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Abstract It is expected that the quantum nature of space-
time leaves its imprint in all semiclassical gravitational sys-
tems, at least in certain regimes, including gravitational
waves. In this paper we investigate such imprints on gravita-
tional waves within a specific framework: space is assumed
to be discrete (in the form of a regular cubic lattice), and
this discrete geometry is quantised following Dirac’s canon-
ical quantisation scheme. The semiclassical behavior is then
extracted by promoting the expectation value of the Hamilto-
nian operator on a semiclassical state to an effective Hamil-
tonian. Considering a family of semiclassical states repre-
senting small tensor perturbations to Minkowski background,
we derive a quantum-corrected effective wave equation. The
deviations from the classical gravitational wave equation are
found to be encoded in a modified dispersion relation and
controlled by the discreteness parameter of the underlying
lattice. For finite discretisations, several interesting effects
appear: we investigate the thermodynamical properties of
these modified gravitons and, under certain assumptions,
derive the tensor power spectrum of the cosmic microwave
background. The latter is found to deviate from the classical
prediction, in that an amplification of UV modes takes place.
We discuss under what circumstances such effect can be in
agreement with observations.

1 Introduction

The observation of gravitational waves (GW) in recent years
has opened a new window for insights into the cosmos
[1–4]. This manifested itself in the emergence of the era
of multi-messenger astronomy on the one hand [5,6] and
on the other hand with the further search for gravitational
waves of primordial origin [7]. Such waves might soon be

a e-mail: adapor1@lsu.edu
b e-mail: klaus.liegener@desy.de (corresponding author)

detectable, and are expected to lead to a new understanding
of the early universe. This includes the possibility to probe
the so far unknown frontier of quantum gravity. Indeed, first
approaches exist which use GW to narrow down the possibil-
ity of discrete spacetimes [8] featuring an intrinsic discrete-
ness scale typically associated to the Planck length. However
before these phenomenological tests can be carried out fully,
it is important to understand the theoretical predictions about
the propagation of GW from a given theory of quantum grav-
ity.

The present work will elucidate on this endeavour. We
will focus on a particular approach towards quantum gravity,
namely Loop Quantum Gravity (LQG) [9–12]. This candi-
date for canonical quantum gravity has matured in the last
decades towards a mathematically well-defined theory. It
is a quantum field theory on a continuous manifold, how-
ever the observables of geometrical quantities (such as areas
and volumes) come naturally with discrete spectra [13–
16]. Whence, one could expect discrete features of quantum
geometry to emerge at the level of observations. Including
this discreteness into reduced models led to many interesting
concepts: for example, Loop Quantum Cosmology (a quanti-
sation of the cosmological sector of General Relativity using
techniques from LQG) resolved the initial singularity via a
smooth bounce [17–20]. However, the evolution of such cos-
mological models was prone to discretisation ambiguities.
Only recent studies enabled to draw a connection between
the reduced dynamics and the Hamiltonian constraint of
the full theory [21]. This was achieved via coherent states
sharply peaked on a discrete geometry [22,23]: interpreting
the expectation value of the Hamiltonian constraint opera-
tor thereon as an effective Hamiltonian extracts the quantum
corrections due to the underlying discrete structure [24–28]
in the form of a modified effective dynamics for the canonical
variables. This paper applies this framework to the case of
GW propagating on flat Minkowski background.
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Section 2 of this paper revisits the classical formulation
of GW in the Hamiltonian description. Then, we introduce
in Sect. 3 the necessary formalism of LQG and how coher-
ent states for GW on Minkowski spacetime are constructed.
A necessary condition is the perturbative treatment of the
modes, as their smallness is necessary to obey the linearised
Einstein equations. We will outline how this simplifies the
formalism and what result is found for the expectation value
of the Hamiltonian constraint, which is then thought of as an
effective Hamiltonian on the phase space of linearised grav-
ity. Said effective constraint differs from its classical con-
tinuous counterpart, the modifications being controlled by
the discreteness parameter ε stemming from the discretised
quantum geometry. While the effective equations correspond
to the limit h̄ → 0, the remaining discreteness implies that
we have not taken any continuum limit. In Sect. 4, the modi-
fied Hamilton’s equation for GW are derived and analytically
solved, leading to waves with a specific dispersion relation.
In Sect. 5, the modified dispersion relation for GW in LQG
is studied. The propagating modes can be described as gravi-
tons, for which a standard Fock quantisation is possible. We
will describe their thermodynamical properties. Section 6
presents a toy model to investigate whether the modified dis-
persion relation can lead to observable modifications to the
Cosmic Microwave Background (CMB) tensor power spec-
trum. Finally, Sect. 7 concludes with a comparison to existing
literature and an outlook of further research directions.

