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1 Introduction

One of the astonishing facts of modern physics is that many of its most powerful theories

can be described using gauge symmetries. To understand their quantisation, a promising

avenue comes in the study of Lattice Gauge Theories (LGT) [1–6]. On the one hand, high

performance computations in lattice quantum chromodynamics are the main tool to aid the

experiments in particle and nuclear physics [7, 8]. On the other hand, LGT provides a theo-

retical framework that is ideally suited to make an impact on models trying to explore new

physics beyond and within the standard model [9, 10]. In the recent decades, methods from

LGT have been further developed in the emergent field of quantum gravity, as it transpired

that general relativity can be understood as an SU(2) gauge theory as well [11–13].

Further progress is much needed, since despite the active research on the quantisation

of gauge theories not a single interacting 4-dimensional quantum Yang-Mills theory obeying

the Wightman axioms has been constructed as of today. It remains one of the open mil-

lennium problems of the Clay Mathematical Institute [14]. A possible route for attacking

this caveat with the needed mathematical rigour might come in the Hamiltonian formula-

tion to gauge theories. The latter has originally been developed by Kogut and Susskind

for pure quantum Yang-Mills theories [15] and enabled the construction of a well-defined

kinematical Hilbert space, where the natural Haar measure on the compact gauge group

can be used in order to define the Hilbert space measure. Nonetheless, implementing the

dynamics of the theory poses a challenge: while a regularised Hamiltonian in presence of a

finite ultraviolet cutoff is well defined, the necessary continuum limit is in general problem-

atic. This caveat is hoped to be overcome in the renormalisation group program [16–20],

of which extensions to the Hamiltonian sector are currently under development [21–26].
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The present paper, however, will focus its analysis on the kinematical Hilbert space

and the question of how semi-classical field configurations can be recovered. In the canon-

ical setting this is envisioned to be achieved by using so-called coherent states. By this

we mean states in the Hilbert space that are sharply peaked over classical data of the

corresponding gauge theory for certain observables, e.g. the holonomies along edges of a

lattice with fixed spacing ε. Measurements on the classical system can then be thought of

as the expectation values of the respective observables on these coherent states. However,

the expectation value will differ from the classical value in the form of tiny quantum fluc-

tuations, which should be measurable if the system is indeed described by the proposed

underlying quantum theory.

Recently, several proposals for states to study semi-classical phenomena have emerged,

e.g. Matrix Product states, useful for tensor network techniques [27, 28], or Gaussian states

for 1+1 U(1) and SU(2) LGT for variational studies [29]. For arbitrary dimensions and

any compact gauge group, a promising proposal for such semi-classical states came (ex-

tending preliminary work by Hall [30, 31]) from Thiemann et al. in form of the Gauge Field

Theory Coherent States (GCS) [32–35]. Among the aforementioned peakedness property,

these states saturate moreover the Heisenberg uncertainty bound for the fluctuations of

connection and electric field, and present an overcomplete basis on the Hilbert space if

certain analytical conditions are met. The present paper aims to use these GCS in the

following way: we will fix a finite set of relevant observables that are given by a discrete

lattice Γ of spacing ε (and its dual cell complex), i.e. suitable smearings of connection and

electric field. Therefore we are interested in a Hilbert space which can be decomposed as

a tensor product over individual Hilbert spaces He for each edge e ∈ Γ. The GCS in He
are square-integrable functions over the gauge group G, labelled by the holonomies and

the gauge-covariant fluxes, i.e. smearings of the electric field, for the corresponding edge e

for some classical initial data. On the quantum level, one promotes holonomies to multi-

plication operators and fluxes to right-invariant vector fields. Due to the tensor product

structure, computing the expectation value of any polynomial operator in holonomies and

fluxes can be simplified: the operator can be split into multiple ones acting on each He
separately and then the expectation values on each He can be computed independently.

The aim of this paper is to give the concise formulas for the expectation values of gen-

eral monomials of operators in any GCS on a single edge Hilbert space for the concrete

case of gauge group SU(2). This will be done including linear order in the spread of the

state, that means — if one chooses the spread of the state to be proportional to ~ — the

tools presented enable the computation of any expectation value including the first order

quantum corrections, thereby extending earlier work from [36]. Hence, the results are for

example immediately applicable for calculations concerning electroweak interactions and

theories such as Loop Quantum Gravity.1

The organisation of this article is as follows.

In section 2 we will repeat the construction of coherent states for gauge theories and

their main features. For this purpose, it will be important to introduce a lattice discretisa-

1There also exist several results for the abelian group U(1) [33,37], and preliminary work for SU(3) [38,39].
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tion of the classical solutions (or initial data) of connection and electric field. This comes

in the form of holonomies along edges for the connection, which is a favoured choice as

it transforms covariantly under gauge transformations. As it turns out, when making use

of the dual lattice, a gauge-covariant discretisation of the electric field is possible as well.

Once these data are chosen, one can peak the coherent states on them. We will then

present the general formulas by which the expectation value of any polynomial operator in

the GCS for each edge can be computed up to linear order in the spread of the state.

In section 3 and 4, we supplement the proof for the aforementioned formulas. Using

the results of earlier investigations [36], it suffices to compute the expectation value for

arbitrary representations of the holonomy operator. Since the calculation turns out to

be quite lengthy, we will split it into four lemmas. Moreover, the computation will be

restricted to linear order in the spread of the state, however necessary details are given by

which these formulas could in principle be extended.

In section 5 we finish with conclusion and outlook for further research.

2 Gauge Field Theory Coherent States for SU(2)

In this section, we summarize the main concepts from canonical quantisation in Lattice

Gauge Theories (LGT) and key results from the literature about Gauge Field Theory

Coherent States (GCS).

Given a manifold M ∼= R × σ on which a gauge theory shall be defined. Typically,

σ is chosen to be R3 or in general any 3-dimensional manifold admitting a principal G-

bundle with connection over σ. As a first step, we introduce an infrared cutoff R of σ, in

the sense of working with the torus σR = [0, R]3 ⊂ σ with periodic boundary conditions.

In the following we will restrict our attention to the case of the compact gauge group

G = SU(2), as most tools for GCS have been constructed therewith. We will denote the

Lie algebra valued connection as Aa(x) = AIa(x)τI with τI being a suitable basis of su(2).

