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It is expected that all astrophysical black holes in equilibrium are well described by the Kerr solution.
Moreover, any black hole far away from equilibrium, such as one initially formed in a compact binary
merger or by the collapse of a massive star, will eventually reach a final equilibrium Kerr state. At
sufficiently late times in this process of reaching equilibrium, we expect that the black hole is modeled as a
perturbation around the final state. The emitted gravitational waves will then be damped sinusoids with
frequencies and damping times given by the quasinormal mode spectrum of the final Kerr black hole. An
observational test of this scenario, often referred to as black hole spectroscopy, is one of the major goals of
gravitational wave astronomy. It was recently suggested that the quasinormal mode description including
the higher overtones might hold even right after the remnant black hole is first formed. At these times, the
black hole is expected to be highly dynamical and nonlinear effects are likely to be important. In this paper
we investigate this remarkable scenario in terms of the horizon dynamics. Working with high accuracy
simulations of a simple configuration, namely the head-on collision of two nonspinning black holes with
unequal masses, we study the dynamics of the final common horizon in terms of its shear and its multipole
moments. We show that they are indeed well described by a superposition of ringdown modes as long as a
sufficiently large number of higher overtones are included. This description holds even for the highly
dynamical final black hole shortly after its formation. We discuss the implications and caveats of this result
for black hole spectroscopy and for our understanding of the approach to equilibrium.

DOI: 10.1103/PhysRevD.103.044054

I. INTRODUCTION

The process of binary black hole coalescence, the
formation of a remnant black hole and the associated
emission of gravitational waves, provides a rich arena
for tests of general relativity (GR). The inspiral regime
where we have two distinct black holes inspiralling into
each other is well described by the post-Newtonian

approximation. A useful framework for tests of general
relativity in this regime is provided by the parametrized
post-Newtonian framework. It can be argued however that
it is the merger regime, which involves the formation of the
remnant black hole and its approach to equilibrium, that is
the most promising in the search for new physics. It is
during the merger that the nonlinear and nonperturbative
effects of general relativity are most prominent. Moreover,
the approach of the remnant black hole to equilibrium is
closely related to one of the important predictions of
general relativity, namely the so-called black hole no-hair
theorem (see e.g., [1–3] for reviews with diverse view-
points). The final state of the remnant black hole in
astrophysical situations is predicted to be a Kerr black
hole determined by just two parameters, namely the final
mass and angular momentum. When the remnant black
hole is initially formed, the spacetime in the vicinity
of the horizon is highly dynamical and nonlinear, and it
is responsible for the emitted gravitational radiation.
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In classical general relativity, the horizon itself cannot emit
any radiation. Rather, it absorbs part of the emitted
radiation to reach equilibrium. The gravitational wave
emission at late times during this approach to equilibrium
is expected to be described by a superposition of exponen-
tially damped sinusoidal signals, with the frequency and
damping times determined just by the final black hole’s
mass and angular momentum [4–6] (we can neglect the
electric charge for astrophysical black holes). It is an
important goal of gravitational wave astronomy to verify
(or disprove) this scenario observationally.
Towards this goal, the notion of “black hole spectros-

copy” has been proposed [7–9]. The basic idea is straight-
forward: Given that the ringdown frequencies and damping
times are determined by just two parameters, if we are able
to observe multiple ringdown modes, then the masses and
spins inferred from each mode must be consistent. This is
then potentially a stringent test of the no-hair theorem; see
e.g., [3] for a more detailed discussion. Moreover, the test
applies in principle to any astrophysical process which
leads to the formation of a remnant black hole which
approaches equilibrium. A binary black hole merger is the
obvious target, but it also applies to binary neutron star
mergers or the gravitational collapse of sufficiently massive
stars. In its original formulation, it was assumed that black
hole spectroscopy should only work once the black hole is
sufficiently close to equilibrium. Consider for example the
remnant black hole formed from a binary black hole
merger. When the final black hole is initially formed, it
is highly distorted and dynamical, and far from equilibrium.
There is thus no a priori reason why the perturbatively
defined quasinormal mode frequencies should be associ-
ated with the black hole at this point. This issue of isolating
the perturbative regime where black hole spectroscopy can
be applied is considered e.g., in [10].
An important recent development was the suggestion that

it might in fact be possible to associate the remnant black
hole almost immediately after merger with quasinormal
modes [11–13]; see also [14–16]. Given the considerations
mentioned at the end of the previous paragraph, this would
seem to be a very unlikely proposition. However, as shown
in theseworks, it is clearly true that it is possible tomodel the
gravitational waveform immediately after the merger phase
as a superposition of quasinormal modes. For this, it is
essential to include the higher ringdown overtones which
had, for the most part, not been included in previous
analyses. If true, it could greatly improve the prospects of
black hole spectroscopy and would indicate a remarkable
simplicity in black hole mergers. It is therefore necessary to
investigate this scenario from different perspectives, and one
such perspective is in the strong field region near the black
hole horizons. The goal of this paper is to investigate
whether the dynamics of the remnant black hole horizon
can be described by a superposition of quasinormal modes
(including the higher overtones).

Towards this end, in this paper we carry out a numerical
study of the remnant black hole formed by the head-on
collision of two nonspinning black holes with unequal
masses. This simple configuration, while not of great
astrophysical significance, allows one to obtain very
accurate numerical relativity simulations. The manifest
axisymmetry of such systems also ensures that there is
no ambiguity in the choice of coordinate systems and that
physical gauge invariant quantities can be extracted in a
straightforward manner. The nonlinearities and dynamics
of general relativity are of course still present: a common
horizon is formed when the two individual black holes get
sufficiently close to each other; it settles to a final
Schwarzschild black hole, and gravitational radiation is
emitted in the process. This provides us with a simple case
where the physical question of interest can be fruitfully
explored without worrying about many of the complica-
tions present in astrophysically realistic situations. Two
geometrical quantities related to the final black hole are of
interest for our purposes: the angular modes σl
(l ¼ 2; 3;…) of the shear σ of the outgoing light rays at
the horizon, and the nontrivial mass multipole moments Il
(l ¼ 2; 3;…) of the horizon. We calculate σl and Il as
functions of time and we attempt to describe each of them
by a superposition of quasinormal modes. We find that,
indeed, including the higher overtones can allow for
obtaining excellent fits for σlðtÞ and IlðtÞ starting almost
immediately after the merger. The high precision of our
numerical simulation allows us to include angular modes
with 2 ≤ l ≤ 12, i.e., a total of 11 independent time series,
and we show that all of these modes are described by
combinations of quasinormal modes provided higher over-
tones are included. Furthermore, while the multipole
moments Il are not fully independent of the shear as we
shall see, they do provide yet another 11 functions for
testing the hypothesis. Similar studies of the gravitational
waves at infinity, e.g., [11], typically consider only the
dominant l ¼ jmj ¼ 2 wave mode, with a recent extension
to a joint analysis of the jmj ¼ 2, l ¼ 2, 3, 4 wave modes
(which are coupled, due to spheroidal/spherical mode
mixing in the Kerr final state considered, unlike in our
more symmetric case) [16]. Thus, this work represents a
significant additional evidence compared to previous work
in the literature.
The reader might legitimately ask: (i) why should the