2 Canonical description

On manifold M = σ × R (with σ ∼= [0, L]3 a torus with
periodic boundaries) we consider for the spacetime metric a
perturbation around flat Minkowski background:

gμν = ημν + hμν (1)

where h is sufficiently small so that its quadratic orders can
be neglected. By adopting the transverse traceless gauge, its
only non vanishing elements are

hxx = −hyy = h+, hxy = hyx = h× (2)

which depend only on direction z and time t .
In the Hamiltonian formulation of gravity, Einstein’s

equations become equivalent to a totally constrained sys-
tem [29,30]. Expressed in the Ashtekar–Barbero variables
(Ea

I , A
I
a) [13,31], the constraints are

C = εI J K Ea
J E

b
K

κ
√

det E
(F I

ab − (1 + β2)εI MN K
M
a K N

b )

Ca = 2

κβ
F J
abE

b
J , GJ = ∂a E

a
J + εJ K L A

K
a Ea

L (3)

where κ = 16πG and β > 0 is the Immirzi parameter.
K is the extrinsic curvature and F the gauge curvature of
connection A. The connection and its canonical conjugated
momentum, the triad E , can be computed for metric (1) (by
neglecting O(h2) contributions) and read

E1
1 = 1 − h+

2
, E2

2 = 1 + h+
2

, E1
2 = E2

1 = −h×
2

E3
3 = 1, A1

1 = A2
2 = −β

p+
2

, A2
1 = A1

2 = β
p×
2

(4)

where p+/× is the canonical conjugated momentum to h+/×
respectively, i.e., {hi (z), p j (z′)} = κδijδ(z, z

′)/L2.
The Hamiltonian of General Relativity is

H =
∫

σ

dxdydz (NC + NaCa) (5)

with lapse function N and shift vector Na . We will gauge fix
N = 1 and Na = 0 such that for a spacetime given by (1)
the Hamiltonian becomes (up to a boundary term):

H = L2 1

2κ

∫
dz [ḣ2+ + (∂zh+)2 + ḣ2× + (∂zh×)2] (6)

This describes two decoupled, massless free scalar fields in
one dimension. The solutions are thus classical waves.

3 Loop quantisation

Being interested in the consequences for GW from discrete
spatial manifolds, we introduce an ad-hoc discretisation of σ

in form of a cubic lattice with edges of coordinate length ε

(and its dual cell complex); the number of vertices v in each
direction is N = L/ε. Keeping ε finite and only considering
finitely many degrees of freedom described by smearings
along the edges and faces of the lattice allows to proceed with
the canonical quantisation of General Relativity in a well-
defined manner, analogously to the quantisation procedure
of LQG. We emphasize that discretisation of space is not a
necessity in LQG, so we regard it as an additional postulate.

The variables we are interested in are SU(2)-valued
holonomies of A along the edges e of the lattice and gauge-
covariant fluxes1 of E across the dual faces Se for each edge
e:

P(e) = h(e[1/2])
∫
Se
h(ρx ) ∗ E(x)h(ρx )

†h(e[1/2])†

=
∫
Se

∗E(x) + O(h2), h(e) = P exp

(
−

∫
e
A

)

(7)

1 With the choice in [32,33], these coincide with conventional fluxes
up to O(h2).
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where A = AI τI , E = EI τI and τI = −iσI /2, with σI

the Pauli matrices. e[1/2] ⊂ e is starting at e(0) and ending
at p = e ∩ Se and ρx some choice of of path contained in Se
starting at p and ending at x .

