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OGAWA INTEGRABILITY AND A CONDITION FOR
CONVERGENCE IN THE MULTIDIMENSIONAL CASE

NICOLÒ CANGIOTTI* AND SONIA MAZZUCCHI

Abstract. The Ogawa stochastic integral is shortly reviewed and formu-
lated in the framework of abstract Wiener spaces. The condition of universal
Ogawa integrability in the multidimensional case is investigated by exploit-
ing Ramer’s functional, proving that it cannot hold in general without the
introduction of a “renormalization term”. Explicit examples are provided.

1. Introduction

After the introduction of stochastic integral in the 1940s due to Kiyosi Itô and
the developments of the Itô calculus in the succeeding years, particular interest
has been devoted to the hypothesis of causality, which are fundamental in stochas-
tic integration theory. In fact, the Itô calculus relies upon concepts as adapted
processes, filtration, martingale, conditions that seems to be consistent with a sort
of principle of causality in physics. Hence, for many years, the stochastic prob-
lems arising in physical modelling (e.g. the phenomenon of diffusion) could be
effectively formulated using Itô calculus. Furthermore, the theory of martingales
underlying in the Itô calculus provides a powerful tool.

However, at the end of 1960s, the interest to construct a new stochastic the-
ory independently from causality conditions began to take hold. In this context,
many approaches have been developed. In particular Anatoliy Skorokhod defined,
in 1970s, the so-called Skorokhod integral [22] and introduced the anticipative cal-
culus. A few years later, in 1979, Shigeyoshi Ogawa independently introduced the
so-called Ogawa integral and the corresponding noncausal calculus [16]. In this
note, we focus on the latter with the aim to generalize the conditions for Ogawa
integrability in the multidimensional case.

There are many approaches to the noncausal stochastic calculus (see e.g. [12]).
The Ogawa integral was extensively studied also in relation with the Skorohod
integral [13] and the Stratonovich integral [15]. The definition of Ogawa integral
has been extended even to the case of random fields [3, 14, 18]; however a detailed
study of the case where the integrand function is d-dimensional (with d ≥ 2) is still
lacking. In the present paper we are going to show that in the multidimensional
case the condition of universal integrability cannot be fulfilled, even in rather sim-
ple cases. For a more recent approach on the generalization of stochastic integral,
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involving not adapted stochastic processes, see the construction due to Wided
Ayed and Hui-Hsiung Kuo in [2].

The paper is organized as follows. In section 2 we shortly review the definition
and the main results on Ogawa integration. In section 3 we prove the main theorem
by applying the theory of abstract Wiener spaces [4, 5]. Section 4 provides some
examples.

2. A Short Survey on the Ogawa Integral

In the following we shall adopt Ogawa’s recent notation [19, 20]. Let us set
a probability space (Ω,F ,P) and let (Wt)t∈[0,1] be the standard Wiener process
with natural filtration {Ft}. We define H as the set of real valued functions
f : [0, 1]× Ω → R which are measurable with respect to B[0,1] × F and such that
the following condition holds:

P
(∫ 1

0

|f(t, ω)|2dt <∞
)

= 1.

Given an orthonormal basis {ϕn} of the Hilbert space L2([0, 1], dt), let us con-
sider the following formal random series

Sϕ(f) ≡
∞∑

n=1

(f, ϕn)(ϕn, Ẇ ) (2.1)

where (f, ϕn) =
∫ 1

0
f(t)ϕ̄n(t)dt denotes the inner product in L2([0, 1], dt) and

(ϕn, Ẇ ) :=
∫ 1

0
ϕn(t)dWt. Now we can define a noncausal stochastic integral, i.e.

the Ogawa integral.

Definition 2.1. A function f ∈ H is said to be ϕ-integrable (i.e. integrable with
respect to the basis {ϕn}) if the random series (2.1) converges in probability. In
this case this sum is denoted

∫ 1

0
fdϕWt and it is called the Ogawa integral of f

with respect to the basis {ϕn}. A function integrable with respect to the basis {ϕn}
is called ϕ-integrable.

