Title

Phylogenomic analysis of Lake Malawi cichlid fishes: Further evidence that the three-stage model of diversification does not fit

Document Type

Article

Publication Date

9-1-2017

Abstract

Adaptive radiations could often occur in discrete stages. For instance, the species flock of ∼1000 species of Lake Malawi cichlid fishes might have only diverged once between rocky and sandy environments during the initial stage of their diversification. All further diversification within the rock-dwelling (mbuna) or sand-dwelling (utaka) cichlids would have occurred during a subsequent second stage of extensive trophic evolution that was followed by a third stage of sexual trait divergence. We provide an improved phylogenetic framework for Malawi cichlids to test this three-stage hypothesis based on newly reconstructed phylogenetic relationships among 32 taxonomically disparate Malawi cichlids species. Using several reconstruction methods and 1037 ultra-conserved element (UCE) markers, we recovered a molecular phylogeny that confidently resolved relationships among most of the Malawi lineages sampled when a bifurcating framework was enforced. These bifurcating reconstructions also indicated that the sand-dwelling species Cyathochromis obliquidens was well-nested within the primarily rock-dwelling radiation known as the mbuna. In contrast to predictions from the three-stage model of vertebrate diversification, the recovered phylogeny reveals an initial colonization of rocky reefs, followed by substantial diversification of rock-dwelling lineages, and then at least one instance of subsequent evolution back into sandy habitats. This repeated evolution into major habitat types provides further evidence that the three-stage model of Malawi cichlid diversification has numerous exceptions.

Publication Source (Journal or Book title)

Molecular phylogenetics and evolution

First Page

40

Last Page

48

This document is currently not available here.

COinS