Document Type

Article

Publication Date

1-1-1996

Abstract

Syndecan-1 is a transmembrane haparan sulphate proteoglycan that binds extracellular matrices and growth factors, making it a candidate to act between these regulatory molecules and intracellular signalling pathways. It has a highly conserved transmembrane/cytoplasmic domain that contains four conserved tyrosines. One of these is in a consensus sequence for tyrosine kinase phosphorylation. As an initial step to investigating whether or not phosphorylation of these tyrosines is part of a signal-transduction pathway, we have monitored the tyrosine phosphorylation of syndecan-1 by cytoplasmic tyrosine kinases in intact cells. Tyrosine phosphorylation of syndecan-1 is observed when NMuMG cells are treated with sodium orthovanadate or pervanadate, which have been shown to activate intracellular tyrosine kinases. Initial studies with sodium orthovanadate demonstrate a slow accumulation of phosphotyrosine on syndecan-1 over the course of several hours. Pervanadate, a more effective inhibitor of phosphatases, allows detection ofphosphotyrosine on syndecan-1 within 5 min, with peak phosphorylation seen by 15 min. Concurrently, in a second process activated by pervanadate, syndecan-1 ectodomain is cleaved and released into the culture medium. Two phosphorylated fragments of syndecan-1 of apparent sizes 6 and 8 kDa remain with the cell after shedding of the ectodomain. The 8 kDa size class appears to be a highly phosphorylated form of the 6 kDa product, as it disappears if samples are dephosphorylated. These fragments contain the C-terminus of syndecan-1 and also retain at least a portion of the transmembrane domain, suggesting that they are produced by a cell surface cleavage event. Thus pervanadate treatment of cells results in two effects of syndecan-1: (i) phosphorylation of one or more of its tyrosines via the, action of a cytoplasmic kinase(s) and (ii) cleavage and release of the ectodomain into the medium, producing a C-terminal fragment containing the transmembrane/cytoplasmic domain.

Publication Source (Journal or Book title)

Biochemical Journal

First Page

39

Last Page

47

COinS