In Def. 2.1 the orthonormal basis {ϕn} plays an important role. The require-
ment of the independence of the existence as well as of the value of the sum (2.1)
from the basis {ϕn} leads naturally to the definition of universal integrability.

Definition 2.2. Let f ∈ H. If f is integrable in the sense of Def. 2.1 with respect
to any orthonormal basis and the value of the integral does not depend on the
basis, then the function is called universally integrable (u-integrable).

A different way to characterize the Ogawa integral, which comes directly from
the Itô-Nisio theorem [7], is the following. We can consider the sequence of ap-
proximated processes as follows

Wϕ
n (t) =

n∑
i=1

∫ t

0

ϕi(s)ds

∫ 1

0

ϕi(s)dWs.

According to the Itô-Nisio theorem we have that the sequence {Wϕ
n } converges

uniformly in t ∈ [0, 1] to Wt with probability 1. Hence, the Ogawa integral can
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also be defined as the limit of a sequence of Stieltjes integrals. In fact the following
holds.

Proposition 2.3. Let f ∈ H; then f is ϕ-integrable if and only if the sequence∫ 1

0

fdWϕ
n (t)

of Stieltjes integrals converges in probability. In particular we get

lim
n→∞

∫ 1

0

fdWϕ
n (t) =

∫ 1

0

fdϕWt.

It is important to introduce the definition of regularity of an orthonormal basis.

Definition 2.4. An orthonormal basis {ϕn} in L2([0, 1], dt) is called regular if
sup
n

‖un‖L2 <∞,

where
un(t) =

∑
i≤n

ϕi(t)

∫ t

0

ϕi(s)ds.

Remark 2.5. Two examples of regular basis are trigonometric functions and Haar
functions.

Remark 2.6. The existence of a non-regular basis was proved by Pietro Majer and
Maria Elvira Mancino in [10].

Remark 2.7. The results concerning the integrability with respect to regular bases
and with respect to any orthonormal basis were studied by Ogawa [17] and then,
in the context of Malliavin calculus, by David Nualart and Moshe Zakai [13].

3. A Renormalization Term for Multidimensional Ogawa Integral
on Abstract Wiener Spaces

In the following we are going to present an equivalent definition of Ogawa
integral with respect to Wiener process in the framework of abstract Wiener spaces
[4, 5, 8, 9].

Let (H, 〈 , 〉) be the Hilbert space of absolutely continuous paths γ : [0, 1] → Rd

such that γ(0) = 0 and γ̇ ∈ L2([0, 1], dt) (γ̇ denoting the weak derivative of γ),
endowed with the inner product

〈γ, η〉 =
∫ 1

0

γ̇(s) · η̇(s)ds, γ, η ∈ H.

Let ‖ ‖ denote the H-norm, namely ‖γ‖2 =
∫ 1

0
γ̇(s) · γ̇(s)ds, γ ∈ H.

Let C = C([0, 1];Rd) be the Banach space of continuous paths ω : [0, 1] → Rd,
endowed with the sup-norm | | and let P be the Wiener measure on the Borel
σ-algebra B(C) of C. Since for γ ∈ H we have |γ| ≤ ‖γ‖, H is densely embedded
in C. Denoted with C∗ the topological dual of C, we have the following chain of
dense inclusions:

C∗ ⊂ H ⊂ C. (3.1)
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In the following, with an abuse of notation we shall denote 〈η, ω〉 the dual pairing
between two elements η ∈ C∗ and ω ∈ C.

