

(2A(t) +B
2(t))

�
((�1� + �t)B(t)� rt)2

2�2

�
= 0.

(4.15)

Equation (4.15) can only be identical to zero if the three brackets are identical to
zero. Using this fact we obtain the following three ordinary di↵erential equations
for the functions A(t), B(t) and C(t):

A
0(t) =

(1 + 2(�1� + �t)A(t))2

2�2
� 2

 
1 +

✓
�1� + �t

�

◆2

A(t)

!
A(t) (4.16)
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B
0(t) =

(1 + 2(�1� + �t)A(t))((�1� + �t)B(t)� rt)

�2

�

 
1 + 2

✓
�1� + �t

�

◆2

A(t)

!
B(t)� 20A(t) (4.17)

C
0(t) =

((�1� + �t)B(t)� rt)2

2�2
�

1

2

✓
�1� + �t

�

◆2

(2A(t)+B
2(t))�0B(t) (4.18)

with A(T ) = B(T ) = C(T ) = 0. We therefore, have the following result.

Theorem 4.1. Suppose the utility function is given by (2.7). Then the optimal

expected utility for the problem (4.4) is given by

H(t, x,m) = 1� e
�⌘xer(T�t)+f(t,m)

, (4.19)

where A(t), B(t) and C(t) are determined by (4.16), (4.17) and (4.18), respec-

tively. The corresponding optimal trading strategy ⇡
⇤
t is given as:

⇡
⇤
t =

m� rt + (�1� + �t)(2A(t)m+B(t))

⌘�2er(T�t)
. (4.20)

The following verification result verifies that the results in Theorem 4.1 are
optimal for the problem (4.1).

Theorem 4.2. Suppose H⇤(t, x,m) 2 C
1,2,2

given by (4.19) is a candidate solution

of the HJB equation (4.4), that is, H
⇤(t, x,m) satisfies

sup
⇡2G

{L
⇡tH(t, x,m)} = 0, H(T, x,m) = 1� e

�⌘x
. (4.21)

Then, �(t, x,m)  H
⇤(t, x,m) for any admissible strategy ⇡t 2 G. In addition, if

there exists an optimal portfolio ⇡
⇤
t 2 G such that

⇡
⇤
t 2 arg sup

⇡2G
{L

⇡t�(t, x,m)},

then, when ⇡t = ⇡
⇤
t , �(t, x,m) = H

⇤(t, x,m).

Proof. Suppose O = [0,1) ⇥ [0,1), we choose a sequence of bounded open sets
O satisfying Oi ⇢ Oi+1 ⇢ O, i = 1, 2, ... and O =

S1
i=1Oi. For all (x,m) 2 O,

assume that the exit time of (xt,mt) from O is denoted by ⌧i, when i ! 1 we
obtain ⌧i ^ T ! T .

We consider an arbitrary strategy ⇡t 2 G. An application of Itô’s formula for
H(t, x,m) on [t, T ] yields

H(T, xT ,mT ) = H(t, x,m) +

Z T

t
L
⇡tH(s, xs,ms)ds

+

Z T

t
�⇡tHx(s, xs,ms)dW s

+

Z T

t

�1� + �t

�
Hm(s, xs,ms)dW s.
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We note that sup⇡2G{L
⇡tH(t, x,m)} = 0. This implies that the variational in-

equality L
⇡tH(t, x,m)  0. Therefore we have

H(T, xT ,mT )  H(t, x,m) +

Z T

t
�⇡tHx(s, xs,ms)dW s

+

Z T

t

�1� + �t

�
Hm(s, xs,ms)dW s. (4.22)

The last two terms on the right hand side of (4.22) are square-integrable martin-
gales whose expectation is zero. Hence, we have

Et,x,m[H(T, xT ,mT )]  H(t, x,m).

Furthermore, taking the supremum, we get

sup
⇡2G

Et,x,m[H(T, xT ,mT )]  H(t, x,m).