behavior of σl and Il at the horizon have anything to do
with the actual observable quantity, namely the outgoing
gravitational waves which could be observed by gravita-
tional wave detectors? Are the horizons not causally
disconnected from the outside observers and thus obser-
vationally irrelevant? (ii) Even if one finds these calcu-
lations to be of interest, and even though we are careful in
extracting gauge invariant quantities, is not the apparent
horizon itself dependent on which time slicing the numeri-
cal simulation uses? How can we guarantee that the results
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would not be entirely different with a different choice of the
time coordinate? Let us address these in turn.
For question (i), we point out the remarkable correlations

that exist between the outgoing radiation seen by a far away
observer, and the in-falling radiation that could be seen by a
hypothetical observer living near the horizon. Even though
these two observers are not in causal contact with each
other, the gravitational radiation they would see comes
from the same source, namely the nonlinear and time
dependent gravitational field in the vicinity of the binary
system [17–21]. It is thus not a surprise that both observers
will see qualitatively similar features. In fact it was shown
in [22] that the two observations agree qualitatively. The
present study can be viewed as further evidence of these
correlations. Thus, by studying the behavior of the horizon,
we can learn something about the outgoing radiation (and
vice versa).
Regarding (ii), it is likely true that one could have chosen

a particularly “bad” slicing and time coordinate which
could have obscured any of the correlations mentioned
above. First, we could have made a different choice of
spatial Cauchy surfaces for the numerical evolution which
would generically lead to different dynamical horizons.
Even though there are known constraints on how different
the dynamical horizons can be [23], it is possible in
principle to choose spatial slices such that the horizons
could be extremely distorted [24,25]. However, we are not
aware of any numerical simulations which use, or can
practically use, such extreme choices. Second, even within
a given choice of slicing, there is still the possibility
of choosing a different time parameter adapted to the
slicing, t ↦ t0 ¼ FðtÞ. This would change the functional
dependence of any relevant function of time fðtÞ into
f0ðt0Þ ¼ fðF−1ðt0ÞÞ. We shall make no attempt to do any
such reparametrizations in this paper, and we shall simply
work with the slicing and time coordinate used in the
simulation.
What is significant is that our results show that there is at

least one choice of slicing and of an adapted time
coordinate, which happens to be a widely used one, for
which the correlations are manifestly present. Specifically,
we employ the 1þ log slicing, along with a Γ-driver shift
condition [26,27]. These gauge conditions also set the time
parameter and spatial coordinates of the simulation. An
important property of these gauge conditions is that they
are “symmetry seeking,” i.e., they attempt to find a timelike
Killing vector if there is one, and thus define reasonable
local observers.
The remainder of the paper is structured as follows. A

brief summary of the basic quantities we calculate and
study is provided in Sec. II. This section defines and
identifies the horizon shear and multipole moments as
quantities of interest. In the following sections we describe
the methods used and the results of attempts to fit these
quantities using the ringdown frequencies and damping

times associated with the final black hole. The fitting
procedure is described in Sec. III and applied to the shear
and multipole moments in Sec. IV. Section V discusses the
implications of these results and whether it is possible to
conclude, and in what sense, whether overtones are really
associated with the highly distorted remnant black hole
immediately after its formation. Section VI concludes with
a summary and suggestions for future work.

II. BASIC NOTIONS

There are two main aspects relevant to our study: (i) the
quasinormal modes (QNMs) of a black hole, which are
usually defined within the context of black hole perturba-
tion theory, and (ii) the nonperturbative study of quasilocal
black hole horizons. This section briefly summarizes the
basic notions and results for both of these aspects.

A. Quasinormal modes

The metric perturbations of a Schwarzschild black hole
(which is the final geometry relevant for our study), for both
polar and axial perturbations, can be combined into scalar
functions ψ which satisfy equations of the form [28–30]

d2ψ
dr2⋆

þ ν2ψ ¼ V�ψ : ð1Þ

Here, as usual, r⋆ ¼ rþ 2M logðr=2M − 1Þ with M being
the black hole mass, and r is the usual Schwarzschild areal
coordinate. The potentials V� for the polar and axial
perturbations are functions of r and they depend on M
and on the mode index l. The potentials also differ depend-
ing on the nature of the perturbation, and we shall here
be concerned almost exclusively with spin-2 fields (see
Sec. II B 3).
Quasinormal modes are obtained by imposing outgoing

boundary conditions at both infinity, and at the horizon.
Only a discrete set of (complex) values of the frequency ν
allow for these dissipative boundary conditions, and these
are labeled by the integers ðl; m; nÞ, where ðl; mÞ are the
usual angular mode indices in a decomposition into
spherical harmonics,1 and n ¼ 0; 1; 2;… is the overtone
index. See [31] for an analytic method for calculating this
spectrum and [32,33] for a compilation of the values in
different situations. We also show a sample of m ¼ 0
quasinormal mode frequencies (real and imaginary parts)
for a Schwarzschild black hole of unit mass below in
Table I. Finally, there are several interesting mathematical
and numerical issues related, in particular, to the non-self-
adjoint nature of the problem. For example, of great

1In general, i.e., for perturbations of a Kerr black hole, the
quasinormal modes are obtained from a decomposition into
spheroidal harmonics. The latter equivalently reduce to spherical
harmonics for the Schwarzschild case considered here due to its
spherical symmetry.
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potential interest is the recent suggestion that the higher
overtones might in fact be unstable [34]. Similarly, the issue
of the completeness of the quasinormal modes is also of
great interest; see e.g., [35–37].

B. Nonperturbative framework for studying
quasilocal horizons

1. Horizon definition

The study of horizons here is based on the notions of
marginally trapped surfaces and dynamical horizons (see
e.g., [39–44] for reviews). Here we shall only briefly
summarize the basic notions required for our purposes.
The first is that of a marginally outer trapped surface
(MOTS). This is a closed spacelike 2-surface S whose outer
null-normal la has vanishing expansion:

ΘðlÞ ≔ qab∇alb ¼ 0: ð2Þ

Here qab is the intrinsic metric on S. MOTSs are closely
related to trapped surfaces with negative expansions for
both the outgoing and ingoing null normals, and the
significance of these notions goes back to the singularity
theorems [45,46]. Their presence implies the existence of a
spacetime singularity to its future, and thus indicates the
presence of a black hole. Well developed methods exist to

locate MOTSs in numerical relativity (NR) simulations
[47]. Here we shall employ the method developed in
[48,49] and available from [50], which in turn uses libraries
described in [51–58].
As a MOTS evolves in time, it traces out a 2þ 1-

dimensional world-tube H which we shall refer to as a
dynamical horizon. Several mathematical and physical
properties of H are known and summarized in the review
articles referred to above. The behavior of dynamical
horizons in black hole mergers has been studied in detail
recently [49,59–61].