For a lattice whose edges are oriented along the coordinate
directions, the discretisation of (1) gives (neglecting O(h2)-
contributions)

h(e1) = id − εβ(p+τ1 + p×τ2)/2

h(e2) = id − εβ(p×τ1 − p+τ2)/2, (8)

h(e3) = idP(e1) = ε2τ1(1 − B+(z)) − ε2τ2B×(z)

P(e2) = ε2τ2(1 + B+(z)) − ε2τ1B×(z), P(e3) = ε2τ3 (9)

with

Bi (z) := 1

2ε

∫ z+ε/2

z−ε/2
du hi (u) (10)

These quantities describe the discrete spatial geometry on
the initial-time hypersurface.

Canonical quantisation can now be performed, leading to
the Hilbert space of square-integrable functions over SU(2)

on each edge e: He = L2(SU(2), dμH ) with μH the Haar
measure. A coherent state 
 ∈ H = ⊗eHe for the discre-
tised geometry (8) of GW can now be explicitly constructed
following [22–25]:


 =
∏
e

ψe (11)

ψe(g) =
∑
j

(2 j + 1)e− j ( j+1)t/2Tr( j)(H†
e g) (12)

He = exp[−i t P(e)/(h̄κβ)]h(e) (13)

Here, t > 0 describes the spread of the state: 
 is sharply
peaked, that is,

〈
, ĥ(ei )
〉 = h(ei )[1 + O(t)]
〈
, P̂(ei )
〉 = P(ei )[1 + O(t)] (14)

where ĥ is the multiplication operator and P̂ the right-
invariant vector field.2

This peakedness also extends to more complicated observ-
ables built from these basic operators, leading to the realisa-
tion that the expectation value of any quantity on the quan-
tum state will result in the corresponding classical discreti-
sation (up to quantum corrections proportional to the spread
of the state). This leads to the conjecture that the dynamical
evolution at the quantum level is well approximated by the

2 t is in principle a free parameter in 
. However, we can adopt t =
‖h‖2, which implies that all corrections of non-zero order in t can be
neglected in the linearisation.

dynamics generated by the discretised Hamiltonian of the
system, that is, the leading order of the expectation value of
Ĥ = ∑

v Ĉ(v). In its most prominent quantisation [34,35],
operator Ĉ(v) reads

Ĉ(v) = ĈE (v) + ĈL(v) (15)

with

ĈL(v) = 4(1 + β2)

κ4β7i h̄5

∑
e∩e′∩e′′=v

ε(e, e′e,′′ )Tr(1/2)

(
ĥ(e)

× [ĥ(e)†, K̂ ]ĥ(e′)[ĥ(e′)†, K̂ ]ĥ(e′′)[ĥ(e′′)†, V̂ ]
)

ĈE (v) = −1

12κ2βi h̄

∑
e∩e′∩e′′=v

ε(e, e′, e′′)Tr(1/2)

× ((ĥ(�ee′) − ĥ†(�ee′))ĥ(e′′)[ĥ(e′′)†, V̂ ]),
K̂ =

∑
v

[ĈE (v), V̂ ] (16)

where �ee′ is the minimal plaquette spanned by e and e′,
while V̂ is the volume of the whole spatial manifold σ .

Using the fact, that the expectation value agrees at lead-
ing order in t with its classical regularised expression, one
can perform (after a lengthy computation) the reduction to
the phase space spanned by h+(z), h×(z), p+(z), p×(z). The
expectation value at each vertex v is found to be (we define
f ±m := f (z ± mε) for any function f )

〈
, ĈE (v)
〉 = −ε3β2

2κ

×
[
p2+ + p2× + 2B+

β

p+× − p−×
ε

− 2B×
β

p++ − p−+
ε

]
+ O(t)

〈
, ĈL(v)
〉 = ε3 1 + β2

2κ

×
⎡
⎣

(
B++ − B−+

βε
− p+× + 2p× + p−×

4

)2

+
(
B+× − B−×

βε
+ p++ + 2p+ + p−+

4

)2
⎤
⎦ + O(t) (17)

where, due to homogeneity in x and y directions, the quan-
tities on the rhs depend only on the z-coordinate of v (i.e.,
z ∈ {nε : n = 0,±1, . . . ,±N/2}).