Recalling the definition of �(t, x,m), we have

�(t, x,m)  H(t, x,m),

which implies that
�(t, x,m)  H

⇤(t, x,m),

Next we suppose that

E[H(⌧i^T , x⌧i^T ,m⌧i^T )]  1

for some specific strategy ⇡
⇤
t 2 G. Applying Itô’s formula to H(t, x,m) on [0, ⌧i^T ]

once again, we obtain

H(⌧i ^ T , x⌧i^T ,m⌧i^T ) = H(0, x0,m0) +

Z ⌧i^T

0
L
⇡tH(s, xs,ms)ds

+

Z ⌧i^T

0
�⇡tHx(s, xs,ms)dW s

+

Z ⌧i^T

0

�1� + �t

�
Hm(s, xs,ms)dW s. (4.23)

For some specific strategy satisfying (4.1), that is, L⇡tH(s, xs,ms) = 0 and the
last two terms of (4.23) are also square-integrable martingales. Hence, taking the
expectation on both sides of (4.23), we obtain

E[H(⌧i ^ T , x⌧i^T ,m⌧i^T ) = H(0, x0,m0) < 1. (4.24)

Now we set �(t, x,m) = H(t, x,m) for the optimal strategy ⇡
⇤
t . Using Itô’s formula

on H(t, x,m) on [t, ⌧i ^ T ] once more, similarly, we obtain

H(⌧i ^ T , x⌧i^T ,m⌧i^T ) = H(t, x,m) +

Z ⌧i^T

t
L
⇡tH(s, xs,ms)ds

+

Z ⌧i^T

t
�⇡tHx(s, xs,ms)dW s

+

Z ⌧i^T

t

�1� + �t

�
Hm(s, xs,ms)dW s. (4.25)
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Taking the conditional expectation, we have

H(t, x,m) = Et,x,m[H(⌧i ^ T , x⌧i^T ,m⌧i^T )].

Taking the limit on both sides we have

H(t, x,m) = lim
i!1

Et,x,m[H(⌧i ^ T , x⌧i^T ,m⌧i^T ).

In addition, we have

�(t, x,m) = sup
⇡2G

Et,x,m[U(XT )

= lim
i!1

Et,x,m[H(⌧i ^ T , x⌧i^T ,m⌧i^T )]

= H(t, x,m)

which means that ⇡t = ⇡
⇤
t and we have �(t, x,m) = H

⇤(t, x,m), and this completes
the proof. ⇤

5. Optimal Investment under Full Information

Consider the wealth dynamics provided by (2.3) and (2.4). Suppose that, start-
ing with wealth X0 = x > 0 at time t = 0, the investor wants to maximise the
expected utility of the wealth at some future time T > 0 under full information for
exponential utility. The utility function is given by (2.7) subject to the constraints
(2.3) and (2.4), that is, under full information, the value function for the investor
is then

�(t, x, µ) = sup
⇡2F

Et,x,µ[U(XT )], (5.1)

where Et,xµ[·] is the conditional expectation given that Xt = x and µt = µ. As
in the previous section, we let C

1,2,2 denote the functional space of the function
�(t, x, µ) such that �(t, x, µ) and its partial derivatives �t, �x, �xx, �µ, �xµ, �µµ

are continuous on [0, T ]⇥R+
⇥R. Now we can define a di↵erential operator L⇡t :

(L⇡t�) (t, x, µ) = �t + (rtx+ ⇡t(µ� rt))�x +
1

2
�
2
⇡
2
t�xx + (1µ+ 0)�µ

+
1

2
(�2

1 + �
2
2)�µµ + �1�⇡t�xµ. (5.2)

By using the principle of stochastic optimality, we have the following HJB equation:

sup
⇡2F

{(L⇡t�) (t, x, µ)} = 0, (5.3)

with terminal condition

�(T, x, µ) = U(x), (5.4)

for (x, µ) 2 R+
⇥R. Therefore for each (t, x, µ) we try to find the value ⇡

⇤
t which

maximises (5.3). As in the previous section, we now assume that H(t, x, µ) 2 C
1,2,2

is a candidate solution of the HJB equation (5.3), that is,

sup
⇡2F

{(L⇡tH) (t, x, µ)} = 0, H(T, x, µ) = U(x). (5.5)
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From (5.5) we find out that the first order condition for an optimal investment
strategy is given by

⇡
⇤
t = �

(µ� rt)Hx + �1�Hxµ

�2Hxx
. (5.6)

Substituting (5.6) into (5.3) we get the following nonlinear boundary value problem
for H:

Ht + rtxHx + (1µ+ 0)Hµ +
1

2

�
�
2
1 + �

2
2

�
Hµµ �

((µ� rt)Hx + �1�Hxµ)
2

2�2Hxx
= 0.

