Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem II

Document Type


Publication Date



Photosystem II (PSII) is a large membrane protein complex that catalyzes oxidation of water to molecular oxygen. During its normal function, PSII is damaged and frequently turned over. The maturation of the D1 protein, a key component in PSII, is a critical step in PSII biogenesis. The precursor form of D1 (pD1) contains a C-terminal extension, which is removed by the protease CtpA to yield PSII complexes with oxygen evolution activity. To determine the temporal position of D1 processing in the PSII assembly pathway, PSII complexes containing only pD1 were isolated from a CtpA-deficient strain of the cyanobacterium Synechocystis 6803. Although membranes from the mutant cell had nearly 50% manganese, no manganese was detected in isolated ΔctpAHT3 PSII, indicating a severely decreased manganese affinity. However, chlorophyll fluorescence decay kinetics after a single saturating flash suggested that the donor YZ was accessible to exogenous Mn2+ ions. Furthermore, the extrinsic proteins PsbO, PsbU, and PsbV were not present in PSII isolated from this mutant. However, PsbO and PsbV were present in mutant membranes, but the amount of PsbV protein was consistently less in the mutant membranes compared with the control membranes. We conclude that D1 processing precedes manganese binding and assembly of the extrinsic proteins into PSII. Interestingly, the Psb27 protein was found to be more abundant in ΔctpAHT3 PSII than in HT3 PSII, suggesting a possible role of Psb27 as an assembly factor during PSII biogenesis.

Publication Source (Journal or Book title)

Journal of Biological Chemistry

First Page


Last Page


This document is currently not available here.