The choice in the following is τI := −iσI/2, with σI being the Pauli matrices, satisfying

Tr(τIτJ) = −δIJ/2. A different basis also used is the spherical basis τs, s ∈ {−1, 0,+1},
where τ± := ±(τ1 ± iτ2)/

√
2 and τ0 := τ3. These are subject to the algebra [τ+, τ−] = iτ0,

[τ±, τ0] = ±iτ±.

The canonical conjugated momentum to AIa(x) is the electric field EaI (x), a Lie algebra

valued vector density of weight 1. In other words, the elementary Poisson brackets read:

(I, J, . . . are internal indices of su(2))

{EaI (x), EbJ(y)} = {AIa(x), AJb (y)} = 0, {EaI (x), AJb (y)} = κ0δ
a
b δ
J
I δ

(3)(x, y) (2.1)

with κ0 being the coupling constant of the gauge theory.

Moreover, the phase space is subject to the Gauss constraint GJ :

GJ = ∂aE
a
J + εJKLA

K
a E

a
L = 0 (2.2)

with εJKL being the Levi-Civita symbol.

Proceeding as standard for LGT, the first step towards defining the quantum theory

is introducing an ultraviolet cutoff of σ. This is done by introducing a cubic lattice Γ with
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N points along each direction of the coordinates described by xa. Let R be the coordinate

length of the torus with respect to the fiducial flat metric η and denote by ε = R/N the

regulator of the discretisation, i.e. the coordinate length of each edge or link of the lattice.

Along said edges e of the lattice, we will compute the holonomies h(e) ∈ SU(2) of

the connection and along the associated faces Se of the dual cell complex [40] (whose

intersection with the lattice we choose to be in the middle of each edge), we will compute the

gauge-covariant fluxes P (Se) := P J(Se)τJ . For an edge ek along direction k ∈ {±1,±2,±3}
these read:

h(ek) := P exp

(∫ 1

0
dtAJa (ek(t))τJ ė

a
k(t)

)
(2.3)

P J(Sek) := −2 Tr

(
τJh
(
ek,[0,1/2]

)[∫
Sek

dxh(ρx)∗E(x)h(ρx)†
]
h
(
ek,[0,1/2]

)†)
(2.4)

where in the path ordered exponential the latest time values are ordered to the right, ∗
denotes the hodge star operator and ρx is some choice of paths inside of Sek such that

ρx(0) ∈ ek and ρx(1) = x, whose details do not affect the gauge-covariance.2

Consequently, all physical quantities can be approximated by functions of holonomies

and gauge-covariant fluxes. E.g. to the continuum Yang-Mills Hamiltonian function one can

assign a regularised expression which under quantisation agrees with the Kogut-Susskind

Hamiltonian [15].

Geometric quantisation of this system is done by assigning to each edge e a function

in He = L2(SU(2), dµH) with µH being the unique left- and right-invariant Haar measure

over SU(2). The full Hilbert space of the whole lattice is then simply the tensor product

over all square integrable functions on each edge, HΓ := ⊗eHe. The holonomies get pro-

moted to bounded, unitary multiplication operators and the fluxes to essentially self-adjoint

derivation operators.3 If we label in the position representation f ∈ HΓ as f = f({ge}e∈Γ)

then:

ĥ(k)
mn(e′)f({ge}e∈Γ) := D(k)

mn(ge′)f({ge}e∈Γ) (2.5)

P̂ I(Se′)f({ge}e∈Γ) := i~κ0R
I(e′)f({ge}e∈Γ) (2.6)

with D
(k)
mn(ge) being the Wigner-matrix of group element ge in the (2k + 1)-dimensional

irreducible representation of SU(2) and the right-invariant vector field RI(e):

RI(e′)f({ge}e∈Γ) :=
d

ds

∣∣∣∣
s=0

f(. . . , esτIge′ , . . .) (2.7)

which obey the following commutation relations: (r ∈ {−1, 0,+1}, s, s′ 6= 0)

[Rr(e), ĥ
(k)
ab (e′)] = δee′ [τr]

(k)
ac ĥ

(k)
cb (e), (2.8)

[Rs(e), Rs
′
(e′)] = −iδee′

s− s′

2
R0(e), [Rs(e), R0(e′)] = −iδee′sRs(e)

where [τr]
(k) := (RrD(k))(1) is the induced Lie algebra representation.

2Choosing the gauge-covariant fluxes P instead of just the smeared electric field E is motivated from the

fact that they transform covariantly under gauge transformations, i.e. as P (Se) 7→ g(e(0))P (Se)g(e(0))−1.

The standard fluxes do not have such a transformation property in the presence of a finite regularisation

parameter ε. For further details see [40].
3For recent work choosing different formulations see e.g. [41–43].
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We will now describe the form and properties of the Gauge Field Theory Coherent

States. For their derivation, the reader is referred to the literature [32–34].

Based on the idea of approximating a given classical field configuration (Ã, Ẽ), one

computes first for each lattice edge e the corresponding smeared quantities (h̃(e), P̃ (Se))

and maps this to a complex polarisation of the classical phase space, i.e. (h̃(e), P̃ (Se)) 7→
hCe ∈ SL(2,C), that expresses the complex connection as a function of the real phase space.

For example, the left-polar decomposition prescribes:

hCe := exp

(
− it

~κ0
P̃ J(Se)τJ

)
h̃(e) (2.9)

The so called semiclassicality parameter t ≥ 0 is an arbitrary, dimensionless parameter (in

typical applications, one often chooses t = ~κ0/`
2 where ` is some length scale).

Definition 1 (GCS). The Gauge Field Theory Coherent State ψt
hC
∈ He for each edge e

and classical field configuration hC ∈ SL(2,C) is given by

ψthC(g) :=
∑

j∈N0/2

dje
−t(d2j−1)/8 Tr(j)

(
hCg†

)
(2.10)

where t ≥ 0, dj = 2j + 1 and Tr(j)(.) denotes the trace in the spin-j irreducible represen-

tation of SU(2). Finally, 〈1〉 := ‖ψt
hC
‖ 2

denotes the normalisation of the state.