The finitely additive standard Gaussian measure µ defined as

µ(CP,D) =

∫
D

e−
∥x∥2

2

(2π)n/2
dx,

on the cylinder sets CP,D ⊂ H of the form
CP,D := {γ ∈ H : Pγ ∈ D},

for some finite dimensional projection operator P : H → H (where dim(PH) = n)
and some Borel set D ⊂ H, does not extend to a σ-additive measure on the
generated σ-algebra [9]. Defined the cylinder sets in C as

C̃η1,...,ηn;E := {ω ∈ C : (〈η1, ω〉, . . . , 〈ηn, ω〉) ∈ E},

for some n ∈ N, η1, . . . , ηn ∈ C∗ and E a Borel set of Rn, we have that the
intersection C̃η1,...,ηn;E ∩ H is a cylinder set in H. According to the fundamental
results by Leonard Gross [4, 5], the finite additive measure µ̃ on the cylinder sets
of C, defined as

µ̃(C̃η1,...,ηn;E) := µ(C̃η1,...,ηn;E ∩H)

extends to a σ-additive Borel measure on C that coincides with the standard
Wiener measure P, in such a way that for any γ ∈ H such that γ is an element of
C∗ the following holds ∫

ei⟨γ,ω⟩dP(ω) = e−
1
2∥γ∥

2

.

This allows in particular to define, for any η ∈ C∗, a centered Gaussian random
variable nη on (C,B(C),P) given by nη(ω) := 〈γ, ω〉. In particular, for η, γ ∈ C∗,
the following holds

E[nηnγ ] =
∫ 1

0

η̇(s) · γ̇(s)ds = 〈η, γ〉, (3.2)

which shows that the map n : C∗ → L2(C,P) can be extended, by the density of
C∗ in H, to an unitary operator n : H → L2(C,P).

It is remarkable that, if γ ∈ H, the Gaussian random variable nγ can be iden-
tified with the Paley-Wiener integral of γ̇ ∈ L2([0, 1]), i.e. nγ(ω) =

∫ 1

0
γ̇(s)dW (s).

Given an orthogonal projector P : H → H with finite dimensional range, i.e.
of the form P (γ) =

∑n
i=1〈γ, ei〉ei, with {e1, . . . , en} ⊂ H orthonormal vectors

generating P (H), it is possible to define a random variable P̃ : C → H as P̃ (ω) =∑n
i=1 nei(ω)ei.

Remark 3.1. More generally, a function F : H → E on H with values in a Banach
space E is said to admit a stochastic extension F̃ : C → E if for any sequence
{Pn} of finite dimensional orthogonal projectors Pn : H → H converging strongly
to the identity operator I, the sequence of random variables {F ◦ P̃n} converges
in probability to a random variable F̃ on C (and the limit does not depend on
the sequence {Pn}). For further information and examples about abstract Wiener
spaces and stochastic extensions see, e.g., [1, 9].
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In this framework, the definition of Ogawa integral can be reformulated. Let us
consider the d−dimensional canonical Wiener process, where (Ω,F) = (C,B(C))
and Wt(ω) = ω(t), ω ∈ C. Let f : [0, 1]×C → Rd be a function in H. For any or-
thonormal basis {ϕn} of L2([0, 1];Rd) we can construct a corresponding orthonor-
mal basis {en} of H as en(s) =

∫ s

0
ϕn(u)du. In fact the map U : L2([0, 1];Rd) → H

defined by

U(ϕ)(s) =

∫ s

0

ϕ(u)du, ϕ ∈ L2([0, 1];Rd), (3.3)

is unitary with inverse given by U−1(γ) = γ̇, γ ∈ H. The finite dimensional
approximations of the formal series (2.1) can be equivalently written as

n∑
i=1

∫ 1

0

f(t, ω)ϕi(t)dt

∫ 1

0

ϕi(t)dWt

=

n∑
i=1

nei(ω)

∫ 1

0

f(t, ω)ėi(t)dt

=

∫ 1

0

f(t, ω) · γ̇n(ω)(t)dt (3.4)

where

γn(ω) := P̃n(ω) =

n∑
i=1

einei(ω), ω ∈ C. (3.5)

According to this notation, we can say that f is ϕ-integrable if the sequence (3.4)
converges in probability. Analogously f is defined to be universally Ogawa inte-
grable if the limit does not depend on the sequence ϕn (or, equivalently, on the
sequence {en}).