2. Setup and numerical simulation employed

The configuration we consider here is the head-on
merger of two nonspinning black holes initially at rest.
The initial data is the time symmetric Brill-Lindquist
puncture data [62]. This data describes a spatial slice Σ
with vanishing extrinsic curvature Kab ¼ 0, and confor-
mally flat 3-metric hab ¼ Φ4δab. The conformal factorΦ is
a harmonic function on three-dimensional Euclidean space
with two points removed (the punctures). At a point x,

ΦðxÞ ¼ 1þ m1

2r1
þ m2

2r2
; ð3Þ

where r1;2 are the respective distances from x to each of the
two punctures, and m1;2 are known as the bare masses of

TABLE I. QNM real frequencies ωl0n ≡ jω�
l0nj ¼ jReðν�l0nÞj (top) and damping rates 1=τl0n ≡ 1=τ�l0n ¼ −Imðν�l0nÞ (bottom) for a

Schwarzschild black hole with unit mass, for l ¼ 2;…; 12 and n ¼ 0;…; 5, computed with the QNM Python script [38].

l n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

2 0.3737 0.3467 0.3011 0.2515 0.2075 0.1693
3 0.5994 0.5826 0.5517 0.5120 0.4702 0.4314
4 0.8092 0.7966 0.7727 0.7398 0.7015 0.6616
5 1.0123 1.0022 0.9827 0.9550 0.9211 0.8833
6 1.2120 1.2036 1.1871 1.1633 1.1333 1.0988
7 1.4097 1.4025 1.3882 1.3674 1.3407 1.3093
8 1.6062 1.5998 1.5872 1.5687 1.5449 1.5163
9 1.8018 1.7961 1.7848 1.7682 1.7466 1.7205
10 1.9968 1.9916 1.9815 1.9664 1.9467 1.9227
11 2.1913 2.1866 2.1773 2.1635 2.1455 2.1234
12 2.3855 2.3812 2.3727 2.3600 2.3433 2.3228

l n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

2 0.0890 0.2739 0.4783 0.7051 0.9468 1.1956
3 0.0927 0.2813 0.4791 0.6903 0.9156 1.1522
4 0.0942 0.2843 0.4799 0.6839 0.8982 1.1230
5 0.0949 0.2858 0.4803 0.6806 0.8882 1.1042
6 0.0953 0.2866 0.4806 0.6786 0.8821 1.0921
7 0.0955 0.2872 0.4807 0.6773 0.8782 1.0841
8 0.0957 0.2875 0.4808 0.6765 0.8755 1.0786
9 0.0958 0.2877 0.4809 0.6759 0.8736 1.0747
10 0.0959 0.2879 0.4809 0.6755 0.8723 1.0718
11 0.0959 0.2880 0.4810 0.6752 0.8712 1.0696
12 0.0960 0.2881 0.4810 0.6749 0.8704 1.0679

PIERRE MOURIER et al. PHYS. REV. D 103, 044054 (2021)

044054-4



the two punctures. We will note the total Arnowitt Deser
Misner (ADM) mass as M ¼ m1 þm2. We study here a
particular configuration with m2=m1 ¼ 1.6. The ADM
mass has a value of 1.3 in the code units used, but we
instead set it as the mass unit here, i.e.,M ¼ 1 in this work.
The simulations are carried out based on the Baumgarte-

Shapiro-Shibata-Nakamura formulation of the Einstein
equations using the EINSTEIN TOOLKIT [63,64], with the
initial data being generated by TWOPUNCTURES [65]. We
evolve the spacetime using an axisymmetric version of
MCLACHLAN [66], which uses KRANC [67,68] to generate
efficient C++ code. As mentioned earlier, our gauge
conditions use a 1þ log slicing and a Γ-driver shift
condition [26,27]. Further details of our simulation method
are described in [49]. The results presented in the present
paper use data obtained from a simulation with a spatial
grid resolution of res ¼ 240. Additional simulations with
resolutions of res ¼ 60, 120,180, and restricted simulations
with higher resolutions of res ¼ 480, 960, have been used
to ensure convergence of our results.2 We do not use mesh
refinement and instead choose our numerical domain large
enough to ensure that boundary effects do not reach the
horizons up to the final time of tf ≃ 38.5M of the
simulations.
In the resulting spacetime, we initially have two disjoint

MOTSs S1;2. As the time evolution proceeds, S1 and S2

approach each other, touch at a particular time labeled
ttouch, and then go through each other after that. Sometime
before ttouch, at a time labeled tbifurcate ≃ 1.06M, a common
horizon forms and immediately bifurcates into two MOTSs
representing an outer and an inner branch Sout and Sin
respectively. Sin moves inwards, becomes increasingly
distorted and eventually merges with S1 ∪ S2 at ttouch,
and then develops self-intersections. The focus of this paper
is not any of these phenomena, but rather the behavior of
Sout which moves outwards and loses its distortions as it
approaches its final state as that of a spherically symmetric
Schwarzschild black hole. We shall in particular look at two
particular quantities on Sout as functions of time, namely
the shear σ of the outward null normal la and the mass
multipoles of Sout. In the remainder of this section, we shall
define these quantities and explain why they are of interest.

3. Observables on the outer common horizon

We begin with the definition of the shear. Here it will be
convenient to introduce a complex basis for tangent vectors

on a MOTS: ma and m̄a, that satisfy m · m̄ ¼ 1 and
m ·m ¼ 0. Then, the shear of the outgoing null normal
is defined as

σ ¼ mamb∇alb: ð4Þ

Such a complex basis is determined up to a spin rotation
freedom m → eιψm. Under this transformation, the shear
transforms as σ → e2ιψσ, thus σ is said to have spin weight
þ2. This means that σ can be expanded in angular modes
using spin-weighted spherical harmonics 2Ylmðθ;ϕÞ of spin
weight þ2.
There still remains the question of whether there is a

preferred choice of angular coordinates ðθ;ϕÞ; we will end
up with different mode decompositions for different
choices. The general solution to this is given in [69]. (In
the present case, since we have manifest axial symmetry, a
simpler approach suffices.) On a surface S of spherical
topology equipped with an axial symmetry φa, we can
introduce preferred angular coordinates ðθ;ϕÞ. First, we
assume that φa vanishes at only two points, which are taken
to be the poles. On the integral curves of φa, take ϕ to be the
affine parameter along φa, normalized to lie in the range
0 ≤ ϕ < 2π. One of the meridians, i.e., the lines joining
both poles and everywhere orthogonal to φa, can be
arbitrarily selected. The intersection of this meridian with
each integral curve of φa then defines the point on that
curve where ϕ is set to zero. The other coordinate, θ, is
defined via ζ ¼ cos θ according to

Daζ ¼ 4π

AS
ϵ̃baφ

b;
I
S
ζdA ¼ 0: ð5Þ

Here AS is the area of S, ϵ̃ab is the volume 2-form, and Da
is the covariant derivative compatible with qab. The first
equation ensures that φaDaζ ¼ 0. Hence, ζ is constant on
each integral curve of φa, and the meridians are integral
curves of Daζ. The second equation fixes the freedom to
add an additive constant to ζ in the first equation. With
these choices, it is shown in [70] that the metric qab is
written as

qab ¼ R2
S

�∂aζ∂bζ

FðζÞ þ FðζÞ∂aϕ∂bϕ

�
; ð6Þ

where RS ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AS=4π

p
and

FðζÞ ¼ 4πφaφ
a

AS
: ð7Þ

It can be shown that −1 < ζ < þ1, and it goes from þ1 to
−1 as we go from one pole to the other. Therefore we can
set cos θ ¼ ζ with 0 < θ < π (and extend it to θ ¼ 0 or π at
the poles).
We have thus specified ðθ;ϕÞ on S (up to a rigid rotation

by adding a constant to ϕ corresponding to choosing the

2The convergence of the results is already achieved at res ¼
240 [49]. The two extra datasets with res ¼ 480, 960 have been
produced to further test the dependence of the numerical error
with the discretization scheme, which is relevant for our defi-
nition of the NR error in Sec. IV. Due to the high computational
cost involved, their total simulation times have been reduced to
tð480Þf ≃ 15M and tð960Þf ≃ 5M respectively, thus being too short for
producing accurate fits.
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ϕ ¼ 0 meridian). A suitable choice for ma is given by the
following form for its dual 1-form m:

m ¼ RSffiffiffi
2

p
�
dζffiffiffiffi
F

p þ ι
ffiffiffiffi
F

p
dϕ

�
: ð8Þ

We can now expand σ as

σ ¼
X
l

2Yl0ðθ;ϕÞσl: ð9Þ

We take only the ðl; 0Þ modes because of the manifest
axisymmetry. This symmetry and our specific choice for
ma also imply here that σ and the σl are real. Under time
evolution, the mode amplitudes σl will then be real-valued
functions of time that we aim to model with a combination
of damped sinusoids.
The importance of σ lies in the fact that the shear, or

more precisely jσj2, yields the dominant part of the energy
flux in-falling into the black hole [71,72]. Based on the
discussion in the Introduction, we expect the energy fluxes
across the horizon to be highly correlated with the outgoing
radiation which is determined by the jN j2 withN being the
News function [73]. Thus one would expect σ to be closely
correlated with N . This has been shown to be indeed the
case for the inspiral regime [22]. Here our focus is on the
postmerger regime. The outgoing radiation is represented
by the two polarizations hþ;×, or equivalently by a complex
combination h ¼ hþ þ ιh×. The News function is given by
N ¼ _h. Thus, when h is a combination of damped
sinusoids then so isN and thus, if the proposed correlations
mentioned above do exist, the same should be true for σ.
Thus, if the higher overtones appear in h, then they should
also appear in the shear σ, and vice versa.
Let us now turn to the multipole moments. As for any

mass or charge distribution, it is possible to define suitable
mass and current multipoles for black hole horizons [70].
For nonspinning configurations where the individual black
holes are nonspinning and the orbital angular momentum is
also vanishing, as in our case, we only need to consider the
mass multipoles. These are moments Il of the intrinsic
scalar curvature R of S calculated from Eq. (6):

Il ¼
1

4

I
S
RYl;0ðζÞdA: ð10Þ

Just as for the shear, we calculate Il as functions of time and
look for the presence of ringdown modes therein. We will
only consider l ≥ 2 since I0 is constant as a topological
invariant (here I0 ¼

ffiffiffi
π

p
) and I1 vanishes at all times due to

the symmetries of the angular coordinates used [69,70].
Preliminary investigations of σlðtÞ and IlðtÞ are given in

[61]. Given that we will analyze essentially the same
dataset as in [61] (here obtained from performing the same
simulation with a higher resolution), it will be useful to

summarize the results. We begin with plots of σl and Il as
functions of time, shown in Fig. 1. The behavior of the
modes σlðtÞ and IlðtÞ all have similar qualitative behaviors:
a rapid initial decay followed by a slower decay with
oscillations. The higher the l, the more rapid the initial
decay. At late times on the other hand, the damping rates of
different modes seem very similar, but the higher modes
have higher oscillation frequencies. While we shall not
discuss it in this paper, we mention in passing that the in-
falling energy flux also has a contribution from a vector
field ξa [71,72] (denoted ζa in these references). As for the
shear, we can perform a mode decomposition for the vector
field as well, but using spin-weight-1 spherical harmonics.
The time dependence of these modes ξl, l ≥ 1, is shown in
Fig. 2. For l ≠ 2, it is evidently more complex than the
shear. This vector contribution is however subdominant,
and we shall study this in detail elsewhere.
It is also useful to note that the final black hole horizon is

not in equilibrium at early times just after it is formed. An
easy way to see this is by looking at the area growth of the
final black hole. Figure 3 shows the area of the final black
hole as a function of time starting from when it is initially
formed. We see a rapid initial increase showing unambig-
uously the dynamical nature of the black hole in this
regime. The analysis of [61] shows, using many different
criteria all of which give approximately the same answer,
that the black hole can be considered close to equilibrium
after ∼10M after its formation.
It was shown in [61] that the late-time behavior, on the

other hand, is consistent with the principal (fundamental)
quasinormal mode. It was also shown there that at early
times after the merger, the observed high decay rates were
at first glance not consistent with any of the higher
overtones considered separately. However, this early-time
postmerger behavior analysis was rather simplistic. Here
we perform a more sophisticated analysis by considering
the entire time series of the shear and multipoles (instead of
breaking it up into early and late portions), and model it
with a superposition of quasinormal modes including the
higher overtones.
We conclude this section with a brief discussion of the

relation between the multipoles and the shear. The shear is a
spin-weight-2 field, hence it is expanded in spin-weighted
spherical harmonics, and it is natural to expect its decay
rates to follow the spin-2 quasinormal modes. The scalar 2-
curvature of the horizon R, on the other hand, is a spin-
weight-0 field which is why Eq. (10) uses, in effect, the
spin-weight-0 spherical harmonic in defining its moments.
Should we then expect the decay rates of R to follow the
spin-0 quasinormal modes? If not, then what should we
expect? To answer this question, using the Gauss-Codazzi
relations applied to 2-surfaces, we can relate R to the
spacetime Riemann curvature:

R ¼ 4Re½Ψ2� − qacqbdσðlÞab σ
ðnÞ
cd : ð11Þ
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Specifically in this paragraph we denote the shear of la

(elsewhere simply denoted σ) with a superscript ðlÞ in order
to distinguish it from the shear σðnÞ of the ingoing null
normal.Ψ2 is a component of the Weyl tensor and Re½Ψ2� is
its real part. We see that R depends linearly on σðlÞ. The
shear σðnÞ is not directly associated with the in-falling

radiation, and Ψ2 is also not associated with the radiative
part of the gravitational field. Thus, σðlÞ controls the time
dependence of R, and it is reasonable to expect the decay
rates of R to follow the spin-2 quasinormal ringdown
modes. It is also useful to note that for a black hole in
equilibrium when there is no in-falling radiation (formally

FIG. 2. Vector modes ξl on the outer common horizon for 1 ≤ l ≤ 4, as a function of the simulation time t.

FIG. 1. Shear modes (top) and mass multipoles (bottom) for 2 ≤ l ≤ 8 for Sout as a function of the simulation time. The multipoles Il
for l ¼ 0, 1 are constant and not shown. See Sec. II B 3 for further discussion.
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modeled as an isolated horizon [74–84]), the shear σðlÞ
vanishes, R is time-independent and R ¼ 4Re½Ψ2�.

III. OVERTONE MODELS AND
FITTING PROCEDURE

In this section we introduce the basic concepts and
framework commonly used for the modeling of ringdown-
type waveforms (including the outer horizon shear modes
and multipoles in our case) with overtones and we the
discuss the statistical tools used to fit such models to
NR data.