As was shown in [33, 34], these GCS are sharply peaked on the classical configuration

in the following sense:

Theorem 1. Let ψt
hC
, ψt

gC
∈ He be two GCS. For all hC, gC ∈ SL(2,C) there exists a

positive function Kt(h
C, gC) decaying exponentially fast as t→ 0 for hC 6= gC and such that∣∣〈ψthC , ψtgC〉∣∣2 ≤ Kt(h

C, gC)
∥∥ψthC∥∥2∥∥ψtgC∥∥2

(2.11)

Moreover, for holonomy and flux operators on He one finds

〈ψthC , ĥ
( 1
2

)(e)ψtgC〉 = h(e)〈ψthC , ψ
t
gC〉+O(t) (2.12)

〈ψthC , P̂
J(Se)ψ

t
gC〉 = P J(Se)〈ψthC , ψ

t
gC〉+O(t) (2.13)

where h(e) and P J(Se) stem from the decomposition of hC in (2.9).

These statements were also extended to general polynomial operators in the basic

configuration variables in [34]. Hence, the GCS prove as useful tool for testing quantum

systems which appear highly classical. For such a purpose it is however interesting to study

the small corrections that appear for a finite semiclassicality parameter t, as these should

be found when performing a measurement on such a semiclassical system.

First steps towards this task have been undergone in [36]. Based on the observation

that any element h ∈ SL(2,C) may be written in its holomorphic decomposition [44, 45] as

h = n e−(ξ−iη)τ3 ñ, ξ, η ∈ R, n, ñ ∈ SU(2) (2.14)

– 5 –
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formulas for the expectation values of some polynomial operators were found. However,

the investigations in [36] were restricted to operators involving a single holonomy operator

ĥ(k) with k = 1/2, 1. We recall that due to the Peter & Weyl theorem [46], any product

of matrix elements of representations of SU(2) can be expressed as a sum over the matrix

elements of higher irreducible representations. Thus, having knowledge of 〈ψth, ĥ(k)ψth〉 for

any k ∈ N/2 is the last missing piece to compute the expectation value of any polynomial

observable in holonomies and right-invariant vector fields neglecting O(t2) corrections. This

article fills that gap by proving the following theorem:

Theorem 2. Let ψth ∈ He be a GCS. Then the expectation value of a holonomy operator

on edge e is given by (〈.〉 := 〈ψth, . ψth〉)

〈ĥ(k)
ab 〉
〈1〉

= D(k)
ac (n)eiξcγkcD

(k)
cb (ñ) (2.15)

with

γka = 1− t

4

[(
k(k + 1)− a2

)tanh(η/2)

η/2
+ a2

]
+O(t2) (2.16)

and we took from [36]

〈1〉 :=

√
π

t3
2ηeη

2/t

sinh(η)
et/4 (2.17)

The remaining sections of this article will substantiate the proof of this formula.

Equipped with this knowledge, we can also generalize the expectation values of mono-

mials involving holonomies and right-invariant vector fields from [36] to the following

statements:4

〈ĥ(k)
ab R

r1 . . .RrN 〉= 〈ĥ(k)
cb 〉
(
iη

t

)N
D

(1)
−r1−s1(n) . . .D

(1)
−rN−sN (n) (2.18)

×

(
δs10 . . . δsN0 δac+

t

2η

[
δs10 . . . δsN0 δacN

(
N+1

2η
−coth(η)

)

+i

N∑
A=1

δs10 . . .�δ
sA
0 . . . δsN0

(
1−sA tanh(η/2)

)
D

(1)
−sA−s(n

†)[τs]
(k)
ac

− δac
sinh(η)

N∑
A<B=1

δs10 . . .�δ
sA
0 . . .�δ

sB
0 . . . δsN0 (δsA+1δ

sB
−1+δsA−1δ

sB
+1)esAη

]
+O(t2)

)

Take note that this formula includes the case k = 0 which corresponds to no appearing

holonomy operators. We stress again that any monomial in holonomies and right-invariant

vector fields can always be brought into the form (2.18) by suitably using the commutator

relations (2.8) and SU(2) recoupling theory. Also, in order to extend these formulas to

left-invariant vector fields we refer to section III.B of [36].

4Due to a different choice in conventions, in the formula from [36] we substituted ξ + iη → −ξ + iη and

divided by 2N .
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Finally, let us comment on the implementation of the quantum Gauss constraint. A

tensor product consisting solely of GCS on each edge will in general not be a solution to the

standard quantisation of (2.2). To satisfy the Gauss constraint at the quantum level there

are several mechanisms. As is customary in LGT, one could choose a maximal tree graph

ΓT ⊂ Γ without closed loops on which the gauge is fixed [1, 47–49]. Another procedure,

which became popularized in Quantum Gravity approaches on the lattice, is the so called

group averaging procedure [13, 50–53], by which e.g. a simple tensor product over coherent

states can be projected to a gauge invariant state [54].5

3 Outlining the proof of theorem 2

Lemma 1. From the definition of the coherent states, it follows straightforward (2.15).

Using Wigner 3j-symbols to express the action of the holonomy operator, one finds explicitly

for the coefficient γ:

γJM =
1

〈1〉

J∑
M ′=−J

β(M ′)
∑

j≥(J−M ′)/2

j∑
m=−j

e−t(dj+M ′)2/4dj(dj + 2M ′)

Q(dj +M ′)
e2mη ω(j,m) Ω2(j,m)

(3.1)

with the following definitions:

∆± := J±max(|M |, |M ′|), δ± := J±(|M ′+M |−|M ′−M |)/2

β(M ′) := 2−2Jet(1−M
′2)/4eηM

∆+!∆−!

δ+!δ−!
, n± :=−min(0,M ′±M)

Ω(j,m) := 2J
∆−∑
k=0

(−)k
(
δ+

k

)(
δ−

∆−−k

)
ωk(j,m), Q(v) :=

J∏
N=−J

(v−N)

ω(j,m) :=
(j+m+max(0,M ′+M))!

(j+m+min(0,M ′+M))!

(j−m+max(0,M ′−M))!

(j−m+min(0,M ′−M))!

ωk(j,m) :=
(j−m−n−)!

(j−m−k−n−)!

(j+m−n+)!

(j+m+k−∆−−n+)!

For the following statements we will assume that η 6= 0.

