Immunolocalization of TRPC channel subunits 1 and 4 in the chicken retina

Scott Crousillac, Louisiana State University
Michelle Lerouge, Louisiana State University
Michele Rankin, Louisiana State University
Evanna Gleason, Louisiana State University

Abstract

In the vertebrate retina, multiple cell types express G protein-coupled receptors linked to the IP3 signaling pathway. The signaling engendered by activation of this pathway can involve activation of calcium permeable transient receptor potential (TRP) channels. To begin to understand the role of these channels in the retina, we undertake an immunocytochemical localization of two TRP channel subunits. Polyclonal antibodies raised against mammalian TRPC1 and TRPC4 are used to localize the expression of these proteins in sections of the adult chicken retina. Western blot analysis indicates that these antibodies recognize avian TRPC1 and TRPC4. TRPC1 labeling is almost completely confined to the inner plexiform layer (IPL) where it labels a subset of processes that ramify in three broad stripes. Occasionally, cell bodies are labeled. These can be found in the inner nuclear layer (INL) proximal to the IPL, the IPL, and the ganglion cell layer (GCL). Double-labeling experiments using a polyclonal antibody that recognizes brain nitric oxide synthase (bNOS) in the chicken indicate that many of the TRPC1-positive processes and cell bodies also express bNOS. Labeling with the TRPC4 antibody was much more widespread with some degree of labeling found in all layers of the retina. TRPC4 immunoreactivity was found in the photoreceptor layer, in the outer plexiform layer (OPL), in radially oriented cells in the INL, diffusely in the IPL, and in vertically oriented elements below the GCL. Double-labeling experiments with a monoclonal antibody raised against vimentin indicate that the TRPC4-positive structures in the INL and below the GCL are Müller cells. Thus, TRPC1 and TRPC4 subunits have unique expression patterns in the adult chicken retina. The distributions of these two subunits indicate that different retinal cell types express TRP channels containing different subunits.