In the following we shall show that in the case d ≥ 2 the condition of universal
integrability is too strong and cannot be fulfilled even in the simplest cases.

Let us consider a C1 vector field α : Rd → Rd and let f : [0, 1] × C → Rd

defined as f(t, ω) := α(ω(t)), t ∈ [0, 1]. Given an orthonormal basis {en} of H, let
us consider the sequence {gn} of real random variables on (C,B(C),P) defined as

gn(ω) :=

∫ 1

0

α(ω(t)) · γ̇n(ω)(t)dt, ω ∈ C, (3.6)

where γn is defined in (3.5). In terms of the function G : C → H defined as

G(ω)(t) =

∫ t

0

α(ω(s))ds, ω ∈ C, t ∈ [0, 1], (3.7)

the functions {gn} can be represented by the following inner product
gn(ω) = 〈G(ω), P̃n(ω)〉. (3.8)

For ω ∈ C, let DG(ω) denote the Fréchet differential of G evaluated in ω, given
by:

DG(ω)(γ)j(t) =

∫ t

0

∇αj(ω(s)) · γ(s)ds, (3.9)

where γ ∈ H, and αj are the components of α, with j = 1, . . . , d.
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We require now two more hypothesis on α and ∇αj that will be necessary
hereinafter:

(H1)
∫ 1

0

∫
Rd

|α(x)|2 e−
|x|2
2t

(2πt)d/2
dxdt < +∞;

(H2)
∫ 1

0

∫
Rd

|∇αj(x)|2
e−

|x|2
2t

(2πt)d/2
dxdt <∞, ∀j = 1, . . . d.

We can now state the main result.
Theorem 3.2. For any orthonormal basis {en} of H, the sequence of renormalized
finite dimensional approximations of the Ogawa integral, namely the sequence of
real random variables {hn} on (C,B(C),P) defined as

hn(ω) = gn(ω)− rn(ω)

= 〈G(ω), P̃n(ω)〉 −
n∑

i=1

〈ei, DG(ω)ei〉, (3.10)

converges in L2(C,P) and the limit is independent on the orthonormal basis {en}.
Remark 3.3. We can look at the limit of the random variables hn as a renormalized
Ogawa integral.

The proof relies upon the following lemmas.
Lemma 3.4. Let f : Rn → Rn be a C1 map such that |f | and ‖Jf‖2 belong to
L2(Rn, µ), with ‖Jf‖2 denoting the Hilbert-Schmidt norm of the Jacobian of f and
µ is the standard centered Gaussian measure on Rn. Then∫

Rn

(f(x) · x− Tr(Jf(x)))
2
dµ(x) ≤

∫
Rn

(
|f(x)|2 + ‖Jf(x)‖22

)2
dµ(x), (3.11)

where Tr(Jf(x)) is the trace of the Jacobian of f .
For a detailed proof of Lemma 3.4 see [21], where also the following definition

is introduced.
Definition 3.5. A function G : C → C with G(C) ⊂ H is said to be H-
differentiable if for any ω ∈ C the function G(ω) : H → H defined as G(ω)(γ) =
G(ω+γ), γ ∈ H, is Fréchet differentiable at the origin in H. Its Fréchet derivative,
namely the linear operator DG(ω(0)) ∈ L(H;H), will be denoted with the symbol
DG(ω) and called the H-derivative of G at ω.
Lemma 3.6 (Ramer’s formula). Let G : C → C, with G(C) ⊂ H, be a H-
differentiable map such that for any ω ∈ C the H-derivative DG(ω) ∈ L(H,H) is a
Hilbert-Schmidt operator. Let us assume furthermore that the maps ‖G‖ : C → R
and ‖DG‖2 : C → R, where ‖DG(ω)‖2 denotes the Hilbert-Schmidt norm of
DG(ω), belong to L2(Ω,P). Let {ei} be an orthonormal basis of H and let {Pn}
and {P̃n} be the sequence of finite dimensional projectors on the span of e1, . . . , en
and their stochastic extensions respectively. Then the sequence of random variables
{hn} defined as

hn(ω) := 〈G(ω), P̃n(ω)〉 − Tr(PnDG(ω)), ω ∈ C,
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converges in L2(C,P) and the limit does not depend on the basis {ei}.