A. The overtone model

At late times, we can decompose a spin-weight-s field sX
propagating in a Schwarzschild (or more generally Kerr)
background as a sum of damped sinusoids, namely,

sX ¼
X

l≥jsj;m;n

A�
lmn exp

�
−ιω�

lmnðt − trÞ −
t − tr
τ�lmn

�
sỸlm: ð12Þ

Here, the ðl; mÞ indices describe the angular decomposition
of the modes (with m ¼ −l;…; l), and sỸlm are the spin-
weighted spheroidal harmonics3; for a perturbed
Schwarzschild black hole as in our case, they reduce to
the spin-weighted spherical harmonics sYlm. n ¼ 0; 1; 2…
accounts for the n-tone excitations of a given ðl; mÞ mode,
with n ¼ 0 being the fundamental “tone” and n ¼ 1; 2;…

corresponding to overtones, and tr is a suitable reference
time where the linear perturbation theory is expected to
describe the dynamics accurately [14,15,86,87].
If linear perturbation theory applies, the quasinormal

mode frequencies and damping times4 ω�
lmn and τ�lmn are

solely determined by the black hole’s final mass and
angular momentum. For a given choice of the ðl; m; nÞ
indices, one finds two families of solutions, those with
ωþ
lmn > 0 and those with ω−

lmn < 0, corresponding to the
corotating and counterrotating modes respectively,
with their associated damping times τ�lmn and complex
amplitudes A�

lmn [8,14,16,31,33,88,89]. Note that for the
Schwarzschild case, ωþ

lmn ¼ −ω−
lmn and τ

þ
lmn ¼ τ−lmn for any

m; this also holds in the general Kerr case if m ¼ 0. Hence,
in these cases, the (absolute) values of the frequencies and
damping times are independent of the family (corotating or
counterrotating) of modes considered.
Throughout this work, we will set tr to the time value

used for the late-time fits in [61], that is in the units used in
the present work, tr=M ¼ 20=1.3 ≃ 15.4. The amplitudes
at tr, A�

lmn, are unknown complex numbers that only
depend on the perturbation conditions set up during the
inspiral-plunge-merger phase of the binary black hole
evolution. Hence, they are fully determined by the initial
parameters of the binary prior to the merger—in our head-
on, nonspinning case, the mass ratio of the two colliding
black holes and their relative boost at a given separation.
To allow for deviations on the complex frequencies from

the QNM values, Eq. (12) may be replaced by

sX ¼
X

l≥jsj;m;n

A�
lmn exp ½−ιω�

lmnð1þ α�lmnÞðt − trÞ�

× exp

�
−

t − tr
τ�lmnð1þ β�lmnÞ

�
sỸlm; ð13Þ

where α�lmn and β
�
lmn are two sets of perturbation parameters

for each corotating or counterrotating mode. These will
measure the deviations to the QNM spectrum (as predicted
by perturbation theory within GR), while the latter spec-
trum is recovered for α�lmn ¼ β�lmn ¼ 0. To perform black
hole spectroscopy, one shall require (a) that the posterior
distributions of α�lmn and β�lmn are consistent with zero and
(b) that the frequency values can be resolved to a given nσ
credible value [15]. The latter is technically difficult due to
the low sparsity of the QNM real frequencies. For instance,
for the ðl ¼ 2; m ¼ 0Þ QNM of a s ¼ 2 field in a
Schwarzschild spacetime, the real frequencies of the
fundamental mode and first overtone only differ by

FIG. 3. Area of the outer common horizon as a function of
simulation time. The final area shown here corresponds to a
horizon mass of ∼ð1 − 7 × 10−5ÞM.

3In particular, the shear as defined above, following the usual
convention, has spin weight þ2 and is thus decomposed in spin-
weight þ2 harmonics. One could as well have worked with a
spin-weight −2 field by using the complex conjugate of the shear
instead, which would then have been expanded in spin-weight −2
harmonics. Both types of fields have the same QNM spectrum in
a Kerr (or Schwarzschild) background. [See, e.g., Eqs. (3.29) and
(3.30) in [85] relating the Weyl tensor components Ψ4 and Ψ0,
which respectively have spin weight −2 and þ2, showing that
both variables are isospectral.]

4Alternatively, one can rewrite the exponential factors
exp½−ιω�

lmnðt−trÞ−ðt−trÞ=τ�lmnÞ� in Eq. (12) for each ðl; m; nÞ
component as an exp½−ιν�lmn ðt − trÞ� with a complex frequency
ν�lmn of which ω�

lmn is the real part and the damping rate 1=τ�lmn is
(up to a sign change) the imaginary part.
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1 − ω�
201=ω

�
200 ≃ 7% (see the corresponding frequency

values in Table I, left panel), making the separate resolution
of the two tone frequencies a challenging task [14,15]. An
attempt to estimate the overtone frequencies by means of
the Bayesian framework on GW150914 data was partially
tackled in [12] by performing a parameter estimation on a
reduced parameter space. Other recent studies have pro-
vided estimates on the QNM parameters by performing fits
to NR data [11,14–16,61]. Fitting the data circumvents the
extensive exploration of the parameter space by estimating
the physical parameters from maximum likelihood estima-
tion algorithms.
The fields originated from head-on collisions of non-

spinning black holes—as in our case—are fully described
by the m ¼ 0 modes due to the rotational symmetry of
such collisions. In this scenario, all angular m ≠ 0 modes
vanish, i.e., sXl;m≠0;n ¼ 0. Wewill only allow for deviations
from the QNM spectrum respecting its symmetries,
ωþ
l0n ¼ −ω−

l0n and τþl0n ¼ τ−l0n: i.e., we set αþl0n ¼ α−l0n and
βþl0n ¼ β−l0n. Moreover, the fields we are considering, i.e.,
the multipole moments Il, and the shear modes σl as
defined above in Sec. II B 3, are real-valued functions. For
such variables, the two families (corotating and counter-
rotating) of modes combine, with their complex amplitudes
at tr satisfying A−

l0n ¼ ðAþ
l0nÞ�, so that

Aþ
l0n exp ½−ιωþ

l0nð1þ αþl0nÞðt − trÞ�
þA−

l0n exp ½−ιω−
l0nð1þ α−l0nÞðt − trÞ�

¼ Aþ
l0n exp ½−ιωþ

l0nð1þ αþl0nÞðt − trÞ�
þ ðAþ

l0nÞ� exp ½þιωþ
l0nð1þ αþl0nÞðt − trÞ�

¼ Al0n cos½ωþ
l0nð1þ αþl0nÞðt − trÞ þ ϕl0n�;

withAþ
l0n ≡ ð1=2ÞAl0n exp ½−ιϕl0n� and for a real amplitude

Al0n and phase ϕl0n. With the above remarks, from now
onwards we can drop the � superscripts on all parameters
and simplify the ansatz of Eq. (13) into

sXl0ðtÞ ¼
Xnmax

n¼0

Al0n exp

�
−

t − tr
τl0nð1þ βl0nÞ

�

× cos½ωl0nð1þ αl0nÞðt − trÞ þ ϕl0n�; ð14Þ

with sXl0 ¼ ReðsXl0Þ. As a sign flip on the real frequencies
would still be possible in principle, we specify that the
corotating (positive real part) choice is implied for the
complex frequencies νl0n and their real part ωl0n. We will
further drop the fixed s ¼ 2 and m ¼ 0 subscripts on
Xl ≡ sXl0 in the following.
The parameters αl0n and βl0n help one test the effects of

eventual systematic errors sourced by (a) including an
insufficient number of tones nmax when modeling the data
with Eq. (14) or (b) the presence of non-negligible non-
linearities in the data [14,15,86]. We note in passing that

introducing the parameters αl0n and βl0n may also be used
in a more general context to parametrize deviations from
general relativity.
In this work we model the data for the shear modes σl

and multipoles Il with 2 ≤ l ≤ 12, using multiple values of
nmax, up to nmax ¼ 15. In general, we fit for the amplitude
Al0n and for the phase ϕl0n, and we either set the frequency
deviation parameters βl0n and αl0n to zero or additionally fit
for them.
We compute the QNM spectrum values fωl0n; τl0ng of the

final black hole using the QNM Python script [38], which
combines a Leaver solver with the Cook-Zalutskiy spectral
approach to the angular sector [31,90]. Our final black hole
has no spin and its mass is slightly lower thanM due to the
gravitational radiation. This relative mass decrease with
respect to M can be estimated at about 7 × 10−5 from the
outer horizon area at late times. We simply approximate the
final mass as M when computing the QNM spectrum,
implying a similar relative error on τl0n and ωl0n which
are proportional and inversely proportional to the finalmass,
respectively. In Table I, we show as an example, a sample of
the resulting QNM frequencies ωl0n and damping rates
1=τl0n, for l ¼ 2;…; 12 and n ¼ 0;…; 5.
The fitting algorithm is explained in Sec. III B. In