4 Modified dispersion relation

The non-trivial modifications (17) of the Hamiltonian for GW
due to the discreteness of space, can now be used to extract
physical predictions upon adopting the conjecture mentioned
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above: the dynamics on the discrete phase space of General
Relativity for initial data belonging to a certain symmetry
class (i.e., the reduced phase space of GW in our case) can be
described completely on the reduced phase space by using the
reduced, discrete Hamiltonian as generator of time evolution.

From now on, we denote p+ = p1, p× = p2 (and similar
for h with 1, 2 ∈ Z2) and work with the above conjecture.
Then, from

Heff = Heff(hi , pi ) :=
〈

,

∑
v

Ĉ(v)


〉
(18)

we can derive the Hamilton equations on the reduced, discrete
phase space (using ḟ = { f, Heff} for any observable f =
f (hi , pi )):

ṗi = (−)i+1 β

2

p+
i+1 − p−

i+1

ε

+ 1 + β2

2βε

(
εBi + (−)i

p+2
i+1 + 2(p+

i+1 − p−
i+1) − p−2

i+1

4

)

(19)

Ḃi = −β

2

(
p+2
i − 2pi + p−2

i

ε2 − (−)i
B

+
i+1 − B

−
i+1

ε

)

+ 1 + β2

8β

(
�i − (−)i

B
+2
i+1 + 2(B+

i+1 − B
−
i+1) − B

−2
i+1

ε

)

(20)

with Bi := (B+2
i + B−2

i )/(ε2β) and

�i := 1

4ε2 [p+4
i + 4p+3

i + 4p+2
i − 4p+1

i − 10pi

− 4p−
i + 4p−2

i + 4p−3
i + p−4

i ] (21)

Equation (19) can be inverted for B in order to express
the right hand side of (20) as function of pi , ṗi only, i.e.,
Ḃi = f (p+, p×, ṗ+, ṗ×). This expression can be used when
taking the time derivative on Eq. (19) to obtain

p̈i = β2

8ε2 (sp+3
i − 2p+2

i

− sp+
i + 4pi − sp−

i − 2p−2
i + sp−3

i ) (22)

with s = (1 +β2)/β2. Note that the two degrees of freedom
corresponding to i = 1 and i = 2 decouple.

To solve (22), we first extend the size of the box to infinity
by keeping the lattice spacing ε constant: L → ∞ and N →
∞ such that L/N = ε constant. Then, the ansatz

p(z) = ε

2π

∫
B

dk eikz u(k) (23)

with k taking values in theBrillouin zoneB := [−π/ε, π/ε],
solves (22) if the Fourier coefficients u(k) obey the equation

ü(k) = −ω(k)2 u(k) (24)

with

ω(k)2 = sin(kε)2

ε2 ((1 + β2) cos(kε) − β2) (25)

Observe that oscillatory modes are only possible for ω(k)2 >

0 (modes out of this range do not propagate), therefore we
restrict our attention to |k| < ko with

ko := 1

ε
arccos

(
β2

1 + β2

)
<

π

ε
(26)

For such modes, the solution to (24) is simply

u(k, t) = C+
k e

iω(k)t + C−
k e

−iω(k)t (27)

withC±
k complex constants. At this point, we plug (23) (with

u(k) given by (27)) in (19) and solve for Bi (z, t): this finally
leads to expression

Bi (z, t) = ε

2π

∫ +ko

−ko
dk [ai,kei(kz+ω(k)t) + a∗

i,−ke
i(kz−ω(k)t)]

(28)

The coefficients ai,k ∈ C are related to C±
k by complicated

expressions but, since C±
k are anyway generic and since Bi

are the quantities most closely related to the metric compo-
nents h1 and h2 (see Eq. (10)), we take ai,k to be the funda-
mental quantities that characterise the field Bi .