(5.7)
with terminal condition

H(T, x, µ) = 1� e
�⌘x

. (5.8)

To find the solution H(t, x,m) we proceed as follows. We look for a candidate
solution of (5.7) of the form:

H(t, x, µ) = 1� e
�⌘xer(T�t)+h(t,m)

. (5.9)

Substituting (5.9) into (5.7), we obtain

ḣ(t, µ) + (1µ+ 0)h
0(t, µ) +

1

2

�
�
2
1 + �

2
2

�
(h02(t, µ) + h

00(t, µ))

�
[(µ� rt) + �1�h

0(t, µ)]2

2�2
= 0. (5.10)

We assume a solution of the form

h(t, µ) = D(t)µ2 + E(t)µ+ F (t). (5.11)

Di↵erentiation yields

ḣ(t, µ) = D
0(t)µ2 + E

0(t)µ+ F
0(t), (5.12)

h
0(t, µ) = 2µD(t) + E(t), (5.13)

h
00(t, µ) = 2D(t). (5.14)

Substituting (5.12) - (5.14) into (5.10) we obtain:

[D0(t)µ2 + E
0(t)µ+ F

0(t)] + (1µ+ 0)[2D(t)µ+ E(t)]

+
1

2

�
�
2
1 + �

2
2

�
[2D(t) + (2D(t)µ+ E(t))2]

�
[(µ� rt) + �1�[2D(t)µ+ E(t)]]2

2�2
= 0. (5.15)
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Rearranging and grouping the terms according to the order of µ we obtain

D

0(t) + 21D(t) + 2(�2
1 + �

2
2)D

2(t)�
(1 + 2�1�D(t))2

2�2

�
µ
2

+
⇥
E

0(t) + 1E(t) + 20D(t) + 2(�2
1 + �

2
2)D(t)E(t)

�
(1 + 2�1�D(t))(�1�E(t)� rt)

�2

�
µ

+


F

0(t) + 0E(t) + (�2
1 + �

2
2)D(t) +

1

2
(�2

1 + �
2
2)E

2(t)

�
(�1�E(t)� rt)2

2�2

�
= 0.

(5.16)

Equation (5.16) can only be identical to zero if the three brackets are identical to
zero. Using this fact we obtain the following three ordinary di↵erential equations
for the functions D(t), E(t) and F (t):

D
0(t) =

(1 + 2�1�D(t))2

2�2
� 21D(t)� 2(�2

1 + �
2
2)D

2(t), (5.17)

E
0(t) =

(1 + 2�1�D(t))(�1�E(t)� rt)

�2
� 1E(t)� 20D(t)� 2(�2

1

+�
2
2)D(t)E(t), (5.18)

F
0(t) =

(�1�E(t)� rt)2

2�2
� 0E(t)� (�2

1 + �
2
2)D(t)�

1

2
(�2

1 + �
2
2)E

2(t), (5.19)

where D(T ) = E(T ) = F (T ) = 0. We therefore, have the following result:

Theorem 5.1. Suppose the utility function is given by (2.7). Then the optimal

expected utility for the problem (5.1) is given by

H(t, x, µ) = 1� e
�⌘xer(T�t)+h(t,µ)

, (5.20)

where D(t), E(t) and F (t) are determined by (5.17), (5.18) and (5.19), respec-

tively. The corresponding optimal trading strategy ⇡
⇤
t is given as:

⇡
⇤
t =

µ� rt + �1�(2D(t)µ+ E(t))

⌘�2er(T�t)
. (5.21)

The following verification result verifies that the results in Theorem 5.1 are
optimal for the problem (5.1).

Theorem 5.2. Suppose H
⇤(t, x, µ) 2 C

1,2,2
given by (5.20) is a candidate solution

of the HJB equation (5.5), that is, H
⇤(t, x, µ) satisfies

sup
⇡2F

{L
⇡tH(t, x, µ)} = 0, H(T, x, µ) = 1� e

�⌘x
. (5.22)

Then �(t, x, µ)  H
⇤(t, x, µ) for any admissible strategy ⇡t 2 F . In addition, if

there exists an optimal portfolio ⇡
⇤
t 2 F such that

⇡
⇤
t 2 arg sup

⇡2F
{L

⇡t�(t, x, µ)},

then, when ⇡t = ⇡
⇤
t , �(t, x, µ) = H

⇤(t, x, µ).
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Proof. The proof follow the same arguments as in Theorem 4.2. ⇤
Remark 5.3. The optimal trading strategies in Theorem 4.1 and Theorem 5.1 do
not depend on the investor’s initial wealth x. The investor makes a decision by
considering the state of the market only.