The proof of Lemma 3.6 is a direct consequence of Lemmas 4.2 and 4.3 in [21].

Proof [of Theorem 3.2]. It is straightforward to verify that the map G : C →
C defined by (3.7) is H-differentiable and its H-derivative DG is given by (3.9).
Furthermore, for any ω ∈ C, the operator DG(ω) is Hilbert-Schmidt. Indeed
DG(ω) : H → H is unitary equivalent to the linear operator T : L2([0, 1];Rd) →
L2([0, 1];Rd) defined as

T = U−1 ◦DG(ω) ◦ U, (3.12)
where U : L2([0, 1];Rd) → H is the unitary operator defined in (3.3). By direct
computation it is simple to see that T is explicitly given in terms of a kernel
K ∈ L2([0, 1]× [0, 1]), i.e. for ϕ ∈ L2([0, 1];Rd) and t ∈ [0, 1],

(Tϕ)j(t) =

∫ 1

0

Kj(t, t
′) · ϕ(t′)dt′, j = 1, . . . , d, (3.13)

where Kj(t, t
′) = ∇αj(ω(t))χ[0,t](t

′), t, t′ ∈ [0, 1]. By formula 4.32 in [11], the
Hilbert-Schmidt norm of T is equal to:

‖T‖22 =

∫
[0,1]×[0,1]

|K(t, t′)|2dtdt′ =
d∑

j=1

∫ 1

0

∫ 1

0

|∇αj(ω(t))|2χ[0,t](t
′)dtdt′

=

d∑
j=1

∫ 1

0

t|∇αj(ω(t))|2dt ≤
d∑

j=1

∫ 1

0

|∇αj(ω(t))|2dt <∞,

where the boundedness of the last expression follows by the continuity of the maps
t 7→ ∇αj(ω(t)). By the unitary equivalence of T and DG(ω), we get

‖DG(ω)‖22 =

d∑
j=1

∫ 1

0

t|∇αj(ω(t))|2dt <∞.

Moreover, by the hypothesis (H1) and (H2), we have that

E[‖G‖2] =

∫ 1

0

E[|α(ω(t))|2]dt

=

∫ 1

0

∫
Rd

|α(x)|2 e−
|x|2
2t

(2πt)d/2
dxdt <∞

E[‖DG‖22] ≤
d∑

j=1

∫ 1

0

E[|∇αj(ω(t))|2]dt

=

d∑
j=1

∫ 1

0

∫
Rd

|∇αj(x)|2
e−

|x|2
2t

(2πt)d/2
dxdt <∞.

By Lemma 3.6 the sequence of random variables {hn} given by

hn(ω) = 〈G(ω), P̃n(ω)〉 − Tr(PnDG(ω))
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converges in L2(C,P) an the limit does not depend on the orthonormal basis {ei}.
Furthermore, by direct computation, the “renormalization term” Tr(PnDG(ω)) is
given by

Tr(PnDG(ω)) =

n∑
i=1

〈ei, DG(ω)ei〉 =
n∑

i=1

∫ 1

0

ėi(t) · (ei(t) · ∇)α(ω(t))dt.

�

Corollary 3.7. For any orthonormal basis {en} of H, the sequence hn defined
in Theorem 3.2 converges in probability and the limit is independent of the basis
{en}.

4. Examples

According to Theorem 3.2, the condition of existence of the limit in proba-
bility of the sequence of random variables {gn} defined in (3.6), i.e. the Ogawa
integrability of the function f ∈ H, with f(t, ω) := α(ω(t)), t ∈ [0, 1], with
respect to the orthonormal basis {ϕn} of L2([0, 1];Rd) (with ϕn = ėn) is equiv-
alent to the existence of the limit in probability of the “renormalization term”
rn(ω) = Tr(PnDG(ω)). Analogously, the universal Ogawa integrability of f is
equivalent to the convergence in probability of rn to a limit which does not de-
pend on the basis {en} of H. In particular, if the linear operator DG(ω) ∈ L(H,H)
is not trace class, then the convergent of sequence Tr(PnDG(ω)) is not guaranteed
and, in general, its value depends on the orthonormal basis {en}. We are going to
show that this problem occurs even in very simple cases.