Lemma 2. It is possible to rewrite (3.1) such that γJM = γ̃JM/ 〈1〉 − O(t∞) and

γ̃JM =

J∑
M ′=−J

β

2

∑
u∈Z

e−t(u+M ′)2/4u(u+2M ′)

Q(u+M ′)
ω

(
u−1

2
,
∂η
2

)
Ω2

(
u−1

2
,
∂η
2

)
sinh(uη)

sinh(η)
(3.2)

5It is worthwhile to note that the expectation value of gauge-invariant operators, like Wilson loops, does

not get affected by this projection in its leading order in t ∼ ~.
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At this point one can use the elementary Poisson summation formula, i.e. [55]

Theorem 3 (Poisson Summation Formula). Consider f ∈ L1(R, dx) such that the series∑
n∈Z f(y + ns) is absolutely and uniformly convergent for y ∈ [0, s], s > 0. Then

∑
n∈Z

f(ns) =
∑
n∈Z

∫
R
dx e−2πinxf(sx) (3.3)

Lemma 3. After applying the Poisson Summation Formula, one can neglect all terms of

the outer sum which are of order O(t∞), i.e. all terms except n = 0. Then

γJM =
1

〈1〉

J∑
M ′=−J

β

2

∫
R
dv e−tv

2/4+vη χ(v)

Q(v)

[
dJ+1∑
k=0

Pkv
k

]
(3.4)

where χ = 1 everywhere but on a compact set, and especially the two highest coefficients of

the polynomial P are given by:

PdJ+1 =
22Je−Mη

sinh(η)
δM,M ′ (3.5)

PdJ =
22Je−Mη

sinh(η)

[
−
(
J(J + 1)−M2

)
coth(η) δM,M ′ +

(δ−)2

2 sinh(η)
δM±1,M ′

]
(3.6)

Lemma 4. The integral can be expanded including the linear order in t as

γJM =

J∑
M ′=−J

eηM sinh(η)∆+!∆−!

22J+2η δ+!δ−!

[
4ηPdJ+1 + (2PdJ − ηM

′2PdJ+1)t+O(t2)
]

(3.7)

and upon inserting Pk from the previous lemma explicitly the final result is:

γJM = 1− t

4

[(
J(J + 1)−M2

)tanh(η/2)

η/2
+M2

]
+O(t2) (3.8)

Lastly, we can perform trivially the limit of η → 0 on the right side of (3.8) which must

agree with taking the limit in the expectation value of 〈ĥ(k)〉 due to strong continuity.

4 Explicit proof of theorem 2

4.1 Proof of lemma 1

Using the standard recoupling techniques for SU(2), i.e. [56]

D
(j1)
ab (g)D

(j2)
cd (g) =

j1+j2∑
j=|j1−j2|

dj(−)m−n

(
j1 j2 j

a c m

)(
j1 j2 j

b d n

)
D

(j)
−m−n(g) (4.1)

– 8 –



J
H
E
P
0
2
(
2
0
2
0
)
0
2
4

one obtains easily — starting from (2.10) with h ≡ hC ∈ SL(2,C) from (2.14) — that:

〈ĥ(k)
ab 〉
〈1〉

=
1

〈1〉
∑
j,j′≥0

djdj′e
−t(d2j+d2

j′−2)/8

∫
SU(2)

dµH(g) Tr(j)(hg†)D
(k)
ab (g) Tr(j′)(hg†)

=
1

〈1〉
∑
j,j′≥0

djdj′e
−t(d2j+d2

j′−2)/8

∫
SU(2)

dµH(g) Tr(j)(e(ξ+iη)τ3g)D
(k)
ab (ngñ) Tr(j′)(e−(ξ−iη)τ3g†)

=
1

〈1〉
∑
j,j′≥0

djdj′e
−t(d2j+d2

j′−2)/8+i(ξ−iη)c′−i(ξ+iη)cD
(k)
aa′(n)D

(k)
b′b (ñ)

∫
SU(2)

dµH(g)×

×
k+j∑

J=|k−j|

dJ(−)m−n
(
k j J

a′ c m

)(
k j J

b′ c n

)
D

(j′)
c′c′ (g

†)D
(J)
−m−n(g)

=
1

〈1〉
∑
j,j′≥0

djdj′e
−t(d2j+d2

j′−2)/8+iξ(c′−c)+η(c+c′)D
(k)
aa′(n)D

(k)
b′b (ñ)

(
k j j′

a′ c −c′

)(
k j j′

b′ c −c′

)
= D

(k)
aa′(n)δa′b′e

iξa′D
(k)
b′b (ñ)γka′ (4.2)

where we used for the second line the left- and right-invariance of the Haar measure for

n†gñ† 7→ g, for the third (4.1) and D
(k)
ab (ezτ3) = δabe

−iza, for the fourth orthogonality of

the Wigner-D functions and finally in the last line that a′ = c′ − c = b′ and the definition

γJM =
1

〈1〉
∑
j,j′≥0

j∑
m=−j

j′∑
m′=−j′

djdj′e
−t(d2j+d2

j′−2)/8
eη(m+m′)

(
J j j′

M m −m′

)2

(4.3)

as was claimed in (2.15). Due to the symmetry properties of the Wigner 3j-symbol, it

follows that:

γJM (η) = γJM (−η) = γJ−M (η) (4.4)

The coefficient γJM can now be further manipulated: the 3j-symbol is defined to vanish

unless |j − J | ≤ j′ ≤ j + J , which allows us to replace the sum over j′ = j + M ′ by a

corresponding sum over M ′. Further it vanishes unless m−m′ +M = 0, which consumes

the sum over m′:

γJM =
1

〈1〉

J∑
M ′=−J

∑
j≥(J−M ′)/2

j∑
m=−j

djdj+M ′e
−t(d2j+d2

j+M′−2)/8
eη(2m+M)

(
j j +M ′ J

m −m−M M

)2

(4.5)

Note that we have truncated the sum to j ≥ (J − M ′)/2 as the 3j-symbol is zero for

smaller j. Using that it vanishes also if |m + M | > j + M ′ and otherwise applying the

Racah formula [57, 58] gives rise to the following expression, which has no poles for the

specified range of j:(
j j+M ′ J

m −m−M M

)2

= (J+M)!(J−M)!(J+M ′)!(J−M ′)!

(
J∏

N=−J
(dj+M

′−N)

)−1

(4.6)

×(j+m)!(j−m)!(j+m+M+M ′)!(j−m−M+M ′)!

×

(∑
k

(−)k[k!(M ′−M+k)!(J+M−k)!(J−M ′−k)!(j−m−k)!(j+m+M ′−J+k)!]−1

)2
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where the sum runs over all k ∈ N0 such that the arguments of all factorials are

non-negative.

