Document Type


Publication Date



© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. All three epithelial Na+ channel (ENaC) subunits (α, β, and γ) and the mineralocorticoid receptor (MR), a known regulator of ENaC, are located in vasopressin (VP) synthesizing magnocellular neurons in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. Our previous study showed that ENaC mediates a Na+ leak current that affects the steady-state membrane potential of VP neurons. This study was conducted in Dahl salt-sensitive (Dahl-SS) rats to determine if any abnormal responses in the expression of ENaC subunits and MR occur in the hypothalamus and kidney in response to a high dietary salt intake. After 21 days of high salt consumption, Dahl-SS rat resulted in a significant increase in γENaC expression and exhibited proteolytic cleavage of this subunit compared to Sprague–Dawley (SD) rats. Additionally, Dahl-SS rats had dense somato-dendritic γENaC immunoreactivity in VP neurons, which was absent in SD rats. In contrast, SD rats fed a high salt diet had significantly decreased αENaC subunit expression in the kidney and MR expression in the hypothalamus. Plasma osmolality measured daily for 22 days demonstrated that Dahl-SS rats fed a high salt diet had a steady increase in plasma osmolality, whereas SD rats had an initial increase that decreased to baseline levels. Findings from this study demonstrate that Dahl-SS rats lack a compensatory mechanism to down regulate ENaC during high dietary salt consumption, which may contribute to the development of hypertension.

Publication Source (Journal or Book title)

Physiological Reports