Now, although Bi is essentially a linear combination of
plane waves, such waves have a modified dispersion relation,
in contrast to the classical ωcl(k)2 = k2. This modification
appears due to the discrete structure of space, which is con-
trolled by the lattice parameter ε. Indeed, limε→0 ω = ωcl,
hence one can expect the modifications due to ω(k) to be
comparably small and hard to detect for extremely fine dis-
cretisations.3 Conversely, for gravitational waves with high
momentum k there might be a measurable departure from
the classical, continuum predictions. We will discuss some
potentially measurable effects in Sects. 5 and 6.

Let us close this section with a remark: observe that “clas-
sical” waves have wavelengths much larger than the discrete-
ness scale ε, which means that kε � 1, whence classical

3 We can understand the previous section as taking the classical limit
h̄ → 0 if one choose t ∝ h̄. Instead of taking any continuum limit
we assume our model to be spatially discrete. In order to match with
observation the scale ε should be small, justifying an expansion ε after
taking h̄ → 0. In contrast, for continuous quantum field theories the
limit ε → 0 needs to be taken first.
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waves move at the speed of light. However, the general for-
mula for the speed of waves reads

vk := d|ω(k)|
dk

|k=0 = 1 − 5 + 3β2

4
k2ε2 + O(k4ε4) (29)

revealing that gravitons with short wavelengths propagate
slower than light.

5 Effective graviton

A surprising aspect of the analysis in the previous section
was that the only modifications of GW due to the presence
of discrete spacetime is a modified dispersion relation with
ω(k) given in (25). In this section we will study the conse-
quences of such a modified dispersion relation for gravitons,
understood as a Fock quantisation of the degrees of freedom
Bi obtained in the previous section. We emphasize that this
“re-quantisation” is a model capturing only certain aspects
of the original quantum gravity theory (described in section
3).

Since we are dealing with free fields, we can perform the
quantisation as in standard quantum field theory, by promot-
ing ai,k of (28) to operators on the Fock space F(H):

ai,k, a
∗
i,k �→ âi,k, â

†
i,k, [âi,k, â†

i ′k′ ] = δi,i ′δ(k, k
′) Î

H :=
{∫

dk â†
i,k f (k)|0〉, f ∈ L2(R)

}
(30)

Operator â†
i,k creates a graviton with polarisation i and

momentum k. Knowing that the classical system is a set of
infinitely many harmonic oscillators with frequency ω(k),
the Hamiltonian describing the system is4

Ĥ = h̄
∑
i=1,2

∫ +ko

−ko
dk ω(k) â†

i,k âi,k (31)

Interpreting â†
i,k âi,k as the operator n̂i,k measuring the

number of gravitons with polarisation i and momentum k,
and knowing that for a thermal state at temperature T it is
〈n̂i,k〉 = (eh̄ω(k)/(kBT ) − 1)−1 (where kB is Boltzmann con-
stant), we find the total energy

Ē := 〈Ĥ〉 = 2
∫ +ko

−ko
dk

h̄ω(k)

eh̄ω(k)/(kBT ) − 1
(32)

4 Indeed, since the solutions of (22) are plane waves (when restrict-
ing to |k| < ko), there exists a canonical transformation bringing the
Hamiltonian into harmonic oscillator form.

Fig. 1 Comparison of the specific heat capacity c(T ) with β = 0.2375
in the two cases: classical dispersion relation in the continuum (red,
dashed), modified dispersion relation for ε = 0.015 (blue, solid). In
contrast to the continuum model, the specific heat capacity of gravitons
in the discrete approaches a constant c∞ for T → ∞

To understand the modifications due to discreteness in the
behaviour of energy with respect to temperature, it is instruc-
tive to look at the specific heat capacity c:

c := ∂ Ē

∂T

= 2

kBT 2

∫ +ko

−ko
dk

(
h̄ω(k)

eh̄ω(k)/(kBT ) − 1

)2

eh̄ω(k)/(kBT ) (33)

In the large temperature limit, c approaches the constant
c∞ = 2kBM , with M = 2ko the size of integration. This is
a strikingly different behaviour than that of the continuum
model. Indeed, for ε → 0 it is k0 → ∞, and the integral in
(33) can be computed analytically to be 4πT/3. We show in
figure 1 how this deviation manifests itself for the case ε =
0.015 in Planck units (in blue) compared to the continuum
case (in dashed red).