Upon introducing the quantities

∆± := J ±max(|M |, |M ′|), δ± := J ± (|M ′ +M | − |M ′ −M |)/2 (4.7)

which satisfy ∆+ ≥ δ± ≥ ∆−, we find

(J +M)!(J −M)!(J +M ′)!(J −M ′)! = ∆+!∆−!δ+!δ−! (4.8)

and under a shift of the summation parameter k 7→ k+n−, with n± := −min(0,M ′±M),

we see:

k!(M ′ −M + k)! 7→ k!(δ− −∆− + k)!, (4.9)

(J +M − k)!(J −M ′ − k)! 7→ (δ+ − k)!(∆− − k)! (4.10)

Therefore, we obtain for the sum appearing in (4.6):(∑
k

(−)k . . .

)
=
∑
k

(−)k

δ+!δ−!

(
δ+

k

)(
δ−

∆− − k

)
1

(j −m− k − n−)!(j +m+ k −∆− − n+)!

(4.11)

Finally, the second line of (4.6) can be rewritten via:

(j ±m)!(j ±m+M ′ ±M)! =
(j ±m+ max(0,M ′ ±M)!)

(j ±m+ min(0,M ′ ±M)!)

[
(j ±m− n±)!

]2
(4.12)

Plugging (4.8), (4.11) and (4.12) into (4.6) and the total result into (4.5) gives:

γJM =
1

〈1〉

J∑
M ′=−J

β(M ′)
∑

j≥(J−M ′)/2

j∑
m=−j

e−t(dj+M ′)2/4dj(dj + 2M ′)

Q(dj +M ′)
e2mη ω(j,m) Ω2(j,m)

(4.13)

where we have defined:

β(M ′) := 2−2Jet(1−M
′2)/4eηM

∆+!∆−!

δ+!δ−!
, Q(v) :=

J∏
N=−J

(v −N) (4.14)

Ω(j,m) := 2J
∆−∑
k=0

(−)k
(
δ+

k

)(
δ−

∆− − k

)
ωk(j,m) (4.15)

ω(j,m) :=
(j +m+ max(0,M ′ +M))!

(j +m+ min(0,M ′ +M))!

(j −m+ max(0,M ′ −M))!

(j −m+ min(0,M ′ −M))!
(4.16)

ωk(j,m) :=
(j −m− n−)!

(j −m− k − n−)!

(j +m− n+)!

(j +m+ k −∆− − n+)!
(4.17)

Note that the summation variables m and k are still subject to some implicit restrictions

stemming from the application of the Racah formula. This finishes the proof of lemma 1.
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4.2 Proof of lemma 2

Upon closer inspection of (4.16) and (4.17), we see that ω(j,m) and ωk(j,m) are such that

all factorials in the denominator cancel, resulting in polynomial expressions in j ±m. In

the following, these polynomials are therefore understood as the definition of ω and ωk,

respectively, for all j,m ∈ R.

Consider ω(j,m)ωk(j,m) as a polynomial in m, then some of its roots are in integer

steps given by

(j − k − n− + 1), . . . , (j) (−j), . . . , (−j + ∆− − k + n+ − 1) (4.18)

Note that J −M ′ = ∆− + n+ + n− and thus for j ≤ (J −M ′ − 1)/2 we have:

(j − n− + 1) = (2j − j − n− + 1) ≤ (J −M ′ − j − n−) = (−j + ∆− + n+) (4.19)

For any N0/2 3 j < (J−M ′)/2 we can conclude that all m from −j to j are roots of ωωk for

all k, and therefore also roots of ωΩ. This allows us to extend the sum over j ≥ (J−M ′)/2
to j ≥ 0 by adding the corresponding counter terms, which are finite due to each pole in

1/Q being cancelled by a root of ωΩ. Following a similar argumentation we find that the

implicit restrictions of m and k may be dropped thanks to the respective summands being

zero. Hence,

γJM =
1

〈1〉
γ̃JM −RJM , γ̃JM =

J∑
M ′=−J

∑
j≥0

S(dj ,M
′), RJM =

1

〈1〉

J∑
M ′=−J

(J−M ′−1)/2∑
j=0

S(dj ,M
′)

(4.20)

i.e. RJM contains the counter terms, and with

S(dj ,M
′) := β(M ′) e−t(dj+M ′)2/4dj(dj + 2M ′)

Q(dj +M ′)

j∑
m=−j

e2mη ω(j,m) Ω2(j,m) (4.21)

The normalisation of the state has been computed in [36] and reads:

〈1〉 =

√
π

t3
2ηeη

2/t

sinh(η)
et/4 (4.22)

Therefore it is easy to estimate that

∣∣RJM ∣∣≤√t3e−η2/t J∑
M ′=−J

(J−M ′−1)/2∑
j=0

j∑
m=−j

∣∣∣∣β|t=0
dj(dj+2M ′)

Q(dj+M ′)
e2mηω(j,m)Ω2(j,m)

sinh(η)

2
√
πη

∣∣∣∣=C
√
t3e−η

2/t

with C being some finite constant independent of t. Since we are assuming η 6= 0, we see

that RJM = O(t∞). It will hence be neglected in the following.

Before we continue: later on it will turn out to be useful to know that

S(u,M ′) = S(−u,−M ′) (4.23)
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In order to prove (4.23), first note that β(M ′) = β(−M ′) and Q(v) = (−)dJQ(−v). From

ω(j,m)≡ω
(
dj ,m,M

′) :=

max(0,M ′+M)−1/2∏
i=min(0,M ′+M)+1/2

(
dj
2

+m+i

) max(0,M ′−M)−1/2∏
i=min(0,M ′−M)+1/2

(
dj
2
−m+i

)
(4.24)

it follows with max(0,−M ′ ±M) = −min(0,M ′ ∓M) that

ω
(
−u,m,−M ′

)
= (−)2J ω

(
u,m,M ′

)
(4.25)

where we used that 2J − (|M ′ +M |+ |M ′ −M |) = 2∆− is even.