6. The Value of Information

The value of information is therefore calculated as the di↵erence between the
two optimal expected utilities under full information and partial information. We
note that the initial condition m0 under partial information case is determinis-
tic whereas the initial condition µ0 under the full information case is a normal
distributed random variable, see [18]. The initial value µ0 is, however, known
to the investor at the outset so, µ0 can be considered to be a known constant.
Under this scenario, the mean appreciation rate process and the wealth process
are independent of time and so the optimal expected utility is determined by the
present utility value and do not depend on time. Therefore, for the investor with
full information the optimal expected utility is given by E[�(0, x, µ0)] where the
expectation is taken over µ0. Since the form of the value function � in (5.20)
and the density function of the normal distribution are known, it is possible to
evaluate E[�(0, x, µ0)]. However, under partial information the optimal expected
utility is given by �(t, x,m0), that is, the optimal expected utility depends on m0

and �0 but not on µ0. The two optimal expected utilities are comparable. Hence,
we state the following definition.

Definition 6.1. The value of information, denoted by V , for the exponential
utility case is given by

V := E[�(0, x, µ0)]� �(t, x,m0) =

Z 1

�1
�(0, x, µ0)'(u)du� �(t, x,m0), (6.1)

where '(·) is the normal probability density function with mean m0 and variance
�0.

7. Numerical Results

In this section we show how model parameter changes a↵ect the value of infor-
mation. We will set our baseline parameters as follows: r = 0.08, � 2 [0.2, 0.5],
0 = 0.1, 1 = 0.2, �1 = 0.3, �2 = 0.1, �0 2 [0, 0.2], ⌘0 2 [0.1, 0.5], T = 1, m0 = 0.2
and x = 0.4. We have chosen these baseline parameters so that we can compare
our results with those in literature, see, for example, [18].

Figure 1 illustrates the impact of changes in the parameter � when the other
parameters are kept constant. The figure shows that the value of information
decreases with increase in the volatility parameter �. This is because a high
volatility leads to a high risk which decreases the value of information to a risk-
averse investor.

Figure 2 illustrates the impact of changes in the parameter � when the other
parameters are kept constant. The figure shows that the value of information
increases with increase in the value of �0, that is, the uncertainty of the mean
appreciation rate of the wealth value. We also note that when �0 = 0 the value
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Figure 1. The e↵ect of � on the value of information

of information is zero. This agrees with intuition, see Yang and Ma [19]. We note
that �0 is the initial uncertainty in µ0.
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Figure 2. The e↵ect of �0 on the value of information

Figure 3 shows the value of information as a function of the risk aversion pa-
rameter ⌘. For low value of the risk aversion, we have low value of information.
The value of information increases with the increase in the risk aversion param-
eter. This is expected in practice as more risk-averse investors value information
more than less risk-averse investors. This intuition is also numerically confirmed
in Yang et al. [18] and Ewald et al. [7].
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Figure 3. The e↵ect of ⌘ on the value of information

8. Conclusion

This paper dealt with utility maximisation problems from terminal wealth for
the two cases, partial information and full information. The investor could only
observe the asset price processes but could not observe the appreciation rate. For
exponential utility function, the optimal expected utility and the optimal trading
strategy are related to the solution of a semi-linear partial di↵erential equation.
Explicit formulae were obtained for the optimal expected utilities and optimal
trading strategies in both cases. The formulae indicate that the optimal trading
strategies are independent of the initial wealth. The value of information has been
defined as the di↵erence between the two optimal expected utilities. The term
0 in the unobservable drift term does not have any influence on the value of
information. This is because this parameter is not multiplied by a variable that
produces uncertainty. Numerical results which show how model parameters a↵ect
the value of information were presented. In particular, the value of information
decreases with the increase in volatility and increases with increase in both the
parameter �0 and the risk aversion parameter ⌘.
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