It transpires that, compared to the usual dispersion rela-
tion, discrete space causes first an increase for the specific
heat capacity, but then approaches quickly a constant, lead-
ing to a novel behaviour for high temperatures (not unlike
what is found for phonons in crystals).

6 A toy model for primordial tensor modes

An important application for linearised gravity is the very
early universe, where perturbation theory can be used to
reproduce the observable power spectrum to high accuracy.
However, instead of establishing a consistent quantum the-
ory of perturbations (see [36–38] for guidelines), we will
assume in this section that the modified dispersion relation
that was previously derived for GW on Minkowski space-
time can be directly used for the tensor perturbations in
isotropic Friedmann–Lemaître–Roberston–Walker cosmol-
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ogy. This assumptions seems plausible as in both cases the
spatial curvature vanishes and gets strengthened by recent
results confirming the modified dispersion relation in the cos-
mological setting [39]. The only difference is that the general
form of the graviton field is not (28), but rather (using con-
formal time η)

Bi (z, η) ∝
∫

dk

s(η)
[akeikzξk(η) + a†

k e
−ikzξk(η)∗] (34)

where s is the scale factor, which is here taken to undergo
inflation driven by a minimally-coupled free scalar field φ

with mass m. In the continuum theory the field Bi satisfies
�Bi = 0, which leads to the equation ξ ′′

k +(k2−s′′/s)ξk = 0
for the mode function ξk(η), with f ′ := d f/dη. It is therefore
plausible that the effect of the discrete lattice amounts to the
replacement k → ω(k). In the following, we thus consider
mode functions satisfying

ξ ′′
k +

(
ω(k)2 − s′′

s

)
ξk = 0 (35)

where ω(k) is given in (25).
The space of complex solutions to Eq. (35) can be

parametrised by a single solution ξk (and its conjugated
ξ∗
k ), whose choice determines the decomposition into cre-

ation/annihilation operators given in (34): in other words,
choosing a solution of (35), ξk (for every k), corresponds
to choosing a vacuum state. A natural choice is possi-
ble for those modes which satisfy the adiabatic condition
ω(k)2 � s′′/s, since in that case the equation reduces to
the one found in Minkowski spacetime, for which Poincaré
vacuum is uniquely defined. Now, since ω(k) is constant
in time while s′′/s grows during inflation, it is possible
to satisfy the adiabatic condition for any given mode k
by going sufficiently far in the past. How far is enough?
To find out, consider the observable window in the CMB,
[kmin, kmax] = k∗[10−1, 103] (with k∗ the pivot mode
whose physical wavenumber kP∗ (η) := k∗/s(η) satisfies
kP∗ (ηtoday) = 0.002 Mpc−1), and note that ω(k) = k +
O(kε).5 Then, we have three cases:

1. ε ≈ 0.5/kmax, if we want modifications to the classical
power spectrum to fall in the high-k end of the observable
range (see Fig. 2).

2. ε � 0.5/kmax, if we want no observable modifications to
the classical power spectrum.

3. ε � 0.5/kmax, if we want modifications to affect the
whole observable range.

5 The quantity kε is invariant under rescaling s → αs, since it is
kε = kP (η)s(η)ε = kP (η)εP (η), where εP (η) := ∫

dz s(η) is the
physical length of a lattice edge.