For proving the respective symmetry of Ω(dj ,m,M
′) := Ω(j,m), we express Ω in terms

of the generalized hypergeometric function 3F2 (see [59] for properties thereof)

Ω
(
dj ,m,M

′) = 2J
(
δ−

∆−

)
Γ(e− a)

Γ(e)
3F2(a, b, c; d, e; 1), (4.26)

Ω
(
−dj ,m,−M ′

)
= 2J

(
δ−

∆−

)
Γ(e− a− b)

Γ(e− b) 3F2(a, b, d− c; d, a+ b− e+ 1; 1) (4.27)

with the definitions:

a :=−∆−, b :=−δ+, c :=−j+m+n−, d := δ−−∆−+1, e := j+m+1−∆−−n+

Note that (4.27) is not equivalent to (4.26), but obtained by rewriting Ω(−dj ,m,−M ′) in

its polynomial form first. We now utilize the following transformation formula [60]:

3F2(a,b,c;d,e;1) =
Γ(e)Γ(e−a−b)
Γ(e−a)Γ(e−b) 3F2(a,b,d−c;d,a+b−e+1;1)+

Γ(d)Γ(e)Γ(a+b−e)
Γ(a)Γ(b)Γ(d−c)

×

×Γ(d+e−a−b−c)
Γ(d+e−a−b) 3F2(e−a,e−b,d+e−a−b−c;d+e−a−b,e−a−b+1;1) (4.28)

For a, b ∈ Z\N the first two functions 3F2 are finite, and 1/(Γ(a)Γ(b)) = 0. The third

function certainly converges for c− e > −1, and (4.28) then simplifies to

3F2(a, b, c; d, e; 1) =
Γ(e)Γ(e− a− b)
Γ(e− a)Γ(e− b) 3F2(a, b, d− c; d, a+ b− e+ 1; 1) (4.29)

which tells immediately that (4.26) and (4.27) are the same expression if c − e > −1 or,

equivalently, dj < J −M ′+ 1. However, since Ω(dj ,m,M
′) is polynomial in dj and m, this

is already sufficient to conclude that Ω(u,m,M ′) = Ω(−u,m,−M ′) everywhere.

Finally, due to the fact that ω(j,m)Ω2(j,m) is polynomial in m, we can use that

j∑
m=−j

e2mηmk =

(
∂η
2

)k sinh(djη)

sinh(η)
(4.30)

(which is easily seen via performing a geometric sum) for the following replacement in the

polynomial:

j∑
m=−j

e2mη ω(j,m) Ω2(j,m) = ω(j, ∂η/2) Ω2(j, ∂η/2)
sinh(djη)

sinh(η)
(4.31)

Putting this and all the symmetries established for β,Q, ω,Ω together, it follows (4.23),

as was claimed!
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Having S(u,M ′) = S(−u,−M ′) and S(0,M ′) = 0 since u sinh(uη)/Q(u+M ′)|u=0 = 0

(and similar for multiple actions of ∂η thereon), we can write:

γ̃JM =

J∑
M ′=−J

∑
j≥0

S(2j + 1,M ′) =

J∑
M ′=−J

∞∑
u=1

S(u,M ′) =
1

2

J∑
M ′=−J

∑
u∈Z

S(u,M ′) (4.32)

which finishes the proof of lemma 2.

4.3 Proof of lemma 3

We apply the Poisson summation formula to (4.32):

γ̃JM =
1

2

J∑
M ′=−J

∑
n∈Z

∫
R
due−2πinuS(u,M ′) (4.33)

=

J∑
M ′=−J

β

2

∑
n∈Z

(−1)2M ′ne−4π2n2/t

∫
R
dv e−tv

2/4u(u+2M ′)

Q(u+M ′)
ω

(
u−1

2
,
∂η
2

)
Ω2

(
u−1

2
,
∂η
2

)
sinh(uη)

sinh(η)

=

J∑
M ′=−J

β

2

∫
R
dv e−tv

2/4 v
2−M ′2

Q(v)
ω

(
v−M ′−1

2
,
∂η
2

)
Ω2

(
v−M ′−1

2
,
∂η
2

)
sinh((v−M ′)η)

sinh(η)

where we introduced the new integration variable v = u + M ′ + 4πin
t and in the last step

used that exp(−4π2n2/t) = O(t∞) unless n = 0, while the integral is at most of a finite

order of n/t.

Since S(dj ,M
′) has no poles, it is clear that the integrand in the above formula has

no poles as well. However, this is only true for this exact expression, which severely limits

the possibilities of rewriting it. This motivates the following definition: let χ(v) be a

smooth, real, symmetric function satisfying χ(v) = 0 for |v| ≤ a and χ(v) = 1 for |v| ≥ b

with 0 < a < b fixed. By choosing a > J , the quotient χ/Q becomes a smooth function

everywhere. Now, we split (4.33) in two parts:

γJM =
1

〈1〉
γ̃JM =

1

〈1〉

J∑
M ′=−J

β

2

∫
R
dv e−tv

2/4 χ

Q

(
v2−M ′2

)
ωΩ2 sinh((v−M ′)η)

sinh(η)
(4.34)

+

(√
t3e−t/4

sinh(η)

2η
√
π

β

2

)
e−η

2/t

∫
R
dv e−tv

2/4 1−χ
Q

(
v2−M ′2

)
ωΩ2 sinh((v−M ′)η)

sinh(η)

Since 1 − χ is compactly supported, it is easily seen that the second term is O(t∞), due

to η 6= 0.

Neglecting it and using the same symmetries for β,Q, ω,Ω under v,M ′ 7→ −v,−M ′

established in the last section, we have:

γJM =
1

〈1〉

J∑
M ′=−J

β

2

∫
R
dv e−tv

2/4 χ

Q

(
v2 −M ′2

)
ω Ω2 1

sinh(η)

∑
s={−,+}

s

2
es(v−M

′)η

=
1

〈1〉

J∑
M ′=−J

β

2

∫
R
dv e−tv

2/4 χ

Q

(
v2 −M ′2

)
ω Ω2 e

(v−M ′)η

sinh(η)

=
1

〈1〉

J∑
M ′=−J

β

2

∫
R
dv e−tv

2/4+vη χ

Q
P (v,M ′, η) (4.35)

– 13 –



J
H
E
P
0
2
(
2
0
2
0
)
0
2
4

where we defined

P (v,M ′,η) := e−vη
(
v2−M ′2

)
ω
(
v−M ′,∂η/2,M ′

)
Ω2
(
v−M ′,∂η/2,M ′

)e(v−M ′)η

sinh(η)
(4.36)

Notice that P would not be well defined if we were to allow η = 0. As we will see later

on, the leading contributions to the expectation value are found when using that P is a

polynomial in v and looking at the leading order coefficients PdJ and PdJ+1 defined by

P (v,M ′, η) =:
∑
k

Pkv
k (4.37)

Note that P (v,M ′, η) is at most of degree dJ+1. From the form of ω and Ω it transpires

that its dependence on v is always in the form of terms (v ± ∂η) acting on evη. However,

we see that e−vη(v + ∂η)e
vη = O(v) while e−vη(v − ∂η)evη = O(1), where O denotes the

Bachmann-Landau notation: asymptotically bounded above for v → ∞. Thus, it is easy

to see that PdJ+1 = 0, i.e. P (v,M ′, η) = 0 + O(vdJ ), unless no term of the form (v − ∂η)
appears, i.e. unless M ′ = M as evident from (4.24). The same argument implies for the

next to leading order that M ′ = M ± 1.