Let d = 2 and α : R2 → R2 is a linear vector field of the form
α(x, y) = (h1x+ k1y, h2x+ k2y). (4.1)

In this case the map G : C → H is given by

G(ω)(t) =

(
h1

∫ t

0

ω1(s)ds+ k1

∫ t

0

ω2(s)ds, h2

∫ t

0

ω1(s)ds+ k2

∫ t

0

ω1(s)ds

)
,

where ω = (ω1, ω2) ∈ C. The H-derivative DG(ω) for any ω ∈ C is the linear
operator DG : H → H simply given by

DG(γ)(t) =

(
h1

∫ t

0

γ1(s)ds+ k1

∫ t

0

γ2(s)ds, h2

∫ t

0

γ1(s)ds+ k2

∫ t

0

γ2(s)ds

)
,

with γ = (γ1, γ2) ∈ H.
We can compute explicitly the spectrum of the self-adjoint operator |DG| =√
DG∗DG. Indeed, setting for notational simplicity L ≡ DG∗DG we have, for

η, γ ∈ H:
〈η, Lγ〉 = 〈DGη,DGγ〉

=

∫ 1

0

(η1(t), η2(t))A(γ1(t), γ2(t))
T dt,

with
A =

(
h21 + h22 h1k1 + h2k2
h1k1 + h2k2 k21 + k22

)
.
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Hence, for γ ∈ H the vector L(γ) ∈ H is given by

L(γ)(t)T = −
∫ t

0

∫ s

1

Aγ(r)T drds.

L is a compact operator and has a discrete spectrum. By introducing in R2

an orthonormal basis {u1, u2} of eigenvectors of the symmetric matrix A, with
corresponding eigenvalues a1, a2 ∈ R+, the eigenvectors {γn} of L can be repre-
sented as linear combination of u1 and u2, namely γn = ηn,1u1 + ηn,2u2, with
ηn,j : [0, 1] → R. The components {ηn,j} of the eigenvectors (with eigenvalues λ)
are solutions of  λn,j η̈n,j + ajηn,j = 0

η̇n,j(1) = 0
ηn,j(0) = 0

j = 1, 2,

which yields in the non-trivial case where aj > 0 the solutions λn,j =
4aj

π2(1+2n)2 ,
with corresponding eigenvectors γn,j(t) = sin

((
π
2 + nπ

)
t
)
uj , where j = 1, 2.

Hence, we can conclude that |DG| =
√
L is not trace class and in general the

limit of rn = Tr(PnDG) does not necessary exist and, if it exists, its value de-
pends on the sequence of projectors {Pn} or, equivalently, on the choice of the
orthonormal basis {en} of H.

It is interesting to investigate the value that the “renormalization term” assumes
for different choices of the orthonormal basis {en}, in order to understand the role
it plays in a few particular cases.

Let us consider L2([0, 1];R2) and the following orthonormal basis

{ψn} : =
{
(1, 0), (0, 1),

√
2(cos(2πnt), 0),

√
2(sin(2πnt), 0),

√
2(0, cos(2πnt)),

√
2(0, sin(2πnt))

}
= {ψ0,x, ψ0,y, ψn,1, ψn,2, ψn,3, ψn,4},

with n ∈ N \ {0}. Rewriting formula (3.13) explicitly, we can compute

〈ψn, Tψn〉 =
∫ 1

0

ψn(t) ·
(∫ t

0

ψn(s)ds · ∇
)
α(ω(t))dt,

where α : R2 → R2 is given by (4.1) and T : L2([0, 1];R2) → L2([0, 1];R2) is
defined by (3.12). For the vectors of the form ψn,j with j = 1, . . . , 4 we have:

〈ψn,j , Tψn,j〉 = 0;

while for the two constant vectors

〈ψ0,x, Tψ0,x〉 =
h1
2
;

〈ψ0,y, Tψ0,y〉 =
k2
2
.