Fig. 2 Comparison of the two dispersion relations: the classical one
(red, dashed) and the modified one (blue, solid) given by (25). The ver-
tical solid line denotes the maximal observable mode kmax = 103k∗
(with k∗ the pivot mode corresponding to 0.002 Mpc−1 today), under
the choices ε = 0.5/kmax = 0.015 and β = 0.2375 and with infla-
tion driven by a scalar field with mass m = 1.3 × 10−6 and value
φ(ηo) = 3.13 at the beginning of inflation (dφ/dt |ηo = 0) – all quan-
tities expressed in Planck units

Let us focus on the first case, where one can show that
ω(k)2 � s′′(ηo)/s(ηo) for all k ∈ [kmin, kmax] as long as
ηo corresponds to at least N ≈ 62 e-folds inflation. As a
consequence, we can choose for ξk the unique solution of
(35) with “Poincaré initial conditions”

ξk(ηo) = eiωkηo

√
2ωk

, ξ ′
k(ηo) = iωkξk(ηo) (36)

Given the solution ξk(η), the tensor power spectrum cor-
responds to the 2-point-function of B̂i evaluated at the end
of inflation:

PT (k, η) = 2κk3

π2

|ξk(η)|2
s(η)2 (37)

Note that, soon after a mode k exits the horizon (i.e., satisfies
ω(k)2 = s′′/s), its Eq. (35) reduces to ξ ′′

k − (s′′/s)ξk = 0,
whose solution is ξk ∼ s. As a consequence, the combination
ξk/s becomes constant (the mode “freezes”), and so PT for
that specific mode will become η-independent. This means
that we do not need to wait until the end of inflation in order
to evaluate the power spectrum, but it suffices to take η late
enough that all modes we are interested in exited the horizon.

Since classically it is ωcl(k) = k, modes with higher k exit
the horizon at slightly later times: the classical prediction is
therefore a power spectrum which is almost k-independent
(or “almost scale-invariant”) with a slight tilt downwards,
i.e., decreasing from +∞ (for k = 0) to −∞ (for k → ∞).
The expectation for the modified ω(k) is completely differ-
ent: ω(k) grows approximately linearly in k only up to some
point, but then it reaches a maximum and goes back down to 0
(for k = ko); this means that the power spectrum for modes
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Fig. 3 Comparison of the tensor power spectrum PT : the classical pre-
diction obtained from ωcl(k) = k (red dashed curve) and the prediction
obtained from modified dispersion relation ω(k) (blue dots). In both
cases, the mode equation has been solved numerically with initial con-
ditions (36) atηo corresponding to N = 62.45 e-folds, which is achieved
by a scalar field with mass m = 1.3 × 10−6 and value φ(ηo) = 3.13
at the beginning of inflation (dφ/dt |ηo = 0) – all quantities expressed
in Planck units. For the modified case, the choices ε = 0.015 and
β = 0.2375 have been made. The vertical solid lines denote the observ-
able region k ∈ k∗[10−1, 103] (with k∗ the pivot mode corresponding to
0.002 Mpc−1 today), while the dashed one is the maximum propagating
mode ko, according to equation (26)

obeying the modified dispersion relation will be almost k-
independent (with a tilt downwards) up to a minimum value,
after which the behaviour turns around and the power spec-
trum grows (in a non-symmetric fashion), reaching infinity
in correspondence of the highest propagating mode ko. This
behaviour, and in particular the high-k amplification, is con-
firmed by a numerical simulation of the system (see Fig. 3).

Let us comment on the possible number of e-folds. As
mentioned, there is a lower bound N � 62, which is needed
to ensure that the adiabatic condition is satisfied at ηo for
all observable modes. Interestingly, there might also be a
higher bound, depending on the assumptions that one wants
to make. On the one hand, if one does not want the ampli-
fication to fall in the observable range (i.e., one wants to
avoid strong deviations from the classical prediction), one
must require εP (η)kPmax(η) = εkmax � 0.5 for all η, where
kP (η) = k/s(η) and εP (η) = ∫

dz s(η) = εs(η) is the
physical length of a lattice edge. On the other hand, one could
argue that the minimum physical length in a quantum gravity
theory should be something of Planck order, �P; as s is small-
est at the beginning of inflation (in a conservative model,
without modifications to the pre-inflationary dynamics), one
could therefore require that εP (ηo) � �P. Putting the two
requirements together, one finds that kPmax(ηo) � 0.5/�P.
This puts an upper bound on N , since a mode kP (ηo)becomes
more and more UV the longer the inflation. In fact, for
N = 62.45, we find kPmax ≈ 0.95/�P. Thus, if one believes
that �P is the minimum possible length and does not want
too strong a departure from the classical power spectrum,

then one concludes that the number of e-folds is very strictly
bounded around N = 62. Of course, we emphasize that this
conclusion is reached within the current toy model, and thus
its validity needs to be checked in a more complete theory.
Nevertheless, since it only relies on the existence of a mini-
mum length, the general argument could remain valid inde-
pendently of the details of the theory.

