Identification and characterisation of a novel inorganic carbon acquisition gene, CIA7, from an insertional mutant of Chlamydomonas reinhardtii

Ruby A. Ynalvez, Texas A and M International University
James V. Moroney, Louisiana State University

Abstract

Chlamydomonas reinhardtii is a unicellular eukaryotic alga which possesses a CO2-concentrating mechanism (CCM) that enables it to grow at low CO2 concentrations. Previously, insertional mutants were generated to enable isolation of inorganic carbon transporters and other proteins that might be essential for a functional CCM. These mutants have an antibiotic resistance gene that encodes a protein that binds to Zeocin inhibiting Zeocin's DNA strand cleavage activity. The DNA flanking the BleR insert of one of the high CO2 requiring strains, named cia7, was cloned with inverse-PCR and sequenced. Sequence analysis showed homology to conserved bacterial proteins of unknown function, but there were no ESTs in this region of the genome. However, the presence of a gene was established by PCR and RLM-RACE. CIA7 was found to have four exons and the BleR insert was in the fourth exon. CIA7 encodes a protein of 104 amino acids with a calculated molecular mass of 11.3:kDa. Based on the ChloroP prediction program, the protein is predicted to have a chloroplast targeting signal. Complementation analyses results showed possible partially rescued mutants, and RNAi showed several transformants with a sick on low CO2 phenotype with reduced expression of CIA7. These results suggest that CIA7 is a gene that facilitates growth in C. reinhardtii under low CO2 conditions. One possible role of CIA7 would be in the delivery or storage of a metal ion. It may play a potential role as either a domain of a metal transporter or as a metallochaperone. © CSIRO 2008.