This gives for the basis {ψn} the following “renormalization term” (depending on
the divergence of α):

rn = Tr(PnDG) =

n∑
i=1

〈ψi, Tψi〉 =
1

2
∇ ·α.
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Let us now consider a different basis in L2([0, 1];R2):
{ξn} : = {(1, 0), (0, 1), (cos(2πnt), sin(2πnt)), (sin(2πnt), cos(2πnt)),

(− cos(2πnt), sin(2πnt)), (− sin(2πnt), cos(2πnt))}
= {ξ0,x, ξ0,y, ξn,1, ξn,2, ξn,3, ξn,4},

with n ∈ N \ {0}.
We use the same argument as before for the vectors

ξn,1 = (cos(2πnt), sin(2πnt)).

We obtain:

〈ξn,1, T ξn,1〉 =
∫ 1

0

(
k1

sin2(πnt) cos(2πnt)

πn
+ h1

sin(2πnt) cos(2πnt)

2πn

+ k2
sin(2πnt) sin2(πnt)

πn
+ h2

sin2(2πnt)

2πn

)
dt

=
h2 − k1
4nπ

=
∇×α

4nπ
.

Analogously

〈ξn,2, T ξn,2〉 =
∫ 1

0

(
h2

sin2(πnt) cos(2πnt)

πn
+ k2

sin(2πnt) cos(2πnt)

2πn

+h1
sin(2πnt) sin2(πnt)

πn
+ k1

sin2(2πnt)

2πn

)
dt

=
k1 − h2
4nπ

= −∇×α(ω(t))

4nπ
,

and
〈ξn,3, T ξn,3〉 =

k1 − h2
4πn

= −∇×α

4πn

〈ξn,4, T ξn,4〉 =
−k1 + h2

4πn
=

∇×α

4πn
In this case the series

∑n
i=1〈ξi, T ξi〉 cannot converge absolutely and and the

value of the “renormalization term” depends on the order of the terms in the sum.
At last we consider in the Hilbert space H the sequence of orthogonal projection

operators onto the finite dimensional subspaces Hn of piecewise linear paths of the
form

γ(t) =

n−1∑
i=0

1[ i
n , i+1

n ](t) (γ(i/n) + n (γ(i+ 1/n)− γ(i/n)) (t− i/n)) , (4.2)

with t ∈ [0, 1]. An orthonormal basis of Hn is provided, e.g., by the vectors
{(zn,i, 0), (0, zn,i)}i=0,...,n−1, (4.3)

where
zn,i(t) =

√
n1[ i

n , i+1
n ](t)

(
t− i

n

)
+

1√
n
1[ i+1

n ,1](t),



OGAWA INTEGRABILITY 11

with i = 0, . . . , n− 1. We also notice that:

żn,i(t) =
√
n1[ i

n , i+1
n ](t).

It is not difficult to compute

〈(zn,i, 0), DG(zn,i, 0)〉 =
h1
2n
, 〈(0, zn,i), DG(0, zn,i)〉 =

k2
2n
,

Thereby we get

lim
n→∞

Tr(PnDG) =
1

2
∇ ·α. (4.4)

This last example is particularly interesting since in the case where {Pn} are
the projectors on the subspaces of piecewise linear path described above, the limits
of the sequences {gn} and {rn} (defined respectively by (3.8) and (3.10)) can be
computed explicitly. This provides a possible technique for the computation of
the limit of the sequence {hn} for linear vector fields α and, by Theorem (3.2),
this limit is independent on the sequence of projectors. We remark that this toy
model can be studied also by applying different techniques, such as, for instance,
Malliavin calculus [13].