Moreover, for every monomial in (v + ∂η) the highest order in v is obtained if every

∂η hits evη, bringing down a further power of v. Consequently the next to leading order

follows when 1/ sinh(η) is hit by one derivative ∂η. Therefore, using that M ′ = M implies

n− = 0 and δ− = ∆− = J −M − n+ = J − |M |, we compute:

ω(v−M ′,∂η/2,M ′)
e(v−M ′)η

sinh(η)

∣∣∣∣∣
M ′=M

=

( |M |−1/2∏
i=1/2−|M |

[
v+M+∂η

2
+i

])
e(v−M ′)η

sinh(η)

=

(
v2|M |+

|M |−1/2∑
i=1/2−|M |

[
−1

2
coth(η)+i

]
v2|M |−1+O

(
v2|M |−2

))e(v−M ′)η

sinh(η)

=
(
v2|M |−|M |coth(η)v2|M |−1+O

(
v2|M |−2

))e(v−M ′)η

sinh(η)
(4.38)

Ω(v−M ′,∂η/2,M ′)
e(v−M ′)η

sinh(η)

∣∣∣∣∣
M ′=M

≈ 2J

(
1∑
k=0

(−)k
(
δ+

k

)(
δ−

∆−−k

)
ωk

(
v−M−1

2
,
∂η
2

))
e(v−M ′)η

sinh(η)

= 2J

(
∆−∏
i=1

[
v+M+∂η−1

2
−J+i

]
−δ+δ−

[
v−M−∂η−1

2

]∆−∏
i=2

[
v+M+∂η−1

2
−J+i

])
e(v−M ′)η

sinh(η)

= 2J

(
v∆−+

[
∆−∑
i=1

[
−1

2
coth(η)− 1

2
−J+i

]
−δ+δ−

1

2

(
coth(η)−1

)]
v∆−−1+O

(
v∆−−2

))e(v−M ′)η

sinh(η)

= 2J
(
v∆−−∆−+J2−M2

2
coth(η)v∆−−1+O

(
v∆−−2

))e(v−M ′)η

sinh(η)
(4.39)

where ‘≈’ denotes equality up to corrections of O(v∆−−2). Additionally, we need further
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subleading contributions coming from M ′ = M ± 1, which are computed similarly:

ω
(
v−M ′,∂η/2,M ′

)e(v−M ′)η

sinh(η)

∣∣∣∣∣
M ′=M±1

=

(
v|2M±1| coth(η)±1

2
+O

(
v|2M±1|−1

))e(v−M ′)η

sinh(η)

(4.40)

Ω
(
v−M ′,∂η/2,M ′

)e(v−M ′)η

sinh(η)

∣∣∣∣∣
M ′=M±1

= 2Jδ−
(
v∆−+O

(
v∆−−1

))e(v−M ′)η

sinh(η)
(4.41)

Plugging the last four equations into (4.36) enables us to read the coefficients

PdJ+1 =
22Je−Mη

sinh(η)
δM,M ′ (4.42)

PdJ =
22Je−Mη

sinh(η)

[
−
(
J(J + 1)−M2

)
coth(η) δM,M ′ +

(δ−)2

2 sinh(η)
δM±1,M ′

]
(4.43)

where we used (coth(η)± 1) = e±η/ sinh(η). This finishes the proof of lemma 3.

4.4 Proof of lemma 4

We continue with (4.35) and complete the square in the exponent w.r.t. w =
√
tv− 2η/

√
t,

i.e. v = w+ with w± := ±w/
√
t + 2η/t. After adding the factor χ(w−) = χ(v − 4η/t) to

the integrand (a process found to be correct up to O(t∞) by an appropriate substitution)

we have

γJM =

J∑
M ′=−J

(
t e−t/4

sinh(η)

2η
√
π

β

2

)∫
R
dw e−w

2/4χ(w+)χ(w−)
P (w+,M ′, η)

Q(w+)

=

J∑
M ′=−J

(
e−t/4

sinh(η)

2η
√
π

β

2

)∫
R
dw e−w

2/4χ(w+)χ(w−)
p(w, t)

q(w, t)
(4.44)

where we replaced tP/Q by its symmetrised version w.r.t. w, using w+(−w) = w−(w):

p(w, t) := [P (w+,M ′, η)Q(w−) + P (w−,M ′, η)Q(w+)] t2dJ+1/2 (4.45)

q(w, t) := Q(w+)Q(w−) t2dJ (4.46)

Both p and q are polynomials in w of degree (2dJ + 1) and 2dJ respectively and symmetric

in w. Therefore, they only contain even powers of w/
√
t and, due to the monomial factor

in t, are also polynomials in t of the same respective degree.

To determine the power series of

I(t) :=

∫
R
dw e−w

2/4χ(w+)χ(w−)
p(w, t)

q(w, t)
(4.47)
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it can be shown that by virtue of dominated convergence we may interchange integration

and limit t→ 0 in the power series expansion (for η 6= 0):

I(t) = lim
s→0

I(s) + t lim
s→0

(∂sI)(s) +O(t2)

=

∫
R
dw e−w

2/4 p(w, 0)

q(w, 0)
+ t

∫
R
dw e−w

2/4 ∂s

[
χ
(
w+(s)

)
χ
(
w−(s)

)p(w, s)
q(w, s)

]
s=0

+O(t2)

=

∫
R
dw e−w

2/4

(
p(w, 0)

q(w, 0)
+ t ∂s

p(w, s)

q(w, s)

∣∣∣∣
s=0

)
+O(t2) (4.48)

where we neglected all terms containing the derivative of χ because it is compactly sup-

ported and the respective integral is therefore found to be O(t∞).