Sec. IVA we explore the fit results for a single-tone
(nmax ¼ 0) analysis. We observe that the single-tone model
is not sufficient to fully describe even the late-time data. In
Sec. IV B we extend the results to the multiple-tone
(nmax > 0) analysis and to the whole dataset, with all the
αl0n and βl0n parameters set to zero. In this case and for
large enough nmax, we find that the model is sufficient to
describe the data even including the early times where the
horizon is not in equilibrium. In Sec. V we discuss this, and
investigate whether one can infer from it an actual presence
and predominance of overtones over nonlinear contribu-
tions right from shortly after the horizon is formed.

B. The fitting algorithm

We use a maximum likelihood estimation algorithm to
obtain the best-fit parameters λi. Those correspond to the
parameter values that minimize the χ2, namely,

χ2 ¼
X
k

jhx½λ⃗�ðtkÞ − hNRðtkÞj2; ð15Þ

where hx½λ⃗� stands for the model given by Eq. (14)
and evaluated at the parameters λ⃗ ¼ fAl0n;ϕl0ng or λ⃗ ¼
fAl0n;ϕl0n; αl0n; βl0ng, and hNR ¼ fσl; Ilg stands for the
numerical data for the shear modes or multipoles, respec-
tively. We sum over the data points k at all times t ¼
tk ∈ ½t0; tf�, for a certain fit starting time t0 which may be
picked at any value tbifurcate ≤ t0 ≤ tf, and where, as above,
tf ≃ 38.5M is the end time of the simulation. Minimization
of (15) is performed running the Levenberg-Marquardt
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line), where all frequencies are set to the QNM values; and
for the single-mode model with free frequencies used in
Sec. IVA and given by Eq. (22) (red dashed line). The free
parameters are fA0;ϕ0; A1;ϕ1g in the first case and
fA0;ϕ0; α0; β0g in the second case. These results suggest
a small preference at nearly all times for the one-overtone
model with QNM frequencies over a single-damped-sinus-
oid model even though the complex frequency of the latter
is freely adjusted. The improvement in mismatch does
however occur at most but not all values of t0, and barely
goes beyond 1 order of magnitude when it occurs. In
particular, for most values of t0=M ≳ 28, i.e., at very late
times, we obtain similar values of the mismatchM for both

models considered. This is consistent with Fig. 7 since, in
this regime, deviations to a fundamental-mode-only model
(with QNM complex frequency) are expected to be mostly
negligible.
Figure 18 shows the similar mismatch for two six-param-

eter models. Both models assume the presence of the
fundamentalQNM,whichwe seem to recover asymptotically
at late times. They both consider an additional contribution,
which takes the formof either the first twoQNMovertones, or
of a single damped sinusoid with unconstrained complex
frequency. The first model (green continuous line) thus
corresponds to the ðnmax ¼ 2Þ-overtone model with QNM
frequencies of the class of Eq. (23), with free parameters
fA0;ϕ0; A1;ϕ1; A2;ϕ2g. The secondmodel (red dashed line)
corresponds to thegeneral ansatz ofEq. (14) fornmax ¼ 1 and
with αl00 and βl00 set to zero. The free parameters in this case
are fAl00;ϕl00; Al01;ϕl01; αl01; βl01g. No clear preference is
found for either model, both of them alternately having the
lowest mismatch for various ranges of t0, and with very small
differences between both mismatch values.
Hence, a (fundamental QNMþ first QNM overtone)

model is only marginally preferred to a single-damped-
sinusoid model, and assuming the presence of the funda-
mental QNM, we cannot conclude about the additional
presence of two QNM overtones vs that of an arbitrary
single additional damped sinusoid. This neither confirms
nor rules out the actual presence of QNM overtones, but
hints again quite strongly at the difficulty of confidently
determining (a) the presence of overtones and (b) the
frequencies of multiple damped sinusoids that may be
present in the data.

C. Comparison to a toy model
with altered real frequencies

We now investigate how the quality of multiple-tone fits
depends on deviations in the frequencies of the tones with
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one overtone QNM model one mode with free frequencies

FIG. 17. Comparison of the respective mismatches to the NR
shear l ¼ 2 mode for two 4-parameter models (see Sec. V B for
details), as a function of the fit starting time t0.

FIG. 16. Numerically computed first six shear modes as a
function of the simulation time t on the outer common horizon
Sout (thicker lines) and on the inner common horizon Sin (thinner
lines), near the formation/bifurcation time t ¼ tbifurcate (high-
lighted as a vertical dashed line). The continuity of these variables
across both horizons and the resulting vertical tangent at
bifurcation are easily visible. The higher shear modes, and the
multipoles, have the same behavior.
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fundamental QNM mode + one free mode

FIG. 18. Comparison of the respective mismatches to the NR
shear l ¼ 2 mode for two six-parameter models (see Sec. V B for
details), as a function of the fit starting time t0.
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respect to the QNM values. We here focus on the real
frequencies, noting that the imaginary frequencies (or
damping rates) of successive QNM tones n are well
separated, while the corresponding real frequencies vary
by smaller amounts for small n values (Sec. 3.1 of [88])
(see also Table I). For the ðl ¼ 2; m ¼ 0Þ mode considered
here, the real frequencies of the first three QNM overtones
ω20n, n ¼ 1, 2, 3, for instance, are smaller than the
fundamental-mode one ω200 by about 7%, 19% and 33%
respectively (see Table I, left panel).
For this purpose, we consider a family of arbitrary toy

models following the general ansatz of Eq. (14), with a
variable total number of overtones nmax. We define this
family by setting αl00 and all the βl0n parameters to zero, i.e.,
we keep the fundamental QNM and we keep all damping
rates at the QNM values, and by setting the other αl0n
parameters, n > 0, to a specific choice of nonzero values.
Our choice here is to set every αl0n such that the real
frequency of each tone in the model stays equal to the
fundamentalQNMreal frequency:ωl0nð1þαl0nÞ¼ωl00 ∀ n.
We thus end up with the following family of models,
parametrized by nmax:

Xl¼
Xnmax

n¼0

Al0n exp

�
−
t− tr
τl0n

�
cos ½ωl00ðt− trÞþϕl0n�: ð24Þ

The free parameters of themodels are the amplitudesAl0n and
the phasesϕl0n.Weprobe the ability of these artificialmodels
tomatch the shear l ¼ 2mode at all times asnmax is varied, in
a similar way as was done, e.g., for Fig. 10 in Sec. IV B 1.
That is,we set the same early fit starting time t0 ∼ 2.3M as for
the latter figure andwe directly study the relative deviation of
the best-fit model to theNR data (and to its general behavior)

for each nmax, without using a rescaling such as that of
Eq. (21) in the fitting process.
Figure 19 shows the results similarly to Fig. 10 with the

best-fit model for each nmax as a continuous line and the NR
data as dots, as a function of t and on a logarithmic scale.
We show here only the most relevant values of nmax ¼ 2
and nmax ¼ 3. nmax ¼ 0 (fundamental QNM only, already
considered earlier) and nmax ¼ 1, do not provide a good
match to the overall behavior of the shear mode, while
values of nmax > 3 show little visible difference to the
nmax ¼ 3 case.
Interestingly, we find again for this artificial model a

rather good match to the data for nmax ¼ 2, and a very good
match at all times (including prior to t0 but after
t ≃ tbifurcate þ 0.3M) for nmax ¼ 3. The results are qualita-
tively very similar to those obtained with the multiple-
QNM-tones model of Eq. (23) in Sec. IV B, despite the
unphysical real frequency values used here for the over-
tones. Hence, our conclusions of a good modeling of the
shear modes or multipoles by combinations of sufficiently
many QNM tones are not very sensitive to the actual
frequencies (at least regarding the real part) used in the
overtones model. We see here that similar conclusions can
be reached with models that do not match the GR QNM
values for n > 0.

D. Stability of the multiple-QNM fits
with the fit time range

We finally study some aspects of the stability of the best-
fit parameters when fitting the multiple-tone QNM model
of Eq. (23) to the NR data over the range ½t0; tf� as t0 is
varied. Such a stability can be seen as a necessary condition
for the consistent presence of a set of QNM overtones in the
data. If these modes are present, then for instance their

FIG. 19. Direct comparison of the NR l ¼ 2 shear mode (black dots) and the associated best-fit toy models as introduced in Sec. V C
(blue continuous lines; see this section for details), as a function of the simulation time t. We show here the results for the most relevant
numbers of nmax ¼ 2 (left panel) and nmax ¼ 3 (right panel) additional modes beyond the fundamental QNM. The vertical red line on
each panel indicates the ft ¼ t0g line, where the starting time t0 used for the fits is set to a constant value given by t0=M ¼ 3=1.3 ≃ 2.3,
as for the similar analyses with a different model presented in Sec. IV B. For a given nmax, the agreement of the best-fit toy model to the
NR data is comparable to that obtained with the actual QNM model in Fig. 10, both after and before t0.
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amplitudes should be recovered consistently over a range of
t0 values where they are detectable.
We have already mentioned some stability properties of

the fits provided by this model for large enough numbers of
overtones in Sec. IV B. It is indeed noteworthy that when
selecting a fit starting time t0 ≃ 2.3M ≃ tbifurcate þ 1.2M, in
almost all cases where any given shear mode or multipole is
well matched by the model after t0, the nonoscillating
damped regime extending before t0 to t ≃ tbifurcate þ 0.3M
is also well recovered, qualitatively and quantitatively.
These QNM models thus consistently match the behavior
of the data even at times where they have not been
constrained. This suggests that the corresponding QNM
overtones are recovered consistently for some range of
times around this t0.
Here we turn to the investigation of the best-fit amplitude

parameters An obtained for each tone n in multiple-tone
models of the class of Eq. (23) (hence, with all frequencies
equal to the QNM values), still for the example of the shear
l ¼ 2 mode. These parameters are by definition amplitudes
computed at the fixed time tr, and we check for their
constancy as we vary the time t0 at which the fit is started.
The same or a similar test has been used to check for the
presence of overtones in numerical gravitational-wave
ringdown models e.g., in [11,15,16].
Aswewant to retrieve the amplitudes of the tones, we here

apply the rescaling procedure given by Eq. (21) prior to
fitting.8 Note that we still expect the amplitudes (at tr) of the
overtones not to be accurately determined for too large t0, as
the overtones are damped much faster than the fundamental
mode and hence still decay in the rescaled data.
We focus first on the model in the case of nmax ¼ 3,

which we found to be the smallest number of overtones
matching very well the behavior of σ2 at all times.
Figure 20 shows the resulting best-fit amplitude parameters
for the fundamental mode and for the three overtones
considered, as functions of t0, along with their 1σ fitting
uncertainties [Eq. (18)].
The amplitude parameter A0 of the fundamental mode is

remarkably constant throughout the figure, providing
strong further support for the presence of this mode in
the data. The amplitude parameters An (n > 0) of the
overtones, on the other hand, are clearly inconsistent
between different values of t0 ≳ 4M. This does not really

contradict the presence of overtones in the data as these
amplitudes are expected to be poorly determined beyond
early times once the overtones have decayed. Interestingly
however, all overtones have a stable best-fit amplitude
parameter over the range 1.5M ≲ t0=M ≲ 4M, which
corresponds to the regime of early-time exponential decay.
Each of the amplitudes is thus consistently determined over
multiple values of t0 if this regime is accounted for in the fit.
We note that the ratios of the overtone amplitudes com-
puted at the horizon formation, An exp½ðtr − tbifurcateÞ=τl0n�
(n > 0), to the amplitude of the fundamental mode at the
same time A0 exp½ðtr − tbifurcateÞ=τl00�, as determined here
from the stable early-time best-fit values of An and A0, are
of the order of ∼2, ∼23 and ∼34 for n ¼ 1, n ¼ 2 and
n ¼ 3 respectively.
We show for comparison in Fig. 21 the best-fit amplitude

parameters obtained in the same way with instead nmax ¼ 4

FIG. 20. Best-fit amplitudes at tr [with 1σ uncertainties as given
by Eq. (18)] as a function of the fit starting time t0 for the
fundamental mode and overtones in the (nmax ¼ 3)-overtone
QNM model of Eq. (23), for the shear l ¼ 2 mode. The rescaling
procedure given by Eq. (21) has been used before fitting.

FIG. 21. Same as Fig. 20, for the ðnmax ¼ 4)-overtone model of
Eq. (23).

8More explicitly, the rescaled model reads in this case h̃xðtÞ ¼
A0 cos½ωl00Δt þ ϕ0� þ Σnmax

n¼1An cos½ωl0nΔt þ ϕn� exp½−ðτ−1l0n−
τ−1l00ÞΔt�, which we fit to the rescaled data h̃NRðtÞ ¼
hNRðtÞ exp½þτ−1l00Δt�, with Δt ¼ t − tr. The amplitude parameters
A0, An are by definition the amplitudes of each mode at the fixed
time tr, and they are formally neither affected by this rescaling
nor by changing the fit starting time t0. The best-fit values found
for these parameters, on the other hand, may vary, e.g., if the
modes are not well recovered by the fitting procedure when they
have been highly damped, or if the data contains more than the
QNMs included in the model.
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overtones included in the model. The resulting A0 is still
constant over the whole time range considered and A1 is
still relatively stable over the same early-time interval as
above, with values roughly consistent with those obtained
from the three-overtone model. The higher overtones
(n ≥ 2) on the other hand do not appear to be stable over
any time range. This may however simply indicate that
their amplitudes cannot be constrained accurately enough
even in the exponential damping regime due to a large
number of free parameters and a too quickly decaying
fourth overtone. For σ2, nmax ¼ 3 seems to be an optimal
number of overtones that models well the data at all times
while still allowing the amplitude of each tone to be
correctly constrained.
The considerations of this subsection—including the

discussion recalled from Sec. IV B—still do not provide
any definitive conclusion about the actual presence of
QNM overtones in the shear modes or multipoles, in
particular since the stability of the best-fit model over
some time range is a necessary, but not a sufficient
condition for their presence. Yet these results perhaps
represent the most supportive clue that we obtain in favor
of the behavior of the horizon being indeed dominated by
QNMs from shortly after its formation. The results of the
previous subsections would not directly contradict such a
statement. They would rather point towards the difficulty of
separating QNM overtones from any other combination of
damped sinusoids with roughly comparable complex
frequencies (and thus of deciding on the presence of
QNM overtones vs such other decaying modes), and even
of determining how many tones would have non-negligible
contributions.