7 Conclusion

In this work we considered the effects on linearised gravity
due to a discretisation of space. Our approach is based on
the framework of Loop Quantum Gravity, a theory which
intrinsically features the discreteness of geometrical quan-
tities such as areas. In the Hilbert space of LQG, we chose
a family of semiclassical states representing a discrete spa-
tial manifold on which the metric degrees of freedom are
sharply peaked on linearised gravity, i.e., gravitational waves
on Minkowski background. Taking these states as describing
the system at a given time, we computed the expectation value
of the Hamiltonian operator, which generates the dynamics
in LQG. It was found that such expectation value does not
agree with the classical Hamiltonian of gravitational waves
but, when used as an effective Hamiltonian on the phase space
of linearised gravity, it produces a wave equation featuring a
modified dispersion relation. The modification with respect
to the classical wave equation captures the LQG effects due
to a discrete spatial manifold.

Let us take a moment to compare our approach to dif-
ferent works in LQG on gravitational waves.6 Since we
are working with states in the Hilbert space of full LQG,
we differ from early approaches, where it was attempted to
quantise only the linearised field theory [41–43]. We also
differ from approaches where, similar to LQC, symmetries
are implemented prior to quantisation [44–47]. While these
approaches take advantage of a simpler computational set-
ting, it is as of today not established how the quantisation
of a reduced theory is connected to the quantisation of the
corresponding full theory; therefore, we refrained from tak-
ing this route. Instead, working in the full theory required
us to perform a lengthy computation, at the end of which
the quantum gravity modifications of the Hamiltonian con-
straint (and their influence for gravitational waves propa-
gation) could be extracted: this is in constrast with works
such as [48,49], where the modifications are postulated. Of
course, the modified dispersion relation we obtained is not
necessarily a general feature of LQG: it was obtained from
a certain regularisation of the Hamiltonian constraint (see
[50] for steps towards estimating the influence of renormal-

6 Several works not employing the Ashtekar formalism exist as well,
see e.g. [40].
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isation for linearised gravity), and using a specific family of
semiclassical coherent states as initial data (for corrections
to linearised gravity in the path integral framework obtained
see [51,52]). However, the complexifier coherent states used
in this paper satisfy many useful properties, enabling analytic
calculations and producing a surprisingly simple result.

After deriving the modified dispersion relation, we stud-
ied some interesting effects it induces in physically realistic
settings. In Sect. 5 we re-quantised the gravitational waves,
thus obtaining “gravitons” which include the corrections due
to the discreteness of space, and then studied the thermo-
dynamical properties of such particles, finding that they are
somehow close to those of phonons in crystals. In Sect. 6 we
considered the case where the background is given by a cos-
mological inflationary spacetime rather than Minkowski: this
was done by using the previously derived dispersion relation
in the wave equation for the tensor modes. While this is a
simplification (which is why we called it a “toy model”), it
allowed us to get an idea of potentially interesting effects in
the CMB tensor power spectrum.7 In particular, we obtained
an amplification in UV modes, which may or may not fall
in the observable range depending on the lattice spacing ε

and the number of e-folds N . The latter was found to be con-
strained around N = 62 if one wants to avoid large departures
from the (classically predicted) almost scale-invariance and
if the minimum physical length of a lattice edge is of order
�P. However, we stress that these predictions are obtained
from a toy model: to confirm them, a full quantum treatment
of background, perturbations and matter [56] (which would
also allow to calculate the corrections to the scalar power
spectrum) has to be developed, possibly on the lines of what
was done in this paper for the case of Minkowski background.
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