Denoting by ′ the derivative in the second argument, one can convince oneself that

p(w, 0) = PdJ+1QdJ (2η)2dJ+1, q(w, 0) = Q2
dJ

(2η)2dJ ,

p′(w, 0) = −dJPdJ+1QdJ (2η)2dJ−1w2 + (PdJ+1QdJ−1 + PdJQdJ )(2η)2dJ ,

q′(w, 0) = −dJQ2
dJ

(2η)2dJ−2w2 + 2QdJQdJ−1(2η)2dJ−1

where we defined Q(v) =:
∑

kQkv
k. Using QdJ = 1, QdJ−1 = 0 and resolving the Gaussian

integrals, this leads to

I(t) = 4η
√
πPdJ+1 + 2

√
πPdJ t+O(t2) (4.49)

Having already calculated PdJ+1 and PdJ , we can plug everything into (4.44). Using

∆± = δ± ± |M ′ −M | and [coth(η)− 1/ sinh(η)] = tanh(η/2), we finally get:

γJM =

J∑
M ′=−J

e−t/4
sinh(η)

4η
√
π

(
2−2Jet(1−M

′2)/4eηM
∆+!∆−!

δ+!δ−!

)(
4η
√
πPdJ+1+2

√
πPdJ t+O(t2)

)
= 1− tM

2

4
− t

2η

(
J(J+1)−M2

)
coth(η)+

t

4η sinh(η)

J∑
M ′=−J

(δ++1)δ− δM±1,M ′+O(t2)

= 1− t
4

[(
J(J+1)−M2

)tanh(η/2)

η/2
+M2

]
+O(t2) (4.50)

5 Conclusion

Coherent states are an essential tool in the study of any quantum system, being able to

investigate the correspondence with an emerging classical description of the system and

the role of quantum fluctuations that modify it. Especially when a concrete definition of

the kinematical state space of the theory is available, coherent states are the natural route

to follow and might help to unravel properties of any proposal for the dynamics.

In this paper we repeated the construction of Gauge Field Theory Coherent States

(GCS) from [32–34] which are suitable for all LGTs. These GCS are labelled by classi-

cal phase space data and sharply peaked in the sense that the expectation value of any
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operator, corresponding to some classical function on the phase space, results in the eval-

uation of its classical function on said phase space data modulo higher order quantum

corrections. Moreover, we have derived the general formulas which describe the first order

quantum fluctuations of these expectation values for the gauge group SU(2). Therefore we

enable in principle a direct relation between novel predictions from LGT and experimental

measurements.

Now, it would be interesting to determine these corrections for concrete models, for

example already known classical solutions to SU(2) Yang-Mills theory, like those derived

in [61] and [62], or other systems based on this gauge group, such as Loop Quantum

Gravity.6

Let us speculate about further applications of the analytical form of these quantum

fluctuations which might help in dealing with the vast discretisation ambiguities that plague

the definition of the dynamics in canonical LGT. To define the latter, one normally intro-

duces an ultraviolet cutoff or discretisation parameter ε and approximates the Hamiltonian

H by a function Hε which is solely expressed in quantities regular in the smearing param-

eter, such that H = Hε + O(ε). While for finite ε a quantisation of Hε is possible on its

corresponding lattice Hilbert space Hε, the continuum limit ε→ 0 is typically problematic,

e.g. for Yang-Mills theories the quantum Kogut-Susskind Hamiltonian Ĥε depends on in-

verse powers of ε. This is the point where renormalisation techniques enter: for a family

of lattices labelled by ε one wants to find a family {Hε, Ĥε
?}ε such that an inductive limit

(also called direct limit [65, 66]) exists to give rise to a well-defined continuum theory. The

inductive limit Hilbert space H contains the Hε of all coarse lattices — loosely speaking

interpretable as restrictions of the continuum theory to resolution scale ε. An inductive

limit Hamiltonian operator (once found) would generate the dynamics on the continuum

Hilbert space, such that its matrix elements on states in Hε would agree with those of the

Hamiltonian Ĥε
? of finite resolution ε. Of course, the GCS correspond to elements in some

Hε that appear semi-classical at finite resolution ε. And with the provided formulas the

expectation value of the restriction of the continuum Hamiltonian to this state could be

computed immediately.

However, in the light of the present formulas a different point of view also appears to

be viable: instead of considering Hε as restrictions of the continuum quantum field theory

(QFT) to finite resolution, we might view them as auxiliary intermediate objects being

interested only in the continuum theory itself, which we will interpret as the formal limit

ε → 0. In this sense, a family of states {Ψε}ε as parametrized by the lattice regulator

ε describes a quantum state for vanishing discretisations in their limit ε → 0. Indeed,

the GCS studied here are of this form as they are peaked over classical field content

P̃ε(Sek), h̃ε(ek) (e.g. limε→0(h̃ε(ek)− 1)/ε = Ak(ek[0]) recovers the continuum connection).

Given some observable O of the gauge theory, one will discretise it to Oε on a lattice Γε and

then quantise it as Ôε. Now, thanks to the formulas computed in (2.15)–(2.18) it is possible

to compute 〈Ψε, Ô
εΨε〉 for every ε > 0 where Ψε labels a family of GCS peaked on the same

continuum geometry (E,A). The limit limε→0〈Ψε, Ô
εΨε〉 = O[E,A] + ~ F [E,A] + O(~2)

6Indeed, in [36, 63, 64] this proposal is explicitly carried out for cosmological, isotropic spacetimes.

– 17 –



J
H
E
P
0
2
(
2
0
2
0
)
0
2
4

results then in the original continuum expression for O evaluated on the classical field

content, modulated by its continuum quantum corrections F . In total, we could therefore

adapt the philosophy that — although we do not have access to the continuum QFT itself

— the computed expectation values for ε → 0 are speculated to carry physical relevance.

This would allow for the first time to compute predictions for the quantum behaviour of

a system that are not overshadowed by classical discretisation ambiguities. On the other

hand, these computations could help to determine whether different discretisations Oε and

Ōε would lead to different quantum corrections F, F̄ . In other words, we have provided a

tool to check for remnants of the artificial, intermediate discretisations used to build the

quantum theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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