VI. CONCLUSION AND DISCUSSION

We have shown in this paper that the dynamics
of the final apparent horizon in a binary black hole
merger can be very well described by the quasinormal
modes of the final black hole, from shortly after
this horizon is formed onward. We have studied two
quantities of interest, namely the shear of the outgoing
normal at the horizon, and the horizon multipole
moments; both of these are well modeled by quasinormal
modes provided a large enough number of overtones is
included. We have considered here a high-precision
numerical simulation of a head-on collision of
nonspinning black holes, but we expect these results to
qualitatively hold for other configurations (of higher
astrophysical interest) as well.
We have first confirmed that the behavior of each of

the shear modes σl and of the horizon mass multipole
moments Il, for 2 ≤ l ≤ 12, is dominated at late times
by the corresponding fundamental quasinormal mode.
This is compatible with linear perturbation theory, which
can be expected to hold in this regime and predicts
an asymptotic predominance of the fundamental

quasinormal modes since the associated overtones have
shorter damping times. This result strengthens the
conclusions of [61], and supports the presence of
correlations between the emitted gravitational waves
and the dynamics of the final black hole horizon
(cf. [22]). Deviations from a description only in terms
of the fundamental mode are however also evident,
especially at early and intermediate times. This is
accounted for by also including the higher overtones.
We have shown that the shear and multipole moments,
for essentially the entire time after the common horizon
formation, are well described by superpositions of
quasinormal modes including the overtones.
These results are in qualitative agreement with studies

of the gravitational waveform extracted far away from the
source. For example, in [11] it is found that the dominant
ðl ¼ jmj ¼ 2Þ harmonic of the gravitational waveform for
a particular quasicircular initial configuration (with mass
ratio 1.22 and moderate spins aligned with the orbital
angular momentum) is well modeled right up to the peak
of the strain by including up to seven overtones. The
ability to detect and separate the successive overtones in
the early stages of the ringdown, before they have
decayed, would improve the prospects for black hole
spectroscopy, and for observational probes of the black
hole no-hair theorem.
In the present work, we have probed another part of

spacetime by focusing on the horizon of the final black
hole; we however expect strong correlations between both
dynamics, arising from the same source [22]. The simpler
geometry in our study, and the focus on the horizon,
allowed for a high numerical precision and for an inves-
tigation of all geometric modes up to l ¼ 12, rather than
just the dominant l ¼ 2 mode, for both the shear and the
multipole moments. For all of these modes, we have
obtained similar qualitative results. In particular, in the
case of the l ¼ 2 mode, we have found that two to three
overtones suffice for an accurate modeling of both variables
from shortly after the horizon formation onward. We have
however also noticed the general increase in the number of
overtones necessary for a good description of the geometric
l mode as l increases.
Such results remain surprising because, shortly after the

common horizon is formed, it is highly distorted and cannot
be described as a linear perturbation of a Schwarzschild
horizon. As evidence for this, we have noted that the area of
the horizon increases at a very significant rate in this
regime. The total relative change in area is only of about
6% however, so it could be argued that perturbation theory
is still of some utility. One can then wonder whether
obtaining a description of the horizon dynamics in terms of
ringdown modes in this regime implies that the horizon is,
in some suitable sense still to be understood, still a small
perturbation of a stationary black hole. We have accord-
ingly studied, through various possible criteria, whether
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one should conclude (a) at the linear perturbation spectrum
indeed already driving the horizon dynamics at early times,
or (b) at the more prosaic alternative that the quasinormal
modes are just a suitable function basis for the shear and the
multipoles, so that there is no deeper interpretation of these
results.
Despite this investigation, and given the lack of a

calculation from first principles, a conclusive answer to
this question is still elusive. We have noted that the infinite
slope featured by all shear modes and multipoles at tbifurcate
prevents their formal description by a finite sum of QNMs
at horizon formation, at least in terms of the t parameter
used. Nevertheless, this constraint does not rule out
such a model even at only slightly later times such
as during the observed “early-time” decay phase at
0.3≲ ðt − tbifurcateÞ=M ≲ 3. Hypothesis (a) is supported
by the stability observed to some extent in the best-fit
amplitudes of each mode when the time t0 at which the fit
is started varies and spans the early-time range quoted
above. This stability also manifests itself in the continued
qualitative agreement of the model to the data at
times prior to t0 that is typically observed when t0 lies
in this range. On the other hand, models with lower
numbers of overtones but some of the overtone frequen-
cies let free to deviate from the QNM values, did not
show a clear preference for the QNM overtones spectrum.
The same was found using an example toy model with
real frequencies artificially set slightly away from the
QNM values. This is compatible with hypothesis (b), but
these results do not rule out the actual predominance of
overtones at early times, hypothesis (a), given that a clear
preference for non-QNM frequencies was not found either.
This rather hints at the difficulty of resolving individual
modes in a sum of damped sinusoids with frequencies
comparable to that of the QNMs, and of determining how
many such modes can be included and constrained, even
with essentially noise-free data. We expect these issues—
including the overall difficulty of firmly ruling out the
predominance of nonlinearities over overtones at early
times—to hold similarly when the ringdown is analyzed
from the emitted gravitational waves, complicating an
overtone-based spectroscopy. The lack of a clear-cut

recovery of the QNM overtone frequencies, in particular,
was indeed also observed for the dominant ðl ¼ jmj ¼ 2Þ
gravitational-wave mode during ringdown in a binary
black hole merger simulation in [15].
Turning now to future directions, there are a few

straightforward possible extensions of the present
work. First, the present analysis may be completed by
a closer look at the more involved behavior of the vector
modes ξl (see Fig. 2 and the associated brief discussion in
Sec. II B 3). Within the same setup as considered here, it
would also be natural to try other parametrizations of
“time” to circumvent the infinite slope at tbifurcate in each
of the observables as functions of t. This could also allow
for a consistent joint treatment of both the inner and outer
common horizons, which constitute indeed a single
smooth hypersurface in spacetime. Second, one can look
for a possible generalization of the results to a wider
variety of configurations, including the astrophysically
important quasicircular orbits and accounting for
black hole spin. Third, a more fundamental investigation
of the mechanisms driving the early-time dynamics
of the outer common horizon could shed more light onto
the fast exponential decays observed at these times for all
of the shear modes and multipoles. We have found here
that quasinormal overtones can indeed combine in such a
way as to produce this behavior. An investigation of the
mechanisms driving it could either provide more insight
into why such a combination would take place, or rule out
quasinormal modes as a relevant explanation for this
(possibly still nonlinear) regime altogether.
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