Title

Modeling the effects of trait-mediated dispersal on coexistence of mutualists

Document Type

Article

Publication Date

1-1-2020

Abstract

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) Even though mutualistic interactions are ubiquitous in nature, we are still far from making good predictions about the fate of mutualistic communities under threats such as habitat fragmentation and climate change. Fragmentation often causes declines in abundance of a species due to increased susceptibility to edge effects between remnant habitat patches and lower quality “matrix” surrounding these focal patches. It has been argued that ecological communities are replete with trait-mediated indirect effects, and that these effects may sometimes contribute more to the dynamics of a population than direct density-mediated effects, e.g., lowering an organism's fitness through competitive interactions. Although some studies have focused on trait-mediated behavior such as trait-mediated dispersal, in which an organism changes its dispersal patterns due to the presence of another species, they have been mostly limited to predator-prey systems-little is known regarding their effect on other interaction systems such as mutualism. Here, we explore consequences of fragmentation and trait-mediated dispersal on coexistence of a system of two mutualists by employing a model built upon the reaction diffusion framework. To distinguish between trait-mediated dispersal and density-mediated effects, we isolate effects of trait-mediated dispersal on the mutualistic system by excluding any direct density-mediated effects in the model. Our results demonstrate that fragmentation and trait-mediated dispersal can have important impacts on coexistence of mutualists. Specifically, one species can be better able to invade and persist than the other and be crucial to the success of the other species in the patch. Matrix quality degradation can also bring about a complete reversal of the role of which species is supporting the other's persistence in the patch, even as the patch size remains constant. As most mutualistic relationships are identified based on density-mediated effects, such an effect may be easily overlooked.

Publication Source (Journal or Book title)

Mathematical Biosciences and Engineering

First Page

7838

Last Page

7861

This document is currently not available here.

Share

COinS