Title

Pressure effects on the GTPase activity of brain membrane G proteins of deep-living marine fishes

Document Type

Article

Publication Date

8-1-2003

Abstract

In marine fishes, heterotrimeric guanyl nucleotide binding proteins (G proteins), which couple cell surface membrane receptors to their effector elements, are sensitive to hydrostatic pressure. The intrinsic high affinity GTPase activity of the α subunits of G proteins in three signaling systems coupled to adenylyl cyclase, the A1 adenosine receptor, the muscarinic cholinergic receptor and the β-adrenergic receptor, was tested at pressures up to 340 atm. Brain membrane preparations from four members of the deep-sea teleost fish family Macrouridae were studied. Coryphaenoides armatus, C. filifer, C. rupestris and Macrourus berglax have depth distributions which together span 100-5810 m. Increased pressure inhibited basal GTPase activity only in M. berglax, which of the four species has the shallowest center of abundance. Increased hydrostatic pressure did not alter the response of GTPase activity to the β-adrenergic receptor agonist isoproterenol. Increased pressure decreased the stimulation of GTPase activity by the A1 adenosine receptor agonist cyclopentyladenosine (CPA) in C. armatus and M. berglax, and by the muscarinic cholinergic receptor agonist carbamyl choline in C. armatus, C. filifer and M. berglax. Decreased agonist-stimulation of the GTPase activity at elevated pressure may result from pressure-induced changes in conformational states or inhibition of agonist binding. The binding of the non-hydrolyzable GTP analog guanosine 5′-[γ-thio]triphosphate (GTP[S]) in response to CPA was determined at 5°C and atmospheric pressure. Six macrourid species and a morid were studied. The halftime (t1/2) values for GTP[S] binding, ranging from 20.8 to 40.9 min, are similar to values previously reported for two other cold-adapted fishes. © 2003 Elsevier Science Inc. All rights reserved.

Publication Source (Journal or Book title)

Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology

First Page

697

Last Page

705

This document is currently not available here.

Share

COinS