The following lemma provides a useful tool in the proof of theorem 4.2, which
shows that Ogawa integral with respect to the basis (4.3) coincides with Strato-
novich Integral.

Lemma 4.1. Let G : C → H be a linear operator such that its restriction GH
on H is Hilbert-Schmidt. Let {Pn} be a sequence of finite dimensional projection
operators in H converging strongly to the identity. Then the sequences of random
variables {gn} and {g′n} defined as:

gn(ω) = 〈G(ω), P̃n(ω)〉, ω ∈ C

g′n(ω) = 〈G(P̃n(ω)), P̃n(ω)〉, ω ∈ C

satisfy

lim
n→∞

E[|gn − g′n|2] = 0. (4.5)

Proof.

E[|gn − g′n|2] =

∫
|〈G(ω)−G(P̃n(ω)), P̃n(ω)〉|2dP(ω)

=

∫
|〈G(ω − P̃n(ω)), P̃n(ω)〉|2dP(ω)

=

∫
|〈G(

∞∑
j=n+1

ejnej (ω)),

n∑
i=1

einei(ω)〉|2dP(ω)
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E[|gn − g′n|2] =

∞∑
j,j′=n+1

n∑
i,i′=1

〈Gej , ei〉〈Gej′ , ei′〉E[nejnej′neinei′ ]

=

∞∑
j=n+1

n∑
i=1

(〈Gej , ei〉)2

=

∞∑
j=n+1

〈PnGej , PnGej〉,

where in the third step we have applied Itô-Nisio theorem. By using the assump-
tion that GH is a Hilbert-Schmidt operator we obtain (4.5). �

Theorem 4.2. Let α be the linear vector field given by (4.1) and G : C → H the
linear operator (3.7). Then the sequence of random variables {gn} defined by

gn(ω) = 〈G(ω), P̃n(ω)〉, ω ∈ C,

where {Pn} is the sequence of orthogonal projectors onto the subspaces Hn of
piecewise linear paths (4.2), converges in L2(C,P) to the Stratonovich integral∫ 1

0

α(ω(t)) ◦ dω(t).

Proof. By lemma 4.1 the sequence {gn} has the same limit of the sequence {g′n},
where

g′n(ω) = 〈G(P̃n(ω)), P̃n(ω)〉, ω ∈ C

if such a limit exists. Moreover the random variables {g′n} assume the following
form

g′n(ω) =

∫ 1

0

α(ωn(t)) · ω̇n(t)dt,

where ωn = P̃nω ∈ H. By Wong-Zakai approximations results [6], in the case
where {Pn} are projectors on piecewise linear paths, the sequence {g′n} converges
in L2(C,P) to the Stratonovich integral

∫ 1

0
α(ω(t)) ◦ dω(t). �

Theorem 4.3. Let α be the linear vector field given by (4.1) and G : C → H
the linear operator (3.7). Then the sequence of random variables {hn} defined in
Theorem 3.2, namely

hn(ω) = gn(ω)− rn,

with rn = Tr(PnDG), converges to the Itô integral.∫ 1

0

α(ω(t))dω(t)

and the limit does not depend on the sequence {Pn}.

Proof. By Theorem 3.2 the sequence {hn} converges in L2(C,P) and the limit is
independent of {Pn}. In the case where {Pn} are projectors onto subspaces of
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piecewise linear paths, we can compute explicitly the limit of both {gn} and {rn}.
Indeed, by Theorem 4.2 and formula (4.4), we obtain

lim
n→∞

hn(ω) = lim
n→∞

gn(ω)− lim
n→∞

rn

=

∫ 1

0

α(ω(t)) ◦ dω(t)− 1

2
∇ ·α

where the limits are meant in L2(C,P). By the conversion formula between Itô
and Stratonovich integral∫ 1

0

α(ω(t)) ◦ dω(t) =
∫ 1

0

α(ω(t))dω(t) +
1

2

∫ 1

0

∇ ·α(ω(t))dt, (4.6)

we obtain the final result. �
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